JP2022106003A - Sterilization/infection prevention method of seed rice - Google Patents

Sterilization/infection prevention method of seed rice Download PDF

Info

Publication number
JP2022106003A
JP2022106003A JP2022071602A JP2022071602A JP2022106003A JP 2022106003 A JP2022106003 A JP 2022106003A JP 2022071602 A JP2022071602 A JP 2022071602A JP 2022071602 A JP2022071602 A JP 2022071602A JP 2022106003 A JP2022106003 A JP 2022106003A
Authority
JP
Japan
Prior art keywords
soaking
water
hypochlorite water
paddy
effective chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022071602A
Other languages
Japanese (ja)
Other versions
JP2022106003A5 (en
JP7358549B2 (en
Inventor
修介 森田
Shusuke Morita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2022071602A priority Critical patent/JP7358549B2/en
Publication of JP2022106003A publication Critical patent/JP2022106003A/en
Publication of JP2022106003A5 publication Critical patent/JP2022106003A5/ja
Application granted granted Critical
Publication of JP7358549B2 publication Critical patent/JP7358549B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pretreatment Of Seeds And Plants (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent infection of seed rice sterilized by using warm water or a weak pesticide free from residual effect.
SOLUTION: In a sterilization/infection prevention method of seed rice in an embodiment, seed rice is sterilized by using warm water or a weak pesticide free from residual effect, and after sterilization, seed soaking and forced sprouting are performed by using hypochlorous acid water, to thereby prevent microbial or bacterial infection to the seed rice.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2022,JPO&INPIT

Description

特許法第30条第2項適用申請有り ▲1▼平成29年4月12日 日本植物病理学会発行の平成29年度日本植物病理学会大会プログラム・講演要旨予稿集に発表 ▲2▼平成29年4月27日 日本植物病理学会主催の平成29年度日本植物病理学会大会において発表Application for application of Article 30, Paragraph 2 of the Patent Act has been made. Presented at the 2017 Phytopathological Society of Japan Conference hosted by the Phytopathological Society of Japan

本発明の実施形態は、種籾の殺菌・感染防止方法に関する。 An embodiment of the present invention relates to a method for sterilizing seed paddy and preventing infection.

種籾の消毒方法には、農薬、及び60℃前後のお湯による温湯殺菌がある。食の安全の観点から、残効性の高い農薬よりも温湯殺菌を行うことが望まれる。 Disinfection methods for seed paddy include pesticides and hot water sterilization with hot water at around 60 ° C. From the viewpoint of food safety, it is desirable to sterilize with hot water rather than pesticides with high residual effect.

しかしながら、近年、温湯殺菌した種籾の育苗時において、ばか苗病の発生が報告されている。 However, in recent years, the outbreak of idiot seedling disease has been reported when raising seedlings of seeds sterilized with hot water.

温湯殺菌では、種籾に損傷を与えてしまう境界付近の温度で処理しているため、保有菌数のばらつき、及び殺菌処理のばらつきにより完全に殺菌できない場合がある。温湯殺菌した種籾に少しでも殺菌不十分な籾が残ると、浸種及び催芽工程で種籾を浸漬した際に健全籾に二次感染する課題がある。 In hot water sterilization, since the treatment is performed at a temperature near the boundary that damages the seed paddy, it may not be possible to completely sterilize due to variations in the number of bacteria possessed and variations in the sterilization treatment. If the paddy that has been sterilized with hot water remains inadequately sterilized, there is a problem that the seed paddy is secondarily infected with the healthy paddy when the seed paddy is soaked in the soaking and sprouting process.

また、農薬を用いた殺菌では、残効性の強い農薬を使用した場合には二次感染の発生が少ないが、残効性のない低農薬を用いた場合には、浸種及び催芽の際に健全籾に二次感染するという課題がある。 In sterilization using pesticides, secondary infections are less likely to occur when pesticides with strong residual effects are used, but when low pesticides with no residual effects are used, they are used during soaking and germination. There is a problem of secondary infection with healthy paddy.

特開2008-328723号公報Japanese Unexamined Patent Publication No. 2008-328723 特開2003-23815号公報Japanese Unexamined Patent Publication No. 2003-23815

本発明の実施形態は、温湯または残効性のない低農薬を用いて殺菌を行った種籾の浸種、催芽工程における感染を防止することを目的とする。 An object of the present invention is to prevent infection in the seed soaking and germination steps of seeds sterilized with hot water or low pesticides having no residual effect.

実施形態によれば、温湯または残効性のない低農薬を用いて殺菌した種籾を育苗するための、浸種、催芽工程において、浸漬液に次亜塩素酸水を用いることで、健全な種籾への菌の感染を防止すること目的とした種籾の殺菌・感染防止方法。 According to the embodiment, in the seeding and sprouting process for raising seedlings sterilized with hot water or low pesticides having no residual effect, hypochlorite water is used as an immersion liquid to obtain healthy seeds. A method for sterilizing and preventing infection of seed paddy for the purpose of preventing infection with bacteria.

実施形態にかかる種籾の殺菌・感染防止方法を表すフロー図である。It is a flow chart which shows the sterilization and infection prevention method of the seed paddy which concerns on embodiment. 実施形態における次亜塩素酸水の交換方法の一例を表す模式図である。It is a schematic diagram which shows an example of the exchange method of hypochlorite water in an embodiment. 実施形態における次亜塩素酸水の交換方法の他の一例を表す模式図である。It is a schematic diagram which shows another example of the exchange method of hypochlorite water in an embodiment. 実施形態における次亜塩素酸水の交換方法の他の一例を表す模式図である。It is a schematic diagram which shows another example of the exchange method of hypochlorite water in an embodiment. 実施形態における次亜塩素酸水の交換方法の他の一例を表す模式図である。It is a schematic diagram which shows another example of the exchange method of hypochlorite water in an embodiment.

以下、実施の形態について、図面を参照して説明する。 Hereinafter, embodiments will be described with reference to the drawings.

図1に、実施形態にかかる種籾の殺菌・感染防止方法を表すフロー図を示す。種籾の育苗工程は、種子消毒、浸種、催芽、出芽処理を行い育苗となる。図示するように、実施形態にかかる種籾の殺菌・感染防止方法は、温湯または残効性のない低農薬を用いて種籾の殺菌を行うこと(S1)、及び殺菌後、次亜塩素酸水を用いて浸種を行うこと(S2)、次亜塩素酸水を用いて催芽を行うこと(S3)により、種籾の感染を防止することができる。 FIG. 1 shows a flow chart showing a method for sterilizing and preventing infection of seeds according to an embodiment. In the seedling raising process, seed disinfection, soaking, germination, and emergence treatment are performed to raise seedlings. As shown in the figure, the method for sterilizing and preventing infection of seed rice according to the embodiment is to sterilize the seed rice using hot water or a low pesticide having no residual effect (S1), and after sterilization, use hypochlorite water. By soaking with seeds (S2) and sprouting with hypochlorite water (S3), infection of seeds can be prevented.

ここで、温湯とは、60℃前後の水、または40℃前後の次亜塩素酸水のことをいう。 Here, the hot water means water at around 60 ° C. or hypochlorite water at around 40 ° C.

図1では、次亜塩素酸水を浸種及び催芽の両工程に使用しているが、これに限定されるものではなく、浸種及び催芽のいずれかでもよい。 In FIG. 1, hypochlorite water is used in both the soaking and sprouting steps, but the present invention is not limited to this, and either soaking or sprouting may be used.

ここで、温湯とは、60℃前後例えば58℃から62℃の水もしくは40℃前後例えば38℃から42℃の次亜塩素酸水のことをいう。 Here, the hot water refers to water at around 60 ° C., for example, 58 ° C. to 62 ° C., or hypochlorite water at around 40 ° C., for example, 38 ° C. to 42 ° C.

実施形態によれば、浸種及び/または催芽の浸漬液に次亜塩素酸水を使用することで、健全な籾への感染を抑止できる。また、次亜塩素酸水を使用すると、微生物や雑菌の繁殖の抑制し、防臭の効果があるため、作業時の不快感を低減することができる。 According to the embodiment, by using hypochlorite water as the soaking solution for soaking and / or sprouting, infection to healthy paddy can be suppressed. In addition, the use of hypochlorite water suppresses the growth of microorganisms and other germs and has the effect of deodorizing, so that discomfort during work can be reduced.

次亜塩素酸水は、塩化カリウム水溶液を有隔膜電解槽内で電気分解して、陽極側から得られる水溶液、もしくは塩酸を無隔膜電解槽内で電気分解し、飲用適の水で希釈して得られる水溶液である。実施形態では、pH6.5以下、有効塩素濃度10~60mg/kgの次亜塩素酸水を使用することができる。このような次亜塩素酸水は、特定防除資材(特定農薬)として使用することができる。 Hypochlorite water is obtained by electrolyzing an aqueous solution of potassium chloride in a diaphragmatic electrolytic cell, electrolyzing the aqueous solution obtained from the anode side or hydrochloric acid in a non-diabolic electrolytic cell, and diluting it with water suitable for drinking. The obtained aqueous solution. In the embodiment, hypochlorite water having a pH of 6.5 or less and an effective chlorine concentration of 10 to 60 mg / kg can be used. Such hypochlorite water can be used as a specific control material (specific pesticide).

種籾に対する次亜塩素酸水の浴比は、容積比(体積比)で2~10にすることができる。浴比が2未満であると、有効塩素濃度が維持できず、二次感染率が高くなる傾向がある。また、浴比が10を超えると、種籾に次亜塩素酸の過剰供給となり、成長障害が発生するリスクが高まる傾向がある。 The bath ratio of hypochlorite water to the seed paddy can be 2 to 10 in terms of volume ratio (volume ratio). If the bath ratio is less than 2, the effective chlorine concentration cannot be maintained and the secondary infection rate tends to increase. Further, when the bath ratio exceeds 10, hypochlorous acid is excessively supplied to the seed paddy, and the risk of growth failure tends to increase.

現場へ導入するためには、浸種及び催芽時の浸漬液を、従来使用されている水道水から次亜塩素酸水に置き換えることが望ましく、浴比は容積比(体積比)2~5以内が使用しやすいと考えられる。 In order to introduce it to the site, it is desirable to replace the soaking liquid at the time of soaking and sprouting with hypochlorite water from the conventionally used tap water, and the bath ratio should be within 2 to 5 by volume ratio (volume ratio). It is considered easy to use.

一方で感染防止には、次亜塩素酸水の有効塩素濃度を一定値以上に維持するとより効果的である。浴比が低いと有効塩素濃度の減少が早く、必要濃度を維持しにくい傾向がある。 On the other hand, in order to prevent infection, it is more effective to maintain the effective chlorine concentration of hypochlorite water above a certain value. When the bath ratio is low, the effective chlorine concentration decreases quickly, and it tends to be difficult to maintain the required concentration.

浸漬液は、浸種では、浸漬開始から70時間までの有効塩素濃度を7mg/kg以上に、催芽では、終了まで有効塩素濃度を7mg/kg以上に維持することが好ましい。有効塩素濃度が7mg/kg未満であると、種籾の感染の防止が困難になる傾向がある。 The dipping solution preferably maintains an effective chlorine concentration of 7 mg / kg or more from the start of immersion to 70 hours for soaking, and an effective chlorine concentration of 7 mg / kg or more until the end of germination. If the effective chlorine concentration is less than 7 mg / kg, it tends to be difficult to prevent the infection of seed paddy.

また、浸漬液は、浸種または催芽工程で次亜塩素酸水を1回以上交換すると、感染防止により効果的である。 In addition, the soaking solution is more effective in preventing infection when the hypochlorite water is replaced at least once in the soaking or sprouting step.

例えば、浸種7日中に1回、催芽前に1回と、従来の水道水交換と同じ頻度で次亜塩素酸水を、全量交換することで、工程中の感染を防止することができる。 For example, infection during the process can be prevented by exchanging the entire amount of hypochlorite water once in 7 days of soaking and once before sprouting at the same frequency as the conventional tap water exchange.

更に浸種、催芽工程の浸漬は、次亜塩素酸の大気放出による消耗を防ぐ為に、浸積槽に蓋をした閉鎖空間で実施することが望ましい。 Furthermore, it is desirable that the soaking and sprouting steps be carried out in a closed space covered with a lid in order to prevent consumption of hypochlorous acid due to atmospheric release.

閉鎖された浸漬槽では開放場合よりも有効塩素濃度の減少量が少ないため、次亜塩素酸水を効率よく種籾の殺菌に作用させることができる。このため、閉鎖された浸漬槽は、開放された浸漬槽よりも少ない浴比でも、十分な種籾殺菌効果が得られる。 Since the amount of decrease in the effective chlorine concentration is smaller in the closed immersion tank than in the open case, the hypochlorite water can efficiently act on the sterilization of the seed paddy. Therefore, the closed immersion tank can obtain a sufficient seed paddy sterilizing effect even with a smaller bath ratio than the open immersion tank.

さらに、浸漬液の次亜塩素酸水の交換手順として、次亜塩素酸水を全量交換する、次亜塩素酸水を継ぎ足す、もしくは回収して再生する、もしくは浸漬液を再生することが考えられる。 Furthermore, as a procedure for exchanging the hypochlorite water of the immersion liquid, it is conceivable to replace the entire amount of the hypochlorite water, add or recover the hypochlorite water, or regenerate the immersion liquid. Be done.

次亜塩素酸水を全量交換するには次亜塩素酸水の大部分を排出したあと、新しい次亜塩素酸水を供給することで有効塩素濃度を回復することが可能である。 To replace the entire amount of hypochlorite water, it is possible to restore the effective chlorine concentration by discharging most of the hypochlorite water and then supplying new hypochlorite water.

また、次亜塩素酸水を継ぎ足す場合には、次亜塩素酸水の一部を記次亜塩素酸水の有効塩素濃度よりも高い有効塩素濃度を有する次亜塩素酸水と交換させて有効塩素濃度を回復することができる。 When adding hypochlorite water, replace a part of the hypochlorite water with a hypochlorite water having an effective chlorine concentration higher than the effective chlorine concentration of the recorded hypochlorite water. The effective chlorine concentration can be restored.

図2に、次亜塩素酸水の交換方法の一例を表す模式図を示す。 FIG. 2 shows a schematic diagram showing an example of a method for exchanging hypochlorite water.

この方法では、まず図2(a)に示すように、例えば、予め、次亜塩素酸水が入った浸積槽1の排水ライン3に設けられた排水バルブ5を開にして次亜塩素酸水を十分に排水する。その後、排水された浸積槽1の排水バルブ5を閉にして、給水ライン2の給水バルブ4を開にし、新しい次亜塩素酸水を導入して、交換を行うことができる。 In this method, first, as shown in FIG. 2A, for example, the drain valve 5 provided in the drain line 3 of the immersion tank 1 containing the hypochlorite water is opened in advance to hypochlorite. Drain enough water. After that, the drain valve 5 of the drained immersion tank 1 can be closed, the water supply valve 4 of the water supply line 2 can be opened, and new hypochlorite water can be introduced for replacement.

次亜塩素酸水の交換は、有効塩素濃度を維持、回復することを目的としており、使用液を排出口から排出させることにより全て捨てて、図2に示すような新液を供給する方法以外の方法がある。 The purpose of exchanging hypochlorite water is to maintain and restore the effective chlorine concentration, except for the method of discharging all the liquid used from the discharge port and discarding it and supplying a new liquid as shown in Fig. 2. There is a method.

図3ないし図5に、次亜塩素酸水の交換方法の他の一例を表す模式図を示す。 3 to 5 show a schematic diagram showing another example of the method for exchanging hypochlorite water.

例えば、図3に示す方法は、予め次亜塩素酸水を排水することなく、給水バルブ4及び排水バルブ5を開として、給水ライン2から新しい次亜塩素酸水を導入し、導入した分だけ排水ライン3から使用中の次亜塩素酸水を排出させる、いわゆる掛け流しと呼ばれる方法である。 For example, in the method shown in FIG. 3, the water supply valve 4 and the drain valve 5 are opened, new hypochlorite water is introduced from the water supply line 2, and only the amount of the introduced hypochlorite water is introduced without draining the hypochlorite water in advance. This is a so-called free-flowing method in which the hypochlorite water in use is discharged from the drainage line 3.

また、図4に示す方法は、例えば、使用中の次亜塩素酸水の一部を回収し、排水ライン3’から電解ユニット7に送り、回収した使用液を電解することにより有効塩素濃度を再生して、給水ライン2’から浸漬槽1に戻す循環方式である。 Further, in the method shown in FIG. 4, for example, a part of the hypochlorite water in use is recovered, sent from the drainage line 3'to the electrolytic unit 7, and the recovered working liquid is electrolyzed to obtain the effective chlorine concentration. This is a circulation method in which the water is regenerated and returned from the water supply line 2'to the immersion tank 1.

また、図5に示す方法は、浸漬槽1内に電解ユニット8を直接設置し、電解ユニット8に接続されたコントローラ9により電解ユニット8を駆動させることにより電解を行い、浸漬槽内で新たな次亜塩素酸水を生成することにより有効塩素濃度を一定値以上に保つ方法である。この際、新たに供給する次亜塩素酸水は当初のものと同一の濃度のものであってもよいし、それよりも濃い濃度の次亜塩素酸水を供給して有効塩素濃度を一定値以上保つことでもよい。 Further, in the method shown in FIG. 5, the electrolysis unit 8 is directly installed in the immersion tank 1, and the electrolysis unit 8 is driven by the controller 9 connected to the electrolysis unit 8 to perform electrolysis, and a new method is performed in the immersion tank. This is a method of keeping the effective chlorine concentration above a certain value by generating hypochlorite water. At this time, the newly supplied hypochlorite water may have the same concentration as the initial one, or a higher concentration of hypochlorite water may be supplied to keep the effective chlorine concentration at a constant value. You may keep the above.

以下、実施例を示し、実施形態をより具体的に説明する。 Hereinafter, examples will be shown and embodiments will be described in more detail.

実施例1
60℃の温湯に10分間浸漬して温湯殺菌を行った健全籾と、殺菌処理を行わない汚染籾を用意し、浴比に応じた適量をそれぞれ別々のネットに分ける。
Example 1
Prepare healthy paddy that has been sterilized by hot water for 10 minutes in hot water at 60 ° C. and contaminated paddy that has not been sterilized, and divide the appropriate amount according to the bath ratio into separate nets.

次に、次亜塩素酸水を満たした浸漬槽に、ネットに入れた健全籾と汚染籾を同じ浸漬槽で浸漬し、浴比5~40として、10~12℃で7日間の浸種処理を行った。尚、この実施例では、浸漬槽には蓋が無い開放系であり、浸種液は7日間交換していない。 Next, in a dipping tank filled with hypochlorite water, healthy paddy and contaminated paddy placed in a net are immersed in the same dipping tank, and the bath ratio is set to 5 to 40, and the seeding treatment is performed at 10 to 12 ° C. for 7 days. gone. In this embodiment, the immersion tank is an open system without a lid, and the immersion liquid is not replaced for 7 days.

汚染籾は健全種と汚染籾の合計量の5重量%添加し、汚染籾は前年度の開花時に、ばか苗病菌を人工接種した苗の穂から採取した種籾である。 Contaminated paddy is added by 5% by weight of the total amount of healthy seeds and contaminated paddy, and contaminated paddy is seed paddy collected from the ears of seedlings artificially inoculated with idiot seedling disease bacteria at the time of flowering in the previous year.

次亜塩素酸水の有効塩素濃度は60mg/kg(pH6.0)であり、容量は600ml、健全種と汚染籾の量を浴比40,20,10,5(容積比(体積比))となるように調整した。 The effective chlorine concentration of hypochlorite water is 60 mg / kg (pH 6.0), the capacity is 600 ml, and the amount of healthy seeds and contaminated paddy is bath ratio 40, 20, 10, 5 (volume ratio (volume ratio)). It was adjusted to be.

浴比40=籾全量(汚染籾)=15g(0.75g)(サンプル1-2)
浴比20=籾全量(汚染籾)=30g(1.50g)(サンプル1-3)
浴比10=籾全量(汚染籾)=60g(3.0g)(サンプル1-4)
浴比5=籾全量(汚染籾)=120g(6.0g)(サンプル1-5)
浸種後の種籾を用いて、以下に示す感染率の測定を行った。
Bath ratio 40 = total amount of paddy (contaminated paddy) = 15 g (0.75 g) (sample 1-2)
Bath ratio 20 = total amount of paddy (contaminated paddy) = 30 g (1.50 g) (Sample 1-3)
Bath ratio 10 = Total amount of paddy (contaminated paddy) = 60 g (3.0 g) (Sample 1-4)
Bath ratio 5 = Total amount of paddy (contaminated paddy) = 120 g (6.0 g) (Sample 1-5)
The infection rate shown below was measured using the seed paddy after soaking.

7日間の浸種終了後、ネットを取り出し、健全籾のみを評価して二次汚染率を評価した。各浴比ごとに150粒の種籾を50粒毎に、F0-G2培地が入った□90mmの正方形ペトリディッシュに等間隔に置床し、温度25℃の条件で7~10日間培養して、それぞれの培地のコロニー数を計測し、150粒に対するコロニー数の百分率を保菌率とした。 After 7 days of soaking, the net was taken out and only healthy paddy was evaluated to evaluate the secondary contamination rate. For each bath ratio, 150 seeds of paddy were placed every 50 seeds on a □ 90 mm square Petri dish containing F0-G2 medium at equal intervals, and cultured at a temperature of 25 ° C for 7 to 10 days. The number of colonies in the medium was measured, and the percentage of the number of colonies to 150 grains was taken as the carrier rate.

比較の対象区として浴比40の水道水で浸種した区を用意した(サンプル1-1)。浸漬液以外は次亜塩素酸水区と同様にして浸種を行い、感染率を測定した。 As a target group for comparison, a group soaked with tap water having a bath ratio of 40 was prepared (Sample 1-1). Except for the dipping solution, the seeds were soaked in the same manner as in the hypochlorite water group, and the infection rate was measured.

得られた結果を下記表1に示す。 The obtained results are shown in Table 1 below.

Figure 2022106003000002
Figure 2022106003000002

対象区である水道水区の感染率99.6%と比べ、次亜塩素酸水区は感染抑制が見られる。しかしながら、次亜塩素酸水でも浴比40では感染率0%に対し、浴比が低下するほど感染率が上がる。浴比10~40までは感染率が1%以下に対し、浴比5では感染率が5.3%まで上昇していることが分かる。感染率と次亜塩素酸水との反応量を調査するために、浸種日数に対する有効酸素濃度の変化を下記表2に示す。更に有効塩素濃度から算出される種籾1kgに対する次亜塩素酸の消費量を表3に示す。 Compared with the infection rate of 99.6% in the tap water area, which is the target area, infection suppression is seen in the hypochlorite water area. However, even with hypochlorite water, the infection rate is 0% at a bath ratio of 40, whereas the infection rate increases as the bath ratio decreases. It can be seen that the infection rate is 1% or less when the bath ratio is 10 to 40, while the infection rate is increased to 5.3% when the bath ratio is 5. In order to investigate the reaction rate between the infection rate and hypochlorite water, the changes in the effective oxygen concentration with respect to the soaking days are shown in Table 2 below. Further, Table 3 shows the consumption of hypochlorous acid per 1 kg of seed paddy calculated from the effective chlorine concentration.

Figure 2022106003000003
Figure 2022106003000003

Figure 2022106003000004
Figure 2022106003000004

得られた結果より、浸漬開始から70時間(3日間)までに有効塩素濃度の低下が早い、つまり次亜塩素酸消費量が高いことが分かる。また、感染率が高い浴比5では浸漬開始から70時間で有効塩素濃度が0となる。更に次亜塩素酸の消費量を見ると健全種子の汚染率が5%以下となるのは、浸漬開始から70時間後(3日後)の有効塩素濃度が7mg/kg以上であり、次亜塩素酸消費量が265~530(mg/種籾kg)の範囲にあることが分かる。なお、次亜塩素酸消費量(累積)は、有効塩素濃度の減少量と浸種液量との積算からHClO量(mg)を求め、浸漬した種籾量(kg)で割ることで算出できる。 From the obtained results, it can be seen that the effective chlorine concentration decreases rapidly within 70 hours (3 days) from the start of immersion, that is, the consumption of hypochlorous acid is high. Further, in a bath ratio of 5 having a high infection rate, the effective chlorine concentration becomes 0 70 hours after the start of immersion. Furthermore, looking at the consumption of hypochlorous acid, the contamination rate of healthy seeds is 5% or less because the effective chlorine concentration 70 hours (3 days) after the start of immersion is 7 mg / kg or more, and hypochlorous acid. It can be seen that the acid consumption is in the range of 265 to 530 (mg / kg of seed paddy). The amount of hypochlorous acid consumed (cumulative) can be calculated by obtaining the amount of HClO (mg) from the integration of the amount of decrease in the effective chlorine concentration and the amount of the soaked liquid, and dividing by the amount of soaked paddy (kg).

実施例2
浴比が10以下の浸種についてさらに詳しく検証する。
Example 2
We will examine in more detail the soaking with a bath ratio of 10 or less.

実施例1と同様の浸種処理を、それぞれ浴比(容積比(体積比))10,5,3,2で実施した。更に浸種後に続けて、催芽処理を30~32℃で20時間実施した。 The same soaking treatment as in Example 1 was carried out at bath ratios (volume ratios (volume ratios)) of 10, 5, 3 and 2, respectively. Further, after soaking, the germination treatment was carried out at 30 to 32 ° C. for 20 hours.

尚、本実施形態では、浸漬槽には蓋が無い開放系であり、浸種液は7日間交換無し(サンプル2-2,2-3,2-4,2-5)と、24時間後(1日後)に浸漬液の次亜塩素酸水を全交換する(サンプル2-6,2-7,2-8,2-9)との2条件を実施した。また浸種の後に続けて実施した催芽工程は、浸種液をそのまま利用した。 In this embodiment, the immersion tank is an open system without a lid, and the immersion liquid is not replaced for 7 days (samples 2-2, 2-3, 2-4, 2-5) and after 24 hours (samples 2-2, 2-3, 2-4, 2-5). After 1 day), the hypochlorite water of the dipping solution was completely replaced (samples 2-6, 2-7, 2-8, 2-9). In the germination step carried out after the soaking, the soaking solution was used as it was.

次亜塩素酸水の有効塩素濃度は60mg/kg(pH6.0)であり、容量は600ml、健全種と汚染籾の合計量を浴比10,5、3,2(容積比(体積比))となるように調整した。 The effective chlorine concentration of hypochlorite water is 60 mg / kg (pH 6.0), the capacity is 600 ml, and the total amount of healthy seeds and contaminated paddy is bath ratio 10, 5, 3, 2 (volume ratio (volume ratio)). ).

また、対象区として、浴比10の水道水を用意した(サンプル2-1)。水道水の交換はしない。 In addition, tap water with a bath ratio of 10 was prepared as the target group (Sample 2-1). Do not change tap water.

浴比10=籾全量(汚染籾)=60g(3.0g)(サンプル2-2,2-6)
浴比5=籾全量(汚染籾)=120g(6.0g)(サンプル2-3,2-7)
浴比3=籾全量(汚染籾)=200g(10g)(サンプル2-4,2-8)
浴比2=籾全量(汚染籾)=300g(15g)(サンプル2-5,2-9)
浸種後、催芽後の種籾について、実施例1と同様にして感染率を測定した。更に、催芽後の種籾について、実際に以下の方法にて育苗まで進め、苗の発病率を測定した。
Bath ratio 10 = total amount of paddy (contaminated paddy) = 60 g (3.0 g) (samples 2-2, 2-6)
Bath ratio 5 = total amount of paddy (contaminated paddy) = 120 g (6.0 g) (samples 2-3, 2-7)
Bath ratio 3 = total amount of paddy (contaminated paddy) = 200 g (10 g) (samples 2-4, 2-8)
Bath ratio 2 = total amount of paddy (contaminated paddy) = 300 g (15 g) (samples 2-5, 2-9)
The infection rate of the seed paddy after soaking and sprouting was measured in the same manner as in Example 1. Furthermore, for the seed paddy after germination, the seedlings were actually raised by the following method, and the incidence rate of the seedlings was measured.

育苗での発病率の測定では、浸種、催芽後の種籾で、育苗を行い10~14日後のばか苗病の発病を目視で観察評価した。サンプル数は20本であり、全ての苗の本数に対する発病した苗の本数の百分率を発病率とした。 In the measurement of the incidence rate in raising seedlings, seedlings were raised in seeds after soaking and germination, and the onset of stupid seedling disease 10 to 14 days later was visually observed and evaluated. The number of samples was 20, and the percentage of the number of diseased seedlings to the total number of seedlings was taken as the disease rate.

得られた結果を下記表4に示す。 The obtained results are shown in Table 4 below.

Figure 2022106003000005
Figure 2022106003000005

また、浸種日数に対する有効酸素濃度の変化を1日1回測定した結果を下記表5に示す。 The results of measuring the change in effective oxygen concentration with respect to the number of soaking days once a day are shown in Table 5 below.

尚、表中、次亜塩素酸水交換ありの1日後の数値は交換前の数値である。 In the table, the values one day after the exchange of hypochlorite water are the values before the exchange.

Figure 2022106003000006
Figure 2022106003000006

更に有効塩素濃度から算出される種籾1kgに対する次亜塩素酸の消費量を下記表6に示す。 Further, the consumption of hypochlorous acid per 1 kg of seed paddy calculated from the effective chlorine concentration is shown in Table 6 below.

Figure 2022106003000007
Figure 2022106003000007

浸種後の感染率を見ると、水交換無しでは、浴比10(サンプル2-2)を除く浴比2~5(サンプル2-3,2-4,2-5)で感染率が高い傾向となる。一方で水交換有りでは、浴比2~5(サンプル2-6,2-7,2-8,2-9)全てにおいて感染率5%以下と高い水準で感染防止ができていることが確認できる。 Looking at the infection rate after soaking, without water exchange, the infection rate tends to be high at bath ratios 2 to 5 (samples 2-3, 2-4, 2-5) excluding bath ratio 10 (sample 2-2). Will be. On the other hand, with water exchange, it was confirmed that infection control was possible at a high level with an infection rate of 5% or less in all bath ratios 2 to 5 (samples 2-6, 2-7, 2-8, 2-9). can.

水道水に浸種する場合にも、浸種の途中で水道水を交換することが行われていることから、実施例2によれば、浸種中に次亜塩素酸水を交換することにより、従来の浸種工程と比較して特に工程を増やすことなく、浸種後の感染率を下げることができる。 Even when soaking in tap water, the tap water is exchanged during the soaking. Therefore, according to the second embodiment, by exchanging the hypochlorite water during the soaking, the conventional method is performed. It is possible to reduce the infection rate after soaking without particularly increasing the number of steps as compared with the soaking step.

しかしながら、催芽後の感染率を見ると、全ての条件で感染率が大幅に増加していることから、浸種のみでなく、催芽時も感染防止を行うことがより効果的であると考えられる。 However, looking at the infection rate after sprouting, since the infection rate has increased significantly under all conditions, it is considered more effective to prevent infection not only during inoculation but also during sprouting.

有効塩素濃度の推移を確認すると、浸種後の感染率が5%以下は、浸種開始から70時間後(3日後)の実施例1と同様に有効塩素濃度が7mg/kg以上であることが確認できる。 When the transition of the effective chlorine concentration was confirmed, it was confirmed that when the infection rate after soaking was 5% or less, the effective chlorine concentration was 7 mg / kg or more as in Example 1 70 hours after the start of soaking (3 days later). can.

更に有効塩素濃度の減少分から算出される種籾1kgに対する次亜塩素酸の消費量を見ると、浸種後の感染率が5%以下となるのは、浸種開始から70時間後(3日後)の次亜塩素酸の消費量が273 (mg/種籾1kg)(水交換有り、浴比3)のときであり、消費量が260 (mg/種籾1kg)(水交換なし、浴比5)では十分でないことが分かる。従って、蓋が無い開放系で、健全籾の汚染率が5%以下となるのは、浸種開始から70時間後(3日後)の有効塩素濃度が7mg/kg以上であり、次亜塩素酸の消費量が270(mg/種籾1kg)以上である。 Furthermore, looking at the consumption of hypochlorous acid per 1 kg of seed paddy calculated from the decrease in effective chlorine concentration, the infection rate after soaking is 5% or less after 70 hours (3 days) after the start of soaking. When the consumption of chloric acid is 273 (mg / seed paddy 1 kg) (with water exchange, bath ratio 3), the consumption amount of 260 (mg / seed paddy 1 kg) (without water exchange, bath ratio 5) is not sufficient. You can see that. Therefore, in an open system without a lid, the contamination rate of healthy paddy is 5% or less because the effective chlorine concentration 70 hours (3 days) after the start of soaking is 7 mg / kg or more, and that of hypochlorous acid. The consumption is 270 (mg / 1 kg of seed paddy) or more.

実施例3
浴比が5の浸種について、浸積槽の蓋の有無(密閉系/開放系)、催芽時の水交換の有無における感染防止効果を検証する。
Example 3
For soaked seeds with a bath ratio of 5, we will verify the infection control effect in the presence or absence of a lid for the immersion tank (closed system / open system) and the presence or absence of water exchange during germination.

実施例1と同様の浸種処理を、それぞれ浴比(容積比(体積比))5で実施した。更に浸種後に続けて、催芽処理を30~32℃で20時間実施した。 The same soaking treatment as in Example 1 was carried out at a bath ratio (volume ratio (volume ratio)) of 5, respectively. Further, after soaking, the germination treatment was carried out at 30 to 32 ° C. for 20 hours.

尚、本実施形態では、浸漬槽には蓋が無い開放系(サンプル3-2)と、蓋が有る密閉系(サンプル,3-3,3-4,3-5)で実施しており、浸種液は7日間交換無し(サンプル3-3)と、70時間後(3日後)に浸漬液の次亜塩素酸水を全交換する場合(サンプル3-2,3-4,3-5)とに分けた。更に浸種の後に続けて催芽を実施する場合(サンプル3-4)と、催芽前に次亜塩素酸水を全交換する場合(サンプル3-2,3-3,3-5)に分けた。 In this embodiment, the immersion tank has an open system without a lid (Sample 3-2) and a closed system with a lid (Sample, 3-3, 3-4, 3-5). The seeding solution was not replaced for 7 days (Sample 3-3), and after 70 hours (3 days), the hypochlorite water of the immersion solution was completely replaced (Sample 3-2, 3-4, 3-5). Divided into. Further, it was divided into the case where sprouting was carried out continuously after soaking (Sample 3-4) and the case where the hypochlorite water was completely replaced before sprouting (Samples 3-2, 3-3, 3-5).

また、対象区として、浴比5の水道水を用意した(サンプル3-1)。水道水の交換は、次亜塩素酸水の交換と同時期に浸種時、催芽前に実施した。 In addition, tap water with a bath ratio of 5 was prepared as the target area (Sample 3-1). The exchange of tap water was carried out at the same time as the exchange of hypochlorite water at the time of soaking and before germination.

次亜塩素酸水の有効塩素濃度は60mg/kg(pH6.0)であり、容量は600ml、健全種と汚染籾の量を浴比5となるように調整した。 The effective chlorine concentration of the hypochlorite water was 60 mg / kg (pH 6.0), the volume was 600 ml, and the amounts of healthy seeds and contaminated paddy were adjusted to a bath ratio of 5.

それぞれ浸種後、催芽後の種籾について実施例1と同様にして感染率を測定した。更に実施例2と同様にして、催芽後の種籾で育苗まで進め、苗の発病率を測定した。 The infection rate of the seeds after soaking and sprouting was measured in the same manner as in Example 1. Further, in the same manner as in Example 2, the seedlings were raised with seedlings after germination, and the incidence rate of the seedlings was measured.

得られた結果を下記表7に示す。 The obtained results are shown in Table 7 below.

Figure 2022106003000008
Figure 2022106003000008

また、浸種日数に対する有効酸素濃度を下記表8に示す。 The effective oxygen concentration with respect to the soaking days is shown in Table 8 below.

Figure 2022106003000009
Figure 2022106003000009

更に、有効塩素濃度の減少量から算出される種籾1kgに対する次亜塩素酸の消費量を表9に示す。 Further, Table 9 shows the consumption of hypochlorous acid per 1 kg of seed paddy calculated from the amount of decrease in the effective chlorine concentration.

Figure 2022106003000010
Figure 2022106003000010

上記表より、浸漬槽に蓋を付け密閉系とした効果を見るためにサンプル3-2,3-4,3-5を比較すると、70時間後(3日後)の有効塩素濃度が蓋なしで5mg/kgに対し、蓋ありは25,34mg/kgであり、次亜塩素酸消費量では蓋なしが275(mg/種籾kg)に対し、蓋ありは130,175(mg/種籾kg)と消費量が少ないにも関わらず、浸種後の感染率は蓋ありの方が、蓋無しに比べ低く、感染予防効果が良好であることが分かる。 From the above table, comparing samples 3-2, 3-4, 3-5 to see the effect of attaching a lid to the immersion tank to make it a closed system, the effective chlorine concentration after 70 hours (3 days) was without a lid. With a lid, it was 25,34 mg / kg for 5 mg / kg, and in terms of hypochlorite consumption, it was 275 (mg / kg of seed rice) without a lid, and 130,175 (mg / kg of seed rice) with a lid. Despite the low consumption, the infection rate after soaking is lower with the lid than without the lid, indicating that the infection prevention effect is better.

これは蓋をすることで次亜塩素酸の大気放出を防ぐことで、種籾の殺菌および次亜塩素酸水に溶けだした菌に効果的に作用するためと思われる。 It is thought that this is because the lid prevents the release of hypochlorous acid to the atmosphere, which effectively acts on the sterilization of seed paddy and the bacteria dissolved in the hypochlorous acid water.

従って、浸漬槽に蓋をした密閉系で二次感染を防止するためには次亜塩素酸消費量を、130(mg/種籾kg)にすると効果的であることが分かる。 Therefore, it can be seen that it is effective to set the consumption of hypochlorous acid to 130 (mg / kg of seed paddy) in order to prevent secondary infection in a closed system with a lid on the immersion tank.

一方で蓋なしでは、感染防止の目安となる270(mg/種籾kg)の次亜塩素酸を70時間後(3日後)で消費していたものの感染率は5%を超えていた。これは、70時間後(3日後)の有効塩素濃度が5mg/kgと、目標値とする7mg/kg以上を保持できていないことが原因と推測される。 On the other hand, without the lid, 270 (mg / kg of paddy) hypochlorous acid, which is a guideline for infection prevention, was consumed 70 hours later (3 days later), but the infection rate exceeded 5%. It is presumed that this is because the effective chlorine concentration after 70 hours (3 days) is 5 mg / kg, and the target value of 7 mg / kg or more cannot be maintained.

次に、催芽前の水交換有無の効果を見るためにサンプル3-4と3-5を比較すると、催芽後の感染率は交換無しは50.0%に対し、交換有りは2.0%と大きく改善効果があることが分かる。更に育苗での発病率をみると交換無しは24.5%に対し、交換有りは0%と感染率と同様に大きな効果差があり、催芽前に次亜塩素酸水を交換し、有効塩素濃度が高い状態で催芽を開始し、催芽終了まで有効塩素濃度が7mg/kg以上に保つことが感染防止に重要であることが分かる。 Next, comparing samples 3-4 and 3-5 to see the effect of water exchange before sprouting, the infection rate after sprouting was 50.0% without exchange and 2.0% with exchange. It can be seen that there is a great improvement effect. Furthermore, looking at the incidence rate in raising seedlings, there is a large difference in the effect as with the infection rate, with 24.5% without replacement and 0% with replacement. It can be seen that it is important to start sprouting in a high concentration state and keep the effective chlorine concentration at 7 mg / kg or more until the end of sprouting to prevent infection.

実施例4
浴比が5の浸種について、汚染籾も温湯殺菌した実使用を想定した検証をする。
Example 4
For soaked seeds with a bath ratio of 5, verification is performed assuming actual use in which contaminated paddy is also sterilized with hot water.

実施例1ないし3では、二次感染防止効果を明確化するために、汚染籾は温湯殺菌処理していなかった。実施例4では実用に合わせ、汚染籾も温湯殺菌を実施し、浸漬槽は蓋ありの密閉系で検証を行った。 In Examples 1 to 3, the contaminated paddy was not sterilized with hot water in order to clarify the effect of preventing secondary infection. In Example 4, the contaminated paddy was also sterilized with hot water according to practical use, and the immersion tank was verified with a closed system with a lid.

実施例1と同様の温湯殺菌を健全籾と汚染籾にそれぞれ別々に実施した。その後、浴比5(容積比(体積比))で有効塩素濃度60mg/kgの(pH6.0)を有する次亜塩素酸水を適用し、12℃で7日間浸種を行った。ここでは、3日目に次亜塩素酸水を交換した。3日目と7日目の有効酸素濃度を計測した。3日目の計測は次亜塩素酸水を交換する前に行った。 The same hot water sterilization as in Example 1 was carried out separately for healthy paddy and contaminated paddy. Then, hypochlorite water having an effective chlorine concentration of 60 mg / kg (pH 6.0) at a bath ratio of 5 (volume ratio (volume ratio)) was applied, and seeding was carried out at 12 ° C. for 7 days. Here, the hypochlorite water was replaced on the third day. The effective oxygen concentration on the 3rd and 7th days was measured. The measurement on the third day was performed before replacing the hypochlorite water.

浸種後に催芽工程を実施し、浸種液をそのまま利用する場合(サンプル4-2)と、催芽前に次亜塩素酸水を全交換する場合(サンプル4-3)に分けた。また、対象区として、浴比5の水道水を用意した(サンプル4-1)。水道水の交換は、次亜塩素酸水の交換と同時期に浸種時、催芽前に実施した。 The sprouting step was carried out after soaking, and the seeding solution was used as it was (Sample 4-2), and the hypochlorite water was completely replaced before sprouting (Sample 4-3). In addition, tap water with a bath ratio of 5 was prepared as the target area (Sample 4-1). The exchange of tap water was carried out at the same time as the exchange of hypochlorite water at the time of soaking and before germination.

それぞれ浸種後、催芽後の種籾について実施例1と同様にして感染率を測定した。更に実施例2と同様にして、催芽後の種籾で育苗まで進め、苗の発病率を測定した。得られた結果を下記表10に示す。 The infection rate of the seeds after soaking and sprouting was measured in the same manner as in Example 1. Further, in the same manner as in Example 2, the seedlings were raised with seedlings after germination, and the incidence rate of the seedlings was measured. The obtained results are shown in Table 10 below.

Figure 2022106003000011
Figure 2022106003000011

また、浸種日数に対する有効酸素濃度を下記表11に示す。 The effective oxygen concentration with respect to the soaking days is shown in Table 11 below.

Figure 2022106003000012
Figure 2022106003000012

更に、有効塩素濃度から算出される種籾1kgに対する次亜塩素酸の消費量を下記表12に示す。 Further, the consumption of hypochlorous acid per 1 kg of seed paddy calculated from the effective chlorine concentration is shown in Table 12 below.

Figure 2022106003000013
Figure 2022106003000013

実使用想定の温湯殺菌と次亜塩素酸水を組み合わせると高い感染防止効果があることが分かる。特に浸種中と催芽前に次亜塩素酸水を交換し、高い有効塩素濃度を維持した場合(サンプル4-3)は、浸種後、催芽後とも健全籾への感染率は0%であり、その後の育苗においても発病は見られず良好な結果である。 It can be seen that the combination of hot water sterilization and hypochlorite water, which is supposed to be used in actual use, has a high infection control effect. In particular, when the hypochlorite water was exchanged during soaking and before sprouting to maintain a high effective chlorine concentration (Sample 4-3), the infection rate to healthy paddy was 0% both after soaking and after sprouting. No illness was observed in the subsequent raising of seedlings, which is a good result.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

Claims (9)

温湯または残効性のない低農薬を用いた種籾の殺菌後に、浸種または催芽工程で、浸漬液として次亜塩素酸水を使用して、種籾が浸漬液を通して感染することを防止する種籾の殺菌・感染防止方法。 After sterilizing the seeds with warm water or low pesticides with no residual effect, the seeds are sterilized by using hypochlorite water as the soaking solution in the soaking or germination process to prevent the seeds from being infected through the soaking solution. -Infection control method. 前記浸漬液は、前記種籾に対する前記次亜塩素酸水の浴比が、容積比で2~10であり、前記次亜塩素酸水の有効塩素濃度は10~60mg/kgである請求項1に記載の方法。 According to claim 1, the dipping solution has a bath ratio of the hypochlorite water to the seed paddy of 2 to 10 by volume and an effective chlorine concentration of the hypochlorite water of 10 to 60 mg / kg. The method described. 前記浸漬液は、前記浸種工程では、浸漬開始から70時間までの有効塩素濃度を7mg/kg以上に、前記催芽工程では、終了まで有効塩素濃度を7mg/kg以上に維持する請求項1または2に記載の方法。 Claim 1 or 2 that the dipping solution maintains an effective chlorine concentration of 7 mg / kg or more from the start of immersion to 70 hours in the soaking step, and maintains an effective chlorine concentration of 7 mg / kg or more until the end in the germination step. The method described in. 前記浸漬液は、前記浸種工程で、浸漬開始から70時間までの次亜塩素酸消費量は、種籾1kgにつき130mg以上とする請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the soaking solution consumes 130 mg or more of hypochlorous acid per 1 kg of paddy in the soaking step from the start of soaking to 70 hours. 前記浸漬液は、前記次亜塩素酸水を1回以上交換する請求項3または4に記載の方法。 The method according to claim 3 or 4, wherein the immersion liquid is replaced with the hypochlorite water at least once. 前記浸漬液は、前記次亜塩素酸水を継ぎ足す、もしくは回収して再生する、もしくは浸漬液を再生する請求項3または4に記載の方法。 The method according to claim 3 or 4, wherein the immersion liquid is regenerated by adding or recovering the hypochlorite water, or regenerating the immersion liquid. 前記浸種、催芽工程は、浸積槽に蓋をすることで閉鎖され、次亜塩素酸の消費が少ない状態で行われる請求項1ないし6のいずれか1項に記載の方法。 The method according to any one of claims 1 to 6, wherein the soaking and sprouting steps are closed by covering the inundation tank with low consumption of hypochlorous acid. 前記次亜塩素酸水の交換は、前記次亜塩素酸水の大部分を排出したあと、新しい次亜塩素酸水を供給することで有効塩素濃度を回復することを含む請求項4に記載の方法。 The fourth aspect of claim 4, wherein the replacement of the hypochlorite water includes recovering the effective chlorine concentration by supplying a new hypochlorite water after discharging most of the hypochlorite water. Method. 前記次亜塩素酸水の交換は、前記次亜塩素酸水の一部を、前記次亜塩素酸水の有効塩素濃度よりも高い有効塩素濃度を有する次亜塩素酸水と交換させて有効塩素濃度を回復することを含む請求項4に記載の方法。 In the exchange of the hypochlorite water, a part of the hypochlorite water is exchanged with a hypochlorite water having an effective chlorine concentration higher than the effective chlorine concentration of the hypochlorite water to obtain effective chlorine. The method of claim 4, comprising restoring the concentration.
JP2022071602A 2017-10-02 2022-04-25 Method for sterilizing and preventing infection of seed rice Active JP7358549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022071602A JP7358549B2 (en) 2017-10-02 2022-04-25 Method for sterilizing and preventing infection of seed rice

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017192963A JP7214340B2 (en) 2017-10-02 2017-10-02 Seed rice sterilization and infection prevention method
JP2022071602A JP7358549B2 (en) 2017-10-02 2022-04-25 Method for sterilizing and preventing infection of seed rice

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017192963A Division JP7214340B2 (en) 2017-10-02 2017-10-02 Seed rice sterilization and infection prevention method

Publications (3)

Publication Number Publication Date
JP2022106003A true JP2022106003A (en) 2022-07-15
JP2022106003A5 JP2022106003A5 (en) 2022-09-09
JP7358549B2 JP7358549B2 (en) 2023-10-10

Family

ID=66337074

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017192963A Active JP7214340B2 (en) 2017-10-02 2017-10-02 Seed rice sterilization and infection prevention method
JP2022071602A Active JP7358549B2 (en) 2017-10-02 2022-04-25 Method for sterilizing and preventing infection of seed rice

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017192963A Active JP7214340B2 (en) 2017-10-02 2017-10-02 Seed rice sterilization and infection prevention method

Country Status (1)

Country Link
JP (2) JP7214340B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140024759A (en) * 2012-08-21 2014-03-03 정지현 Semiautomatic apparatus for disinfection of seeds, using hot water, which can be also used for germination of seeds
CN104396653A (en) * 2014-12-17 2015-03-11 宏康(九江)农业开发有限公司 Paddy rice sprout cultivation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140024759A (en) * 2012-08-21 2014-03-03 정지현 Semiautomatic apparatus for disinfection of seeds, using hot water, which can be also used for germination of seeds
CN104396653A (en) * 2014-12-17 2015-03-11 宏康(九江)农业开发有限公司 Paddy rice sprout cultivation method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
園田亮一、宮坂篤、岩野正敬: "イネいもち病、ばか苗病菌保菌種子に対する電解水の消毒効果", 日本植物病理学会報, vol. 66, no. 3, JPN6021022594, 25 December 2000 (2000-12-25), JP, pages 276, ISSN: 0005059537 *
堀武志、石川浩司、原澤良栄: "種子温湯消毒と電解水浸漬処理の組み合わせによるイネの褐条病およびもみ枯細菌病の防除効果", 北陸病虫研報, JPN6020041182, 2005, pages 7 - 12, ISSN: 0005059536 *

Also Published As

Publication number Publication date
JP7358549B2 (en) 2023-10-10
JP7214340B2 (en) 2023-01-30
JP2019062826A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
Hussien et al. Evaluation of different salt-amended electrolysed water to control postharvest moulds of citrus
Fallanaj et al. Salt addition improves the control of citrus postharvest diseases using electrolysis with conductive diamond electrodes
KR20060094008A (en) Method for controlling bacterial diseases of rice
Kusnetsov et al. Efficacy of three prevention strategies against legionella in cooling water systems
Li et al. Changes in physicochemical properties and bactericidal efficiency of acidic electrolyzed water ice and available chlorine decay kinetics during storage
Baker et al. Effect of irrigation water source and post-harvest washing treatment on the microflora of alfalfa and mung bean sprouts
CN108184375A (en) A kind of sterilization method of rice paddy seed
JP7358549B2 (en) Method for sterilizing and preventing infection of seed rice
JP2009225696A (en) Method for enhancing seed stress tolerance, and method of disinfection treatment
JP2016000005A (en) Germicidal treatment method at the budding time of rice seeds
JP5155466B1 (en) Method for producing cooked rice
Neetoo et al. Factors affecting the efficacy of pressure inactivation of Escherichia coli O157: H7 on alfalfa seeds and seed viability
JP3841425B2 (en) How to disinfect the seeds
Montesinos-Herrero et al. Synergism between potassium sorbate dips and brief exposure to high CO2 or O2 at curing temperature for the control of citrus postharvest green and blue molds
CN105453754B (en) A kind of myotonin method for treating seeds
JP6240037B2 (en) Oyster farming method
JP2006050982A (en) Method for preventing disease of rice
JP2008208077A (en) Method for sterilization and disinfection of seed
CN105917793A (en) Electrolyzed functional water-based rice seed soaking, germination accelerating and sprout cultivating method
RU2802376C1 (en) Method for processing amaranth seeds for hydroponic germination
JP2022106003A5 (en)
JP4846298B2 (en) Seawater disinfection method
JP3248875B2 (en) Sterilization method of Japanese cabbage radish
JP2001261512A (en) Method for integrated control of plant disease injury using acidic electrolyzed water
JPWO2017099085A1 (en) Cleaning method for human wear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220425

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230927

R150 Certificate of patent or registration of utility model

Ref document number: 7358549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350