JP2022112398A - Method for producing hexamethylene diamine - Google Patents

Method for producing hexamethylene diamine Download PDF

Info

Publication number
JP2022112398A
JP2022112398A JP2021008235A JP2021008235A JP2022112398A JP 2022112398 A JP2022112398 A JP 2022112398A JP 2021008235 A JP2021008235 A JP 2021008235A JP 2021008235 A JP2021008235 A JP 2021008235A JP 2022112398 A JP2022112398 A JP 2022112398A
Authority
JP
Japan
Prior art keywords
reaction
hexamethylenediamine
mol
raw material
hexanediol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021008235A
Other languages
Japanese (ja)
Inventor
鉄平 浦山
Teppei Urayama
樹 長刀
Itsuki Naginata
健太 森田
Kenta Morita
隆介 宮崎
Ryusuke Miyazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2021008235A priority Critical patent/JP2022112398A/en
Publication of JP2022112398A publication Critical patent/JP2022112398A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

To provide a production method that gives hexamethylene diamine with high selectivity through a solid catalyst under mild conditions.SOLUTION: The inventive method for producing hexamethylene diamine includes reacting raw materials containing one or more selected from the following (i) and (ii) with ammonia in the presence of a solid catalyst containing an active ingredient, which contains one or more metal elements selected from elements of the groups 8, 9, 10 and 11 in the periodic table, and a carrier. (i) Hexamethylene imine. (ii) Condensate of at least one compound selected from the group consisting of hexamethylene imine, 6-aminohexanol, hexamethylene diamine, and 1,6-hexanediol.SELECTED DRAWING: None

Description

本発明は、ヘキサメチレンジアミンの製造方法に関する。 The present invention relates to a method for producing hexamethylenediamine.

ヘキサメチレンジアミンはナイロン原料として非常に有用なモノマーであり、主要な製造方法のひとつとして1,6-ヘキサンジオールのアミノ化反応が挙げられる。効率よくヘキサメチレンジアミンを製造するため、本アミノ化反応を促進する種々の触媒系が開発されてきた。 Hexamethylenediamine is a very useful monomer as a raw material for nylon, and one of the main production methods is the amination reaction of 1,6-hexanediol. In order to efficiently produce hexamethylenediamine, various catalyst systems have been developed to promote this amination reaction.

特許文献1~5では、固体触媒により1,6-ヘキサンジオールをヘキサメチレンジアミンへと変換する技術が開示されている。また、特許文献1及び2ではラネーニッケル触媒を、特許文献3ではコバルトロッド触媒を、特許文献4はルテニウムを活性種とした金属担持触媒を、特許文献5はレニウムを触媒活性種とした合金担持触媒を使用した技術である。 Patent Documents 1 to 5 disclose techniques for converting 1,6-hexanediol to hexamethylenediamine using a solid catalyst. In addition, Patent Documents 1 and 2 are Raney nickel catalysts, Patent Document 3 is a cobalt rod catalyst, Patent Document 4 is a metal-supported catalyst with ruthenium as an active species, and Patent Document 5 is an alloy-supported catalyst with rhenium as a catalytically active species. It is a technique using

米国特許第3,215,742号明細書U.S. Pat. No. 3,215,742 米国特許第3,268,588号明細書U.S. Pat. No. 3,268,588 米国特許第3,270,059号明細書U.S. Pat. No. 3,270,059 米国特許第2,754,330号明細書U.S. Pat. No. 2,754,330 中国特許第106,810,454A号明細書China Patent No. 106,810,454A

1,6-ヘキサンジオールのアミノ化反応系においては、例えば、ヘキサメチレンイミンや重合物(以下、「アミノ化副生物」という)が副生する。これらのアミノ化副生物をヘキサメチレンジアミンへと転化することができれば、反応系全体のヘキサメチレンジアミン収率を向上させることができるため、アミノ化副生物をヘキサメチレンジアミンへと転化する技術が求められる。さらに、上記のアミノ化副生物転化反応と1,6-ヘキサンジオールからヘキサメチレンジアミンへの転化反応とを同時に促進する、つまり、1,6-ヘキサンジオールとアミノ化副生物の混合原料よりヘキサメチレンジアミンを得る技術を開発することが効率的なヘキサメチレンジアミン製造を実現する鍵となる。 In the amination reaction system of 1,6-hexanediol, for example, hexamethyleneimine and polymers (hereinafter referred to as "amination by-products") are by-produced. If these amination by-products can be converted to hexamethylenediamine, the hexamethylenediamine yield of the entire reaction system can be improved. be done. Furthermore, the conversion reaction of the amination by-product and the conversion reaction of 1,6-hexanediol to hexamethylenediamine are simultaneously promoted, that is, the mixed raw material of 1,6-hexanediol and the amination by-product is converted to hexamethylene Developing a technology to obtain diamine is the key to realizing efficient production of hexamethylenediamine.

特許文献1、2及び3では、活性の低い非担持型の卑金属触媒を機能させるため、いずれも13MPa以上の高圧下で当該反応を実施している。 In Patent Documents 1, 2, and 3, the reaction is carried out under a high pressure of 13 MPa or higher in order to allow a non-supported base metal catalyst with low activity to function.

一方、特許文献4及び5では担持触媒を用いた技術が検討されているが、これらの触媒を用いたヘキサメチレンジアミンを得る反応において、アミノ化副生物の原料利用については検討されていない。 On the other hand, Patent Documents 4 and 5 discuss techniques using supported catalysts, but do not discuss the use of amination by-products as raw materials in the reaction to obtain hexamethylenediamine using these catalysts.

そこで、本発明は、固体触媒により穏和な条件下で、高い選択率でヘキサメチレンジアミンを与える製造方法を提供することを目的とする。 Accordingly, an object of the present invention is to provide a production method that provides hexamethylenediamine with high selectivity under mild conditions using a solid catalyst.

本発明者らは、本発明の課題を達成するために鋭意検討した結果、特定の固体触媒を用い、且つ、(i)ヘキサメチレンイミン、又は(ii)特定の縮合体を少なくとも含む原料を用いることで、取り扱いが容易かつ安定な触媒により穏和な条件下で、高い選択率でヘキサメチレンジアミンが得られることを見出した。 The present inventors have made intensive studies to achieve the object of the present invention, and found that a specific solid catalyst is used and (i) hexamethyleneimine or (ii) a raw material containing at least a specific condensate is used. As a result, it was found that hexamethylenediamine can be obtained with high selectivity under mild conditions with an easy-to-handle and stable catalyst.

即ち、本発明は以下の通りである。
[1]
周期表の第8族、第9族、第10族及び第11族元素の中から選ばれた1種類以上の金属元素を含む活性成分と担体とを含む固体触媒の存在下で、下記(i)及び(ii)から選ばれた一種類以上を含む原料とアンモニアとを反応させることを含むヘキサメチレンジアミンの製造方法。
(i)ヘキサメチレンイミン
(ii)ヘキサメチレンイミン、6-アミノヘキサノール、ヘキサメチレンジアミン、及び1,6-ヘキサンジオールからなる群から選ばれた1種以上の化合物の縮合体
[2]
前記原料が1,6-ヘキサンジオール、6-アミノヘキサノール、及びヘキサメチレンジアミンからなる群から選ばれた1種類以上の化合物を更に含む[1]に記載のヘキサメチレンジアミンの製造方法。
[3]
前記原料を供給することを含む[1]又は[2]に記載のヘキサメチレンジアミンの製造方法。
[4]
前記原料が前記反応させることにより得られた反応液を精製して得られた回収液を含む[1]~[3]のいずれかに記載のヘキサメチレンジアミンの製造方法。
[5]
前記固体触媒の活性成分が、第8族、第9族、第10族及び第11族元素の中から選ばれた2種類以上の金属元素を含む[1]~[4]のいずれかに記載のヘキサメチレンジアミンの製造方法。
[6]
前記固体触媒の活性成分が白金族元素と鉄族元素のそれぞれから1種類以上の金属を含む[1]~[5]のいずれかに記載のヘキサメチレンジアミンの製造方法。
That is, the present invention is as follows.
[1]
The following (i ) and (ii).
(i) hexamethyleneimine (ii) condensates of one or more compounds selected from the group consisting of hexamethyleneimine, 6-aminohexanol, hexamethylenediamine, and 1,6-hexanediol [2]
The method for producing hexamethylenediamine according to [1], wherein the raw material further contains one or more compounds selected from the group consisting of 1,6-hexanediol, 6-aminohexanol, and hexamethylenediamine.
[3]
The method for producing hexamethylenediamine according to [1] or [2], including supplying the raw material.
[4]
The method for producing hexamethylenediamine according to any one of [1] to [3], wherein the raw material contains a recovered liquid obtained by purifying the reaction liquid obtained by the reaction.
[5]
Any one of [1] to [4], wherein the active component of the solid catalyst contains two or more metal elements selected from Group 8, Group 9, Group 10 and Group 11 elements. A method for producing hexamethylenediamine.
[6]
The method for producing hexamethylenediamine according to any one of [1] to [5], wherein the active component of the solid catalyst contains one or more metals from each of platinum group elements and iron group elements.

本発明によれば、固体触媒により穏和な条件下で、高い選択率でヘキサメチレンジアミンを選択的に製造することができる。 According to the present invention, hexamethylenediamine can be selectively produced with high selectivity under mild conditions using a solid catalyst.

本発明について、以下具体的に説明する。なお、本発明は以下の実施の形態(本実施形態)に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 The present invention will be specifically described below. The present invention is not limited to the following embodiment (this embodiment), and various modifications can be made within the scope of the gist thereof.

[ヘキサメチレンジアミンの製造方法]
本実施形態のヘキサメチレンジアミンの製造方法は、周期表の第8族、第9族、第10族及び第11族元素の中から選ばれた1種類以上の金属元素を含む活性成分と担体で構成された触媒(以下、単に「固体触媒」ともいう。)の存在下で、下記(i)及び(ii)から選ばれた一種類以上を含む原料とアンモニアとを反応させること(以下、「反応工程」ともいう)を含む。
(i)ヘキサメチレンイミン
(ii)ヘキサメチレンイミン、6-アミノヘキサノール、ヘキサメチレンジアミン、及び1,6-ヘキサンジオールからなる群から選ばれた1種以上の化合物の縮合体
[Method for producing hexamethylenediamine]
In the method for producing hexamethylenediamine of the present embodiment, an active ingredient containing one or more metal elements selected from the elements of Groups 8, 9, 10 and 11 of the periodic table and a carrier are used. Reacting a raw material containing one or more selected from the following (i) and (ii) with ammonia in the presence of a structured catalyst (hereinafter also simply referred to as a "solid catalyst") (hereinafter referred to as " Also referred to as "reaction step").
(i) hexamethyleneimine (ii) condensates of one or more compounds selected from the group consisting of hexamethyleneimine, 6-aminohexanol, hexamethylenediamine, and 1,6-hexanediol

本実施形態では、(i)ヘキサメチレンイミン、又は(ii)特定の縮合体を少なくとも含む原料を用いることで特定の固体触媒により穏和な条件下で、高い選択率でヘキサメチレンジアミンが得られる。なお、高い選択率が得られる要因は、特定の固体触媒の存在下、アミノ化副生物の系内濃度を大きくすることでアミノ化副生物からヘキサメチレンジアミンへの変換反応の反応速度を向上させ、ヘキサメチレンジアミンのアミノ化副生物への変換反応を抑えるためと考えられるが、要因はこれに限定されない。 In the present embodiment, (i) hexamethyleneimine or (ii) a raw material containing at least a specific condensate is used to obtain hexamethylenediamine with high selectivity under mild conditions using a specific solid catalyst. The reason why the high selectivity is obtained is that the reaction rate of the conversion reaction from the amination by-product to hexamethylenediamine is improved by increasing the concentration of the amination by-product in the system in the presence of a specific solid catalyst. , to suppress the conversion reaction of hexamethylenediamine to an amination by-product, but the factors are not limited to this.

[1]反応工程
反応工程は、固体触媒の存在下で、(i)ヘキサメチレンイミン、又は(ii)特定の縮合体を含む原料とアンモニアとを反応させる工程である。本実施形態の反応工程は、回分式、半回分式、連続式等の慣用の方法により行うことができる。本実施形態のヘキサメチレンジアミンの製造方法は、上述の原料を供給すること(以下「供給工程」ともいう)を含んでいてもよい。また、本実施形態のヘキサメチレンジアミンの製造方法はヘキサメチレンジアミンを精製すること(以下「分離工程」ともいう)を含んでもよい。分離工程における方法としては、例えば、濃縮、蒸留、抽出、晶析、再結晶等の分離方法や、これらを組み合わせた分離方法が用いられる。
[1] Reaction step The reaction step is a step of reacting (i) hexamethyleneimine or (ii) a raw material containing a specific condensate with ammonia in the presence of a solid catalyst. The reaction process of this embodiment can be carried out by a conventional method such as a batch system, a semi-batch system, or a continuous system. The method for producing hexamethylenediamine according to the present embodiment may include supplying the raw materials described above (hereinafter also referred to as "supplying step"). Further, the method for producing hexamethylenediamine of the present embodiment may include purifying hexamethylenediamine (hereinafter also referred to as "separation step"). As a method in the separation step, for example, a separation method such as concentration, distillation, extraction, crystallization, recrystallization, or a combination of these methods is used.

[2]原料
本実施形態におけるヘキサメチレンジアミンの原料は、下記(i)及び(ii)から選ばれた一種類以上を含む原料を含む。
(i)ヘキサメチレンイミン
(ii)ヘキサメチレンイミン、6-アミノヘキサノール、ヘキサメチレンジアミン、及び1,6-ヘキサンジオールからなる群から選ばれた1種以上の化合物の縮合体
[2] Raw Material The raw material of hexamethylenediamine in the present embodiment includes a raw material containing one or more selected from the following (i) and (ii).
(i) hexamethyleneimine (ii) condensates of one or more compounds selected from the group consisting of hexamethyleneimine, 6-aminohexanol, hexamethylenediamine, and 1,6-hexanediol

上述の(i)ヘキサメチレンイミン、及び(ii)特定の縮合体は、1,6-ヘキサンジオールのアミノ化反応により得られるアミノ化副生物に含まれることがある。(ii)の縮合体としては、上述の化合物からアンモニア又は水の脱離をともなって生成される多量体が挙げられる。 (i) Hexamethyleneimine and (ii) certain condensates described above may be included in the amination by-products obtained from the amination reaction of 1,6-hexanediol. Condensates of (ii) include multimers produced from the above-mentioned compounds upon elimination of ammonia or water.

本実施形態で用いられる追加の原料としては、例えば、1,6-ヘキサンジオール、6-アミノヘキサノール、ヘキサメチレンジアミンなどが挙げられる。また、特に限定するわけではないが、収率に優れる観点から、原料が固体触媒による反応工程より得られた反応液を精製して得られた回収液を含むことが好ましい。 Additional raw materials used in this embodiment include, for example, 1,6-hexanediol, 6-aminohexanol, hexamethylenediamine, and the like. Although not particularly limited, it is preferable that the raw material contains a recovered liquid obtained by purifying a reaction liquid obtained from a reaction step using a solid catalyst from the viewpoint of excellent yield.

アンモニアの添加量は、反応速度及び安全性に優れる観点から、例えば、原料に対して、2~500当量であることが好ましく、2~150当量であることがより好ましく、2~100当量であることが更に好ましい。 The amount of ammonia to be added is preferably 2 to 500 equivalents, more preferably 2 to 150 equivalents, more preferably 2 to 100 equivalents, relative to the starting material, from the viewpoint of excellent reaction rate and safety. is more preferred.

[3]固体触媒
本実施形態のヘキサメチレンジアミンの製造方法においては、固体触媒を使用する。固体触媒は、周期表の第8族、第9族、第10族及び第11族元素の中から選ばれた1種類以上の金属元素を含む活性成分と担体とを含む。これらの固体触媒は、穏和な条件下で、且つ、高い選択率でヘキサメチレンジアミンを与える。
[3] Solid catalyst A solid catalyst is used in the method for producing hexamethylenediamine of the present embodiment. The solid catalyst comprises an active component containing one or more metal elements selected from the elements of Groups 8, 9, 10 and 11 of the periodic table, and a carrier. These solid catalysts give hexamethylenediamine with high selectivity under mild conditions.

活性成分とは、触媒調製工程によって担体上に新たに担持された元素を示す。担体にもとより含まれる元素と活性成分が同種の元素の場合も、触媒調製工程によって担持された部分を活性成分とする。 The active component indicates an element newly loaded on the carrier by the catalyst preparation process. Even when the element originally contained in the carrier and the active component are of the same type, the part supported by the catalyst preparation process is regarded as the active component.

活性成分として含まれる金属元素は第8族、第9族、第10族及び第11族元素の中から選ばれた1種類以上の金属元素である。活性成分は、金属カチオン、金属錯体及びナノ粒子等の状態で触媒担体に固定化され、この中でも、触媒活性に優れる観点から、ナノ粒子であることが好ましい。 The metal element contained as an active ingredient is one or more metal elements selected from Group 8, Group 9, Group 10 and Group 11 elements. The active ingredient is immobilized on the catalyst carrier in the form of metal cations, metal complexes, nanoparticles, or the like. Among these, nanoparticles are preferred from the viewpoint of excellent catalytic activity.

活性成分は、目的物であるヘキサメチレンジアミンへの選択性に優れる観点から、第8族、第9族、第10族及び第11族元素の中から選ばれた2種類以上の金属元素を含むことが好ましい。この中でも、選択性に優れる観点から、白金族元素(ルテニウム、ロジウム、イリジウム、パラジウム、及び白金)と、鉄族元素(鉄、ニッケル、コバルト)のそれぞれから1種類以上の金属元素を含むことがより好ましい。 The active ingredient contains two or more metal elements selected from group 8, group 9, group 10 and group 11 elements from the viewpoint of excellent selectivity to the target hexamethylenediamine. is preferred. Among these, from the viewpoint of excellent selectivity, it is possible to contain one or more metal elements from each of platinum group elements (ruthenium, rhodium, iridium, palladium, and platinum) and iron group elements (iron, nickel, and cobalt). more preferred.

活性成分の含有量は、担体の重量に対して、好ましくは0.5~50wt%であり、触媒活性に優れる観点から、より好ましくは1~40wt%である。
なお、金属元素の含有量については、担体の重量を100wt%とした場合の各金属のwt%を示している。例えば、10wt%M1*5wt%M2/担体と表記される触媒は、M1:M2:担体=10:5:100の重量比を有する。
また、固体触媒における金属元素等の含有量は蛍光X線装置を使用した検量線法で測定する。蛍光X線装置としては、例えば、リガク社製「ZSXPrimusII」が用いられる。
The content of the active ingredient is preferably 0.5 to 50 wt%, more preferably 1 to 40 wt%, based on the weight of the carrier, from the viewpoint of excellent catalytic activity.
The content of the metal element indicates wt% of each metal when the weight of the support is 100 wt%. For example, a catalyst denoted as 10 wt % M 1 *5 wt % M 2 /support has a weight ratio of M 1 :M 2 :support=10:5:100.
Also, the content of metal elements and the like in the solid catalyst is measured by a calibration curve method using a fluorescent X-ray device. As the fluorescent X-ray device, for example, "ZSX Primus II" manufactured by Rigaku Corporation is used.

担体としては、例えば、金属酸化物や炭素質担体から任意のものを使用することができる。このような担体としては、例えば、酸化チタン、酸化セリウム、酸化ランタン、酸化ジルコニウム、酸化マグネシウム、酸化モリブデン、酸化ニオブ、酸化コバルト、酸化ニッケル、酸化亜鉛、酸化カルシウム、酸化バリウム、窒化チタン、アルミナ、シリカ、ゼオライト、シリカアルミナ、イットリア安定化ジルコニア、セリア-ジルコニア固溶体、酸化ランタン-ジルコニア固溶体、ヒドロキシアパタイト、ハイドロタルサイト、有機ポリマー、活性炭などが挙げられ、この中でも、触媒活性に優れる観点から、酸化チタン、酸化ランタン、酸化セリウム、酸化ニオブ、酸化ジルコニウム、酸化マグネシウム、アルミナ、イットリア安定化ジルコニア、セリア-ジルコニア固溶体、酸化ランタン-ジルコニア固溶体が好ましく、酸化チタン、酸化ジルコニウム、アルミナ、イットリア安定化ジルコニア、セリア-ジルコニア固溶体、酸化ランタン-ジルコニア固溶体がより好ましい。 As the carrier, for example, any metal oxide or carbonaceous carrier can be used. Examples of such carriers include titanium oxide, cerium oxide, lanthanum oxide, zirconium oxide, magnesium oxide, molybdenum oxide, niobium oxide, cobalt oxide, nickel oxide, zinc oxide, calcium oxide, barium oxide, titanium nitride, alumina, Silica, zeolite, silica-alumina, yttria-stabilized zirconia, ceria-zirconia solid solution, lanthanum oxide-zirconia solid solution, hydroxyapatite, hydrotalcite, organic polymer, activated carbon, etc. Among them, from the viewpoint of excellent catalytic activity, oxidation Titanium, lanthanum oxide, cerium oxide, niobium oxide, zirconium oxide, magnesium oxide, alumina, yttria-stabilized zirconia, ceria-zirconia solid solution, lanthanum oxide-zirconia solid solution are preferred, titanium oxide, zirconium oxide, alumina, yttria-stabilized zirconia, A ceria-zirconia solid solution and a lanthanum oxide-zirconia solid solution are more preferable.

固体触媒は、公知の方法で調製してもよい。金属の触媒担体への担持方法としては、特に限定するわけではないが、例えば、析出沈殿法、含浸法、イオン交換法などが適用可能である。 A solid catalyst may be prepared by a known method. Although the method for supporting the metal on the catalyst carrier is not particularly limited, for example, a precipitation precipitation method, an impregnation method, an ion exchange method, and the like can be applied.

[4]還元処理工程
本実施形態のヘキサメチレンジアミンの製造方法は、反応工程の前に、好ましくは、固体触媒の還元処理をすること(以下、「還元処理工程」ともいう)を含む。固体触媒は、大気下で安定であるため、還元などの前処理を行わずに反応に用いることができるが、触媒安定性に優れる観点から、反応前に還元処理を行い、還元処理の後に固体触媒を酸素に曝露することなく反応工程に用いることが好ましい。「還元処理」とは、触媒調製の後、固体触媒を還元剤により処理することをいう。還元処理工程における還元剤は、例えば、水素、金属水素化物、アンモニア、尿素、一酸化炭素などが挙げられるが、触媒活性に優れる観点から、水素を使用することが好ましい。
[4] Reduction treatment step The method for producing hexamethylenediamine of the present embodiment preferably includes subjecting the solid catalyst to reduction treatment (hereinafter also referred to as "reduction treatment step") before the reaction step. Since the solid catalyst is stable in the atmosphere, it can be used in the reaction without pretreatment such as reduction. It is preferred to use the catalyst in the reaction step without exposure to oxygen. “Reduction treatment” refers to treatment of the solid catalyst with a reducing agent after preparation of the catalyst. Examples of the reducing agent in the reduction treatment step include hydrogen, metal hydrides, ammonia, urea, and carbon monoxide. Hydrogen is preferably used from the viewpoint of excellent catalytic activity.

[5]反応生成物
本実施形態のヘキサメチレンジアミンの製造方法は、反応工程によりヘキサメチレンジアミンを含む反応混合物を得ることができる。
[5] Reaction product In the method for producing hexamethylenediamine of the present embodiment, a reaction mixture containing hexamethylenediamine can be obtained by the reaction step.

[6]反応条件
固体触媒の使用量としては、反応後の固体触媒の分離性に優れる観点から、例えば、1,6-ヘキサンジオール100質量部に対して5~1000質量部であることが好ましく、10~750質量部であることがより好ましく、20~500質量部であることが更に好ましい。
[6] Reaction conditions The amount of the solid catalyst used is preferably, for example, 5 to 1000 parts by mass with respect to 100 parts by mass of 1,6-hexanediol, from the viewpoint of excellent separation of the solid catalyst after the reaction. , more preferably 10 to 750 parts by mass, even more preferably 20 to 500 parts by mass.

反応温度としては、例えば、0~300℃であることが好ましく、50~270℃であることがより好ましく、120~250℃であることが更に好ましい。 The reaction temperature is, for example, preferably 0 to 300°C, more preferably 50 to 270°C, even more preferably 120 to 250°C.

反応全圧としては、反応速度及び安全性に優れる観点から、好ましくは10MPaG以下(例えば、0.1~10.0MPaG)、より好ましくは0.5~7.5MPaG、特に好ましくは0.5~5.0MPaGである。 The total reaction pressure is preferably 10 MPaG or less (eg, 0.1 to 10.0 MPaG), more preferably 0.5 to 7.5 MPaG, particularly preferably 0.5 to 0.5 MPaG, from the viewpoint of excellent reaction rate and safety. 5.0 MPaG.

[7]水素圧力
本実施形態のヘキサメチレンジアミンの製造方法においては、例えば、原子効率に優れる観点から、水素非共存下で行うことが好ましい。ただし、水素共存下においても実施することができ、水素の圧力としては、反応速度及び安全性に優れる観点から、例えば、絶対圧力表示で、0~10.0MPaであることが好ましく、0~5.0MPaであることがより好ましく、0~1.0MPaであることが更に好ましい。
[7] Hydrogen Pressure In the method for producing hexamethylenediamine of the present embodiment, it is preferable to carry out in the absence of hydrogen from the viewpoint of, for example, excellent atomic efficiency. However, it can also be carried out in the presence of hydrogen, and the pressure of hydrogen is, for example, from the viewpoint of excellent reaction rate and safety, in terms of absolute pressure, preferably 0 to 10.0 MPa, and 0 to 5. 0 MPa, more preferably 0 to 1.0 MPa.

[8]溶媒
本実施形態のヘキサメチレンジアミンの製造方法では、例えば、反応工程においてアンモニア分子を溶解する溶媒を使用することが好ましい。このような溶媒としては、例えば、水、炭化水素系溶媒(例えば、トルエン、ベンゼン、キシレン、ペンタン、ヘキサン、デカン)、エーテル系溶媒(例えば、テトラヒドロフラン、ジオキサン、ジメトキシエタン)、アルコール系溶媒(エチレングリコール、エタノール、メタノール、t-ブタノール)、アミド系溶媒(ジメチルアセトアミド、アセトアミド、ジメチルホルムアミド、N-メチルピロリドン)、ハロゲン系溶媒(ジクロロエタン、ジクロロメタン、クロロホルム、四塩化炭素、トリフルオロトルエン)などが挙げられる。
[8] Solvent In the method for producing hexamethylenediamine of the present embodiment, for example, it is preferable to use a solvent that dissolves ammonia molecules in the reaction step. Examples of such solvents include water, hydrocarbon solvents (e.g., toluene, benzene, xylene, pentane, hexane, decane), ether solvents (e.g., tetrahydrofuran, dioxane, dimethoxyethane), alcohol solvents (e.g., ethylene glycol, ethanol, methanol, t-butanol), amide solvents (dimethylacetamide, acetamide, dimethylformamide, N-methylpyrrolidone), halogen solvents (dichloroethane, dichloromethane, chloroform, carbon tetrachloride, trifluorotoluene), etc. be done.

溶媒量(溶媒の添加量)は、気体アンモニアの吸収効率に優れる観点から、反応系内のアンモニアを溶解させる十分な量が好ましく、例えば、原料100質量部に対して、50質量部以上であり、好ましくは100~10000質量部、より好ましくは100~2500質量部である。 The amount of solvent (the amount of solvent added) is preferably a sufficient amount to dissolve ammonia in the reaction system from the viewpoint of excellent absorption efficiency of gaseous ammonia, for example, 50 parts by mass or more with respect to 100 parts by mass of the raw material. , preferably 100 to 10,000 parts by mass, more preferably 100 to 2,500 parts by mass.

以下に実施例を示して、本発明をより詳細に説明するが、本発明は以下に記載の実施例によって制限されるものではない。なお、以下の表中では1,6-ヘキサンジオールをHDL、ヘキサメチレンジアミンをHMD、ヘキサメチレンイミンをHMI、6-アミノヘキサノールをAHLとそれぞれ略記した。 EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to the examples described below. In the following tables, 1,6-hexanediol is abbreviated as HDL, hexamethylenediamine as HMD, hexamethyleneimine as HMI, and 6-aminohexanol as AHL.

(蛍光X線分析)
装置:リガク社製、蛍光X線分析装置(ZSXPrimusII)
条件:検量線法
・各触媒調製時に使用したacac錯体、塩化物、又は硝酸塩などを標準物質として用い、各触媒調製時に使用した担体と混合し、標準試料を作成した。前記標準試料を用いて、蛍光X線分析を行い、検量線を作成した。
・検量線作成用の標準試料は、実施例および比較例に記載する各触媒の上限を超える濃度範囲となるように調製した。
(Fluorescent X-ray analysis)
Apparatus: Fluorescent X-ray analyzer (ZSX Primus II) manufactured by Rigaku
Conditions: Calibration curve method Using acac complexes, chlorides, nitrates, etc. used in the preparation of each catalyst as standard substances, they were mixed with the carrier used in the preparation of each catalyst to prepare standard samples. Using the standard sample, fluorescent X-ray analysis was performed to prepare a calibration curve.
- A standard sample for creating a calibration curve was prepared so that the concentration range exceeded the upper limit of each catalyst described in Examples and Comparative Examples.

(GC分析)
装置 島津製作所製 GC-2010plus
カラム CP-Volamine
条件 インジェクション温度:200℃、ディテクション温度:300℃
キャリアガス:窒素(カラム流量70.8ml/min、SP比50)
昇温速度:80℃~(15℃/min)~150℃(31分保持)~
(10℃/min)~210℃(3.3分保持)~
(15℃/min)~290℃(2.7分保持)
内標 アニソール
(GC analysis)
Device Shimadzu GC-2010plus
Column CP-Volamine
Conditions injection temperature: 200°C, detection temperature: 300°C
Carrier gas: nitrogen (column flow rate 70.8 ml/min, SP ratio 50)
Heating rate: 80°C ~ (15°C/min) ~ 150°C (holding for 31 minutes) ~
(10°C/min) ~ 210°C (held for 3.3 minutes) ~
(15°C/min) to 290°C (held for 2.7 minutes)
Internal standard Anisole

[実施例1]
触媒調製:塩化白金酸と硝酸コバルト六水和物を水溶媒に溶解させた後、ジルコニア担体(第一稀元素化学工業社製品 RC-100)に含浸法で担持させた。得られた粉末を300℃で2時間空気焼成した後、水素流通下、300℃で2時間加熱した。その後、粉末を大気下で回収し、10wt%Co*2.5wt%Pt/ZrO2を得た。触媒の金属担持量は蛍光X線装置を使用した検量線法で測定した。
[Example 1]
Catalyst preparation: After dissolving chloroplatinic acid and cobalt nitrate hexahydrate in an aqueous solvent, the solution was supported on a zirconia carrier (product of Daiichi Kigenso Kagaku Kogyo RC-100) by an impregnation method. The obtained powder was calcined in air at 300° C. for 2 hours, and then heated at 300° C. for 2 hours under hydrogen flow. After that, the powder was collected under air to obtain 10 wt% Co*2.5 wt% Pt/ZrO 2 . The amount of metal supported on the catalyst was measured by a calibration curve method using a fluorescent X-ray device.

回収液の調製:耐圧反応器に10wt%Co*2.5wt%Pt/ZrO2を1.0g加え、水素1MPaG、水溶媒下、180℃で還元処理を行った。その後、1,6-ヘキサンジオール2.0g、アンモニアを1,6-ヘキサンジオールに対して64当量加え、水素を室温で1.0MPa充填した後、180℃で2時間反応を行った。この時、ヘキサメチレンジアミンの収率は30mol%、選択率は39mol%であった。本反応の反応液を蒸留することにより、水、ヘキサメチレンジアミン、ヘキサメチレンイミンを除去した回収液を得た。ここでは、回収液よりヘキサメチレンイミンを除去しないことが好ましいが、ヘキサメチレンイミンはヘキサメチレンジアミンと比較して沸点が低いため、蒸留により除去される。 Preparation of recovered liquid: 1.0 g of 10 wt % Co*2.5 wt % Pt/ZrO 2 was added to a pressure-resistant reactor, and reduction treatment was carried out at 180° C. under hydrogen of 1 MPaG and water solvent. Then, 2.0 g of 1,6-hexanediol and 64 equivalents of ammonia with respect to 1,6-hexanediol were added, hydrogen was charged at 1.0 MPa at room temperature, and reaction was carried out at 180° C. for 2 hours. At this time, the yield of hexamethylenediamine was 30 mol %, and the selectivity was 39 mol %. A recovered liquid from which water, hexamethylenediamine and hexamethyleneimine were removed was obtained by distilling the reaction liquid of this reaction. Here, it is preferable not to remove hexamethyleneimine from the recovered liquid, but since hexamethyleneimine has a lower boiling point than hexamethylenediamine, it is removed by distillation.

反応評価:耐圧反応器に10wt%Co*2.5wt%Pt/ZrO2を1.0g加え、水素1MPaG、水溶媒下、180℃で還元処理工程を行った。その後、1,6-ヘキサンジオール、ヘキサメチレンイミンおよび上記で得た回収液を混合して得られた表1の組成の原料と、当該原料に対して64.9当量のアンモニアとを耐圧反応器に加え、水素を室温で1.0MPa充填した後、180℃で2時間反応を行った。生成物の収率はガスクロマトグラフィーを使用して内部標準法で測定した。表1に得られた反応後の組成を示した。本実施例では、54mol%の原料成分が消費され、ヘキサメチレンジアミンが収率40mol%、選択率74mol%で得られた。 Reaction evaluation: 1.0 g of 10 wt % Co*2.5 wt % Pt/ZrO 2 was added to a pressure-resistant reactor, and a reduction treatment step was performed at 180° C. under hydrogen of 1 MPaG and water solvent. Thereafter, a raw material having the composition shown in Table 1 obtained by mixing 1,6-hexanediol, hexamethyleneimine and the recovered liquid obtained above, and 64.9 equivalents of ammonia with respect to the raw material were added to a pressure-resistant reactor. In addition, hydrogen was charged to 1.0 MPa at room temperature, and then the reaction was carried out at 180° C. for 2 hours. Product yields were determined by internal standard method using gas chromatography. Table 1 shows the composition after the reaction obtained. In this example, 54 mol % of raw material components were consumed, and hexamethylenediamine was obtained with a yield of 40 mol % and a selectivity of 74 mol %.

[実施例2]
回収液の調製:実施例1の反応液を蒸留することにより、水、ヘキサメチレンジアミン、ヘキサメチレンイミンを除去した回収液を得た。
[Example 2]
Preparation of recovered liquid: By distilling the reaction liquid of Example 1, a recovered liquid from which water, hexamethylenediamine and hexamethyleneimine were removed was obtained.

反応評価:耐圧反応器に10wt%Co*2.5wt%Pt/ZrO2を1.0g加え、水素1MPaG、水溶媒下、180℃で還元処理を行った。その後、1,6-ヘキサンジオール、ヘキサメチレンイミンおよび上記で得た回収液を混合して得られた表1の組成の原料と、当該原料に対して67.3当量のアンモニアとを耐圧反応器に加え、水素を室温で1.0MPa充填した後、180℃で2時間反応を行った。表1に得られた反応後の組成を示した。本実施例では、51mol%の原料成分が消費され、ヘキサメチレンジアミンが収率41mol%、選択率80mol%で得られた。 Reaction evaluation: 1.0 g of 10 wt % Co*2.5 wt % Pt/ZrO 2 was added to a pressure-resistant reactor, and reduction treatment was performed at 180° C. under 1 MPaG of hydrogen and water solvent. Then, a raw material having the composition shown in Table 1 obtained by mixing 1,6-hexanediol, hexamethyleneimine and the recovered liquid obtained above, and 67.3 equivalents of ammonia with respect to the raw material were added to a pressure-resistant reactor. In addition, hydrogen was charged to 1.0 MPa at room temperature, and then the reaction was carried out at 180° C. for 2 hours. Table 1 shows the composition after the reaction obtained. In this example, 51 mol % of raw material components were consumed, and hexamethylenediamine was obtained with a yield of 41 mol % and a selectivity of 80 mol %.

Figure 2022112398000001
Figure 2022112398000001

[実施例3]
触媒調製:塩化ルテニウムと硝酸コバルト六水和物を水溶媒に溶解させた後、ジルコニア担体(第一稀元素化学工業社製品 RC-100)にアンモニアを使用した析出沈殿法で金属を担持させた。得られた粉末を大気下で回収し、10wt%Co*2.5wt%Ru/ZrO2を得た。
[Example 3]
Catalyst preparation: After dissolving ruthenium chloride and cobalt nitrate hexahydrate in a water solvent, a metal was supported on a zirconia carrier (product of Daiichi Kigenso Kagaku Kogyo Co., Ltd. RC-100) by a precipitation precipitation method using ammonia. . The obtained powder was collected in the atmosphere to obtain 10 wt% Co*2.5 wt% Ru/ZrO 2 .

回収液の調製:耐圧反応器に10wt%Co*2.5wt%Ru/ZrO2を1.0g加え、水素1MPaG、水溶媒下、180℃で還元処理を行った。その後、1,6-ヘキサンジオール2.0g、アンモニアを1,6-ヘキサンジオールに対して32当量加え、水素を室温で1.0MPa充填した後、180℃で2時間反応を行った。この時、ヘキサメチレンジアミンの収率は25mol%、選択率は31mol%であった。本反応の反応液を蒸留することにより、水、ヘキサメチレンジアミン、ヘキサメチレンイミンを除去した回収液を得た。 Preparation of recovered liquid: 1.0 g of 10 wt % Co*2.5 wt % Ru/ZrO 2 was added to a pressure-resistant reactor, and reduction treatment was carried out at 180° C. under hydrogen of 1 MPaG and water solvent. Then, 2.0 g of 1,6-hexanediol and 32 equivalents of ammonia with respect to 1,6-hexanediol were added, hydrogen was charged at 1.0 MPa at room temperature, and reaction was carried out at 180° C. for 2 hours. At this time, the yield of hexamethylenediamine was 25 mol % and the selectivity was 31 mol %. A recovered liquid from which water, hexamethylenediamine and hexamethyleneimine were removed was obtained by distilling the reaction liquid of this reaction.

反応評価:耐圧反応器に10wt%Co*2.5wt%Ru/ZrO2を1.0g加え、水素1MPaG、水溶媒下、180℃で還元処理を行った。その後、1,6-ヘキサンジオール、ヘキサメチレンイミンおよび上記で得た回収液を混合して得られた表2の組成の原料と、当該原料に対して32.1当量のアンモニアとを耐圧反応器に加え、水素を室温で1.0MPaを充填した後、180℃で2時間反応を行った。表2に得られた反応後の組成を示した。本実施例では、46mol%の原料成分が消費され、ヘキサメチレンジアミンが収率31mol%、選択率67mol%で得られた。 Reaction evaluation: 1.0 g of 10 wt % Co*2.5 wt % Ru/ZrO 2 was added to a pressure-resistant reactor, and reduction treatment was carried out at 180° C. under hydrogen of 1 MPaG and water solvent. Thereafter, a raw material having the composition shown in Table 2 obtained by mixing 1,6-hexanediol, hexamethyleneimine and the recovered liquid obtained above, and 32.1 equivalents of ammonia with respect to the raw material were added to a pressure-resistant reactor. In addition, hydrogen was charged to 1.0 MPa at room temperature, and then the reaction was carried out at 180° C. for 2 hours. Table 2 shows the composition after the reaction obtained. In this example, 46 mol % of raw material components were consumed, and hexamethylenediamine was obtained with a yield of 31 mol % and a selectivity of 67 mol %.

[実施例4]
回収液の調製:実施例3の反応液を蒸留することにより、水、ヘキサメチレンジアミン、ヘキサメチレンイミンを除去した回収液を得た。
[Example 4]
Preparation of recovered liquid: By distilling the reaction liquid of Example 3, a recovered liquid from which water, hexamethylenediamine and hexamethyleneimine were removed was obtained.

反応評価:耐圧反応器に10wt%Co*2.5wt%Ru/ZrO2を1.0g加え、水素1MPaG、水溶媒下、180℃で還元処理を行った。その後、1,6-ヘキサンジオール、ヘキサメチレンイミンおよび上記で得た回収液を混合して得られた表2の組成の原料と、当該原料に対して34.3当量のアンモニアとを耐圧反応器に加え、水素を室温で1.0MPa充填した後、180℃で2時間反応を行った。表2に得られた反応後の組成を示した。本実施例では、42mol%の原料成分が消費され、ヘキサメチレンジアミンが収率32mol%、選択率76mol%で得られた。 Reaction evaluation: 1.0 g of 10 wt % Co*2.5 wt % Ru/ZrO 2 was added to a pressure-resistant reactor, and reduction treatment was carried out at 180° C. under hydrogen of 1 MPaG and water solvent. Then, the raw material having the composition shown in Table 2 obtained by mixing 1,6-hexanediol, hexamethyleneimine and the recovered liquid obtained above, and 34.3 equivalents of ammonia with respect to the raw material were added to a pressure-resistant reactor. In addition, hydrogen was charged to 1.0 MPa at room temperature, and then the reaction was carried out at 180° C. for 2 hours. Table 2 shows the composition after the reaction obtained. In this example, 42 mol % of raw material components were consumed, and hexamethylenediamine was obtained with a yield of 32 mol % and a selectivity of 76 mol %.

[実施例5]
回収液の調製:実施例4の反応液を蒸留することにより、水、ヘキサメチレンジアミン、ヘキサメチレンイミンを除去した回収液を得た。
[Example 5]
Preparation of recovered liquid: By distilling the reaction liquid of Example 4, a recovered liquid from which water, hexamethylenediamine and hexamethyleneimine were removed was obtained.

反応評価:耐圧反応器に10wt%Co*2.5wt%Ru/ZrO2を1.0g加え、水素1MPaG、水溶媒下、180℃で還元処理を行った。その後、1,6-ヘキサンジオール、ヘキサメチレンイミンおよび上記で得た回収液を混合して得られた表2の組成の原料と、当該原料に対して31.3当量のアンモニアとを耐圧反応器に加え、水素を室温で1.0MPa充填した後、180℃で2時間反応を行った。表2に得られた反応液組成を示した。本実施例では、41mol%の原料成分が消費され、ヘキサメチレンジアミンが収率32mol%、選択率78mol%で得られた。 Reaction evaluation: 1.0 g of 10 wt % Co*2.5 wt % Ru/ZrO 2 was added to a pressure-resistant reactor, and reduction treatment was performed at 180° C. under hydrogen of 1 MPaG and water solvent. Then, a raw material having the composition shown in Table 2 obtained by mixing 1,6-hexanediol, hexamethyleneimine and the recovered liquid obtained above, and 31.3 equivalents of ammonia with respect to the raw material were put into a pressure-resistant reactor. In addition, hydrogen was charged to 1.0 MPa at room temperature, and then the reaction was carried out at 180° C. for 2 hours. Table 2 shows the composition of the reaction solution obtained. In this example, 41 mol % of raw material components were consumed, and hexamethylenediamine was obtained with a yield of 32 mol % and a selectivity of 78 mol %.

Figure 2022112398000002
Figure 2022112398000002

[実施例6]
触媒調製:硝酸プラチナアンモニウムと硝酸ニッケル六水和物を水溶媒に溶解させた後、14wt%Y安定化ジルコニア担体(第一稀元素化学工業社製品 Z-2874)に含侵法で担持させた。得られた粉末を300℃で2時間空気焼成した後、水素流通下、300℃で2時間加熱した。その後、粉末を大気下で回収し、10wt%Ni*2.5wt%Pt/YSZを得た。
[Example 6]
Catalyst preparation: After dissolving platinum ammonium nitrate and nickel nitrate hexahydrate in a water solvent, the solution was supported on a 14 wt% Y-stabilized zirconia carrier (Z-2874, a product of Daiichi Kigenso Kagaku Kogyo Co., Ltd.) by an impregnation method. . The obtained powder was calcined in air at 300° C. for 2 hours, and then heated at 300° C. for 2 hours under hydrogen flow. After that, the powder was recovered under the atmosphere to obtain 10 wt% Ni*2.5 wt% Pt/YSZ.

回収液の調製:耐圧反応器に10wt%Ni*2.5wt%Pt/YSZを2.0g加え、水素1MPaG、水溶媒下、160℃で還元処理を行った。その後、1,6-ヘキサンジオール4.0g、アンモニアを1,6-ヘキサンジオールに対して8.6当量加え、水素を室温で1.0MPa充填した後、160℃で2時間反応を行った。この時、ヘキサメチレンジアミンの収率は15mol%、選択率は21mol%であった。本反応の反応液を蒸留することにより、水、ヘキサメチレンジアミン、ヘキサメチレンイミンを除去した回収液を得た。 Preparation of recovered liquid: 2.0 g of 10 wt% Ni*2.5 wt% Pt/YSZ was added to a pressure-resistant reactor, and reduction treatment was performed at 160°C under hydrogen of 1 MPaG and water solvent. Then, 4.0 g of 1,6-hexanediol and 8.6 equivalents of ammonia with respect to 1,6-hexanediol were added, hydrogen was charged at room temperature to 1.0 MPa, and reaction was carried out at 160° C. for 2 hours. At this time, the yield of hexamethylenediamine was 15 mol% and the selectivity was 21 mol%. A recovered liquid from which water, hexamethylenediamine and hexamethyleneimine were removed was obtained by distilling the reaction liquid of this reaction.

反応評価:耐圧反応器に10wt%Ni*2.5wt%Pt/YSZを2.0g加え、水素1MPaG、水溶媒下、160℃で還元処理を行った。その後、1,6-ヘキサンジオール、ヘキサメチレンイミンおよび上記で得た回収液を混合して得られた表3の組成の原料と、当該原料に対して8.6当量のアンモニアとを耐圧反応器に加え、水素を室温で1.0MPa充填した後、160℃で2時間反応を行った。表3に得られた反応液組成を示した。本実施例では、30mol%の原料成分が消費され、ヘキサメチレンジアミンが収率19mol%、選択率63mol%で得られた。 Reaction evaluation: 2.0 g of 10 wt % Ni*2.5 wt % Pt/YSZ was added to a pressure-resistant reactor, and reduction treatment was performed at 160° C. under hydrogen of 1 MPaG and water solvent. Then, a raw material having the composition shown in Table 3 obtained by mixing 1,6-hexanediol, hexamethyleneimine and the recovered liquid obtained above, and 8.6 equivalents of ammonia with respect to the raw material were added to a pressure-resistant reactor. In addition, hydrogen was charged to 1.0 MPa at room temperature, and then the reaction was carried out at 160° C. for 2 hours. Table 3 shows the composition of the reaction solution obtained. In this example, 30 mol % of the starting material was consumed, and hexamethylenediamine was obtained with a yield of 19 mol % and a selectivity of 63 mol %.

[実施例7]
回収液の調製:実施例6の反応液を蒸留することにより、水、ヘキサメチレンジアミン、ヘキサメチレンイミンを除去した回収液を得た。
[Example 7]
Preparation of recovered liquid: By distilling the reaction liquid of Example 6, a recovered liquid from which water, hexamethylenediamine and hexamethyleneimine were removed was obtained.

反応評価:耐圧反応器に10wt%Ni*2.5wt%Pt/YSZを2.0g加え、水素1MPaG、水溶媒下、160℃で還元処理を行った。その後、1,6-ヘキサンジオール、ヘキサメチレンイミンおよび上記で得た回収液を混合して得られた表3の組成の原料と、当該原料に対して8.4当量のアンモニアとを耐圧反応器に加え、水素を室温で1.0MPa充填した後、160℃で2時間反応を行った。表3に得られた反応液組成を示した。本実施例では、32mol%の原料成分が消費され、ヘキサメチレンジアミンが収率20mol%、選択率63mol%で得られた。 Reaction evaluation: 2.0 g of 10 wt % Ni*2.5 wt % Pt/YSZ was added to a pressure-resistant reactor, and reduction treatment was performed at 160° C. under hydrogen of 1 MPaG and water solvent. Thereafter, a raw material having the composition shown in Table 3 obtained by mixing 1,6-hexanediol, hexamethyleneimine, and the recovered liquid obtained above, and 8.4 equivalents of ammonia with respect to the raw material were added to a pressure-resistant reactor. In addition, hydrogen was charged to 1.0 MPa at room temperature, and then the reaction was carried out at 160° C. for 2 hours. Table 3 shows the composition of the reaction solution obtained. In this example, 32 mol % of raw material components were consumed, and hexamethylenediamine was obtained with a yield of 20 mol % and a selectivity of 63 mol %.

[実施例8]
回収液の調製:実施例7の反応液を蒸留することにより、水、ヘキサメチレンジアミン、ヘキサメチレンイミンを除去した回収液を得た。
[Example 8]
Preparation of recovered liquid: By distilling the reaction liquid of Example 7, a recovered liquid from which water, hexamethylenediamine and hexamethyleneimine were removed was obtained.

反応評価:耐圧反応器に10wt%Ni*2.5wt%Pt/YSZを2.0g加え、水素1MPaG、水溶媒下、160℃で還元処理を行った。その後、1,6-ヘキサンジオール、ヘキサメチレンイミンおよび上記で得た回収液を混合して得られた表3の組成の原料と、当該原料に対して8.6当量のアンモニアとを耐圧反応器に加え、水素を室温で1.0MPa充填した後、160℃で2時間反応を行った。表3に得られた反応液組成を示した。本実施例では、22mol%の原料成分が消費され、ヘキサメチレンジアミンが収率19mol%、選択率86mol%で得られた。 Reaction evaluation: 2.0 g of 10 wt % Ni*2.5 wt % Pt/YSZ was added to a pressure-resistant reactor, and reduction treatment was performed at 160° C. under hydrogen of 1 MPaG and water solvent. Then, a raw material having the composition shown in Table 3 obtained by mixing 1,6-hexanediol, hexamethyleneimine and the recovered liquid obtained above, and 8.6 equivalents of ammonia with respect to the raw material were added to a pressure-resistant reactor. In addition, hydrogen was charged to 1.0 MPa at room temperature, and then the reaction was carried out at 160° C. for 2 hours. Table 3 shows the composition of the reaction solution obtained. In this example, 22 mol % of raw material components were consumed, and hexamethylenediamine was obtained with a yield of 19 mol % and a selectivity of 86 mol %.

Figure 2022112398000003
Figure 2022112398000003

[実施例9]
触媒調製:塩化イリジウムと硝酸ニッケル六水和物を水溶媒に溶解させた後、14wt%Y安定化ジルコニア担体(第一稀元素化学工業社製品 Z-2874)に含侵法で担持させた。得られた粉末を300℃で2時間空気焼成した後、水素流通下、300℃で2時間加熱した。その後、粉末を大気下で回収し、10wt%Ni*2.5wt%Ir/YSZを得た。
[Example 9]
Catalyst preparation: After dissolving iridium chloride and nickel nitrate hexahydrate in a water solvent, the solution was supported on a 14 wt% Y-stabilized zirconia carrier (Z-2874, a product of Daiichi Kigenso Kagaku Kogyo Co., Ltd.) by an impregnation method. The obtained powder was calcined in air at 300° C. for 2 hours, and then heated at 300° C. for 2 hours under hydrogen flow. After that, the powder was collected under the atmosphere to obtain 10 wt% Ni*2.5 wt% Ir/YSZ.

回収液の調製:耐圧反応器に10wt%Ni*2.5wt%Ir/YSZを2.0g加え、水素1MPaG、水溶媒下、180℃で還元処理を行った。その後、1,6-ヘキサンジオール4.0g、アンモニアを1,6-ヘキサンジオールに対して33.2当量加え、水素を室温で1.0MPa充填した後、180℃で2時間反応を行った。この時、ヘキサメチレンジアミンの収率は20mol%、選択率は26mol%であった。本反応の反応液を蒸留することにより、水、ヘキサメチレンジアミン、ヘキサメチレンイミンを除去した回収液を得た。 Preparation of recovered liquid: 2.0 g of 10 wt % Ni*2.5 wt % Ir/YSZ was added to a pressure-resistant reactor, and reduction treatment was performed at 180° C. under hydrogen of 1 MPaG and water solvent. Then, 4.0 g of 1,6-hexanediol and 33.2 equivalents of ammonia with respect to 1,6-hexanediol were added, hydrogen was charged at 1.0 MPa at room temperature, and reaction was carried out at 180° C. for 2 hours. At this time, the yield of hexamethylenediamine was 20 mol % and the selectivity was 26 mol %. A recovered liquid from which water, hexamethylenediamine and hexamethyleneimine were removed was obtained by distilling the reaction liquid of this reaction.

反応評価:耐圧反応器に10wt%Ni*2.5wt%Ir/YSZを2.0g加え、水素1MPaG、水溶媒下、180℃で還元処理を行った。その後、1,6-ヘキサンジオール、ヘキサメチレンイミンおよび上記で得た回収液を混合して得られた表4の組成の原料と、当該原料に対して33.2当量のアンモニアとを耐圧反応器に加え、水素を室温で1.0MPa充填した後、180℃で2時間反応を行った。表4に得られた反応液組成を示した。本実施例では、47mol%の原料成分が消費されヘキサメチレンジアミンが収率33mol%、選択率70mol%で得られた。 Reaction evaluation: 2.0 g of 10 wt % Ni*2.5 wt % Ir/YSZ was added to a pressure-resistant reactor, and reduction treatment was performed at 180° C. under hydrogen of 1 MPaG and water solvent. Thereafter, a raw material having the composition shown in Table 4 obtained by mixing 1,6-hexanediol, hexamethyleneimine, and the recovered liquid obtained above, and 33.2 equivalents of ammonia with respect to the raw material were placed in a pressure-resistant reactor. In addition, hydrogen was charged to 1.0 MPa at room temperature, and then the reaction was carried out at 180° C. for 2 hours. Table 4 shows the composition of the reaction solution obtained. In this example, 47 mol % of raw material components were consumed and hexamethylenediamine was obtained with a yield of 33 mol % and a selectivity of 70 mol %.

[実施例10]
回収液の調製:実施例9の反応液を蒸留することにより、水、ヘキサメチレンジアミン、ヘキサメチレンイミンを除去した回収液を得た。
[Example 10]
Preparation of recovered liquid: By distilling the reaction liquid of Example 9, a recovered liquid from which water, hexamethylenediamine and hexamethyleneimine were removed was obtained.

反応評価:耐圧反応器に10wt%Ni*2.5wt%Ir/YSZを2.0g加え、水素1MPaG、水溶媒下、180℃で還元処理工程を行った。その後、1,6-ヘキサンジオール、ヘキサメチレンイミンおよび上記で得た回収液を混合して得られた表4の組成の原料と、当該原料に対して33.6当量のアンモニアとを耐圧反応器に加え、水素を室温で1.0MPa充填した後、180℃で2時間反応を行った。表4に得られた反応液組成を示した。本実施例では、46mol%の原料成分が消費されヘキサメチレンジアミンが収率36mol%、選択率78mol%で得られた。 Reaction evaluation: 2.0 g of 10 wt % Ni*2.5 wt % Ir/YSZ was added to a pressure-resistant reactor, and a reduction treatment step was performed at 180° C. under hydrogen of 1 MPaG and water solvent. Thereafter, the raw material having the composition shown in Table 4 obtained by mixing 1,6-hexanediol, hexamethyleneimine and the recovered liquid obtained above, and 33.6 equivalents of ammonia with respect to the raw material were added to a pressure-resistant reactor. In addition, hydrogen was charged to 1.0 MPa at room temperature, and then the reaction was carried out at 180° C. for 2 hours. Table 4 shows the composition of the reaction solution obtained. In this example, 46 mol % of raw material components were consumed and hexamethylenediamine was obtained with a yield of 36 mol % and a selectivity of 78 mol %.

Figure 2022112398000004
Figure 2022112398000004

[実施例11]
触媒調製:塩化ルテニウムと塩化白金酸を水溶媒に溶解させた後、ジルコニア担体(第一稀元素化学工業社製品 RC-100)に含侵法で担持させた。得られた粉末を300℃で2時間空気焼成した後、水素流通下、300℃で2時間加熱した。その後、粉末を大気下で回収し、5wt%Ru*5wt%Pt/ZrO2を得た。
[Example 11]
Catalyst preparation: After dissolving ruthenium chloride and chloroplatinic acid in an aqueous solvent, they were supported on a zirconia carrier (product of Daiichi Kigenso Kagaku Kogyo RC-100) by an impregnation method. The obtained powder was calcined in air at 300° C. for 2 hours, and then heated at 300° C. for 2 hours under hydrogen flow. After that, the powder was collected under the atmosphere to obtain 5 wt% Ru*5 wt% Pt/ZrO 2 .

回収液の調製:耐圧反応器に5wt%Ru*5wt%Pt/ZrO2を2.0g加え、水素1MPaG、水溶媒下、180℃で還元処理を行った。その後、1,6-ヘキサンジオール4.0g、アンモニアを1,6-ヘキサンジオールに対して33.5当量加え、水素を室温で1.0MPa充填した後、180℃で2時間反応を行った。この時、ヘキサメチレンジアミンの収率は22mol%、選択率は28mol%であった。本反応の反応液を蒸留することにより、水、ヘキサメチレンジアミン、ヘキサメチレンイミンを除去した回収液を得た。 Preparation of recovered liquid: 2.0 g of 5 wt% Ru*5 wt% Pt/ZrO 2 was added to a pressure-resistant reactor, and reduction treatment was performed at 180°C under hydrogen of 1 MPaG and water solvent. Then, 4.0 g of 1,6-hexanediol and 33.5 equivalents of ammonia with respect to 1,6-hexanediol were added, hydrogen was charged at 1.0 MPa at room temperature, and reaction was carried out at 180° C. for 2 hours. At this time, the yield of hexamethylenediamine was 22 mol % and the selectivity was 28 mol %. A recovered liquid from which water, hexamethylenediamine and hexamethyleneimine were removed was obtained by distilling the reaction liquid of this reaction.

反応評価:耐圧反応器に5wt%Ru*5wt%Pt/ZrO2を2.0g加え、水素1MPaG、水溶媒下、180℃で還元処理を行った。その後、1,6-ヘキサンジオール、ヘキサメチレンイミンおよび上記で得た回収液を混合して得られた表5の組成の原料と、当該原料に対して33.1当量のアンモニアとを耐圧反応器に加え、水素を室温で1.0MPa充填した後、180℃で4時間反応を行った。表5に得られた反応液組成を示した。本実施例では、40mol%の原料成分が消費され、ヘキサメチレンジアミンが収率25mol%、選択率63mol%で得られた。 Reaction evaluation: 2.0 g of 5 wt % Ru*5 wt % Pt/ZrO 2 was added to a pressure-resistant reactor, and reduction treatment was performed at 180° C. under hydrogen of 1 MPaG and water solvent. Then, 1,6-hexanediol, hexamethyleneimine, and the recovered liquid obtained above were mixed to obtain a starting material having the composition shown in Table 5, and 33.1 equivalents of ammonia with respect to the starting material were added to a pressure-resistant reactor. In addition, hydrogen was charged to 1.0 MPa at room temperature, and then the reaction was carried out at 180° C. for 4 hours. Table 5 shows the composition of the reaction solution obtained. In this example, 40 mol % of the starting material was consumed, and hexamethylenediamine was obtained with a yield of 25 mol % and a selectivity of 63 mol %.

[実施例12]
触媒調製:塩化ルテニウムと塩化金酸を水溶媒に溶解させた後、ジルコニア担体(第一稀元素化学工業社製品 RC-100)に含侵法で担持させた。得られた粉末を300℃で2時間空気焼成した後、水素流通下、300℃で2時間加熱した。その後、粉末を大気下で回収し、5wt%Au*5wt%Ru/ZrO2を得た。
[Example 12]
Catalyst preparation: After dissolving ruthenium chloride and chloroauric acid in a water solvent, they were supported on a zirconia carrier (product of Daiichi Kigenso Kagaku Kogyo RC-100) by an impregnation method. The obtained powder was calcined in air at 300° C. for 2 hours, and then heated at 300° C. for 2 hours under hydrogen flow. After that, the powder was collected under the atmosphere to obtain 5 wt% Au*5 wt% Ru/ZrO 2 .

回収液の調製:耐圧反応器に5wt%Au*5wt%Ru/ZrO2を2.0g加え、水素1MPaG、水溶媒下、180℃で還元処理を行った。その後、1,6-ヘキサンジオール4.0g、アンモニアを1,6-ヘキサンジオールに対して33.9当量加え、水素を室温で1.0MPa充填した後、180℃で2時間反応を行った。この時、ヘキサメチレンジアミンの収率は21mol%、選択率は28mol%であった。本反応の反応液を蒸留することにより、水、ヘキサメチレンジアミン、ヘキサメチレンイミンを除去した回収液を得た。 Preparation of recovered liquid: 2.0 g of 5 wt% Au*5 wt% Ru/ZrO 2 was added to a pressure-resistant reactor, and reduction treatment was performed at 180°C under hydrogen of 1 MPaG and water solvent. Then, 4.0 g of 1,6-hexanediol and 33.9 equivalents of ammonia with respect to 1,6-hexanediol were added, hydrogen was charged at 1.0 MPa at room temperature, and reaction was carried out at 180° C. for 2 hours. At this time, the yield of hexamethylenediamine was 21 mol % and the selectivity was 28 mol %. A recovered liquid from which water, hexamethylenediamine and hexamethyleneimine were removed was obtained by distilling the reaction liquid of this reaction.

反応評価:耐圧反応器に5wt%Au*5wt%Ru/ZrO2を2.0g加え、水素1MPaG、水溶媒下、180℃で還元処理を行った。その後、1,6-ヘキサンジオール、ヘキサメチレンイミンおよび上記で得た回収液を混合して得られた表5の組成の原料と、当該原料に対して34.3当量のアンモニアとを耐圧反応器に加え、水素を室温で1.0MPa充填した後、180℃で4時間反応を行った。表5に得られた反応液組成を示した。本実施例では、40mol%の原料成分が消費され、ヘキサメチレンジアミンが収率24mol%、選択率60mol%で得られた。

Figure 2022112398000005
Reaction evaluation: 2.0 g of 5 wt % Au*5 wt % Ru/ZrO 2 was added to a pressure-resistant reactor, and reduction treatment was performed at 180° C. under hydrogen of 1 MPaG and water solvent. Then, a raw material having the composition shown in Table 5 obtained by mixing 1,6-hexanediol, hexamethyleneimine, and the recovered liquid obtained above, and 34.3 equivalents of ammonia with respect to the raw material were placed in a pressure-resistant reactor. In addition, hydrogen was charged to 1.0 MPa at room temperature, and then the reaction was carried out at 180° C. for 4 hours. Table 5 shows the composition of the reaction solution obtained. In this example, 40 mol % of raw material components were consumed, and hexamethylenediamine was obtained with a yield of 24 mol % and a selectivity of 60 mol %.
Figure 2022112398000005

[実施例13]
触媒調製:塩化ルテニウムを水溶媒に溶解させた後、ジルコニア担体(第一稀元素化学工業社製品 RC-100)に含侵法で担持させた。得られた粉末を300℃で2時間空気焼成した後、水素流通下、300℃で2時間加熱した。その後、粉末を大気下で回収し、5wt%Ru/ZrO2を得た。
[Example 13]
Catalyst preparation: After dissolving ruthenium chloride in a water solvent, it was supported on a zirconia carrier (product of Daiichi Kigenso Kagaku Kogyo RC-100) by an impregnation method. The obtained powder was calcined in air at 300° C. for 2 hours, and then heated at 300° C. for 2 hours under hydrogen flow. After that, the powder was recovered under air to obtain 5 wt% Ru/ZrO 2 .

回収液の調製:耐圧反応器に5wt%Ru/ZrO2を2.0g、1,6-ヘキサンジオール4.0g、アンモニアを1,6-ヘキサンジオールに対して65.9当量加え、水素を室温で1.0MPa充填した後、180℃で2時間反応を行った。この時、ヘキサメチレンジアミンの収率は26mol%、選択率は36mol%であった。本反応の反応液を蒸留することにより、水、ヘキサメチレンジアミン、ヘキサメチレンイミンを除去した回収液を得た。 Preparation of recovered liquid: 2.0 g of 5 wt% Ru/ZrO 2 , 4.0 g of 1,6-hexanediol, 65.9 equivalents of ammonia to 1,6-hexanediol were added to a pressure-resistant reactor, and hydrogen was added to room temperature. After charging to 1.0 MPa, reaction was carried out at 180° C. for 2 hours. At this time, the yield of hexamethylenediamine was 26 mol % and the selectivity was 36 mol %. A recovered liquid from which water, hexamethylenediamine and hexamethyleneimine were removed was obtained by distilling the reaction liquid of this reaction.

反応評価:耐圧反応器に5wt%Ru/ZrO2を2.0g、1,6-ヘキサンジオール、ヘキサメチレンイミンおよび上記で得た回収液を混合して得られた表6の組成の原料と、当該原料に対して64.9当量のアンモニアとを耐圧反応器に加え、水素を室温で1.0MPa充填した後、180℃で2時間反応を行った。表6に得られた反応液組成を示した。本実施例では、54mol%の原料成分が消費され、ヘキサメチレンジアミンが収率33mol%、選択率61mol%で得られた。 Reaction evaluation: Raw materials having the composition shown in Table 6 obtained by mixing 2.0 g of 5 wt% Ru/ZrO 2 , 1,6-hexanediol, hexamethyleneimine, and the recovered liquid obtained above in a pressure-resistant reactor, A pressure-resistant reactor was charged with 64.9 equivalents of ammonia with respect to the raw material, filled with hydrogen at room temperature to 1.0 MPa, and then reacted at 180° C. for 2 hours. Table 6 shows the composition of the reaction solution obtained. In this example, 54 mol % of raw material components were consumed, and hexamethylenediamine was obtained with a yield of 33 mol % and a selectivity of 61 mol %.

[実施例14]
触媒調製:硝酸ニッケル六水和物を水溶媒に溶解させた後、ジルコニア担体(第一稀元素化学工業社製品 RC-100)に含侵法で担持させた。得られた粉末を300℃で2時間空気焼成した後、水素流通下、300℃で2時間加熱した。その後、粉末を大気下で回収し、10wt%Ni/ZrO2を得た。
[Example 14]
Catalyst preparation: After dissolving nickel nitrate hexahydrate in a water solvent, it was supported on a zirconia carrier (product of Daiichi Kigenso Kagaku Kogyo RC-100) by an impregnation method. The obtained powder was calcined in air at 300° C. for 2 hours, and then heated at 300° C. for 2 hours under hydrogen flow. After that, the powder was collected under air to obtain 10 wt% Ni/ZrO 2 .

回収液の調製:耐圧反応器に10wt%Ni/ZrO2を2.0g加え、水素1MPaG、水溶媒下、180℃で還元処理を行った。その後、1,6-ヘキサンジオール4.0g、アンモニアを1,6-ヘキサンジオールに対して63.1当量加え、水素を室温で1.0MPa充填した後、180℃で8時間反応を行った。この時、ヘキサメチレンジアミンの収率は23mol%、選択率は25mol%であった。本反応の反応液を蒸留することにより、水、ヘキサメチレンジアミン、ヘキサメチレンイミンを除去した回収液を得た。 Preparation of recovered liquid: 2.0 g of 10 wt% Ni/ZrO2 was added to a pressure-resistant reactor, and reduction treatment was performed at 180°C under hydrogen of 1 MPaG and water solvent. Then, 4.0 g of 1,6-hexanediol and 63.1 equivalents of ammonia with respect to 1,6-hexanediol were added, hydrogen was charged at 1.0 MPa at room temperature, and reaction was carried out at 180° C. for 8 hours. At this time, the yield of hexamethylenediamine was 23 mol % and the selectivity was 25 mol %. A recovered liquid from which water, hexamethylenediamine and hexamethyleneimine were removed was obtained by distilling the reaction liquid of this reaction.

反応評価:耐圧反応器に10wt%Ni/ZrO2を2.0g加え、水素1MPaG、水溶媒下、180℃で還元処理を行った。その後、1,6-ヘキサンジオール、ヘキサメチレンイミンおよび上記で得た回収液を混合して得られた表6の組成の原料と、当該原料に対して66.3当量のアンモニアとを耐圧反応器に加え、水素を室温で1.0MPa充填した後、180℃で8時間反応を行った。表6に得られた反応液組成を示した。本実施例では、44mol%の原料成分が消費され、ヘキサメチレンジアミンが収率33mol%、選択率75mol%で得られた。 Reaction evaluation: 2.0 g of 10 wt % Ni/ZrO 2 was added to a pressure-resistant reactor, and reduction treatment was performed at 180° C. under hydrogen of 1 MPaG and water solvent. Thereafter, 1,6-hexanediol, hexamethyleneimine, and the recovered liquid obtained above were mixed to obtain a raw material having the composition shown in Table 6, and 66.3 equivalents of ammonia with respect to the raw material were added to a pressure-resistant reactor. In addition, hydrogen was charged to 1.0 MPa at room temperature, and then the reaction was carried out at 180° C. for 8 hours. Table 6 shows the composition of the reaction solution obtained. In this example, 44 mol % of raw material components were consumed, and hexamethylenediamine was obtained with a yield of 33 mol % and a selectivity of 75 mol %.

[実施例15]
触媒調製:硝酸コバルト六水和物を水溶媒に溶解させた後、ジルコニア担体(第一稀元素化学工業社製品 RC-100)に含侵法で担持させた。得られた粉末を300℃で2時間空気焼成した後、水素流通下、300℃で2時間加熱した。その後、粉末を大気下で回収し、10wt%Co/ZrO2を得た。
[Example 15]
Catalyst preparation: After dissolving cobalt nitrate hexahydrate in a water solvent, it was supported on a zirconia carrier (product of Daiichi Kigenso Kagaku Kogyo RC-100) by an impregnation method. The obtained powder was calcined in air at 300° C. for 2 hours, and then heated at 300° C. for 2 hours under hydrogen flow. After that, the powder was collected under air to obtain 10 wt% Co/ZrO2.

回収液の調製:耐圧反応器に10wt%Co/ZrO2を2.0g加え、水素1MPaG、水溶媒下、180℃で還元処理を行った。その後、1,6-ヘキサンジオール4.0g、アンモニアを1,6-ヘキサンジオールに対して63.1当量加え、水素を室温で1.0MPa充填した後、180℃で8時間反応を行った。この時、ヘキサメチレンジアミンの収率は25mol%、選択率は28mol%であった。本反応の反応液を蒸留することにより、水、ヘキサメチレンジアミン、ヘキサメチレンイミンを除去した回収液を得た。 Preparation of recovered liquid: 2.0 g of 10 wt % Co/ZrO 2 was added to a pressure-resistant reactor, and reduction treatment was performed at 180° C. under hydrogen of 1 MPaG and water solvent. Then, 4.0 g of 1,6-hexanediol and 63.1 equivalents of ammonia with respect to 1,6-hexanediol were added, hydrogen was charged at 1.0 MPa at room temperature, and reaction was carried out at 180° C. for 8 hours. At this time, the yield of hexamethylenediamine was 25 mol% and the selectivity was 28 mol%. A recovered liquid from which water, hexamethylenediamine and hexamethyleneimine were removed was obtained by distilling the reaction liquid of this reaction.

反応評価:耐圧反応器に10wt%Co/ZrO2を2.0g加え、水素1MPaG、水溶媒下、180℃で還元処理を行った。その後、1,6-ヘキサンジオール、ヘキサメチレンイミンおよび上記で得た回収液を混合して得られた表6の組成の原料と、当該原料に対して65.3当量のアンモニアとを耐圧反応器に加え、水素を室温で1.0MPa充填した後、180℃で8時間反応を行った。表6に得られた反応液組成を示した。本実施例では、40mol%の原料成分が消費され、ヘキサメチレンジアミンが収率32mol%、選択率80mol%で得られた。 Reaction evaluation: 2.0 g of 10 wt % Co/ZrO 2 was added to a pressure-resistant reactor, and reduction treatment was performed at 180° C. under hydrogen of 1 MPaG and water solvent. Thereafter, 1,6-hexanediol, hexamethyleneimine, and the recovered liquid obtained above were mixed to obtain a raw material having the composition shown in Table 6, and 65.3 equivalents of ammonia with respect to the raw material were added to a pressure-resistant reactor. In addition, hydrogen was charged to 1.0 MPa at room temperature, and then the reaction was carried out at 180° C. for 8 hours. Table 6 shows the composition of the reaction solution obtained. In this example, 40 mol % of raw material components were consumed, and hexamethylenediamine was obtained with a yield of 32 mol % and a selectivity of 80 mol %.

Figure 2022112398000006
Figure 2022112398000006

[実施例16]
触媒調製:実施例1と同様の調製法で10wt%Co*2.5wt%Pt/ZrO2を得た。
[Example 16]
Catalyst preparation: 10wt%Co* 2.5wt %Pt/ZrO2 was obtained by the same preparation method as in Example 1.

反応評価:耐圧反応器に10wt%Co*2.5wt%Pt/ZrO2を2.0g加え、水素1MPaG、水溶媒下、180℃で還元処理を行った。その後、1,6-ヘキサンジオール、ヘキサメチレンイミン、6-アミノヘキサノール、ヘキサメチレンジアミン重合体(ビスヘキサメチレントリアミン)を混合して得られた表7の組成の原料と、当該原料に対して64.9当量のアンモニアとを耐圧反応器に加え、水素を室温で1.0MPa充填した後、180℃で2時間反応を行った。表7に得られた反応液組成を示した。本実施例では、49mol%の原料成分が消費され、ヘキサメチレンジアミンが収率36mol%、選択率73mol%で得られた。 Reaction evaluation: 2.0 g of 10 wt % Co*2.5 wt % Pt/ZrO 2 was added to a pressure-resistant reactor, and reduction treatment was carried out at 180° C. under hydrogen of 1 MPaG and water solvent. Then, 1,6-hexanediol, hexamethyleneimine, 6-aminohexanol, hexamethylenediamine polymer (bishexamethylenetriamine) was mixed with the raw material having the composition shown in Table 7, and 64 0.9 equivalent of ammonia was added to the pressure-resistant reactor, hydrogen was charged at room temperature to 1.0 MPa, and then the reaction was carried out at 180° C. for 2 hours. Table 7 shows the composition of the reaction solution obtained. In this example, 49 mol % of raw material components were consumed, and hexamethylenediamine was obtained with a yield of 36 mol % and a selectivity of 73 mol %.

[実施例17]
触媒調製:実施例6と同様の調製法で10wt%Ni*2.5wt%Pt/YSZを得た。
[Example 17]
Catalyst preparation: 10 wt% Ni*2.5 wt% Pt/YSZ was obtained by the same preparation method as in Example 6.

反応評価:耐圧反応器に10wt%Ni*2.5wt%Pt/YSZを2.0g加え、水素1MPaG、水溶媒下、180℃で還元処理を行った。その後、1,6-ヘキサンジオール、ヘキサメチレンイミン、6-アミノヘキサノール、ヘキサメチレンジアミン重合体(ビスヘキサメチレントリアミン)を混合して得られた表7の組成の原料と、当該原料に対して34.0当量のアンモニアとを耐圧反応器に加え、水素を室温で1.0MPa充填した後、180℃で2時間反応を行った。表7に得られた反応液組成を示した。本実施例では、47mol%の原料成分が消費され、ヘキサメチレンジアミンが収率39mol%、選択率83mol%で得られた。 Reaction evaluation: 2.0 g of 10 wt % Ni*2.5 wt % Pt/YSZ was added to a pressure-resistant reactor, and reduction treatment was performed at 180° C. under hydrogen of 1 MPaG and water solvent. Then, 1,6-hexanediol, hexamethyleneimine, 6-aminohexanol, and hexamethylenediamine polymer (bishexamethylenetriamine) were mixed to obtain raw materials having the composition shown in Table 7, and 34 0 equivalent of ammonia was added to the pressure-resistant reactor, hydrogen was charged at room temperature to 1.0 MPa, and then the reaction was carried out at 180° C. for 2 hours. Table 7 shows the composition of the reaction solution obtained. In this example, 47 mol % of raw material components were consumed, and hexamethylenediamine was obtained with a yield of 39 mol % and a selectivity of 83 mol %.

[実施例18]
触媒調製:実施例9と同様の調製法で10wt%Ni*2.5wt%Ir/YSZを得た。
[Example 18]
Catalyst preparation: 10 wt% Ni*2.5 wt% Ir/YSZ was obtained by the same preparation method as in Example 9.

反応評価:耐圧反応器に10wt%Ni*2.5wt%Ir/YSZを2.0g加え、水素1MPaG、水溶媒下、160℃で還元処理を行った。その後、1,6-ヘキサンジオール、ヘキサメチレンイミン、6-アミノヘキサノール、ヘキサメチレンジアミン重合体(ビスヘキサメチレントリアミン)を混合して得られた表7の組成の原料と、当該原料に対して9.1当量のアンモニアとを耐圧反応器に加え、水素を室温で1.0MPa充填した後、160℃で2時間反応を行った。表7に得られた反応液組成を示した。本実施例では、31mol%の原料成分が消費され、ヘキサメチレンジアミンが収率21mol%、選択率68mol%で得られた。 Reaction evaluation: 2.0 g of 10 wt % Ni*2.5 wt % Ir/YSZ was added to a pressure-resistant reactor, and reduction treatment was performed at 160° C. under hydrogen of 1 MPaG and water solvent. Then, 1,6-hexanediol, hexamethyleneimine, 6-aminohexanol, and hexamethylenediamine polymer (bishexamethylenetriamine) were mixed to obtain raw materials having the composition shown in Table 7, and 9 .1 equivalent of ammonia was added to the pressure-resistant reactor, hydrogen was charged at room temperature to 1.0 MPa, and then the reaction was carried out at 160° C. for 2 hours. Table 7 shows the composition of the reaction solution obtained. In this example, 31 mol % of raw material components were consumed, and hexamethylenediamine was obtained with a yield of 21 mol % and a selectivity of 68 mol %.

[実施例19]
触媒調製:実施例11と同様の調製法で5wt%Ru*5wt%Pt/ZrO2を得た。
[Example 19]
Catalyst preparation: 5wt%Ru * 5wt%Pt/ZrO2 was obtained by the same preparation method as in Example 11.

反応評価:耐圧反応器に5wt%Ru*5wt%Pt/ZrO2を2.0g加え、水素1MPaG、水溶媒下、180℃で還元処理を行った。その後、1,6-ヘキサンジオール、ヘキサメチレンイミン、6-アミノヘキサノール、ヘキサメチレンジアミン重合体(ビスヘキサメチレントリアミン)を混合して得られた表7の組成の原料と、当該原料に対して32.4当量のアンモニアとを耐圧反応器に加え、水素を室温で1.0MPa充填した後、180℃で4時間反応を行った。表7に得られた反応液組成を示した。本実施例では、43mol%の原料成分が消費され、ヘキサメチレンジアミンが収率26mol%、選択率60mol%で得られた。

Figure 2022112398000007
Reaction evaluation: 2.0 g of 5 wt % Ru*5 wt % Pt/ZrO 2 was added to a pressure-resistant reactor, and reduction treatment was performed at 180° C. under hydrogen of 1 MPaG and water solvent. Then, 1,6-hexanediol, hexamethyleneimine, 6-aminohexanol, and hexamethylenediamine polymer (bishexamethylenetriamine) were mixed to obtain raw materials having the composition shown in Table 7, and 32 0.4 equivalent of ammonia was added to the pressure-resistant reactor, hydrogen was charged at room temperature to 1.0 MPa, and then the reaction was carried out at 180° C. for 4 hours. Table 7 shows the composition of the reaction solution obtained. In this example, 43 mol % of raw material components were consumed, and hexamethylenediamine was obtained with a yield of 26 mol % and a selectivity of 60 mol %.
Figure 2022112398000007

[実施例20]
触媒調製:実施例3と同様の調製法で10wt%Co*2.5wt%Ru/ZrO2を得た。
[Example 20]
Catalyst preparation: 10wt%Co* 2.5wt %Ru/ZrO2 was obtained by the same preparation method as in Example 3.

反応評価:耐圧反応器に10wt%Co*2.5wt%Ru/ZrO2を1.0g加え、水素1MPaG、水溶媒下、180℃で還元処理を行った。その後、ヘキサメチレンイミンとヘキサメチレンイミンに対して64.7当量のアンモニアとを耐圧反応器に加え、水素を室温で1.0MPa充填した後、180℃で2時間反応を行った。表8に得られた反応液組成を示した。本実施例では、70mol%の原料成分が消費されヘキサメチレンジアミンが収率45mol%、選択率64mol%で得られた。 Reaction evaluation: 1.0 g of 10 wt % Co*2.5 wt % Ru/ZrO 2 was added to a pressure-resistant reactor, and reduction treatment was carried out at 180° C. under hydrogen of 1 MPaG and water solvent. After that, hexamethyleneimine and 64.7 equivalents of ammonia with respect to hexamethyleneimine were added to the pressure-resistant reactor, hydrogen was charged at room temperature to 1.0 MPa, and reaction was carried out at 180° C. for 2 hours. Table 8 shows the composition of the reaction solution obtained. In this example, 70 mol % of raw material components were consumed and hexamethylenediamine was obtained with a yield of 45 mol % and a selectivity of 64 mol %.

[実施例21]
触媒調製:実施例3と同様の調製法で10wt%Co*2.5wt%Ru/ZrO2を得た。
[Example 21]
Catalyst preparation: 10wt%Co* 2.5wt %Ru/ZrO2 was obtained by the same preparation method as in Example 3.

反応評価:耐圧反応器に10wt%Co*2.5wt%Ru/ZrO2を1.0g加え、水素1MPaG、水溶媒下、180℃で還元処理を行った。その後、ヘキサメチレンイミンと1,6-ヘキサンジオールとの混合原料と、当該原料に対して66.2当量のアンモニアとを耐圧反応器に加え、水素を室温で1.0MPa充填した後、180℃で2時間反応を行った。表8に得られた反応液組成を示した。本実施例では、70mol%の原料成分が消費され、ヘキサメチレンジアミンが収率43mol%、選択率61mol%で得られた。 Reaction evaluation: 1.0 g of 10 wt % Co*2.5 wt % Ru/ZrO 2 was added to a pressure-resistant reactor, and reduction treatment was carried out at 180° C. under hydrogen of 1 MPaG and water solvent. After that, a mixed raw material of hexamethyleneimine and 1,6-hexanediol and 66.2 equivalents of ammonia with respect to the raw material were added to a pressure-resistant reactor. for 2 hours. Table 8 shows the composition of the reaction solution obtained. In this example, 70 mol % of raw material components were consumed, and hexamethylenediamine was obtained with a yield of 43 mol % and a selectivity of 61 mol %.

[実施例22]
触媒調製:実施例3と同様の調製法で10wt%Co*2.5wt%Ru/ZrO2を得た。
[Example 22]
Catalyst preparation: 10wt%Co* 2.5wt %Ru/ZrO2 was obtained by the same preparation method as in Example 3.

反応評価:耐圧反応器に10wt%Co*2.5wt%Ru/ZrO2を1.0g加え、水素1MPaG、水溶媒下、180℃で還元処理を行った。その後、ヘキサメチレンイミンと1,6-ヘキサンジオールとの混合原料と、当該原料に対して67.4当量のアンモニアとを耐圧反応器に加え、水素を室温で1.0MPa充填した後、180℃で2時間反応を行った。表8に得られた反応液組成を示した。本実施例では、62mol%の原料成分が消費され、ヘキサメチレンジアミンが収率46mol%、選択率74mol%で得られた。

Figure 2022112398000008
Reaction evaluation: 1.0 g of 10 wt % Co*2.5 wt % Ru/ZrO 2 was added to a pressure-resistant reactor, and reduction treatment was carried out at 180° C. under hydrogen of 1 MPaG and water solvent. After that, a mixed raw material of hexamethyleneimine and 1,6-hexanediol and 67.4 equivalents of ammonia with respect to the raw material were added to a pressure-resistant reactor. for 2 hours. Table 8 shows the composition of the reaction solution obtained. In this example, 62 mol % of raw material components were consumed, and hexamethylenediamine was obtained with a yield of 46 mol % and a selectivity of 74 mol %.
Figure 2022112398000008

[実施例23]
触媒調製:実施例3と同様の調製法で10wt%Co*2.5wt%Ru/ZrO2を得た。
[Example 23]
Catalyst preparation: 10wt%Co* 2.5wt %Ru/ZrO2 was obtained by the same preparation method as in Example 3.

反応評価:耐圧反応器に10wt%Co*2.5wt%Ru/ZrO2を1.0g加え、水素10MPaG、水溶媒下、160℃で還元処理を行った。その後、ヘキサメチレンジアミン重合体(ビスヘキサメチレントリアミン)とヘキサメチレンジアミン重合体に対して32.5当量のアンモニアとを耐圧反応器に加え、水素を室温で1.0MPa充填した後、160℃で2時間反応を行った。表9に得られた反応液組成を示した。本実施例では、20mol%の原料成分が消費され、ヘキサメチレンジアミンが収率13mol%、選択率65mol%で得られた。 Reaction evaluation: 1.0 g of 10 wt % Co*2.5 wt % Ru/ZrO 2 was added to a pressure-resistant reactor, and reduction treatment was performed at 160° C. under hydrogen of 10 MPaG and water solvent. After that, a hexamethylenediamine polymer (bishexamethylenetriamine) and 32.5 equivalents of ammonia with respect to the hexamethylenediamine polymer were added to the pressure-resistant reactor, hydrogen was charged at room temperature to 1.0 MPa, and then the reaction was carried out at 160°C. The reaction was carried out for 2 hours. Table 9 shows the composition of the reaction solution obtained. In this example, 20 mol % of the starting material was consumed, and hexamethylenediamine was obtained with a yield of 13 mol % and a selectivity of 65 mol %.

[実施例24]
触媒調製:実施例1と同様の調製法で10wt%Co*2.5wt%Pt/ZrO2を得た。
[Example 24]
Catalyst preparation: 10wt%Co* 2.5wt %Pt/ZrO2 was obtained by the same preparation method as in Example 1.

反応評価:耐圧反応器に10wt%Co*2.5wt%Pt/ZrO2を1.0g加え、水素1MPaG、水溶媒下、180℃で還元処理を行った。その後、ヘキサメチレンジアミン重合体(ビスヘキサメチレントリアミン)とヘキサメチレンジアミン重合体に対して34.3当量のアンモニアとを耐圧反応器に加え、水素を室温で1.0MPa充填した後、180℃で2時間反応を行った。表9に得られた反応液組成を示した。本実施例では、26mol%の原料成分が消費され、ヘキサメチレンジアミンが収率16mol%、選択率62mol%で得られた。 Reaction evaluation: 1.0 g of 10 wt % Co*2.5 wt % Pt/ZrO 2 was added to a pressure-resistant reactor, and reduction treatment was performed at 180° C. under 1 MPaG of hydrogen and water solvent. After that, a hexamethylenediamine polymer (bishexamethylenetriamine) and 34.3 equivalents of ammonia with respect to the hexamethylenediamine polymer were added to the pressure-resistant reactor, hydrogen was charged at room temperature to 1.0 MPa, and then the reaction was carried out at 180°C. The reaction was carried out for 2 hours. Table 9 shows the composition of the reaction solution obtained. In this example, 26 mol % of raw material components were consumed, and hexamethylenediamine was obtained with a yield of 16 mol % and a selectivity of 62 mol %.

[実施例25]
触媒調製:実施例6と同様の調製法で10wt%Ni*2.5wt%Pt/YSZを得た。
[Example 25]
Catalyst preparation: 10 wt% Ni*2.5 wt% Pt/YSZ was obtained by the same preparation method as in Example 6.

反応評価:耐圧反応器に10wt%Ni*2.5wt%Pt/YSZを1.0g加え、水素1MPaG、水溶媒下、180℃で還元処理を行った。その後、ヘキサメチレンジアミン重合体(ビスヘキサメチレントリアミン)とヘキサメチレンジアミン重合体に対して32.5当量のアンモニアとを耐圧反応器に加え、水素を室温で1.0MPa充填した後、180℃で2時間反応を行った。表9に得られた反応液組成を示した。本実施例では、30mol%の原料成分が消費され、ヘキサメチレンジアミンが収率18mol%、選択率60mol%で得られた。 Reaction evaluation: 1.0 g of 10 wt % Ni*2.5 wt % Pt/YSZ was added to a pressure-resistant reactor, and reduction treatment was performed at 180° C. under hydrogen of 1 MPaG and water solvent. After that, a hexamethylenediamine polymer (bishexamethylenetriamine) and 32.5 equivalents of ammonia with respect to the hexamethylenediamine polymer were added to a pressure-resistant reactor, hydrogen was charged at room temperature to 1.0 MPa, and then the reaction was carried out at 180°C. The reaction was carried out for 2 hours. Table 9 shows the composition of the reaction solution obtained. In this example, 30 mol % of the starting material was consumed, and hexamethylenediamine was obtained with a yield of 18 mol % and a selectivity of 60 mol %.

Figure 2022112398000009
Figure 2022112398000009

Claims (6)

周期表の第8族、第9族、第10族及び第11族元素の中から選ばれた1種類以上の金属元素を含む活性成分と担体とを含む固体触媒の存在下で、下記(i)及び(ii)から選ばれた一種類以上を含む原料とアンモニアとを反応させることを含むヘキサメチレンジアミンの製造方法。
(i)ヘキサメチレンイミン
(ii)ヘキサメチレンイミン、6-アミノヘキサノール、ヘキサメチレンジアミン、及び1,6-ヘキサンジオールからなる群から選ばれた1種以上の化合物の縮合体
The following (i ) and (ii).
(i) hexamethyleneimine (ii) condensates of one or more compounds selected from the group consisting of hexamethyleneimine, 6-aminohexanol, hexamethylenediamine, and 1,6-hexanediol
前記原料が1,6-ヘキサンジオール、6-アミノヘキサノール、及びヘキサメチレンジアミンからなる群から選ばれた1種類以上の化合物を更に含む請求項1に記載のヘキサメチレンジアミンの製造方法。 2. The method for producing hexamethylenediamine according to claim 1, wherein the starting material further contains one or more compounds selected from the group consisting of 1,6-hexanediol, 6-aminohexanol, and hexamethylenediamine. 前記原料を供給することを含む請求項1又は2に記載のヘキサメチレンジアミンの製造方法。 The method for producing hexamethylenediamine according to claim 1 or 2, comprising supplying the raw material. 前記原料が前記反応させることにより得られた反応液を精製して得られた回収液を含む請求項1~3のいずれか一項に記載のヘキサメチレンジアミンの製造方法。 The method for producing hexamethylenediamine according to any one of claims 1 to 3, wherein the raw material contains a recovered liquid obtained by purifying the reaction liquid obtained by the reaction. 前記固体触媒の活性成分が、第8族、第9族、第10族及び第11族元素の中から選ばれた2種類以上の金属元素を含む請求項1~4のいずれか一項に記載のヘキサメチレンジアミンの製造方法。 5. The solid catalyst according to any one of claims 1 to 4, wherein the active component of the solid catalyst contains two or more metal elements selected from group 8, group 9, group 10 and group 11 elements. A method for producing hexamethylenediamine. 前記固体触媒の活性成分が白金族元素と鉄族元素のそれぞれから1種類以上の金属を含む請求項1~5のいずれか一項に記載のヘキサメチレンジアミンの製造方法。 The method for producing hexamethylenediamine according to any one of claims 1 to 5, wherein the active component of the solid catalyst contains one or more metals from each of platinum group elements and iron group elements.
JP2021008235A 2021-01-21 2021-01-21 Method for producing hexamethylene diamine Pending JP2022112398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021008235A JP2022112398A (en) 2021-01-21 2021-01-21 Method for producing hexamethylene diamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021008235A JP2022112398A (en) 2021-01-21 2021-01-21 Method for producing hexamethylene diamine

Publications (1)

Publication Number Publication Date
JP2022112398A true JP2022112398A (en) 2022-08-02

Family

ID=82655977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021008235A Pending JP2022112398A (en) 2021-01-21 2021-01-21 Method for producing hexamethylene diamine

Country Status (1)

Country Link
JP (1) JP2022112398A (en)

Similar Documents

Publication Publication Date Title
JPS60261542A (en) Reinforced nickel catalyst for amination
JPH0275343A (en) Ruthenium supported catalyst
CN112898163B (en) Method for preparing 1, 6-hexamethylene diamine by ammoniation of hexamethylene imine
JP2009254981A (en) Ammonia decomposing catalyst and method of decomposing ammonia
JP2017025012A (en) Manufacturing method of aromatic compound and furan derivative having methylamino group
JP2014058488A (en) Method for producing 1,1,1,4,4,4-hexafluoro-2-butyne
JP2021030117A (en) Agent for improving activity of catalyst for methanol synthesis
JP2022112396A (en) Method for producing hexamethylene diamine
JPS5929633B2 (en) Low-temperature steam reforming method for hydrocarbons
JP2022112398A (en) Method for producing hexamethylene diamine
JPH10251207A (en) Production of 4-aminodiphenylamine
JPH11179204A (en) Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production
JPH09168740A (en) Carbon dioxide modifying catalyst and modifying method using the same
KR20130100281A (en) Catalyst and method for the production of chlorine by gas phase oxidation
JP2022112395A (en) Method for producing hexamethylene diamine and solid catalyst for production of hexamethylene diamine
CN112237937B (en) Nitrogen-doped zirconia carrier, and preparation method and application thereof
JP2017109940A (en) Amino alcohol synthesis method and catalyst
CN111217750B (en) Preparation method of caprolactam
JP2021014427A (en) Method for producing hexamethylene diamine
CN108947851B (en) Synthesis method of 5-amino-1-pentanol
SU677658A3 (en) Method of producing hexamethylenimine
US6509504B1 (en) Method for the production of serinol
CN111036204A (en) Glycerol hydrogenolysis method
JP2012223768A (en) Catalyst and method for decomposing ammonia
JP2021014429A (en) Method for producing hexamethylene diamine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231108