JP2022107167A - Grindstone and manufacturing method of grindstone - Google Patents

Grindstone and manufacturing method of grindstone Download PDF

Info

Publication number
JP2022107167A
JP2022107167A JP2021001941A JP2021001941A JP2022107167A JP 2022107167 A JP2022107167 A JP 2022107167A JP 2021001941 A JP2021001941 A JP 2021001941A JP 2021001941 A JP2021001941 A JP 2021001941A JP 2022107167 A JP2022107167 A JP 2022107167A
Authority
JP
Japan
Prior art keywords
resin
grindstone
mass
grain composition
abrasive grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021001941A
Other languages
Japanese (ja)
Inventor
直樹 西條
Naoki Saijo
浩美 大崎
Hiromi Osaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinano Electric Refining Co Ltd
Original Assignee
Shinano Electric Refining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinano Electric Refining Co Ltd filed Critical Shinano Electric Refining Co Ltd
Priority to JP2021001941A priority Critical patent/JP2022107167A/en
Priority to CN202111633229.5A priority patent/CN114750082A/en
Publication of JP2022107167A publication Critical patent/JP2022107167A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/28Resins or natural or synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • B24D18/0009Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for using moulds or presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/34Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties
    • B24D3/342Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties incorporated in the bonding agent
    • B24D3/344Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties incorporated in the bonding agent the bonding agent being organic

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

To provide a grindstone capable of grinding and polishing with high accuracy and high efficiency a workpiece such as a cylindrical metal component, and achieving great process improvement, quality improvement due to polishing accuracy improvement or development to new use, and to provide a manufacturing method of the grindstone.SOLUTION: A grindstone comprising a cured material obtained by curing an abrasive grain composition containing abrasive grains, a resin and a curing catalyst is such that: the resin contains 50 mass% or more of a resol type phenol resin; and a blend amount of the curing catalyst is 5-23 pts.mass based on 100 pts.mass of the phenol resin. A manufacturing method of the grindstone includes steps of: preparing an abrasive grain composition by blending blended liquid containing abrasive grains, a resin and a curing catalyst; pouring the abrasive grain composition into a mold; and curing the abrasive grain composition poured into the mold. The resin in the abrasive grain composition contains 50 mass% or more of a resol type phenol resin. In the step of curing the abrasive grain composition, curing is performed in two heating steps of heating at a second heating temperature higher than a first heating temperature for the predetermined time after heating at the first heating temperature for predetermined time.SELECTED DRAWING: None

Description

本発明は、砥石及び砥石の製造方法に関し、特にセンタレス研磨、円筒研削でワーク(工作物)を仕上げ研磨するための回転砥石及びその製造方法に関する。 The present invention relates to a grindstone and a method for manufacturing the grindstone, and more particularly to a rotary grindstone for finish polishing a work (workpiece) by centerless polishing and cylindrical grinding, and a method for manufacturing the rotary grindstone.

従来、自動車部品や搬送用ロールなどの円筒状ワークを研削研磨するためには、センタレス研磨や、円筒研削が用いられる。これらの研削研磨には砥粒を樹脂等で固定した回転砥石が用いられ、これを回転させて、被加工物に接触させることで任意の表面状態に加工する。 Conventionally, centerless polishing and cylindrical grinding are used for grinding and polishing cylindrical workpieces such as automobile parts and transport rolls. For these grinding and polishing, a rotary grindstone in which abrasive grains are fixed with a resin or the like is used, and the rotary grindstone is rotated and brought into contact with the workpiece to be processed into an arbitrary surface state.

回転砥石に固定する砥粒には、例えば、ダイヤモンド、炭化ケイ素、アルミナ等が挙げられ、砥粒を固定する結合剤には、一般砥石としてはレジンボンド、ビトリファイドが挙げられ、弾性砥石としてはポリビニルアセタール樹脂、ポリウレタン樹脂、ユリア樹脂、ゴム等が挙げられる。レジンボンドやビトリファイドを結合剤とした砥石は非常に硬く、研削力に優れるため、粗研削から中仕上げまでに広く用いられている。一方、ポリビニルアセタール樹脂やポリウレタン樹脂などの弾性素材を結合剤に用いた弾性砥石は、弾性の効果により、被加工物の表面粗さが細かく高精度に加工することに優れており、スクラッチ等の不具合の発生も少ないという特徴がある。 Examples of the abrasive grains to be fixed to the rotary grindstone include diamond, silicon carbide, alumina and the like. Examples of the binder for fixing the abrasive grains include resin bond and vitrified as the general grindstone, and polyvinyl as the elastic grindstone. Examples thereof include acetal resin, polyurethane resin, urea resin, and rubber. Grindstones using resin bond or vitrify as a binder are extremely hard and have excellent grinding power, so they are widely used from rough grinding to semi-finishing. On the other hand, an elastic grindstone that uses an elastic material such as polyvinyl acetal resin or polyurethane resin as a binder is excellent in finely processing the surface roughness of the work piece with high precision due to the effect of elasticity, and is excellent in scratching and the like. It is characterized by the fact that there are few problems.

回転砥石には、通常、上述の通り砥粒を結合剤で固定した砥石が用いられる。例えば、結合剤としてフェノール樹脂を用いたレジンボンド砥石が従来技術として知られている(例えば、非特許文献1)。フェノール樹脂には、ノボラック型とレゾール型とがあり、ノボラック型フェノール樹脂が砥石の主結合剤として用いられている。一方、レゾール型フェノール樹脂は砥粒の湿潤剤として用いられている。 As the rotary grindstone, a grindstone in which abrasive grains are fixed with a binder as described above is usually used. For example, a resin bond grindstone using a phenol resin as a binder is known as a prior art (for example, Non-Patent Document 1). There are two types of phenol resin, novolak type and resol type, and novolak type phenol resin is used as the main binder of the grindstone. On the other hand, the resole-type phenol resin is used as a wetting agent for abrasive grains.

また、弾性砥石としては、砥石の結合剤が低弾性率のビスフェノールA系エポキシ樹脂で構成されると共に、その砥石内に樹脂結合剤よりも低弾性率の有機質中空体が分散させられている砥石が報告されている(例えば、特許文献1)。 Further, as an elastic grindstone, the binder of the grindstone is composed of a bisphenol A epoxy resin having a low elastic modulus, and an organic hollow body having a lower elastic modulus than the resin binder is dispersed in the grindstone. Has been reported (for example, Patent Document 1).

回転砥石は、その目的により用いる砥石を選択するが、近年、多くの研磨用途で被加工物表面の高精度化が進み、研削力と仕上がり表面の高精度化とが両立できる回転砥石が求められていた。 As the rotary grindstone, the grindstone to be used is selected according to the purpose. In recent years, the surface of the workpiece has been improved in precision in many polishing applications, and a rotary grindstone that can achieve both grinding force and high precision in the finished surface is required. Was there.

特開2005―246569号公報Japanese Unexamined Patent Publication No. 2005-2465669

日本セラミックス協会編,「セラミック工学ハンドブック(第2版)」,p1322~1325(2002年)Ceramic Society of Japan, "Ceramic Engineering Handbook (2nd Edition)", pp. 1322-1325 (2002)

しかしながら、レジンボンドやビトリファイドを結合剤として使用した砥石は、その硬さゆえ、最終仕上げでは被加工物の表面が粗くなってしまい、スクラッチなどの不具合も発生させやすい。また、従来の弾性砥石などのワーク面粗度を緻密に仕上げる研磨物だと、研削力が弱いため耐摩耗性が低く、切り込み量に対して実際の研削量が小さい。このため、センタレス研磨機や円筒研削機など機械設定でワーク径を管理する場合、研削量のコントロールが難しく扱いづらい問題がある。さらには、研削時間が掛かるため作業効率が悪化してしまう問題や砥石ライフが短いため交換頻度が高くなりコストがかかるという問題もある。 However, since the grindstone using resin bond or vitrify as a binder has a hardness, the surface of the work piece becomes rough in the final finish, and defects such as scratches are likely to occur. Further, in the case of a polished material such as a conventional elastic grindstone that precisely finishes the roughness of the work surface, the grinding force is weak, so that the wear resistance is low, and the actual grinding amount is small with respect to the cutting amount. Therefore, when the work diameter is managed by a machine setting such as a centerless grinding machine or a cylindrical grinding machine, there is a problem that it is difficult to control the grinding amount and handle it. Further, there is a problem that the work efficiency is deteriorated because the grinding time is long, and there is a problem that the replacement frequency is high and the cost is high because the grindstone life is short.

切削性を保持したまま、高精度に研磨することができれば、これらの問題を解決し、生産性の大幅な向上に加え、これまで仕上げることのできなかったワークを高精度に仕上げることができる可能性がある。しかし、従来の砥石では、レジンボンドやビトリファイド等の一般砥石と高弾性砥石の両方のメリットを合わせ持った性能を有することが難しかった。 If it is possible to polish with high precision while maintaining machinability, it is possible to solve these problems, greatly improve productivity, and finish workpieces that could not be finished with high precision. There is sex. However, it has been difficult for conventional grindstones to have performance that combines the merits of both general grindstones such as resin bonds and vitrified grindstones and highly elastic grindstones.

本発明は上記事情に鑑みてなされたものであり、従来よりも研磨機による研削研磨の仕上げを高精度にでき、加えて従来よりも高効率に研削研磨ができる砥石及びその砥石の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances. The purpose is to provide.

本発明者らは上記目的を達成するために鋭意検討を重ねた結果、硬化触媒にて硬化反応させる成形方法を用い、さらに中間体(半硬化物)を成形させ次に完全成形させる2段階で成形させることで従来の成形時間を大幅に短縮させることができ、かつ均一な硬化反応をさせることでクラックの発生しない成形体を得られること、また、本発明品で被加工物を研削研磨することにより、円筒状の被加工物を高精度に高効率で研削研磨できることを見出し、本発明をなすに至った。 As a result of diligent studies to achieve the above object, the present inventors used a molding method in which a curing reaction was carried out with a curing catalyst, and further molded an intermediate (semi-cured product) and then completely molded it in two steps. By molding, the conventional molding time can be significantly shortened, and by allowing a uniform curing reaction, a molded product that does not generate cracks can be obtained, and the workpiece is ground and polished with the product of the present invention. As a result, it has been found that a cylindrical workpiece can be ground and polished with high accuracy and high efficiency, and the present invention has been completed.

すなわち、本発明は、下記の砥石及び砥石の製造方法を提供する。
[1]砥粒、樹脂及び硬化触媒を含む砥粒組成物を硬化した硬化物からなる砥石であって、
前記樹脂は、レゾール型フェノール樹脂を50質量%以上含み、
前記硬化触媒の配合量が、フェノール樹脂100質量部に対し5~23質量部であることを特徴とする砥石。
[2]前記砥粒及び前記樹脂の合計100質量部に対する前記樹脂の配合量が10~40質量部である[1]に記載の砥石。
[3]前記レゾール型フェノール樹脂の数平均分子量(Mn)が300~600である[1]または[2]に記載の砥石。
[4]前記樹脂が弾性樹脂を含み、
前記弾性樹脂は、イソブレンゴム、ブタジエンゴム、スチレン・ブタジエンゴム、クロロブレンゴム、ニトリルゴム、ブチルゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエンゴム、アクリルゴム、エピクロルヒドリンゴム、シリコーンゴム、フッ素ゴム及びプロピレン・ブタジエンゴムからなる群から選択される少なくとも1種の樹脂である[1]~[3]のいずれか1つに記載の砥石。
[5]前記樹脂における前記弾性樹脂の割合が5~50質量%である[4]に記載の砥石。
[6]前記砥粒組成物が気孔生成剤を含む[1]~[5]のいずれか1つに記載の砥石。
[7]前記樹脂100質量部に対する前記気孔生成剤の配合量が1~40質量部である[6]に記載の砥石。
[8]前記砥粒が、炭化ケイ素、アルミナ、酸化クロム、酸化セリウム、酸化ジルコニウム及びジルコンサンドからなる群から選択される少なくとも1種のセラミックの砥粒である[1]~[7]のいずれか1つに記載の砥石。
[9]レーザー回折散乱法により測定した前記砥粒の体積平均一次粒子径が5~27μmである[1]~[8]のいずれか1つに記載の砥石。
[10]スーパーフィシャル15Yスケールで測定したロックウェル硬度が-60~0である[1]~[9]のいずれか1つに記載の砥石。
[11]センタレス研磨及び円筒研削最終仕上げ用砥石である[1]~[10]のいずれか1つに記載の砥石。
[12]砥粒、樹脂及び硬化触媒を含む混合液を混合して砥粒組成物を作製する工程、
前記砥粒組成物を型に流し込む工程、及び
前記型に流し込んだ砥粒組成物を硬化させる工程を含み、
前記砥粒組成物における前記樹脂はレゾール型フェノール樹脂を50質量%以上含み、
前記砥粒組成物を硬化させる工程は、第一の加熱温度で所定時間加熱した後、前記第一の加熱温度よりも高温の第二の加熱温度で所定時間加熱する二段階加熱による硬化である砥石の製造方法。
[13]前記第一の加熱温度が30℃以上であり、前記第二の加熱温度が60℃以上である[12]に記載の砥石の製造方法。
[14]前記所定の加熱時間が1~10時間である[12]または[13]に記載の砥石の製造方法。
That is, the present invention provides the following grindstone and a method for manufacturing the grindstone.
[1] A grindstone made of a cured product obtained by curing an abrasive grain composition containing abrasive grains, a resin, and a curing catalyst.
The resin contains 50% by mass or more of a resole-type phenol resin.
A grindstone characterized in that the blending amount of the curing catalyst is 5 to 23 parts by mass with respect to 100 parts by mass of the phenol resin.
[2] The grindstone according to [1], wherein the blending amount of the resin is 10 to 40 parts by mass with respect to a total of 100 parts by mass of the abrasive grains and the resin.
[3] The grindstone according to [1] or [2], wherein the number average molecular weight (Mn) of the resol type phenol resin is 300 to 600.
[4] The resin contains an elastic resin, and the resin contains an elastic resin.
The elastic resins include isobrene rubber, butadiene rubber, styrene / butadiene rubber, chlorobrene rubber, nitrile rubber, butyl rubber, ethylene / propylene rubber, ethylene / propylene / diene rubber, acrylic rubber, epichlorohydrin rubber, silicone rubber, fluororubber and propylene / butadiene. The grindstone according to any one of [1] to [3], which is at least one resin selected from the group consisting of rubber.
[5] The grindstone according to [4], wherein the ratio of the elastic resin to the resin is 5 to 50% by mass.
[6] The grindstone according to any one of [1] to [5], wherein the abrasive grain composition contains a pore-forming agent.
[7] The grindstone according to [6], wherein the amount of the pore-forming agent blended with respect to 100 parts by mass of the resin is 1 to 40 parts by mass.
[8] Any of [1] to [7], wherein the abrasive grains are at least one type of ceramic abrasive grains selected from the group consisting of silicon carbide, alumina, chromium oxide, cerium oxide, zirconium oxide and zircon sand. The grindstone described in one.
[9] The grindstone according to any one of [1] to [8], wherein the volume average primary particle diameter of the abrasive grains measured by the laser diffraction / scattering method is 5 to 27 μm.
[10] The grindstone according to any one of [1] to [9], which has a Rockwell hardness of −60 to 0 measured on a superficial 15Y scale.
[11] The grindstone according to any one of [1] to [10], which is a grindstone for centerless polishing and cylindrical grinding final finishing.
[12] A step of preparing an abrasive grain composition by mixing a mixed solution containing abrasive grains, a resin and a curing catalyst.
Including a step of pouring the abrasive grain composition into a mold and a step of curing the abrasive grain composition poured into the mold.
The resin in the abrasive grain composition contains 50% by mass or more of a resole-type phenol resin.
The step of curing the abrasive grain composition is curing by two-step heating in which the abrasive grain composition is heated at a first heating temperature for a predetermined time and then heated at a second heating temperature higher than the first heating temperature for a predetermined time. How to manufacture a grindstone.
[13] The method for producing a grindstone according to [12], wherein the first heating temperature is 30 ° C. or higher, and the second heating temperature is 60 ° C. or higher.
[14] The method for producing a grindstone according to [12] or [13], wherein the predetermined heating time is 1 to 10 hours.

本発明の砥石を使用すれば、円筒状金属部品等の被加工物を高精度かつ高効率に研削研磨することができ、大幅な工程改善、研磨精度向上による品質改善、または新規用途への展開が実現する。また、本発明の砥石の製造方法によれば、硬度、弾性、消耗度、切削性、被加工物の仕上がり表面粗さ等がより改善された砥石を効率よく得ることができる。 By using the grindstone of the present invention, it is possible to grind and polish workpieces such as cylindrical metal parts with high accuracy and high efficiency. Is realized. Further, according to the method for producing a grindstone of the present invention, it is possible to efficiently obtain a grindstone having further improved hardness, elasticity, degree of wear, machinability, finished surface roughness of a work piece, and the like.

以下、本発明について、本発明の実施形態を例に挙げて詳細に説明するが、本発明はこれらの実施形態に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to embodiments of the present invention as examples, but the present invention is not limited to these embodiments.

<砥石>
本発明の砥石は、砥粒、樹脂及び硬化触媒を含む砥粒組成物を硬化した硬化物からなる。そして、上記樹脂はレゾール型フェノール樹脂を50質量%以上含む。
(砥粒)
砥粒は、被加工物を削りとる作用を有する物質であり、砥石の中で切れ刃の役目をする。砥粒には適切な粒度、高い硬度、化学耐久性等が要求される。
<Whetstone>
The grindstone of the present invention comprises a cured product obtained by curing an abrasive grain composition containing abrasive grains, a resin and a curing catalyst. The resin contains 50% by mass or more of a resol type phenol resin.
(Abrasive grain)
Abrasive grains are substances that have the function of scraping off the work piece, and serve as a cutting edge in the grindstone. Abrasive grains are required to have an appropriate particle size, high hardness, chemical durability, and the like.

砥粒のレーザー回折・散乱法により測定した体積平均一次粒子径は、センタレス研磨または、円筒研削の仕上がり精度を高める観点から、好ましくは5~27μm、より好ましくは6~22μmである。 The volume average primary particle diameter measured by the laser diffraction / scattering method of the abrasive grains is preferably 5 to 27 μm, more preferably 6 to 22 μm from the viewpoint of improving the finish accuracy of centerless polishing or cylindrical grinding.

砥粒は、レジンボンドの砥石に用いられる砥粒であれば、特に限定されない。砥粒としては、例えば、炭化ケイ素、アルミナ、酸化クロム、酸化セリウム、酸化ジルコニウム、ジルコンサンド等が挙げられ、これらを単独又は二種以上を併せて用いることができる。なかでも炭化ケイ素やアルミナは、硬度が高く、他の材質に比べて切削能力に優れているため好ましい。 The abrasive grains are not particularly limited as long as they are abrasive grains used for a resin bond grindstone. Examples of the abrasive grains include silicon carbide, alumina, chromium oxide, cerium oxide, zirconium oxide, zircon sand and the like, and these can be used alone or in combination of two or more. Among them, silicon carbide and alumina are preferable because they have high hardness and excellent cutting ability as compared with other materials.

砥粒にかかる研磨荷重が分散することによる仕上がり粗さや砥石の目詰まりのしやすさ、砥石の硬さと砥粒の自己脱落の生じやすさの観点から、砥粒組成物における砥粒の配合量は、砥粒及び樹脂の配合量の合計100質量部に対して、好ましくは60~90質量部であり、より好ましくは65~80質量部である。 The amount of abrasive grains blended in the abrasive grain composition from the viewpoints of finish roughness due to the dispersion of the polishing load applied to the abrasive grains, the ease of clogging of the grindstone, the hardness of the grindstone and the ease of self-falling of the abrasive grains. Is preferably 60 to 90 parts by mass, and more preferably 65 to 80 parts by mass with respect to 100 parts by mass of the total amount of the abrasive grains and the resin.

(樹脂)
上述したように樹脂はレゾール型フェノール樹脂を50質量%以上含む。すなわち、本発明の砥石はレゾール型フェノール樹脂を主結合剤として用いる。砥石において樹脂は砥粒を保持する役目をする。また、切れ刃の弾性的挙動、砥石全体としての衝撃吸収度等は樹脂に起因する。さらに、樹脂は、砥石の切れ味及び減耗に大きな影響を与える。
(resin)
As described above, the resin contains 50% by mass or more of the resole-type phenol resin. That is, the grindstone of the present invention uses a resol type phenol resin as a main binder. In the grindstone, the resin serves to hold the abrasive grains. Further, the elastic behavior of the cutting edge, the impact absorption of the grindstone as a whole, and the like are due to the resin. Furthermore, the resin has a great influence on the sharpness and wear of the grindstone.

砥石の切れ味及び減耗の観点から、砥粒組成物における樹脂の配合量は、砥粒及び樹脂の配合量の合計100質量部に対して、好ましくは10~40質量部であり、より好ましくは20~35質量部である。 From the viewpoint of sharpness and wear of the grindstone, the amount of the resin compounded in the abrasive grain composition is preferably 10 to 40 parts by mass, more preferably 20 parts by mass, based on 100 parts by mass of the total amount of the abrasive grains and the resin. It is ~ 35 parts by mass.

(レゾール型フェノール樹脂)
レゾール型フェノール樹脂は、自己硬化性を持ち、加熱によって硬化し硬化物となる。また、レゾール型フェノール樹脂は、機械的衝撃及び熱的衝撃に強い。レゾール型フェノール樹脂は、例えば、フェノール類とアルデヒド類とを塩基性触媒の存在下で反応させることにより合成される。一般的に、上記反応後、減圧脱水が行われる。
レゾール型フェノール樹脂の合成に用いるフェノール類には、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、キシレノール、アルキルフェノール類、カテコール、レゾルシン等が挙げられ、これらを単独又は二種以上を併せて用いることができる。
レゾール型フェノール樹脂の合成に用いるアルデヒド類には、例えば、ホルムアルデヒド、パラホルムアルデヒド、ベンズアルデヒド等のアルデヒド化合物、及びこれらのアルデヒド化合物の発生源となる物質、あるいはこれらのアルデヒド化合物の溶液等が挙げられ、これらを単独又は二種以上を併せて用いることができる。
レゾール型フェノール樹脂の合成に用いる塩基性触媒には、例えば、水酸化ナトリウム、水酸化リチウム、水酸化カリウム等のアルカリ金属の水酸化物、カルシウム、マグネシウム、バリウム等のアルカリ土類金属の酸化物及び水酸化物、炭酸ナトリウム、アンモニア水、トリエチルアミン、ヘキサメチレンテトラミン等のアミン類、酢酸マグネシウム、酢酸亜鉛等の二価金属塩等が挙げられ、これらを単独又は二種以上を併せて用いることができる。
(Resol type phenol resin)
The resole-type phenol resin has self-curing property and is cured by heating to become a cured product. In addition, the resole-type phenol resin is resistant to mechanical impact and thermal impact. The resole-type phenol resin is synthesized, for example, by reacting phenols and aldehydes in the presence of a basic catalyst. Generally, after the above reaction, dehydration under reduced pressure is performed.
Examples of the phenols used for the synthesis of the resole-type phenol resin include phenol, o-cresol, m-cresol, p-cresol, xylenol, alkylphenols, catechol, resorcin, etc., and these may be used alone or in combination of two or more. It can be used together.
Examples of aldehydes used for synthesizing the resole-type phenol resin include aldehyde compounds such as formaldehyde, paraformaldehyde, and benzaldehyde, substances that are sources of these aldehyde compounds, and solutions of these aldehyde compounds. These can be used alone or in combination of two or more.
Basic catalysts used in the synthesis of resole-type phenolic resins include, for example, hydroxides of alkali metals such as sodium hydroxide, lithium hydroxide and potassium hydroxide, and oxides of alkaline earth metals such as calcium, magnesium and barium. And amines such as hydroxide, sodium carbonate, aqueous ammonia, triethylamine, hexamethylenetetramine, divalent metal salts such as magnesium acetate and zinc acetate, etc., and these may be used alone or in combination of two or more. can.

レゾール型フェノール樹脂を加熱すると、ヒドロキシメチル基とフェノール核とによる縮合反応が進行して、レゾール型フェノール樹脂は、三次元網目構造の不融不溶の固体となる。 When the resole-type phenol resin is heated, the condensation reaction between the hydroxymethyl group and the phenol nucleus proceeds, and the resole-type phenol resin becomes an insoluble and insoluble solid having a three-dimensional network structure.

上述したように、一般に、砥石の主結合剤として用いるフェノール樹脂はノボラック型である。ノボラック型フェノール樹脂は、それ自身、熱可塑性樹脂であり、成形条件の幅が広く、寸法安定性もよい。また、ノボラック型フェノール樹脂は、レゾール型フェノール樹脂に比べて保存性もよい。しかし、被加工物の仕上がり表面粗を高精度に加工できるようにするためには、砥石にある程度の弾性性能を付与することが好ましい。さらに、従来のノボラック型フェノールに弾性体を混合する方法もあるが、それでは砥石自体に弾性があるわけではなく、部分的に硬度が異なり仕上がり面粗さに影響する。なにより原料組成物の粘度が高粘度化しやすく製造しづらい。本発明者らは、鋭意検討を重ねた結果、レゾール型フェノール樹脂に弾性樹脂を用いることで、レジン砥石の強度と切削性に加え弾性砥石の高精度な仕上がりを両立させた砥石を安定して製造することができることを見出した。 As described above, in general, the phenol resin used as the main binder of the grindstone is a novolak type. The novolak type phenol resin is a thermoplastic resin by itself, has a wide range of molding conditions, and has good dimensional stability. Further, the novolak type phenol resin has better storage stability than the resol type phenol resin. However, in order to enable high-precision processing of the finished surface roughness of the work piece, it is preferable to impart a certain degree of elastic performance to the grindstone. Further, there is a method of mixing an elastic body with the conventional novolak type phenol, but that does not mean that the grindstone itself has elasticity, and the hardness is partially different, which affects the finished surface roughness. Above all, the viscosity of the raw material composition tends to increase and it is difficult to manufacture. As a result of diligent studies, the present inventors have made stable a grindstone that has both the strength and machinability of a resin grindstone and the high-precision finish of an elastic grindstone by using an elastic resin for the resole-type phenol resin. Found that it can be manufactured.

レゾール型フェノール樹脂に弾性樹脂を用いても安定して砥石を製造することができるという観点から、レゾール型フェノール樹脂は、室温25℃において液状であることが好ましい。 From the viewpoint that a grindstone can be stably produced even if an elastic resin is used as the resole-type phenol resin, the resole-type phenol resin is preferably liquid at room temperature of 25 ° C.

レゾール型フェノール樹脂の数平均分子量(Mn)は、砥石の摩耗性に関わる樹脂の強度の観点から、好ましくは300~600、より好ましくは350~500である。なお、数平均分子量(Mn)はゲルパーミネーションクロマトグラフィー(GPC)(分子量測定装置:昭和電工(株)製、型番:RI-71)により、ポリスチレン換算で算出された値である。なお、溶媒には50mM塩化リチウム、2mM塩酸(添加ジメチルホルムアルデヒド)を使用し、カラム温度は23℃とした。 The number average molecular weight (Mn) of the resole-type phenol resin is preferably 300 to 600, more preferably 350 to 500, from the viewpoint of the strength of the resin related to the wear resistance of the grindstone. The number average molecular weight (Mn) is a value calculated by gel permeation chromatography (GPC) (molecular weight measuring device: manufactured by Showa Denko KK, model number: RI-71) in terms of polystyrene. As the solvent, 50 mM lithium chloride and 2 mM hydrochloric acid (added dimethyl formaldehyde) were used, and the column temperature was 23 ° C.

砥粒組成物の樹脂全体におけるレゾール型フェノール樹脂の配合量は、50質量%以上である。レゾール型フェノール樹脂の配合量が50質量%未満であると、砥石が機械的衝撃及び熱的衝撃に対して弱くなる場合がある。砥石の硬さや切削性、生産効率の観点から、砥粒組成物の樹脂全体におけるレゾール型フェノール樹脂の配合量は、好ましくは60質量%以上であり、より好ましくは70質量%以上である。 The blending amount of the resole-type phenol resin in the entire resin of the abrasive grain composition is 50% by mass or more. If the blending amount of the resole-type phenol resin is less than 50% by mass, the grindstone may be vulnerable to mechanical impact and thermal impact. From the viewpoint of the hardness, machinability, and production efficiency of the grindstone, the blending amount of the resole-type phenol resin in the entire resin of the abrasive grain composition is preferably 60% by mass or more, more preferably 70% by mass or more.

(弾性樹脂)
砥石には樹脂として、レゾール型フェノール樹脂のほかにさらに弾性樹脂を含むことができる。フェノール樹脂を主体とする砥石は高強度で耐摩耗性と切削性に優れるが、高硬度のため高精度仕上がりには不向きである。このため、砥石の弾性を確保してより高精度研削仕上げを行うために、レゾール型フェノール樹脂に弾性樹脂を混合する。これにより、砥石の衝撃吸収度をさらに高くすることができる。弾性樹脂とは、その硬化物がレゾール型フェノール樹脂の硬化物に比べてゴム弾性を示す樹脂である。砥粒組成物が弾性樹脂を含むことにより砥石の弾性を向上させることができる。なお、弾性樹脂は、硬化したフェノール樹脂マトリックス中に微細な粒子となって均一に分散することが好ましい。
(Elastic resin)
As the resin, the grindstone may further contain an elastic resin in addition to the resole-type phenol resin. A grindstone mainly made of phenol resin has high strength and excellent wear resistance and machinability, but is not suitable for high-precision finishing due to its high hardness. Therefore, in order to secure the elasticity of the grindstone and perform a higher-precision grinding finish, the elastic resin is mixed with the resole-type phenol resin. As a result, the shock absorption of the grindstone can be further increased. The elastic resin is a resin in which the cured product exhibits rubber elasticity as compared with the cured product of the resole-type phenol resin. The elasticity of the grindstone can be improved by including the elastic resin in the abrasive grain composition. The elastic resin is preferably fine particles and uniformly dispersed in the cured phenol resin matrix.

弾性樹脂は、その硬化物がレゾール型フェノール樹脂の硬化物に比べてゴム弾性を示す樹脂であれば、特に限定されない。具体的には、弾性樹脂には、例えば、イソブレンゴム(IR)、ブタジエンゴム(BR)、スチレン・ブタジエンゴム(SBR)、クロロブレンゴム(CR)、ニトリルゴム(NR)、ブチルゴム(IIR)、エチレン・プロピレンゴム(EPM)、エチレン・プロピレン・ジエンゴム(EPDM)、アクリルゴム(ACM)、エピクロルヒドリンゴム(CO)、シリコーンゴム(Q)、フッ素ゴム(FKM)、プロピレン・ブタジエンゴム(PBR)等が挙げられる。これらの弾性樹脂は、1種を単独で、又は2種以上を組み合わせて使用することができる。これらの中で、レゾール型フェノール樹脂との分散性、得られる砥石の硬度、弾性、消耗度、切削性、被加工物の仕上がり表面粗さ等の観点から、弾性樹脂としてプロピレン・ブタジエンゴムを用いることが好ましい。 The elastic resin is not particularly limited as long as the cured product is a resin that exhibits rubber elasticity as compared with the cured product of the resole-type phenol resin. Specifically, the elastic resin includes, for example, isobrene rubber (IR), butadiene rubber (BR), styrene-butadiene rubber (SBR), chlorobrene rubber (CR), nitrile rubber (NR), butyl rubber (IIR), and ethylene. -Propylene rubber (EPM), ethylene / propylene / diene rubber (EPDM), acrylic rubber (ACM), epichlorohydrin rubber (CO), silicone rubber (Q), fluororubber (FKM), propylene / butadiene rubber (PBR), etc. Be done. These elastic resins may be used alone or in combination of two or more. Among these, propylene / butadiene rubber is used as the elastic resin from the viewpoints of dispersibility with the resol type phenol resin, hardness of the obtained grindstone, elasticity, degree of wear, machinability, and finished surface roughness of the work piece. Is preferable.

レゾール型フェノール樹脂に弾性樹脂を均一に分散させるという観点から、弾性樹脂は溶媒に乳化もしくは分散した状態で配合されることが好ましい。 From the viewpoint of uniformly dispersing the elastic resin in the resole-type phenol resin, the elastic resin is preferably blended in a state of being emulsified or dispersed in a solvent.

弾性樹脂を配合する場合、切れ刃の弾性的挙動及び砥石の衝撃吸収度の観点から、砥粒組成物の樹脂全体における弾性樹脂の配合量は、好ましくは5~50質量%であり、より好ましくは10~40質量%である。 When the elastic resin is blended, the blending amount of the elastic resin in the entire resin of the abrasive grain composition is preferably 5 to 50% by mass, more preferably from the viewpoint of the elastic behavior of the cutting edge and the impact absorption of the grindstone. Is 10 to 40% by mass.

(硬化触媒)
砥粒組成物は、硬化触媒をさらに含有する。硬化触媒を含有することで、従来技術と比較して硬化時間を大幅に短縮させると同時に、均一に硬化させることができるので、クラックの発生が抑制された成形体を得ることができる。硬化触媒としては、酸性触媒及び塩基性触媒が挙げられ、酸性触媒が好ましい。例えば、酸性触媒として芳香族スルホン酸、塩酸、過塩素酸、硫酸などが挙げられる。これらの酸性触媒の中で、芳香族スルホン酸が好ましい。芳香族スルホン酸の具体例としては、例えば、トルエンスルホン酸水和物、キシレンスルホン酸、ベンゼンスルホン酸等を使用することができる。塩基性触媒として水酸化ナトリウム、水酸化カリウム、アンモニア、第1級アミン、第2級アミンなどが挙げられる。これらの中で、水酸化ナトリウムが好ましい。硬化触媒の配合量は、フェノール樹脂100質量部に対し5~23質量部であり、好ましくは10~20質量部であり、より好ましくは13~17質量部である。硬化触媒の配合量が5質量部未満であると、硬化の促進が鈍く、触媒無添加時とあまりかわらない恐れがあり、硬化触媒の配合量が23質量部よりも多いと、硬化が急激に促進され、膨張など成形異常となる恐れがある。
(Curing catalyst)
The abrasive grain composition further contains a curing catalyst. By containing the curing catalyst, the curing time can be significantly shortened as compared with the prior art, and at the same time, the cured product can be uniformly cured, so that a molded product in which the occurrence of cracks is suppressed can be obtained. Examples of the curing catalyst include an acidic catalyst and a basic catalyst, and an acidic catalyst is preferable. For example, examples of the acidic catalyst include aromatic sulfonic acid, hydrochloric acid, perchloric acid, and sulfuric acid. Of these acidic catalysts, aromatic sulfonic acids are preferred. As specific examples of aromatic sulfonic acid, for example, toluene sulfonic acid hydrate, xylene sulfonic acid, benzene sulfonic acid and the like can be used. Examples of the basic catalyst include sodium hydroxide, potassium hydroxide, ammonia, primary amines, secondary amines and the like. Of these, sodium hydroxide is preferred. The blending amount of the curing catalyst is 5 to 23 parts by mass, preferably 10 to 20 parts by mass, and more preferably 13 to 17 parts by mass with respect to 100 parts by mass of the phenol resin. If the blending amount of the curing catalyst is less than 5 parts by mass, the acceleration of curing is slow and there is a risk that it is not much different from that when no catalyst is added. It is promoted, and there is a risk of molding abnormalities such as expansion.

(気孔生成剤)
砥粒組成物は、さらに気孔生成剤を含むことができる。気孔生成剤は、砥石に気孔を形成するために添加するものであり、気孔を有することで砥石の弾性を高めると共に、研削中に発生する研削屑の排出を促して目詰まりを抑制する。また、気孔は、砥石の研削抵抗を軽減し、研削焼けを防止する。気孔生成剤としては、デンプン粉や発泡剤が好ましい。デンプン粉には、例えばコーンスターチ、馬鈴薯、米粉があげられ、これらを単独又は二種類以上を併せて用いることができる。発泡剤には炭化水素やその誘導体が用いられる。例えば、イソブタン、ノルマルペンタン等が挙げられ、これらを単独又は二種類併せて用いる。
(Pore-generating agent)
The abrasive grain composition can further contain a pore-forming agent. The pore-generating agent is added to form pores in the grindstone, and having pores enhances the elasticity of the grindstone and promotes the discharge of grinding debris generated during grinding to suppress clogging. The pores also reduce the grinding resistance of the grindstone and prevent grinding burns. As the pore-forming agent, starch powder or a foaming agent is preferable. Examples of starch flour include cornstarch, potato and rice flour, and these can be used alone or in combination of two or more. Hydrocarbons and their derivatives are used as foaming agents. For example, isobutane, normal pentane and the like can be mentioned, and these may be used alone or in combination of two.

気孔生成剤によって砥石中に形成される気孔の大きさは、気孔生成剤の粒子径や発泡した気泡径によって調整できる。気孔径が大きいほど、砥石の弾性と研磨屑の排出性を高めることができるが、大きすぎると砥石のワークへの接触面積が小さくなり切削性が低下する。そのため、気孔生成剤のレーザー回折・散乱法により測定した体積平均一次粒子径は、好ましくは2~100μmであり、より好ましくは5~40μmである。 The size of the pores formed in the grindstone by the pore-forming agent can be adjusted by the particle size of the pore-forming agent and the diameter of the foamed bubbles. The larger the pore diameter, the higher the elasticity of the grindstone and the discharge of abrasive debris, but if it is too large, the contact area of the grindstone with the work becomes small and the machinability deteriorates. Therefore, the volume average primary particle size measured by the laser diffraction / scattering method of the pore-forming agent is preferably 2 to 100 μm, more preferably 5 to 40 μm.

気孔生成剤を配合する場合、砥粒の脱落量及び研削性の観点から、気孔生成剤の配合量は、樹脂100質量部に対して、好ましくは1~40質量部であり、より好ましくは2~30質量部であり、さらに好ましくは2.5~10質量部である。気孔生成剤を添加しない場合でも、成形時に自然に生成される空隙によって砥石に気孔が形成するが、安定的に目詰まりの抑制を促すために、気孔生成剤を配合した方が好ましい。 When the pore-forming agent is blended, the blending amount of the pore-forming agent is preferably 1 to 40 parts by mass, and more preferably 2 with respect to 100 parts by mass of the resin, from the viewpoint of the amount of abrasive grains falling off and grindability. It is about 30 parts by mass, more preferably 2.5 to 10 parts by mass. Even when the pore-forming agent is not added, pores are formed in the grindstone by the voids naturally generated during molding, but it is preferable to add the pore-forming agent in order to stably promote the suppression of clogging.

(ロックウェル硬度)
スーパーフィシャル15Yスケールで測定した砥石のロックウェル硬度は、-60~0であることが好ましく、-50~-10であることがより好ましい。スーパーフィシャル15Yスケールで測定したロックウェル硬度とは、JIS K7202-2「ロックウェル硬さ」測定に準じた方法により測定した値である。例えば、(株)マツザワ製ロックウェル硬度計を用い、直径1/2インチ(約12.7mm)の鋼球が先端に付いた圧子を砥石に接触させ基準荷重15kg・fを加えた際に生じた凹み深さから換算して、スーパーフィシャル15Yスケールでロックウェル硬さを測定することができる。ロックウェル硬度の値が、プラス側に大きいほど砥石は硬く、マイナス側が大きいほど砥石は柔らかいことを意味する。
(Rockwell hardness)
The Rockwell hardness of the grindstone measured on the Superficial 15Y scale is preferably -60 to 0, more preferably -50 to -10. The Rockwell hardness measured on the Superficial 15Y scale is a value measured by a method according to JIS K7202-2 “Rockwell hardness” measurement. For example, using a Rockwell hardness tester manufactured by Matsuzawa Co., Ltd., a steel ball with a diameter of 1/2 inch (about 12.7 mm) is generated when an indenter with a tip is brought into contact with a grindstone and a reference load of 15 kg · f is applied. The Rockwell hardness can be measured on a superficial 15Y scale by converting from the depth of the dent. The larger the Rockwell hardness value on the positive side, the harder the grindstone, and the larger the negative side, the softer the grindstone.

<砥石の製造方法>
また、本発明では、砥粒、樹脂及び硬化触媒を含む混合液を混合して砥粒組成物を作製する工程、砥粒組成物を型に流し込む工程、及び型に流し込んだ砥粒組成物を硬化させる工程を含む砥石の製造方法を提供する。以下、各工程について詳しく説明する。
<Manufacturing method of whetstone>
Further, in the present invention, a step of mixing a mixed solution containing abrasive grains, a resin and a curing catalyst to prepare an abrasive grain composition, a step of pouring the abrasive grain composition into a mold, and a step of pouring the abrasive grain composition into a mold are used. Provided is a method for manufacturing a grindstone including a step of curing. Hereinafter, each step will be described in detail.

[砥粒組成物を作製する工程]
この工程では、砥粒、樹脂及び硬化触媒を含む混合液を混合して砥粒組成物を作製する。砥粒、樹脂及び硬化触媒に加えて、気孔生成剤をさらに混合して砥粒組成物を作製してもよい。樹脂は、レゾール型フェノール樹脂を50質量%以上含み、好ましくは60質量%以上含み、より好ましくは70質量%以上含む。レゾール型フェノール樹脂は、そのまま用いてもよいし、水溶液の状態で用いてもよいし、アルコール等の水以外の溶媒で溶解された状態で用いてもよい。
[Step of producing abrasive grain composition]
In this step, a mixed solution containing abrasive grains, a resin, and a curing catalyst is mixed to prepare an abrasive grain composition. In addition to the abrasive grains, the resin and the curing catalyst, a pore-forming agent may be further mixed to prepare an abrasive grain composition. The resin contains 50% by mass or more of the resol type phenol resin, preferably 60% by mass or more, and more preferably 70% by mass or more. The resole-type phenol resin may be used as it is, may be used in the state of an aqueous solution, or may be used in a state of being dissolved in a solvent other than water such as alcohol.

砥粒及び樹脂の混合は、ゲージ圧が-0.095MPa以下の減圧下で行うことが好ましい。このようにすれば、砥粒及び樹脂の混合時に砥粒組成物内に気泡が発生する。そして、発生した気泡が砥粒組成物に残ることで、砥粒組成物に大きな気孔が形成されることを抑制することができ、砥石に均一な気泡を形成することができる。 The abrasive grains and the resin are preferably mixed under a reduced pressure having a gauge pressure of −0.095 MPa or less. In this way, bubbles are generated in the abrasive grain composition when the abrasive grains and the resin are mixed. Then, since the generated bubbles remain in the abrasive grain composition, it is possible to suppress the formation of large pores in the abrasive grain composition, and it is possible to form uniform bubbles in the grindstone.

[砥粒組成物を型に流し込む工程]
この工程では、砥粒組成物を型に流し込む。砥粒組成物内の気泡が型に流し込んだ後も砥粒組成物に残るように砥粒組成物を型に流し込むことが好ましい。
[Step of pouring the abrasive grain composition into the mold]
In this step, the abrasive grain composition is poured into a mold. It is preferable to pour the abrasive grain composition into the mold so that the bubbles in the abrasive grain composition remain in the abrasive grain composition even after being poured into the mold.

[砥粒組成物を硬化させる工程]
一般的なレゾール型フェノール樹脂の成形方法では、型に流し込んだ砥粒組成物を硬化させる。具体的には、型に流し込んだ砥粒組成物を加熱することにより硬化させる。このとき、硬化反応を十分に進行させるために、加熱温度は60℃以上が好ましく、70~90℃がより好ましい。ただし、本発明はその他原料や溶媒が含まれており、従来の成形方法通りの加熱方法だと成形体が膨張しやすく正常な成形体が得られない。そこで、まず低温加熱により中間体(半硬化物)を作製した後に、所定の成形温度で加熱することで安定的に成形することができる。具体的には、第一の加熱温度とそれよりも高い温度である第二の加熱温度の二段階の加熱により成形体を得る方法である。第一の加熱温度は、好ましくは30℃以上であり、より好ましくは40~50℃であり、所定の加熱時間、加熱して中間体(半硬化物)を得る。その後、第二の加熱温度は、好ましくは60℃以上であり、より好ましくは70~90℃であり、所定の加熱時間、加熱し成形体を得る。上記所定の加熱時間は、例えば1時間以上であり、1~10時間が好ましい。これにより、砥粒組成物の硬化時間を従来の硬化時間より1/2~1/3短縮することができる。また均一な硬化反応物が得られることができるため、クラックの発生を改善することができる。
[Step of curing the abrasive grain composition]
In a general molding method of a resole-type phenol resin, the abrasive grain composition poured into the mold is cured. Specifically, the abrasive grain composition poured into the mold is cured by heating. At this time, in order to allow the curing reaction to proceed sufficiently, the heating temperature is preferably 60 ° C. or higher, more preferably 70 to 90 ° C. However, the present invention contains other raw materials and solvents, and if the heating method is the same as that of the conventional molding method, the molded product tends to expand and a normal molded product cannot be obtained. Therefore, an intermediate (semi-cured product) is first produced by low-temperature heating, and then stably molded by heating at a predetermined molding temperature. Specifically, it is a method of obtaining a molded product by two-step heating of a first heating temperature and a second heating temperature which is a temperature higher than the first heating temperature. The first heating temperature is preferably 30 ° C. or higher, more preferably 40 to 50 ° C., and is heated for a predetermined heating time to obtain an intermediate (semi-cured product). After that, the second heating temperature is preferably 60 ° C. or higher, more preferably 70 to 90 ° C., and is heated for a predetermined heating time to obtain a molded product. The predetermined heating time is, for example, 1 hour or more, preferably 1 to 10 hours. As a result, the curing time of the abrasive grain composition can be shortened by 1/2 to 1/3 from the conventional curing time. Further, since a uniform curing reaction product can be obtained, the occurrence of cracks can be improved.

砥粒組成物を硬化させる工程の後、型から取出して、未反応物を取り除くために、又は気孔生成剤にデンプン粉を用いた場合はその除去のために洗浄し、乾燥することが好ましい。乾燥後、さらに熱処理を施すことがより好ましい。熱処理の条件としては、例えば、110℃~200℃の熱処理温度と10~30時間の熱処理時間が挙げられる。200℃以下の熱処理温度、及び30時間以下の熱処理時間であれば、砥石の弾性が低下する恐れがない。 After the step of curing the abrasive grain composition, it is preferably washed and dried to remove unreacted material from the mold or to remove starch powder when used as a pore-forming agent. It is more preferable to perform further heat treatment after drying. Examples of the heat treatment conditions include a heat treatment temperature of 110 ° C. to 200 ° C. and a heat treatment time of 10 to 30 hours. If the heat treatment temperature is 200 ° C. or lower and the heat treatment time is 30 hours or less, there is no risk that the elasticity of the grindstone will decrease.

[寸法出し加工工程]
砥粒組成物を硬化させる工程の後に寸法出し加工工程を実施してもよい。上記熱処理を施した後、寸法出し加工によって所望のサイズに加工された砥石を得ることができる。砥石の形状は、円盤状でもボード状でもよく、その他の形状でもよく、装着研磨機の条件によって任意に選ばれる。
[Dimensioning process]
A dimensioning step may be performed after the step of curing the abrasive grain composition. After the above heat treatment, a grindstone processed to a desired size can be obtained by sizing processing. The shape of the grindstone may be a disk shape, a board shape, or any other shape, and is arbitrarily selected depending on the conditions of the mounting grinding machine.

<センタレス研磨及び円筒研削用砥石>
本発明の砥石は、センタレス研磨及び円筒研削最終仕上げ用砥石として用いることができる。具体的には、本発明の砥石を、円筒状金属部品の最終仕上げに用いることができる。
<Whetstone for centerless polishing and cylindrical grinding>
The grindstone of the present invention can be used as a grindstone for centerless polishing and final finishing of cylindrical grinding. Specifically, the grindstone of the present invention can be used for final finishing of cylindrical metal parts.

例えば、具体例として、このような本発明の砥石を用いたショックアブソーバであれば、ショックアブソーバの接触面を高精度に仕上げすることができ、品質の可能である。さらに、粗~中間仕上げを従来砥石研削、最終仕上げをバフやエッチングを行っている場合。全て砥石研磨で完結でき、行程の簡略化や作業性が向上できる。 For example, as a specific example, in the case of a shock absorber using such a grindstone of the present invention, the contact surface of the shock absorber can be finished with high accuracy, and the quality is possible. Furthermore, when rough to intermediate finish is conventional grindstone grinding and final finish is buffing or etching. All can be completed by grindstone polishing, which can simplify the process and improve workability.

また、本発明の砥石を、バーチカル研削でチタンやステンレスなどの圧延ロール、グラビア製版ロールの表面を平坦化するための砥石として用いてもよい。 Further, the grindstone of the present invention may be used as a grindstone for flattening the surface of a rolling roll such as titanium or stainless steel or a gravure plate making roll by vertical grinding.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an example, and any object having substantially the same structure as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. Is included in the technical scope of.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例及び比較例に制限されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples and Comparative Examples.

<評価方法>
(樹脂の数平均分子量(Mn))
レゾール型フェノール樹脂の重量数平均分子量(Mn)はゲルパーミネーションクロマトグラフィー(GPC)(分子量測定装置:昭和電工(株)製、型番:RI-71)により、ポリスチレン換算で算出された値である。なお、溶媒には50mM塩化リチウム、2mM塩酸(添加ジメチルホルムアルデヒド)を使用し、カラム温度は23℃とした。
<Evaluation method>
(Number average molecular weight of resin (Mn))
The weight average molecular weight (Mn) of the resole-type phenol resin is a value calculated by gel permeation chromatography (GPC) (molecular weight measuring device: Showa Denko KK, model number: RI-71) in terms of polystyrene. .. As the solvent, 50 mM lithium chloride and 2 mM hydrochloric acid (added dimethyl formaldehyde) were used, and the column temperature was 23 ° C.

(ロックウェル硬度)
(株)マツザワ製ロックウェル硬度計を用い、直径1/2インチ(約12.7mm)の鋼球が先端に付いた圧子を砥石に接触させ基準荷重15kg・fを加えた際に生じた凹み深さから換算して、スーパーフィシャル15Yスケールでロックウェル硬さを測定した。
(Rockwell hardness)
A dent created when a steel ball with a diameter of 1/2 inch (about 12.7 mm) is brought into contact with a grindstone and a reference load of 15 kg · f is applied using a Rockwell hardness tester manufactured by Matsuzawa Co., Ltd. Converted from the depth, the Rockwell hardness was measured on a superficial 15Y scale.

[実施例1]
レゾール型フェノール樹脂(有効分70重量%、数平均分子量(Mn)400、残部水、未反応フェノール、ホルムアルデヒド)3.7kgに、気孔生成剤としてコーンスターチ(体積平均一次粒子径:16μm)を0.1kg混合し、さらに炭化ケイ素から成る砥粒(GC#1000、体積平均一次粒子径11μm)6kgを加えて混合した。最後に硬化触媒としてトルエンスルホン酸-水和物(純度99%以上)を、硬化触媒の配合量がフェノール樹脂100質量部に対し15質量部になるように添加して均一なスラリー(砥粒組成物)を調製した。なお、レゾール型フェノール樹脂と砥粒との混合比率(質量比)は30:70であった。樹脂100質量部に対する気孔生成剤の配合量は3.9質量部であった。また、これらの混合調製は、ゲージ圧が-0.09MPaの減圧下で行った。
[Example 1]
Resol-type phenolic resin (effective content 70% by weight, number average molecular weight (Mn) 400, balance water, unreacted phenol, formaldehyde) was added to 3.7 kg, and corn starch (volume average primary particle diameter: 16 μm) was added as a pore-forming agent. 1 kg was mixed, and 6 kg of abrasive grains (GC # 1000, volume average primary particle diameter 11 μm) made of silicon carbide were further added and mixed. Finally, toluenesulfonic acid-hydrate (purity 99% or more) was added as a curing catalyst so that the blending amount of the curing catalyst was 15 parts by mass with respect to 100 parts by mass of the phenol resin to make a uniform slurry (abrasive grain composition). The thing) was prepared. The mixing ratio (mass ratio) of the resole-type phenol resin and the abrasive grains was 30:70. The blending amount of the pore-forming agent with respect to 100 parts by mass of the resin was 3.9 parts by mass. Further, these mixed preparations were carried out under a reduced pressure with a gauge pressure of −0.09 MPa.

調製したスラリーを型枠に注入して、第一の加熱温度40℃で1時間保持し中間体を得た。さらに第二の加熱温度80℃で1時間熱硬化反応を進行させて砥粒組成物を硬化し、硬化物を得た。得られた硬化物を型枠から取り出して水洗し、未反応物を除去した。その後、水洗した硬化物を80℃で40時間乾燥して、さらに150℃で10時間の熱処理を行った。熱処理後の硬化物を所望の形状に加工して研磨砥石を完成させた。本方法を用いて同条件で砥石を5個作製した。 The prepared slurry was poured into a mold and held at a first heating temperature of 40 ° C. for 1 hour to obtain an intermediate. Further, the thermosetting reaction was allowed to proceed for 1 hour at a second heating temperature of 80 ° C. to cure the abrasive grain composition, and a cured product was obtained. The obtained cured product was taken out from the mold and washed with water to remove the unreacted product. Then, the cured product washed with water was dried at 80 ° C. for 40 hours, and further heat-treated at 150 ° C. for 10 hours. The cured product after the heat treatment was processed into a desired shape to complete a polishing grindstone. Five grindstones were produced under the same conditions using this method.

作製した研磨砥石を外観検査し、クラックの発生を確認した。その結果、クラックの発生した個体は確認されず、硬化触媒の添加によってクラック発生の抑制が確認された。 The produced polishing grindstone was visually inspected and the occurrence of cracks was confirmed. As a result, no individual with cracks was confirmed, and suppression of cracks was confirmed by adding a curing catalyst.

作製した研磨1個砥石を用いて、φ30の耐熱鋼シャフトの外周を円筒研削した。切込量は1.0mm/sec。砥石送り速度は100mm/30sec。砥石回転数1800rpmで実施し、研磨後のワークの光沢度と表面粗さを測定した。外観検査と研磨評価の結果を表1に示す。研磨性能は汎用レジボンド砥石と比較して、優れた鏡面と表面粗さが得られた。また、硬化触媒を用いて合成した場合でも、研磨性能への悪影響は確認されなかった。 The outer circumference of a φ30 heat-resistant steel shaft was cylindrically ground using the produced single polishing grindstone. The depth of cut is 1.0 mm / sec. The grindstone feed rate is 100 mm / 30 sec. The grindstone rotation speed was 1800 rpm, and the glossiness and surface roughness of the work after polishing were measured. Table 1 shows the results of the visual inspection and the polishing evaluation. As for the polishing performance, excellent mirror surface and surface roughness were obtained as compared with the general-purpose cash register bond grindstone. In addition, no adverse effect on polishing performance was confirmed even when synthesized using a curing catalyst.

[実施例2]
レゾール型フェノール樹脂(有効分70重量%、数平均分子量(Mn)400、残部水、未反応フェノール、ホルムアルデヒド)3kgに、エマルジョン型プロピレン・ブタジエンゴム(PBR樹脂 日本エイアンドエル(株)製、有効分40質量%、残部水)1.3kg、気孔生成剤としてコーンスターチ(体積平均一次粒子径:16μm)を0.1kg混合し、さらに炭化ケイ素から成る砥粒(GC#1000、体積平均一次粒子径11μm)6kgを加えて混合した。最後に硬化触媒としてトルエンスルホン酸-水和物(純度99%以上)を、硬化触媒の配合量がフェノール樹脂100質量部に対し15質量部になるように添加して均一なスラリー(砥粒組成物)を調製した。なお、レゾール型フェノール樹脂及びプロピレン・ブタジエンゴムの合計と砥粒との混合比率(質量比)は30:70であった。レゾール型フェノール樹脂とプロピレン・ブタジエンゴムとの混合比率(質量比)は80:20であった。樹脂100質量部に対する気孔生成剤の配合量は3.8質量部であった。また、これらの混合調製は、ゲージ圧が-0.09MPaの減圧下で行った。
[Example 2]
Emulsion-type propylene / butadiene rubber (PBR resin manufactured by Nippon A & L Co., Ltd., effective content 40) in 3 kg of resole-type phenol resin (effective content 70% by mass, number average molecular weight (Mn) 400, balance water, unreacted phenol, formaldehyde) 1.3 kg of mass%, residual water), 0.1 kg of conealdehyde (volume average primary particle diameter: 16 μm) as a pore-forming agent, and abrasive grains made of silicon carbide (GC # 1000, volume average primary particle diameter 11 μm) 6 kg was added and mixed. Finally, toluenesulfonic acid-hydrate (purity 99% or more) was added as a curing catalyst so that the blending amount of the curing catalyst was 15 parts by mass with respect to 100 parts by mass of the phenol resin to make a uniform slurry (abrasive grain composition). The thing) was prepared. The mixing ratio (mass ratio) of the total of the resole-type phenol resin and the propylene / butadiene rubber and the abrasive grains was 30:70. The mixing ratio (mass ratio) of the resole-type phenol resin and the propylene / butadiene rubber was 80:20. The blending amount of the pore-forming agent with respect to 100 parts by mass of the resin was 3.8 parts by mass. Further, these mixed preparations were carried out under a reduced pressure with a gauge pressure of −0.09 MPa.

調製したスラリーを型枠に注入して、第一の加熱温度40℃で1時間保持し中間体を得た。さらに第二の加熱温度80℃で1時間熱硬化反応を進行させて塗料組成物を硬化し、硬化物を得た。得られた硬化物を型枠から取り出して水洗し、未反応物を除去した。その後、水洗した硬化物を80℃で40時間乾燥し、さらに150℃で10時間の熱処理を行った。熱処理後の硬化物を所望の形状に加工して研磨砥石を完成させた。本方法を用いて同条件で砥石を5個作製した。 The prepared slurry was poured into a mold and held at a first heating temperature of 40 ° C. for 1 hour to obtain an intermediate. Further, the thermosetting reaction was allowed to proceed for 1 hour at a second heating temperature of 80 ° C. to cure the coating composition to obtain a cured product. The obtained cured product was taken out from the mold and washed with water to remove the unreacted product. Then, the cured product washed with water was dried at 80 ° C. for 40 hours, and further heat-treated at 150 ° C. for 10 hours. The cured product after the heat treatment was processed into a desired shape to complete a polishing grindstone. Five grindstones were produced under the same conditions using this method.

作製した研磨砥石を外観検査し、クラックの発生を確認した。その結果、クラックの発生した個体は確認されず、硬化触媒の添加によってクラック発生の抑制が確認された。 The produced polishing grindstone was visually inspected and the occurrence of cracks was confirmed. As a result, no individual with cracks was confirmed, and suppression of cracks was confirmed by adding a curing catalyst.

作製した研磨1個砥石を用いて、実施例1と同様の外観検査と研磨テストを実施した。その結果を表1に示す。弾性樹脂の配合により実施例1より、研磨後のワークの光沢度が上がり、鏡面精度がさらに高まる結果が得られた。 The same visual inspection and polishing test as in Example 1 were carried out using the prepared single polishing grindstone. The results are shown in Table 1. As a result of blending the elastic resin, the glossiness of the work after polishing was increased and the mirror surface accuracy was further improved as compared with Example 1.

[比較例1]
レゾール型フェノール樹脂(有効分70重量%、数平均分子量(Mn)400、残部水、未反応フェノール、ホルムアルデヒド)3kgに、エマルジョン型プロピレン・ブタジエンゴム(PBR樹脂 日本エイアンドエル(株)製、有効分40質量%、残部水)1.3kg、気孔生成剤としてコーンスターチ(体積平均一次粒子径:16μm)を0.1kg混合し、さらに炭化ケイ素から成る砥粒(GC#1000、体積平均一次粒子径11μm)6kgを加えて混合し、均一なスラリー(砥粒組成物)を調製した。なお、これらの混合調製は、ゲージ圧が-0.09MPaの減圧下で行った。
[Comparative Example 1]
Emulsion type propylene / butadiene rubber (PBR resin manufactured by Nippon A & L Co., Ltd., effective content 40) in 3 kg of resole type phenol resin (effective content 70% by mass, number average molecular weight (Mn) 400, residual water, unreacted phenol, formaldehyde) 1.3 kg of mass%, residual water), 0.1 kg of corn starch (volume average primary particle diameter: 16 μm) as a pore-forming agent, and abrasive grains made of silicon carbide (GC # 1000, volume average primary particle diameter 11 μm) 6 kg was added and mixed to prepare a uniform slurry (abrasive grain composition). The mixed preparation of these was carried out under a reduced pressure with a gauge pressure of −0.09 MPa.

調製したスラリーを型枠に注入して、第一の加熱温度で加熱せず、第二の加熱温度80℃で24時間保持し、熱硬化反応を進行させて砥粒組成物を硬化し、硬化物を得た。得られた硬化物を型枠から取り出して水洗し、未反応物を除去した。その後、水洗した硬化物を80℃で40時間乾燥し、さらに150℃で10時間の熱処理を行った。熱処理後の硬化物を所望の形状に加工して研磨砥石を完成させた。本方法を用いて同条件で砥石を5個作製した。 The prepared slurry is poured into a mold, not heated at the first heating temperature, held at a second heating temperature of 80 ° C. for 24 hours, and the thermosetting reaction is allowed to proceed to cure the abrasive grain composition and cure it. I got something. The obtained cured product was taken out from the mold and washed with water to remove the unreacted product. Then, the cured product washed with water was dried at 80 ° C. for 40 hours, and further heat-treated at 150 ° C. for 10 hours. The cured product after the heat treatment was processed into a desired shape to complete a polishing grindstone. Five grindstones were produced under the same conditions using this method.

作製した研磨砥石を外観検査し、クラックの発生を確認した。その結果、5個中2個の砥石で微細なクラックを確認した。 The produced polishing grindstone was visually inspected and the occurrence of cracks was confirmed. As a result, fine cracks were confirmed with 2 out of 5 grindstones.

[比較例2]
比較例2では、硬化触媒の配合量をフェノール樹脂100質量部に対し25質量部とした以外は、実施例2と同様の方法で研磨砥石を作製した。
[Comparative Example 2]
In Comparative Example 2, a polishing grindstone was produced in the same manner as in Example 2 except that the amount of the curing catalyst compounded was 25 parts by mass with respect to 100 parts by mass of the phenol resin.

作製した研磨砥石について、評価結果を表1に示す。比較例2では、第二の加熱温度80℃で砥粒組成物の熱硬化反応を進行させている間に原料組成物が膨張してしまった。このため、硬化状態は悪くなり、成形不可となり研磨砥石を作製することができなかった。 Table 1 shows the evaluation results of the produced polishing grindstone. In Comparative Example 2, the raw material composition expanded while the thermosetting reaction of the abrasive grain composition was proceeding at the second heating temperature of 80 ° C. As a result, the cured state deteriorated, molding became impossible, and a polishing grindstone could not be produced.

[比較例3]
比較例3では、硬化触媒の配合量をフェノール樹脂100質量部に対し3質量部とした以外は、実施例2と同様の方法で研磨砥石を作製した。
[Comparative Example 3]
In Comparative Example 3, a polishing grindstone was produced in the same manner as in Example 2 except that the amount of the curing catalyst compounded was 3 parts by mass with respect to 100 parts by mass of the phenol resin.

作製した研磨砥石について、評価結果を表1に示す。第二の加熱温度80℃1時間の熱硬化反応の進行では硬化が完了せず、砥粒組成物の硬化に10時間以上を要した。また、作製した研磨砥石を外観検査した結果、5個中1個の個体にクラックを確認した。触媒による硬化時間の短縮とクラック発生率の低減効果が得られない結果となった。 Table 1 shows the evaluation results of the produced polishing grindstone. Curing was not completed by the progress of the thermosetting reaction at a second heating temperature of 80 ° C. for 1 hour, and it took 10 hours or more to cure the abrasive grain composition. In addition, as a result of visual inspection of the produced polishing grindstone, cracks were confirmed in 1 out of 5 individuals. The result was that the effect of shortening the curing time and reducing the crack occurrence rate by the catalyst could not be obtained.

[比較例4]
比較例4では、レゾール型フェノール樹脂とプロピレン・ブタジエンゴムとの混合比率(質量比)を45:55とした以外は、実施例2と同様の方法で研磨砥石を作製した。
[Comparative Example 4]
In Comparative Example 4, a polishing grindstone was produced in the same manner as in Example 2 except that the mixing ratio (mass ratio) of the resole-type phenol resin and the propylene / butadiene rubber was 45:55.

作製した研磨砥石について、砥粒組成物を硬化させる工程で原料組成物が膨張してしまった。このため、硬化状態が悪くなり、正常な成形体を得ることができなかった。弾性樹脂の配合比率が多いと硬化状態に悪影響を及ぼし正常な成形体が得られないことが確認された。 With respect to the produced polishing grindstone, the raw material composition expanded in the process of curing the abrasive grain composition. Therefore, the cured state deteriorated, and a normal molded product could not be obtained. It was confirmed that if the blending ratio of the elastic resin is large, the cured state is adversely affected and a normal molded product cannot be obtained.

Figure 2022107167000001
Figure 2022107167000001

Claims (14)

砥粒、樹脂及び硬化触媒を含む砥粒組成物を硬化した硬化物からなる砥石であって、
前記樹脂は、レゾール型フェノール樹脂を50質量%以上含み、
前記硬化触媒の配合量が、フェノール樹脂100質量部に対し5~23質量部であることを特徴とする砥石。
A grindstone made of a cured product obtained by curing an abrasive grain composition containing abrasive grains, a resin, and a curing catalyst.
The resin contains 50% by mass or more of a resole-type phenol resin.
A grindstone characterized in that the blending amount of the curing catalyst is 5 to 23 parts by mass with respect to 100 parts by mass of the phenol resin.
前記砥粒及び前記樹脂の合計100質量部に対する前記樹脂の配合量が10~40質量部である請求項1に記載の砥石。 The grindstone according to claim 1, wherein the blending amount of the resin is 10 to 40 parts by mass with respect to a total of 100 parts by mass of the abrasive grains and the resin. 前記レゾール型フェノール樹脂の数平均分子量(Mn)が300~600である請求項1または2に記載の砥石。 The grindstone according to claim 1 or 2, wherein the number average molecular weight (Mn) of the resole-type phenol resin is 300 to 600. 前記樹脂が弾性樹脂を含み、
前記弾性樹脂は、イソブレンゴム、ブタジエンゴム、スチレン・ブタジエンゴム、クロロブレンゴム、ニトリルゴム、ブチルゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエンゴム、アクリルゴム、エピクロルヒドリンゴム、シリコーンゴム、フッ素ゴム及びプロピレン・ブタジエンゴムからなる群から選択される少なくとも1種の樹脂である請求項1~3のいずれか1項に記載の砥石。
The resin contains an elastic resin
The elastic resins include isobrene rubber, butadiene rubber, styrene / butadiene rubber, chlorobrene rubber, nitrile rubber, butyl rubber, ethylene / propylene rubber, ethylene / propylene / diene rubber, acrylic rubber, epichlorohydrin rubber, silicone rubber, fluororubber and propylene / butadiene. The grindstone according to any one of claims 1 to 3, which is at least one resin selected from the group consisting of rubber.
前記樹脂における前記弾性樹脂の割合が5~50質量%である請求項4に記載の砥石。 The grindstone according to claim 4, wherein the ratio of the elastic resin to the resin is 5 to 50% by mass. 前記砥粒組成物が気孔生成剤を含む請求項1~5のいずれか1項に記載の砥石。 The grindstone according to any one of claims 1 to 5, wherein the abrasive grain composition contains a pore-forming agent. 前記樹脂100質量部に対する前記気孔生成剤の配合量が1~40質量部である請求項6に記載の砥石。 The grindstone according to claim 6, wherein the amount of the pore-forming agent blended with respect to 100 parts by mass of the resin is 1 to 40 parts by mass. 前記砥粒が、炭化ケイ素、アルミナ、酸化クロム、酸化セリウム、酸化ジルコニウム及びジルコンサンドからなる群から選択される少なくとも1種のセラミックの砥粒である請求項1~7のいずれか1項に記載の砥石。 The aspect of any one of claims 1 to 7, wherein the abrasive grains are at least one ceramic abrasive grains selected from the group consisting of silicon carbide, alumina, chromium oxide, cerium oxide, zirconium oxide and zircon sand. Whetstone. レーザー回折散乱法により測定した前記砥粒の体積平均一次粒子径が5~27μmである請求項1~8のいずれか1項に記載の砥石。 The grindstone according to any one of claims 1 to 8, wherein the volume average primary particle diameter of the abrasive grains measured by a laser diffraction / scattering method is 5 to 27 μm. スーパーフィシャル15Yスケールで測定したロックウェル硬度が-60~0である請求項1~9のいずれか1項に記載の砥石。 The grindstone according to any one of claims 1 to 9, wherein the Rockwell hardness measured on a superficial 15Y scale is -60 to 0. センタレス研磨及び円筒研削最終仕上げ用砥石である請求項1~10のいずれか1項に記載の砥石。 The grindstone according to any one of claims 1 to 10, which is a grindstone for centerless polishing and cylindrical grinding final finishing. 砥粒、樹脂及び硬化触媒を含む混合液を混合して砥粒組成物を作製する工程、
前記砥粒組成物を型に流し込む工程、及び
前記型に流し込んだ砥粒組成物を硬化させる工程を含み、
前記砥粒組成物における前記樹脂はレゾール型フェノール樹脂を50質量%以上含み、
前記砥粒組成物を硬化させる工程は、第一の加熱温度で所定時間加熱した後、前記第一の加熱温度よりも高温の第二の加熱温度で所定時間加熱する二段階加熱による硬化である砥石の製造方法。
A process of preparing an abrasive grain composition by mixing a mixed solution containing abrasive grains, a resin and a curing catalyst.
Including a step of pouring the abrasive grain composition into a mold and a step of curing the abrasive grain composition poured into the mold.
The resin in the abrasive grain composition contains 50% by mass or more of a resole-type phenol resin.
The step of curing the abrasive grain composition is curing by two-step heating in which the abrasive grain composition is heated at a first heating temperature for a predetermined time and then heated at a second heating temperature higher than the first heating temperature for a predetermined time. How to manufacture a grindstone.
前記第一の加熱温度が30℃以上であり、前記第二の加熱温度が60℃以上である請求項12に記載の砥石の製造方法。 The method for producing a grindstone according to claim 12, wherein the first heating temperature is 30 ° C. or higher, and the second heating temperature is 60 ° C. or higher. 前記所定の加熱時間が1~10時間である請求項12または13に記載の砥石の製造方法。 The method for producing a grindstone according to claim 12 or 13, wherein the predetermined heating time is 1 to 10 hours.
JP2021001941A 2021-01-08 2021-01-08 Grindstone and manufacturing method of grindstone Pending JP2022107167A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021001941A JP2022107167A (en) 2021-01-08 2021-01-08 Grindstone and manufacturing method of grindstone
CN202111633229.5A CN114750082A (en) 2021-01-08 2021-12-29 Grindstone and method for manufacturing grindstone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021001941A JP2022107167A (en) 2021-01-08 2021-01-08 Grindstone and manufacturing method of grindstone

Publications (1)

Publication Number Publication Date
JP2022107167A true JP2022107167A (en) 2022-07-21

Family

ID=82325004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021001941A Pending JP2022107167A (en) 2021-01-08 2021-01-08 Grindstone and manufacturing method of grindstone

Country Status (2)

Country Link
JP (1) JP2022107167A (en)
CN (1) CN114750082A (en)

Also Published As

Publication number Publication date
CN114750082A (en) 2022-07-15

Similar Documents

Publication Publication Date Title
JP4854269B2 (en) Resinoid grinding wheel manufacturing method
JP4851435B2 (en) Roll grinding method
JP4903001B2 (en) Resinoid grinding wheel manufacturing method
JPS61192480A (en) Synthetic grinding stone for soft metal
WO2012145284A2 (en) Resin bonded grinding wheel
JP7264663B2 (en) Whetstone and method for manufacturing whetstone
JP5352933B1 (en) Flexible epoxy sponge grinding wheel
JP2022107167A (en) Grindstone and manufacturing method of grindstone
JP2694705B2 (en) Synthetic grindstone for high-purity aluminum substrate polishing
JP4357173B2 (en) Polyurea elastic abrasive and manufacturing method thereof
US4682988A (en) Phenolic resin bonded grinding wheels
JP6845771B2 (en) Manufacturing method of grindstone for mirror finishing and grindstone for mirror finishing
JP2007111827A (en) DIAMOND OR cBN GRINDING STONE, AND ITS MANUFACTURING METHOD
JP2593829B2 (en) Synthetic whetstone
JP2696776B2 (en) Synthetic whetstone and method of manufacturing the same
JPS58223565A (en) Method for manufacture of resinoid whetstone
JP2014136267A (en) High elastic grinding wheel
SE453299B (en) THE PHENOL HEART BOND GRINDING DISC AND AN abrasive mixture for the manufacture thereof
JP3314213B2 (en) Resinoid grinding wheel and method of manufacturing the same
JPS59169764A (en) Solid grindstone
JPS61197164A (en) Synthetic grindstone and its production method
WO2022147432A1 (en) Abrasive article and method of use
JPH07115301B2 (en) Diamond grindstone manufacturing method
KR20070093786A (en) Resinoid grinding wheel
JPH0639732A (en) Manufacture of synthetic grinding wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240618