JP2022105446A - Hydrogen production method - Google Patents

Hydrogen production method Download PDF

Info

Publication number
JP2022105446A
JP2022105446A JP2021000259A JP2021000259A JP2022105446A JP 2022105446 A JP2022105446 A JP 2022105446A JP 2021000259 A JP2021000259 A JP 2021000259A JP 2021000259 A JP2021000259 A JP 2021000259A JP 2022105446 A JP2022105446 A JP 2022105446A
Authority
JP
Japan
Prior art keywords
ammonia
hydrogen
acid
ammonia borane
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021000259A
Other languages
Japanese (ja)
Inventor
鉄水 中川
Tetsusui Nakagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of the Ryukyus NUC
Original Assignee
University of the Ryukyus NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of the Ryukyus NUC filed Critical University of the Ryukyus NUC
Priority to JP2021000259A priority Critical patent/JP2022105446A/en
Publication of JP2022105446A publication Critical patent/JP2022105446A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

To provide a method for efficiently producing hydrogen by using ammonia borane which is a hydrogen storage material, while preventing the formation of ammonia which is a harmful impure gas.SOLUTION: A hydrogen production method is to hydrolyze ammonia borane underwater in the presence of acids such as citric acid. For example, relative to ammonia borane of 1 mol, citric acid of 1.0 mol or more is blended. This method can efficiently produce hydrogen while preventing the formation of ammonia, a harmful impure gas.SELECTED DRAWING: Figure 1

Description

本発明は、水素貯蔵材料であるアンモニアボランを用いた水素の生成方法に関する。 The present invention relates to a method for producing hydrogen using ammonia borane, which is a hydrogen storage material.

市販されている燃料電池車には高圧水素が採用されているが、未だにコストや水素密度に課題を有している。また、車載用途以外にもポータブルな移動式燃料電池の需要が将来見込まれるが、高圧水素では密度の点で不利である。高密度な水素貯蔵方法としては、水素貯蔵材料が期待されており、その中でもアンモニアボラン(AB:NHBH)は、重量水素密度および体積水素密度が非常に高く、注目されている。 High-pressure hydrogen is used in commercially available fuel cell vehicles, but there are still problems with cost and hydrogen density. In addition to in-vehicle applications, demand for portable mobile fuel cells is expected in the future, but high-pressure hydrogen is disadvantageous in terms of density. As a high-density hydrogen storage method, a hydrogen storage material is expected, and among them, ammonia borane (AB: NH 3 BH 3 ) has a very high weight hydrogen density and volume hydrogen density, and is attracting attention.

しかしながら、このアンモニアボランは、加水分解で水素を生成する場合、触媒として高価な白金を用いることが多く(非特許文献1)、代替の触媒も依然として高価であるか、安価でも未だ実用に耐えうる有効な物質が発見されていない。 However, this ammonia borane often uses expensive platinum as a catalyst when hydrolyzing hydrogen (Non-Patent Document 1), and alternative catalysts are still expensive or cheap but still practical. No effective substance has been found.

また、アンモニアボランは、加水分解による水素生成に伴い、人体や燃料電池に有害なアンモニア(NH)を放出するという問題がある。 In addition, ammonia borane has a problem of releasing ammonia (NH 3 ), which is harmful to the human body and fuel cells, as hydrogen is generated by hydrolysis.

Qiming Sun, Ning Wang, Tianjun Zhang, Risheng Bai, Alvaro Mayoral, Peng Zhang, Qinghong Zhang, Osamu Terasaki, and Jihong Yu “Zeolite-Encaged Single-Atom Rhodium Catalysts: Highly-Efficient Hydrogen Generation and Shape-Selective Tandem Hydrogenation of Nitroarenes”Angewandte Chemie International Edition 58 (2019) p18570-18576Qiming Sun, Ning Wang, Tianjun Zhang, Risheng Bai, Alvaro Mayoral, Peng Zhang, Qinghong Zhang, Osamu Terasaki, and Jihong Yu “Zeolite-Encaged Single-Atom Rhodium Catalysts: Highly-Efficient Hydrogen Generation and Shape-Selective Tandem Hydrogenation of Nitroarenes ”Angewandte Chemie International Edition 58 (2019) p18570-18576

本発明の課題は、水素貯蔵材料であるアンモニアボランを用いて、有害な不純ガスであるアンモニアの生成を抑制しつつ、効率的に水素を生成する方法を提供することにある。 An object of the present invention is to provide a method for efficiently producing hydrogen while suppressing the production of ammonia, which is a harmful impure gas, by using ammonia borane, which is a hydrogen storage material.

本発明者は、アンモニアボランを用いた水素生成について研究する中で、クエン酸等の酸の存在下、水中でアンモニアボランを加水分解することにより、アンモニアの生成を抑制しつつ、効率的に水素を生成できることを見いだし、本発明を完成するに至った。 In the study of hydrogen production using ammonia borane, the present inventor hydrolyzes ammonia borane in water in the presence of an acid such as citric acid to suppress the production of ammonia and efficiently hydrogen. It was found that the present invention can be produced, and the present invention has been completed.

すなわち、本発明の特徴は、次のとおりである。
[1]酸の存在下、水中でアンモニアボランを加水分解することを特徴とする水素生成方法。
[2]酸が、pH2以上の弱酸であることを特徴とする上記[1]記載の水素生成方法。
[3]酸が、クエン酸であることを特徴とする上記[1]又は[2]記載の水素生成方法。
[4]アンモニアボラン1モルに対して酸を1.0モル以上用いることを特徴とする上記[1]~[3]のいずれか記載の水素生成方法。
[5]アンモニアボラン1モルに対して、水を100モル以上用いることを特徴とする[1]~[4]のいずれか記載の水素生成方法。
[6]生成した水素中のアンモニア量が1ppm以下であることを特徴とする上記[1]~[5]のいずれか記載の水素生成方法。
That is, the features of the present invention are as follows.
[1] A hydrogen production method characterized by hydrolyzing ammonia borane in water in the presence of an acid.
[2] The hydrogen production method according to the above [1], wherein the acid is a weak acid having a pH of 2 or higher.
[3] The hydrogen production method according to the above [1] or [2], wherein the acid is citric acid.
[4] The hydrogen production method according to any one of the above [1] to [3], wherein 1.0 mol or more of an acid is used with respect to 1 mol of ammonia borane.
[5] The hydrogen generation method according to any one of [1] to [4], wherein 100 mol or more of water is used for 1 mol of ammonia borane.
[6] The hydrogen generation method according to any one of the above [1] to [5], wherein the amount of ammonia in the produced hydrogen is 1 ppm or less.

本発明の水素生成方法は、有害な不純ガスであるアンモニアの生成を抑制しつつ、効率的に水素を生成することができる。 The hydrogen generation method of the present invention can efficiently generate hydrogen while suppressing the production of ammonia, which is a harmful impure gas.

本発明の方法(a)(アンモニアボランとクエン酸の混合粉に水を添加する方法)により生成した水素の発生量を示す図である。It is a figure which shows the amount of hydrogen generated by the method (a) of this invention (the method of adding water to the mixed powder of ammonia borane and citric acid). 本発明の方法(b)(固体のアンモニアボランにクエン酸溶液を添加する方法)により生成した水素の発生量を示す図である。It is a figure which shows the amount of hydrogen generated by the method (b) of this invention (the method of adding a citric acid solution to solid ammonia borane). 本発明の方法(c)(クエン酸溶液にアンモニアボラン溶液を添加する方法)により生成した水素の発生量を示す図である。It is a figure which shows the amount of hydrogen generated by the method (c) of this invention (the method of adding an ammonia borane solution to a citric acid solution). 本発明の方法(d)(固体のクエン酸にアンモニアボラン溶液を添加する方法)により生成した水素の発生量を示す図である。It is a figure which shows the amount of hydrogen generated by the method (d) of this invention (the method of adding an ammonia borane solution to solid citric acid).

本発明の水素生成方法(水素製造方法)は、酸の存在下、水中でアンモニアボランを加水分解することを特徴とする。酸の存在下でアンモニアボランを加水分解することにより、人体や燃料電池に有害な不純ガスであるアンモニアの生成を抑制しつつ、効率的に水素を生成することができる。 The hydrogen production method (hydrogen production method) of the present invention is characterized by hydrolyzing ammonia borane in water in the presence of an acid. By hydrolyzing ammonia borane in the presence of acid, it is possible to efficiently generate hydrogen while suppressing the production of ammonia, which is an impure gas harmful to the human body and fuel cells.

なお、従来、溶媒中での酸を用いたアンモニアボランの反応においては、有害な不純ガスであるジボラン(B)が生成するという報告があり、このことから、アンモニアボランの反応において酸を用いることは通常避けられていた。しかし、本発明者は、水中でアンモニアボランを加水分解することにより、酸を用いても、有害な不純ガスであるアンモニアの生成を抑制しつつ、効率的に水素を生成することができることを見いだし、本発明に至った。 Conventionally, it has been reported that diborane (B 2 H 6 ), which is a harmful impure gas, is produced in the reaction of ammonia borane using an acid in a solvent. Was usually avoided. However, the present inventor has found that by hydrolyzing ammonia borane in water, even if an acid is used, hydrogen can be efficiently produced while suppressing the production of ammonia, which is a harmful impure gas. , Which led to the present invention.

本発明の水素生成方法によれば、生成した水素中のアンモニア量を1.0ppm以下に低減でき、条件によって0.8ppm以下、さらには0.5ppm以下にまで低減できる。 According to the hydrogen generation method of the present invention, the amount of ammonia in the produced hydrogen can be reduced to 1.0 ppm or less, and depending on the conditions, it can be reduced to 0.8 ppm or less, and further to 0.5 ppm or less.

本発明の方法で用いるアンモニアボラン(AB)は、空気中で安定な常温で白色の固体の物質であり、例えば、硫酸アンモニウムや塩化アンモニウムと、水素化ホウ素ナトリウムを反応させて合成することができる。 Ammonia borane (AB) used in the method of the present invention is a solid substance that is stable in air and is white at room temperature, and can be synthesized, for example, by reacting ammonium sulfate or ammonium chloride with sodium borohydride.

本発明の方法で用いる酸としては、pH2以上の弱酸が好ましい。強酸を用いた場合には、有害な不純ガスであるジボラン(B)が生成する恐れがある。弱酸としては、クエン酸、リンゴ酸、酢酸、炭酸、シュウ酸、その他の有機酸等を挙げることができ、アンモニアの生成をより抑制でき、水素をより効率的に生成できることから、クエン酸が好ましい。なお、本発明の方法で用いる弱酸のpHは、25℃の飽和水溶液で測定した値をいう。 As the acid used in the method of the present invention, a weak acid having a pH of 2 or higher is preferable. When a strong acid is used, diborane (B 2 H 6 ), which is a harmful impure gas, may be produced. Examples of the weak acid include citric acid, malic acid, acetic acid, carbonic acid, oxalic acid, and other organic acids, and citric acid is preferable because it can suppress the production of ammonia more efficiently and generate hydrogen more efficiently. .. The pH of the weak acid used in the method of the present invention refers to a value measured with a saturated aqueous solution at 25 ° C.

酸の配合量としては、水溶液のpHが7.0以下、さらには6.0以下になる量であることが好ましい。また、アンモニアボラン1モルに対する酸の配合量(酸/AB)としては、1.0モル以上であることが好ましく、1.2モル以上、さらには1.5モル以上であることが有効である。また、上限は特に制限されるものではないが、アンモニア放出量抑制の観点から、5.0モル以下であることが好ましく、4.0モル以下、さらには3.0モル以下であることが有効である。 The amount of the acid to be blended is preferably such that the pH of the aqueous solution is 7.0 or less, more preferably 6.0 or less. The amount of acid (acid / AB) to be blended with 1 mol of ammonia borane is preferably 1.0 mol or more, and more effectively 1.2 mol or more, and further 1.5 mol or more. .. The upper limit is not particularly limited, but from the viewpoint of suppressing the amount of ammonia released, it is preferably 5.0 mol or less, and more effectively 4.0 mol or less, and further 3.0 mol or less. Is.

本発明の水素生成方法における加水分解の方法は、水素が生成される態様であれば特に制限されるものではなく、例えば、(a)固体のアンモニアボラン及び固体の酸の混合物に対して水を添加する方法や、(b)固体のアンモニアボランと酸の水溶液を混合させる方法(この混合方法は、固体のアンモニアボランに酸の水溶液を添加する方法と、酸の水溶液に固体のアンモニアボランを添加する方法のように、混合の手順を逆にしても効果に違いは無い)や、(c)酸の水溶液とアンモニアボランの水溶液を混合させる方法(この混合方法は、アンモニアボランの水溶液に酸の水溶液を添加する方法と、酸の水溶液にアンモニアボランの水溶液を添加する方法のように、混合の手順を逆にしても効果に違いは無い)や、(d)アンモニアボランの水溶液と固体の酸を混合させる方法(この混合方法は、アンモニアボランの水溶液に固体の酸を添加する方法と、固体の酸にアンモニアボランの水溶液を添加する方法のように、混合の手順を逆にしても効果に違いは無い)が考えられる。特に、アンモニアの生成をより抑制でき、水素をより効率的に生成できる方法は、(b)、(c)、(d)であり、(d)が最もアンモニア放出量が少ない。 The method of hydrolysis in the hydrogen production method of the present invention is not particularly limited as long as it is a mode in which hydrogen is produced, and for example, (a) water is added to a mixture of solid ammonia borane and solid acid. A method of adding or (b) a method of mixing a solid ammonia borane with an acid aqueous solution (this mixing method is a method of adding an acid aqueous solution to a solid ammonia borane and a method of adding a solid ammonia borane to an acid aqueous solution. There is no difference in the effect even if the mixing procedure is reversed, as in the method of (c). There is no difference in the effect even if the mixing procedure is reversed, such as the method of adding an aqueous solution and the method of adding an aqueous solution of ammonia borane to an aqueous acid solution), and (d) an aqueous solution of ammonia borane and a solid acid. (This mixing method is effective even if the mixing procedure is reversed, such as the method of adding a solid acid to an aqueous solution of ammonia borane and the method of adding an aqueous solution of ammonia borane to a solid acid. There is no difference). In particular, the methods that can further suppress the production of ammonia and generate hydrogen more efficiently are (b), (c), and (d), and (d) has the smallest amount of ammonia released.

アンモニアボラン1モルに対する水の量(水/AB)としては、100モル以上であることが好ましく、200モル以上、さらには300モル以上であることが有効である。また、上限は特に制限されるものではないが、水素生成の重量密度・体積密度の効率の観点から、1500モル以下であることが好ましく、さらには1000モル以下であることが有効である。このような水分量の条件で、アンモニアの生成を有効に抑制することができる。 The amount of water (water / AB) with respect to 1 mol of ammonia borane is preferably 100 mol or more, and more effectively 200 mol or more, and further 300 mol or more. The upper limit is not particularly limited, but is preferably 1500 mol or less, and more preferably 1000 mol or less, from the viewpoint of efficiency of weight density and volume density of hydrogen generation. Under such a water content condition, the production of ammonia can be effectively suppressed.

本発明の加水分解は、常温下、加熱下、冷却下のいずれで行うこともできる。なお、常温とは、特別な加熱や冷却をしていない状況での温度をいう。 The hydrolysis of the present invention can be carried out at room temperature, heating, or cooling. The normal temperature refers to the temperature in a situation where no special heating or cooling is performed.

[試料の準備]
(アンモニアボラン)
アンモニアボラン(AB)として、シグマアルドリッチ製のボラン-アンモニア錯体(純度97%)を用いた。
(酸)
酸としては、クエン酸-水和物(以下、単にクエン酸という)を用いた。
[Preparation of sample]
(Ammonia borane)
As the ammonia borane (AB), a borane-ammonia complex (purity 97%) manufactured by Sigma-Aldrich was used.
(acid)
As the acid, citric acid-hydrate (hereinafter, simply referred to as citric acid) was used.

[実施例1]
固体のアンモニアボランと固体のクエン酸の混合物に対して水を供給し、アンモニアボランの加水分解を行った。具体的な操作は、以下のとおりである。
[Example 1]
Water was supplied to a mixture of solid ammonia borane and solid citric acid to hydrolyze ammonia borane. The specific operation is as follows.

T字型(三又)のニップルを用いて、台に立設させた枝付き試験管、及びスタンドに水平に固定したシリンジを連結し、さらにガス濃度を測定するパッシブドジチューブを連結した。クエン酸を必要量量り取り、枝付き試験管の中に加え、そこに同じく必要量量り取ったアンモニアボランを加え、枝付き試験管にキャップで蓋をした。また、シリンジには蒸留水を充填した。シリンジを操作して、クエン酸とアンモニアボランの入った枝付き試験管に蒸留水を必要量加え、1時間又は2時間放置した後パッシブドジチューブの変色を読み取った。 Using a T-shaped (three-pronged) nipple, a test tube with branches erected on a table and a syringe fixed horizontally on the stand were connected, and a passive dodge tube for measuring gas concentration was connected. The required amount of citric acid was weighed and added into a branched test tube, the same required amount of ammonia borane was added thereto, and the branched test tube was covered with a cap. The syringe was filled with distilled water. By operating the syringe, a required amount of distilled water was added to a test tube with a branch containing citric acid and ammonia borane, and the mixture was left for 1 or 2 hours, and then the discoloration of the passive doditube was read.

その結果を表1に示す。なお、実施例1A及び1Bは放置時間が1時間であり、実施例1Cは1時間の時点で検出限界以下であったため、放置時間が2時間であった。 The results are shown in Table 1. In Examples 1A and 1B, the leaving time was 1 hour, and in Example 1C, it was below the detection limit at the time of 1 hour, so that the leaving time was 2 hours.

Figure 2022105446000002
Figure 2022105446000002

表1に示すように、水素中のアンモニア量は0.5ppm以下と微量であり、水素の放出率(生成率)も高い値を示した。特に、アンモニアボランに対するクエン酸の配合量(クエン酸/AB)が1.5モル以上の場合、アンモニアの生成が効果的に抑制された。 As shown in Table 1, the amount of ammonia in hydrogen was as small as 0.5 ppm or less, and the hydrogen release rate (production rate) was also high. In particular, when the blending amount of citric acid (citric acid / AB) with respect to ammonia borane was 1.5 mol or more, the production of ammonia was effectively suppressed.

[実施例2]
クエン酸水溶液とアンモニアボラン水溶液を混合させてアンモニアボランの加水分解を行った。また、アンモニアボランの加水分解により生成した水素を用いて実機(燃料電池)を運転した。具体的な操作は、以下のとおりである。
アンモニアボラン0.5gを1mLの蒸留水に溶解すると共に、クエン酸6gを19mLの蒸留水に溶解した。クエン酸水溶液にアンモニアボラン水溶液を滴下することで両者を混合して(AB:クエン酸=約1:2(モル比))、アンモニアボランの加水分解を行った。混合後、約1秒のインターバルがあり、その後激しく水素を放出した。
[Example 2]
Ammonia borane was hydrolyzed by mixing an aqueous solution of citric acid and an aqueous solution of ammonia borane. In addition, the actual machine (fuel cell) was operated using hydrogen generated by the hydrolysis of ammonia borane. The specific operation is as follows.
0.5 g of ammonia borane was dissolved in 1 mL of distilled water, and 6 g of citric acid was dissolved in 19 mL of distilled water. Ammonia borane was hydrolyzed by adding an aqueous solution of ammonia borane to the aqueous solution of citric acid to mix the two (AB: citric acid = about 1: 2 (molar ratio)). After mixing, there was an interval of about 1 second, after which hydrogen was violently released.

生成した水素中のアンモニア濃度を0.1pmが下限値の検知管で検出したところ、検出限界以下であり、生成した水素中にはアンモニアがほぼ含まれていないことが確認できた。 When the concentration of ammonia in the produced hydrogen was detected by a detector tube having a lower limit of 0.1 pm, it was below the detection limit, and it was confirmed that the produced hydrogen contained almost no ammonia.

また、アンモニアボランの加水分解により生成した水素を用いて実機(燃料電池)を運転したところ、1W程度の出力が得られた。 Further, when the actual machine (fuel cell) was operated using hydrogen generated by the hydrolysis of ammonia borane, an output of about 1 W was obtained.

[実施例3]
(a)アンモニアボランとクエン酸の混合粉に水を添加する方法、(b)固体のアンモニアボランにクエン酸溶液を添加する方法、(c)クエン酸溶液にアンモニアボラン溶液を添加する方法、及び(d)固体のクエン酸にアンモニアボラン溶液を添加する方法について、アンモニアの生成抑制効果を比較した。
アンモニアボラン約0.02gとクエン酸約0.2gと所定量の水(水/AB≒100(モル比))を用いて試験管中で1時間反応させ、パッシブドジチューブを用いてアンモニアの測定を行った。その結果を表2に示す。
また、方法(a)~(d)について、水素発生量を測定した。その結果を図1~4に示す。
[Example 3]
(A) A method of adding water to a mixed powder of ammonia borane and citric acid, (b) a method of adding a citric acid solution to a solid ammonia borane, (c) a method of adding an ammonia borane solution to a citric acid solution, and (D) Regarding the method of adding the ammonia borane solution to the solid citric acid, the effect of suppressing the production of ammonia was compared.
Ammonia borane (about 0.02 g), citric acid (about 0.2 g) and a predetermined amount of water (water / AB≈100 (molar ratio)) were reacted in a test tube for 1 hour, and ammonia was measured using a passive dodge tube. Was done. The results are shown in Table 2.
In addition, the amount of hydrogen generated was measured for the methods (a) to (d). The results are shown in FIGS. 1 to 4.

Figure 2022105446000003
Figure 2022105446000003

表2に示すように、方法(a)と比べ、方法(b)~(d)は、アンモニアの生成を抑制できることが確認された。特に、方法(d)は、アンモニアの生成を極めて効果的に抑制することができた。 As shown in Table 2, it was confirmed that the methods (b) to (d) can suppress the production of ammonia as compared with the method (a). In particular, method (d) was able to suppress the production of ammonia extremely effectively.

また、図1~4に示すように、方法(a)~(d)では、アンモニアの抑制と共に、効率的に水素を生成できることが確認された。 Further, as shown in FIGS. 1 to 4, it was confirmed that the methods (a) to (d) can efficiently generate hydrogen while suppressing ammonia.

本発明の水素生成方法は、アンモニアの生成を抑えつつ、効率的に水素を生成することができるものであって、ポータブル燃料電池充電器や燃料電池車など分散型電源への応用が期待されるものであり、産業上有用である。

The hydrogen generation method of the present invention can efficiently generate hydrogen while suppressing the production of ammonia, and is expected to be applied to distributed power sources such as portable fuel cell chargers and fuel cell vehicles. It is industrially useful.

Claims (6)

酸の存在下、水中でアンモニアボランを加水分解することを特徴とする水素生成方法。 A hydrogen production method characterized by hydrolyzing ammonia borane in water in the presence of an acid. 酸が、pH2以上の弱酸であることを特徴とする請求項1記載の水素生成方法。 The hydrogen production method according to claim 1, wherein the acid is a weak acid having a pH of 2 or higher. 酸が、クエン酸であることを特徴とする請求項1又は2記載の水素生成方法。 The hydrogen production method according to claim 1 or 2, wherein the acid is citric acid. アンモニアボラン1モルに対して、酸を1.0モル以上用いることを特徴とする請求項1~3のいずれか記載の水素生成方法。 The hydrogen production method according to any one of claims 1 to 3, wherein 1.0 mol or more of an acid is used with respect to 1 mol of ammonia borane. アンモニアボラン1モルに対して、水を100モル以上用いることを特徴とする請求項1~4のいずれか記載の水素生成方法。 The hydrogen generation method according to any one of claims 1 to 4, wherein 100 mol or more of water is used for 1 mol of ammonia borane. 生成した水素中のアンモニア量が1ppm以下であることを特徴とする請求項1~5のいずれか記載の水素生成方法。

The hydrogen production method according to any one of claims 1 to 5, wherein the amount of ammonia in the produced hydrogen is 1 ppm or less.

JP2021000259A 2021-01-04 2021-01-04 Hydrogen production method Pending JP2022105446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021000259A JP2022105446A (en) 2021-01-04 2021-01-04 Hydrogen production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021000259A JP2022105446A (en) 2021-01-04 2021-01-04 Hydrogen production method

Publications (1)

Publication Number Publication Date
JP2022105446A true JP2022105446A (en) 2022-07-14

Family

ID=82362602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021000259A Pending JP2022105446A (en) 2021-01-04 2021-01-04 Hydrogen production method

Country Status (1)

Country Link
JP (1) JP2022105446A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023115697A1 (en) 2022-06-30 2024-01-04 The Japan Steel Works, Ltd. Injection molding system and control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023115697A1 (en) 2022-06-30 2024-01-04 The Japan Steel Works, Ltd. Injection molding system and control device

Similar Documents

Publication Publication Date Title
Zhang et al. Review on ammonia absorption materials: metal hydrides, halides, and borohydrides
US10618807B2 (en) Method for storage and release of hydrogen
US8152988B2 (en) Electrochemical process for the preparation of nitrogen fertilizers
US20200385878A1 (en) Copper nanocatalyst, method for preparing the same, and application of the same in the synthesis of acetate or ammonia
JP4572384B2 (en) Hydrogen generation method
EP2250149B1 (en) Method for the production of arginine bicarbonate
JP2010138062A (en) Method for generation of hydrogen gas
JP6573494B2 (en) Composition for ammonia synthesis catalyst, method for producing the same, and method for synthesizing ammonia
JP2022105446A (en) Hydrogen production method
US9035093B2 (en) Methods for production of high concentration of arginine bicarbonate solution at high pressure
CN104861967A (en) Preparation method and application of nitrogen-doped graphene quantum dots
AU2012317171B2 (en) A process for generation of hydrogen and syngas
KR101938333B1 (en) Preparation method of cubic platinum nanoparticles for ammonia oxidtion
CN108530318B (en) Method for synthesizing adiponitrile
CN102139910A (en) Method for preparing dandelion-shaped copper oxide hollow micrometer balls
CN114016076B (en) Nickel-based metal organic framework material and application thereof in electrocatalytic methanol oxidation
CN202558637U (en) Novel lithium hexafluorophosphate production device
JP7017236B2 (en) Hydrogen generation method
CN108160085B (en) Preparation method of silicon-based nano-selenium
US7968078B2 (en) Method of producing hydrogen using amino acids
CN106732697A (en) Phosphatization rhodium base optic catalytic material and its synthetic method
JP2012001419A (en) Method for producing ammonia borane
JP2023127021A (en) Method for synthesizing ammonia borane
CN107459018B (en) Aluminum-based composite hydrogen production agent, preparation method and application thereof
RU2348603C1 (en) Method of obtaining polyhydro[60]fullerenes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240607