JP7017236B2 - Hydrogen generation method - Google Patents

Hydrogen generation method Download PDF

Info

Publication number
JP7017236B2
JP7017236B2 JP2018083551A JP2018083551A JP7017236B2 JP 7017236 B2 JP7017236 B2 JP 7017236B2 JP 2018083551 A JP2018083551 A JP 2018083551A JP 2018083551 A JP2018083551 A JP 2018083551A JP 7017236 B2 JP7017236 B2 JP 7017236B2
Authority
JP
Japan
Prior art keywords
hydrogen
ionic liquid
borane
bmimcl
lih
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018083551A
Other languages
Japanese (ja)
Other versions
JP2018184340A (en
Inventor
鉄水 中川
頌 佐次田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of the Ryukyus
Original Assignee
University of the Ryukyus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of the Ryukyus filed Critical University of the Ryukyus
Publication of JP2018184340A publication Critical patent/JP2018184340A/en
Application granted granted Critical
Publication of JP7017236B2 publication Critical patent/JP7017236B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

特許法第30条第2項適用 1.学会での発表要旨が収録されたCD-ROMが頒布されたことによる公開 学会名:日本金属学会「2018年春季(第162回)講演大会」頒布日:平成30年3月5日 2.学会での発表(オーラル発表)による公開 学会名:日本金属学会「2018年春季(第162回)講演大会」公開日:平成30年3月21日 開催日:平成30年3月19~21日Application of Article 30, Paragraph 2 of the Patent Law 1. Published by the distribution of the CD-ROM containing the abstracts of the presentations at the conference Society name: Japan Institute of Metals "Spring 2018 (162nd) Lecture Meeting" Distribution date: March 5, 2018 2. Publication by presentation (oral presentation) at the conference Name: Japan Institute of Metals "Spring 2018 (162nd) Lecture Meeting" Release date: March 21, 2018 Date: March 19-21, 2018

本発明は、水素貯蔵材料であるアンモニアボランを用いた水素の生成方法に関する。 The present invention relates to a method for producing hydrogen using ammonia borane, which is a hydrogen storage material.

市販されている燃料電池車の燃料タンクには高圧水素が採用されているが、未だにコストや水素密度に課題を有する。高密度な水素貯蔵方法として、水素貯蔵材料が期待されており、その中でもアンモニアボラン(AB:NH3BH3)は、重量水素密度が非常に高く、注目されている。 High-pressure hydrogen is used in the fuel tanks of commercially available fuel cell vehicles, but there are still problems with cost and hydrogen density. As a high-density hydrogen storage method, a hydrogen storage material is expected, and among them, ammonia borane (AB: NH 3 BH 3 ) has a very high weight hydrogen density and is attracting attention.

しかしながら、このアンモニアボランは、熱分解時の多段階反応により水素生成速度が遅く、水素生成に伴い、アンモニア(NH3)、ジボラン(B26)、ボラジン(B336)などの人体や燃料電池に有害な不純ガス放出するという問題がある。 However, this ammonia borane has a slow hydrogen production rate due to the multi-step reaction during thermal decomposition, and with hydrogen production, ammonia (NH 3 ), diborane (B 2 H 6 ), borazine (B 3 N 3 H 6 ), etc. There is a problem of releasing impure gas that is harmful to the human body and fuel cells.

この改善策として、アンモニアボラン中の水素原子一個が金属原子に置換されたイオン結晶の金属アミドボラン(MAB:MNH2BH3)の熱分解や、アンモニアボランとイオン液体(IL)との混合が報告されており(非特許文献1及び2)、これらの方法によれば、不純物の抑制や反応速度の改善はある程度達成されている。 As a remedy for this, thermal decomposition of metal amide borane (MAB: MNH 2 BH 3 ) in ionic crystals in which one hydrogen atom in ammonia borane is replaced with a metal atom, and mixing of ammonia borane and ionic liquid (IL) have been reported. (Non-Patent Documents 1 and 2), and according to these methods, suppression of impurities and improvement of reaction rate have been achieved to some extent.

Wu, H., Zhou, W., Yildirim, T., (2008). Alkali and Alkaline-Earth Metal Amidoboranes: Structure, Crystal Chemistry, and Hydrogen Storage Properties, Journal of the American Chemical Society.130, 14834-14839Wu, H., Zhou, W., Yildirim, T., (2008). Alkali and Alkaline-Earth Metal Amidoboranes: Structure, Crystal Chemistry, and Hydrogen Storage Properties, Journal of the American Chemical Society.130, 14834-14839 Himmelberger, D.W., Alden, L.R., Bluhm, M.E., et al. (2009). Ammonia Borane Hydrogen Release in Ionic Liquids, Inorganic Chemistry.48, 9883-9889Himmelberger, D.W., Alden, L.R., Bluhm, M.E., et al. (2009). Ammonia Borane Hydrogen Release in Ionic Liquids, Inorganic Chemistry.48, 9883-9889

しかしながら、上記の方法は、いずれも水素生成速度や生成量が不十分であるという課題が依然として残っている。また、燃料電池車へ適用するためには、燃料電池の排熱温度60℃以下まで水素生成温度を低下させる必要があるが、短時間で水素を得ようとすると、90℃以上の温度が必要であるという課題がある。 However, all of the above methods still have the problem that the hydrogen production rate and the amount of hydrogen production are insufficient. Further, in order to apply it to a fuel cell vehicle, it is necessary to lower the hydrogen generation temperature to a fuel cell exhaust heat temperature of 60 ° C. or lower, but if hydrogen is to be obtained in a short time, a temperature of 90 ° C. or higher is required. There is a problem that it is.

本発明は、上記課題に鑑みてなされたものであり、本発明の課題は、水素貯蔵材料であるアンモニアボランを用いて、低温で効率的に水素を生成する方法を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for efficiently producing hydrogen at a low temperature by using ammonia borane which is a hydrogen storage material.

本発明者は、アンモニアボランを用いた水素生成について研究する中で、金属水素化物とアンモニアボランとイオン液体と混合することにより、非加熱であっても効率的に水素を生成(放出)できることを見いだし、本発明を完成するに至った。 In the study of hydrogen generation using ammonia borane, the present inventor found that hydrogen can be efficiently generated (released) even without heating by mixing a metal hydride, ammonia borane, and an ionic liquid. I found it and came to complete the present invention.

すなわち、本発明は、以下のとおりのものである。
[1]金属水素化物とアンモニアボランとイオン液体とを混合することを特徴とする水素生成方法。
[2]90℃以下で混合することを特徴とする[1]記載の水素生成方法。 [3]非加熱で混合することを特徴とする[2]記載の水素生成方法。
[4]混合するイオン液体が、固体であることを特徴とする[1]~[3]のいずれか記載の水素生成方法。
[5]イオン液体が、イミダゾリウム系イオン液体であることを特徴とする[1]~[4]のいずれかに記載の水素生成方法。
[6]金属水素化物の金属が、第1族に属する金属であることを特徴とする[1]~[5]のいずれか記載の水素生成方法。
That is, the present invention is as follows.
[1] A hydrogen generation method characterized by mixing a metal hydride, ammonia borane, and an ionic liquid.
[2] The hydrogen generation method according to [1], which comprises mixing at 90 ° C. or lower. [3] The hydrogen generation method according to [2], which comprises mixing without heating.
[4] The hydrogen generation method according to any one of [1] to [3], wherein the ionic liquid to be mixed is a solid.
[5] The hydrogen generation method according to any one of [1] to [4], wherein the ionic liquid is an imidazolium-based ionic liquid.
[6] The hydrogen generation method according to any one of [1] to [5], wherein the metal of the metal hydride is a metal belonging to Group 1.

本発明の水素生成方法は、低温であっても効率的に水素を生成することができる。 The hydrogen generation method of the present invention can efficiently generate hydrogen even at a low temperature.

本発明の方法の予想される反応モデル及びイオン液体の役割を説明する図である。It is a figure explaining the expected reaction model and the role of an ionic liquid of the method of this invention. 本発明の方法に用いることが可能なイオン液体を構成する陽イオン及び陰イオンの例を示す図である。It is a figure which shows the example of the cation and the anion which make up an ionic liquid which can be used in the method of this invention. 本発明の実施例における試験の概念図である。It is a conceptual diagram of the test in the Example of this invention. 本発明の方法(90℃)の水素生成特性を示す図である。It is a figure which shows the hydrogen generation property of the method (90 degreeC) of this invention. 本発明の方法(室温)の水素生成特性を示す図である。It is a figure which shows the hydrogen generation characteristic of the method (room temperature) of this invention. 本発明の実施例2-1の生成物のX線回折(XRD)プロファイルである。It is an X-ray diffraction (XRD) profile of the product of Example 2-1 of this invention. 各種イオン液体を用いた本発明の方法(室温)の水素生成特性を示す図である。It is a figure which shows the hydrogen generation property of the method (room temperature) of this invention using various ionic liquids. 各種金属水素化物を用いた本発明の方法(室温)の水素生成特性を示す図である。It is a figure which shows the hydrogen generation property of the method (room temperature) of this invention using various metal hydrides. 本発明の方法の温度に対する水素生成特性を示す図である。It is a figure which shows the hydrogen generation characteristic with respect to the temperature of the method of this invention. 本発明の方法の金属水素化物(LiH)比率に対する水素生成特性を示す図である。It is a figure which shows the hydrogen generation property with respect to the metal hydride (LiH) ratio of the method of this invention. 本発明の方法のイオン液体(bmimCl)比率に対する水素生成特性を示す図である。It is a figure which shows the hydrogen generation property with respect to the ionic liquid (bmimCl) ratio of the method of this invention. 本発明の方法(60℃)の水素生成特性を示す図である。It is a figure which shows the hydrogen generation characteristic of the method (60 degreeC) of this invention.

本発明の水素生成方法(水素製造方法)は、金属水素化物とアンモニアボランとイオン液体とを混合することを特徴とする。すなわち、本発明の方法は、金属水素化物、アンモニアボラン及びイオン液体の少なくとも3種を原料として用い、これを混合することによって水素を生成する方法である。 The hydrogen production method (hydrogen production method) of the present invention is characterized by mixing a metal hydride, ammonia borane, and an ionic liquid. That is, the method of the present invention is a method of producing hydrogen by using at least three kinds of metal hydride, ammonia borane and ionic liquid as raw materials and mixing them.

本発明の方法では、以下の過程を経て効果的に水素が生成されると考えられる。なお、以下のメカニズムは、現段階で本発明者が推測しているものであり、本発明の権利範囲をなんら制限するものではない。
(1)アンモニアボラン(AB)とイオン液体(IL)の共晶融解
(2)金属水素化物(MH)とアンモニアボラン(AB)との反応による金属アミドボラン(MAB)の生成
(3)金属アミドボラン(MAB)とイオン液体(IL)のイオン交換によるイオン液体アミドボラン[IL+][NH2BH3 -](ILAB)の生成
(4)イオン液体アミドボラン(ILAB)及び金属アミドボラン(MAB)の分解
In the method of the present invention, it is considered that hydrogen is effectively generated through the following process. The following mechanism is presumed by the present inventor at this stage, and does not limit the scope of rights of the present invention at all.
(1) Co-crystal melting of ammonia borane (AB) and ionic liquid (IL) (2) Formation of metal amide borane (MAB) by reaction between metal hydride (MH) and ammonia borane (AB) (3) Metal amide borane (3) Generation of ionic liquid amide borane [IL + ] [NH 2 BH 3- ] (ILAB) by ion exchange between MAB) and ionic liquid (IL) (4) Decomposition of ionic liquid amide borane (ILAB) and metal amide borane (MAB)

本発明の方法では、イオン液体(IL)が、(2)の過程における溶媒の役割、(3)の過程における反応体の役割、(4)の過程における水素生成体及び触媒の役割を果たしていると考えられる(図1参照)。 In the method of the present invention, the ionic liquid (IL) plays the role of a solvent in the process of (2), the role of a reactant in the process of (3), and the role of a hydrogen generator and a catalyst in the process of (4). (See Fig. 1).

本発明の水素生成方法は、低温であっても効率的に水素を生成することができる。また、本発明の方法は、溶媒を用いることなく、混合という簡易な操作で水素を生成することができる。さらに、原料として、すべて常温で固体のものを用いることができるので、原料の取扱いや保存が容易である。 The hydrogen generation method of the present invention can efficiently generate hydrogen even at a low temperature. Further, the method of the present invention can generate hydrogen by a simple operation of mixing without using a solvent. Further, since all the raw materials can be solid at room temperature, the raw materials can be easily handled and stored.

本発明の方法で用いる金属水素化物の金属としては、第1族に属する金属を挙げることができ、具体的には、Li、Na、K等を挙げることができる。 Examples of the metal of the metal hydride used in the method of the present invention include metals belonging to Group 1, and specific examples thereof include Li, Na, and K.

また、本発明の方法で用いるアンモニアボランは、空気中で安定な常温で白色の固体の物質であり、例えば、硫酸アンモニウムや塩化アンモニウムと、水素化ホウ素ナトリウムを反応させて合成することができる。 Ammonia borane used in the method of the present invention is a solid substance that is stable in the air and is white at room temperature, and can be synthesized, for example, by reacting ammonium sulfate or ammonium chloride with sodium borohydride.

本発明の方法で用いるイオン液体としては、融点が100℃以下でイオン性を有するものであれば特に制限されるものではなく、融点が60℃以上のものが好ましい。これにより、比較的低温の条件下で、固体として取り扱え、反応に供することができる。 The ionic liquid used in the method of the present invention is not particularly limited as long as it has a melting point of 100 ° C. or lower and has ionicity, and a liquid having a melting point of 60 ° C. or higher is preferable. As a result, it can be treated as a solid and subjected to a reaction under relatively low temperature conditions.

イオン液体の陽イオンとしては、イミダゾリウム系、ホスホニウム系、ピロリジニウム系、スルホニウム系、ピリジニウム系、アンモニウム系の陽イオンを挙げることができ(図2参照)、これらの中でも、イミダゾリウム系の陽イオンが好ましい。イミダゾリウム系陽イオンとしては、具体的に下記一般式で表されるものを例示することができる。 Examples of the cations in the ionic liquid include imidazolium-based, phosphonium-based, pyrrolidinium-based, sulfonium-based, pyridinium-based, and ammonium-based cations (see Fig. 2). Among these, imidazolium-based cations. Is preferable. Specific examples of the imidazolium-based cation include those represented by the following general formula.

Figure 0007017236000001
Figure 0007017236000001

上記一般式において、R1~R3は、それぞれアルキル基又は水素原子を表し、R2が水素原子であり、R1及びR3がアルキル基であることが好ましい。アルキル基としては、直鎖アルキル基であることが好ましく、また、炭素数1~6の低級アルキル基であることが好ましい。また、イミダゾリウム系以外の陽イオンのN、P、S等の陽イオン元素と結合する基としては、上記R1~R3と同様の基を挙げることができ、少なくとも1つの基は水素原子であることが好ましい。 In the above general formula, it is preferable that R 1 to R 3 represent an alkyl group or a hydrogen atom, respectively, R 2 is a hydrogen atom, and R 1 and R 3 are an alkyl group. As the alkyl group, a linear alkyl group is preferable, and a lower alkyl group having 1 to 6 carbon atoms is preferable. Examples of the group that bonds to a cation element such as N, P, S of a cation other than the imidazolium system include the same groups as those of R 1 to R 3 above, and at least one group is a hydrogen atom. Is preferable.

イオン液体の陰イオンとしては、ハロゲン系、NTF2系(Bis(trifluoromethyl-sulfonyl)imide)、テトラフルオロボレート系、OTf系(Trifluoromethane-sulfonate triflate)、ヘキサフルオロホスホネート系、N(CN)2系(dicyanamide)の陰イオンを挙げることができ(図2参照)、これらの中でも、融点が60 ℃以上となるハロゲン系の陰イオンが好ましく、特に塩化物イオン(Cl-)、臭化物イオン(Br-)が好ましい。 As anions of ionic liquids, halogen-based, NTF 2 -based (Bis (trifluoromethyl-sulfonyl) imide), tetrafluoroborate-based, OTf-based (Trifluoromethane-sulfonate triflate), hexafluorophosphonate-based, N (CN) 2 -based ( Anions of dicyanamide) can be mentioned (see FIG. 2), and among these, halogen-based anions having a melting point of 60 ° C. or higher are preferable, and chloride ions ( Cl- ) and bromide ions (Br- ) are particularly preferable. Is preferable.

本発明の方法で用いるイオン液体としては、上記例示した陽イオン及び陰イオン等を適宜組み合わせて使用することができ、特に金属水素化物とアンモニアボランの反応を促進させるものを選択することが好ましい。例えば、イミダゾリウムクロリド系イオン液体が好適である。 As the ionic liquid used in the method of the present invention, the above-exemplified cations and anions can be appropriately combined and used, and it is particularly preferable to select one that promotes the reaction between the metal hydride and ammonia borane. For example, an imidazolium chloride-based ionic liquid is suitable.

本発明の水素生成方法における原料の混合方法は、3種の原料が均一に混合される態様であれば特に制限されるものではなく、例えば、(a)3種を同時に混合する方法や、(b)金属水素化物及びアンモニアボランの混合物とイオン液体とを混合する方法や、(c)アンモニアボラン及びイオン液体の混合物と金属水素化物とを混合する方法や、(d)金属水素化物及びイオン液体の混合物とアンモニアボランとを混合する方法を挙げることができる。 The method of mixing the raw materials in the hydrogen generation method of the present invention is not particularly limited as long as the three kinds of raw materials are uniformly mixed, and for example, (a) a method of mixing the three kinds at the same time or ( b) A method of mixing a mixture of metal hydride and ammonia borane with an ionic liquid, (c) a method of mixing a mixture of ammonia borane and ionic liquid with a metal hydride, and (d) a method of mixing metal hydride and ionic liquid. A method of mixing the mixture of hydrogen borane and ammonia borane can be mentioned.

これらの中でも、より効率的に水素を生成することができる点から、(a)3種を同時に混合する方法、及び(b)金属水素化物及びアンモニアボランの混合物とイオン液体とを混合する方法が好ましく、(a)3種を同時に混合する方法が特に好ましい。 Among these, from the viewpoint of being able to generate hydrogen more efficiently, (a) a method of mixing three kinds at the same time, and (b) a method of mixing a mixture of a metal hydride and ammonia borane and an ionic liquid are methods. Preferably, (a) a method of mixing the three types at the same time is particularly preferable.

また、本発明の水素生成方法における原料の混合は非加熱で行うことができ、常温であることが好ましいが、必要に応じて冷却して行うことも可能である。なお、常温とは、特別な加熱や冷却をしていない状況での温度をいう。また、反応を促進させるために、原料の混合は加熱下で行ってもよく、加熱温度としては、90℃以下であることが好ましく、60℃以下であることがより好ましい。90℃を超える温度にしても反応が促進効果は低く、また、60℃以下で混合を行うことにより、固体高分子型燃料電池車等への適用が可能となる。 Further, the raw materials in the hydrogen generation method of the present invention can be mixed without heating, preferably at room temperature, but can also be cooled if necessary. The normal temperature refers to the temperature in a situation where no special heating or cooling is performed. Further, in order to promote the reaction, the raw materials may be mixed under heating, and the heating temperature is preferably 90 ° C. or lower, more preferably 60 ° C. or lower. The reaction promoting effect is low even at a temperature exceeding 90 ° C., and by mixing at 60 ° C. or lower, it can be applied to a polymer electrolyte fuel cell vehicle or the like.

各原料の混合割合としては、金属水素化物とアンモニアボランとの混合割合(モル比)が、0.8~3.0:1であることが好ましく、0.9~2.5:1であることがより好ましく、1.0~1.5:1であることがさらに好ましい。また、アンモニアボランとイオン液体との混合割合(モル比)が、1.0~30.0:1であることが好ましく、2.0~20.0:1であることがより好ましく、4.0~20.0:1であることがさらに好ましく、7.0~10.0:1であることが特に好ましい。さらに、金属水素化物とアンモニアボランとイオン液体との混合割合[LiH:AB:IL](モル比)としては、4.0~20.0:4.0~20.0:1であることが好ましく、7.0~10.0:7.0~10.0:1であることがより好ましい。 As the mixing ratio of each raw material, the mixing ratio (molar ratio) of the metal hydride and ammonia borane is preferably 0.8 to 3.0: 1, preferably 0.9 to 2.5: 1. It is more preferably 1.0 to 1.5: 1, and even more preferably 1.0 to 1.5: 1. Further, the mixing ratio (molar ratio) of the ammonia borane and the ionic liquid is preferably 1.0 to 30.0: 1, more preferably 2.0 to 20.0: 1. It is more preferably 0 to 20.0: 1, and particularly preferably 7.0 to 10.0: 1. Further, the mixing ratio [LiH: AB: IL] (molar ratio) of the metal hydride, ammonia borane, and ionic liquid may be 4.0 to 20.0: 4.0 to 20.0: 1. It is preferably 7.0 to 10.0: 7.0 to 10.0: 1, more preferably 7.0 to 10.0: 7.0 to 10.0: 1.

[試料の準備]
(アンモニアボラン)
アンモニアボラン(AB)として、シグマアルドリッチ製のボラン-アンモニア錯体(純度97%)を用いた。
(金属水素化物)
金属水素化物としては、水素化リチウム、水素化ナトリウム、及び水素化カリウム(いずれもシグマアルドリッチ製)を用いた。
[Preparation of sample]
(Ammonia borane)
As the ammonia borane (AB), a borane-ammonia complex (purity 97%) manufactured by Sigma-Aldrich was used.
(Metal hydride)
As the metal hydride, lithium hydride, sodium hydride, and potassium hydride (all manufactured by Sigma Aldrich) were used.

(イオン液体)
イオン液体(IL)としては、以下の4種のイミダゾリウム系塩化物塩を用いた。
(1)EmimCl(1-ethyl-3-methylimidazolium Chloride):サーモフィッシャーサイエンティフィック製 Acros Organics、純度97%
(2)BmimCl(1-butyl-3-methylimidazolium Chloride):東京化成製、純度>98.0%
(3)mmmimCl(1,2,3-trimethylimidazolium Chloride):本件発明者が合成
(4)BmmimCl(1-butyl-2,3-dimethylimidazolium Chloride):サーモフィッシャーサイエンティフィック製 Acros Organics、純度不明
(Ionic liquid)
As the ionic liquid (IL), the following four kinds of imidazolium chloride salts were used.
(1) EmimCl (1-ethyl-3-methylimidazolium Chloride): Acros Organics manufactured by Thermo Fisher Scientific, purity 97%
(2) BmimCl (1-butyl-3-methylimidazolium Chloride): manufactured by Tokyo Kasei, purity> 98.0%
(3) mmmmCl (1,2,3-trimethylimidazolium Chloride): Synthesized by the present inventor (4) BmmimCl (1-butyl-2,3-dimethylimidazolium Chloride): Thermo Fisher Scientific Acros Organics, purity unknown

Figure 0007017236000002
Figure 0007017236000002

mmmimClは、クロロメタン-THF溶液(東京化成製、1mol/L)と1,2-ジメチルイミダゾール(東京化成製、純度>98%)を3~7日撹拌し、乾固することで高純度かつ低水分試料を得た。一方、購入したイオン液体は水に溶かし、活性炭(関東化学製)と共に1日撹拌し、ろ過により得られたろ液を乾固することで脱色した。
これらのイオン液体は、使用前に活性炭で不純物を除去して高純度化した後に脱水処理を行い、水分量が100ppm以下であることを確認した。
mmmimCl is highly pure by stirring a chloromethane-THF solution (manufactured by Tokyo Kasei, 1 mol / L) and 1,2-dimethylimidazole (manufactured by Tokyo Kasei, purity> 98%) for 3 to 7 days and drying to dryness. A low moisture sample was obtained. On the other hand, the purchased ionic liquid was dissolved in water, stirred with activated carbon (manufactured by Kanto Chemical Co., Inc.) for one day, and the filtrate obtained by filtration was dried and decolorized.
Before use, these ionic liquids were subjected to dehydration treatment after removing impurities with activated carbon to purify them, and it was confirmed that the water content was 100 ppm or less.

(金属アミドボラン)
比較例としての金属アミドボラン(MAB)は、リチウムアミドボラン(LiAB)を用いた。
リチウムアミドボランは、THF中で、水素化リチウムとアンモニアボランを2:1で1時間撹拌し、ろ過した後にろ液を乾固することで合成した。得られた試料は、NMRにより高純度(90%以上)であることを確認した。
(Metal amide borane)
As the metal amide borane (MAB) as a comparative example, lithium amide borane (LiAB) was used.
Lithium amide borane was synthesized by stirring lithium hydride and ammonia borane at a ratio of 2: 1 for 1 hour in THF, filtering the mixture, and then drying the filtrate. The obtained sample was confirmed to have high purity (90% or more) by NMR.

[実施例1]
本発明の実施例として、水素化リチウム(金属水素化物)とアンモニアボランとBmimCl(イオン液体)を用いて反応を行った。比較例として、リチウムアミドボランとBmimCl(イオン液体)を用いて反応を行った。具体的な操作は、以下のとおりである。試験の概念図を図3に示す。
[Example 1]
As an example of the present invention, a reaction was carried out using lithium hydride (metal hydride), ammonia borane and BmimCl (ionic liquid). As a comparative example, the reaction was carried out using lithium amide borane and BmimCl (ionic liquid). The specific operation is as follows. A conceptual diagram of the test is shown in FIG.

アルゴン又は窒素を充填することで酸素・水分を排除したグローブボックス内において、予め体積を求めた金属製容器に撹拌子とイオン液体としてのBmimClを入れた。容器を横にして、水素化リチウムとアンモニアボラン、もしくはリチウムアミドボランを試薬同士が接触しないように入れ、容器を密閉じた。
水素化リチウム、アンモニアボラン及びBmimClの混合割合(モル比)は、7:7:3であった。また、リチウムアミドボラン及びBmimClの混合割合(モル比)は、7:3であった。
In a glove box in which oxygen and water were removed by filling with argon or nitrogen, a stirrer and BmimCl as an ionic liquid were placed in a metal container whose volume was determined in advance. The container was laid on its side, and lithium hydride and ammonia borane or lithium amide borane were placed so that the reagents did not come into contact with each other, and the container was sealed.
The mixing ratio (molar ratio) of lithium hydride, ammonia borane and BmimCl was 7: 7: 3. The mixing ratio (molar ratio) of lithium amide borane and BmimCl was 7: 3.

その後、容器をそのまま傾けずにグローブボックスから出し、容器に圧力計を接続し、ガス置換装置(真空ポンプとガス導入ラインが接続された装置)を用いて試料が飛散しないようゆっくりと容器内を真空引きし、1気圧の窒素ガスで置換する作業を3回置換し、最終的に窒素圧1気圧とした。さらに、容器外壁に温度センサーをアルミテープで密着させ、圧力計と温度センサーを記録用ロガーに接続した。 After that, take the container out of the glove box without tilting it, connect a pressure gauge to the container, and use a gas replacement device (a device in which a vacuum pump and a gas introduction line are connected) to slowly move the inside of the container so that the sample does not scatter. The work of evacuating and substituting with 1 atm of nitrogen gas was replaced three times, and finally the nitrogen pressure was set to 1 atm. Furthermore, the temperature sensor was attached to the outer wall of the container with aluminum tape, and the pressure gauge and the temperature sensor were connected to the recording logger.

記録開始後、すぐに容器を倒立させ容器壁面に試料が残らないよう振動を与え試料を接触させ、スターラー上に設置した90℃に加熱したオイルバスに容器下部を浸しつつスターラーで撹拌しながら1日間ロガーで温度・圧力を測定した。測定後は、ヒーターを停止し、オイルの温度が室温に低下するまで待って容器を回収した。 Immediately after the start of recording, the container is turned upside down, vibrated so that no sample remains on the wall surface of the container, and the sample is brought into contact with the sample. The temperature and pressure were measured with a logger for a day. After the measurement, the heater was stopped, and the container was collected after waiting for the oil temperature to drop to room temperature.

測定後、ロガーで読み取った圧力変化と温度から、ジーベルツ法(PV=nRTを応用したガス定量法)を用いて生成(放出)された水素を定量した。 After the measurement, the hydrogen produced (released) was quantified using the Sieberts method (gas quantification method applying PV = nRT) from the pressure change and temperature read by the logger.

その結果を図4に示す。なお、図4では、反応開始から1時間までのグラフを示している。また、参考のため、リチウムアミドボラン(LiAB)の90℃における熱分解による水素生成の結果をあわせて示す。 The results are shown in FIG. Note that FIG. 4 shows a graph from the start of the reaction to 1 hour. For reference, the results of hydrogen production by thermal decomposition of lithium amide borane (LiAB) at 90 ° C. are also shown.

図4のように、本発明の実施例に係る方法(LiH-AB-BmimCl)においては、90℃・1時間で2.2当量の水素を生成することに成功した。24時間では、約2.3当量の水素が生成された。一方、比較例に係る方法(LiAB-BmimCl)では、90℃・1時間で1当量程度の水素生成量であり、本発明の実施例に係る方法が優れた方法であることがわかる。また、生成されたガスの組成をGC-MSにより分析したところ、アンモニア、ジボラン、ボラジンのような不純物ガスは検出されなかったため、高純度な水素を90℃でも放出することが明らかとなった。 As shown in FIG. 4, in the method according to the embodiment of the present invention (LiH-AB-BmimCl), 2.2 equivalents of hydrogen was successfully generated at 90 ° C. for 1 hour. At 24 hours, about 2.3 equivalents of hydrogen was produced. On the other hand, in the method according to the comparative example (LiAB-BimCl), the amount of hydrogen produced is about 1 equivalent at 90 ° C. for 1 hour, and it can be seen that the method according to the embodiment of the present invention is an excellent method. Moreover, when the composition of the produced gas was analyzed by GC-MS, it was clarified that high-purity hydrogen was released even at 90 ° C. because no impurity gas such as ammonia, diborane and borazine was detected.

[実施例2]
続いて、実施例1と同様にして、室温での水素生成(7日間)の確認評価を行った。本実施例では、オイルバスを用いることなく、容器をスターラー上に固定し内容物を撹拌しながら反応を行った。
なお、本実施例においては、実施例1のように原料3種を同時に混合する方法(実施例2-1)だけでなく、予めアンモニアボランとBmimClを混合して液状とした後に水素化リチウムを混合する方法(実施例2-2)についても評価した。
その結果を図5に示す。
[Example 2]
Subsequently, in the same manner as in Example 1, hydrogen generation (7 days) at room temperature was confirmed and evaluated. In this example, the reaction was carried out while the container was fixed on a stirrer and the contents were stirred without using an oil bath.
In this example, not only the method of simultaneously mixing three kinds of raw materials as in Example 1 (Example 2-1), but also ammonia borane and BmimCl are mixed in advance to make a liquid, and then lithium hydride is added. The mixing method (Example 2-2) was also evaluated.
The results are shown in FIG.

図5に示すように、本発明の実施例(2種)及び比較例の両者において、室温で水素を放出するという結果が得られた。比較例(LiAB-BmimCl)では7日間で、水素生成量は0.8当量であったが、本発明の実施例2-1(LiH-AB-BmimCl)における水素生成量は、比較例の2倍以上の約1.9当量であった。また、予めアンモニアボランとBmimClを混合した後に水素化リチウムを混合した実施例2-2(LiH-(AB-BmimCl))の水素生成量も約1.8当量であり、比較例の2倍以上の生成量であった。 As shown in FIG. 5, in both the examples (type 2) and the comparative example of the present invention, the results of releasing hydrogen at room temperature were obtained. In the comparative example (LiAB-BmimCl), the amount of hydrogen produced was 0.8 equivalent in 7 days, but the amount of hydrogen produced in Example 2-1 (LiH-AB-BmimCl) of the present invention was 2 of the comparative example. It was more than doubled to about 1.9 equivalents. In addition, the amount of hydrogen produced in Example 2-2 (LiH- (AB-BmimCl)), in which ammonia borane and BmimCl were mixed in advance and then lithium hydride was mixed, was about 1.8 equivalents, which was more than twice that of the comparative example. Was the amount produced.

なお、実施例2-2の場合、2段階で水素を放出し、試料を同時に混合した実施例2-2に比して少量であった。ただし、初期水素生成速度は逆の傾向となり、実施例2-2の方法の方が優れていた。 In the case of Example 2-2, the amount was smaller than that of Example 2-2 in which hydrogen was released in two steps and the samples were mixed at the same time. However, the initial hydrogen generation rate tended to be the opposite, and the method of Example 2-2 was superior.

また、水素放出反応のメカニズムを解明するべく、実施例2-1の分解生成物を粉末X線回折(XRD)により分析したところ、LiClとLiHのみが観測された(図6参照)。これは、LiABとBmimClとのイオン交換反応により、イオン液体を陽イオンとしたアミドボラン化合物[Bmin+][NH2BH3 -]が水素放出中に生成したことを示唆している。この化合物は、XRDでは観測されなかったこと、水素放出反応が1当量以上進んでいることから、水素貯蔵材料として機能し、水素放出反応が進行したことによって高分子化したものと考えられる。 Moreover, when the decomposition product of Example 2-1 was analyzed by powder X-ray diffraction (XRD) in order to elucidate the mechanism of the hydrogen release reaction, only LiCl and LiH were observed (see FIG. 6). This suggests that the ion exchange reaction between LiAB and BmimCl produced amidobolan compounds [Bmin + ] [NH 2 BH 3- ] in which the ionic liquid was a cation during hydrogen release. Since this compound was not observed in XRD and the hydrogen release reaction proceeded by 1 equivalent or more, it is considered that this compound functioned as a hydrogen storage material and was polymerized due to the progress of the hydrogen release reaction.

[実施例3]
続いて、実施例2においてイオン液体の種類を変更し、イオン液体の依存性について調査した。具体的に、bmimClに加えて、emimCl、bmmmimCl、mmimClを用いた実験を行った。その結果を図7に示す。
[Example 3]
Subsequently, in Example 2, the type of the ionic liquid was changed, and the dependence of the ionic liquid was investigated. Specifically, an experiment using emimCl, bmmimCl, and mmimCl in addition to bmimCl was performed. The results are shown in FIG.

図7に示すように、水素生成量(アンモニアボランに対する水素放出当量)は、mmmimCl<bmmimCl≪bmimCl<emimClとなり、bmimCl及びemimClの群と、bmmimCl及びmmmimClの群との間で、水素生成量に大きな差が見られた。すなわち、構造式のR2がアルキル基のものよりも、R2が水素原子の酸性度の高いイオン液体の方が好ましいという結果が得られた。 As shown in FIG. 7, the amount of hydrogen produced (equivalent to release hydrogen with respect to ammonia borane) was mmmmCl <bmmimCl << bmmCl <emimCl, and the amount of hydrogen produced was increased between the groups of bmimCl and emimCl and the group of bmmimCl and mmmCl. There was a big difference. That is, the result was obtained that an ionic liquid in which R2 has a high acidity of a hydrogen atom is preferable to that in which R2 has an alkyl group in the structural formula.

[実施例4]
続いて、実施例2において金属水素化物の金属の種類を変更し、その依存性について調査した。具体的に、水素化リチウムに代えて、水素化ナトリウム及び水素化カリウムを用いた実験を行った。その結果を図8に示す。
[Example 4]
Subsequently, in Example 2, the type of metal of the metal hydride was changed, and its dependence was investigated. Specifically, experiments using sodium hydride and potassium hydride instead of lithium hydride were conducted. The results are shown in FIG.

図8に示すように、水素生成量(アンモニアボランに対する水素放出当量)は、LiH>NaH>KHであった。一方、1当量の水素放出時間は、NaH>KH>LiHとなり、最も遅いLiHでは11時間であったが、KHでは100分、NaHでは1分という非常に優れた性能を示した。 As shown in FIG. 8, the amount of hydrogen produced (equivalent to release hydrogen with respect to ammonia borane) was LiH> NaH> KH. On the other hand, the hydrogen release time of 1 equivalent was NaH> KH> LiH, which was 11 hours for the slowest LiH, but showed very excellent performance of 100 minutes for KH and 1 minute for NaH.

[実施例5]
反応温度を室温、40℃、60℃、90℃として、実施例1と同様に水素生成試験を行い、水素生成量(総水素放出量[質量%])の確認評価を行った。その結果を図9に示す。
[Example 5]
The reaction temperature was set to room temperature, 40 ° C., 60 ° C., and 90 ° C., and the hydrogen production test was performed in the same manner as in Example 1, and the hydrogen production amount (total hydrogen release amount [mass%]) was confirmed and evaluated. The results are shown in FIG.

図9に示すように、反応温度90℃の場合が最も水素生成量が多かったが、40℃や60℃の場合にも十分に高い水素生成量を示した。 As shown in FIG. 9, the amount of hydrogen produced was the largest when the reaction temperature was 90 ° C., but the amount of hydrogen produced was sufficiently high even when the reaction temperature was 40 ° C. or 60 ° C.

[実施例6]
原料の比率を変化させ、LiH-AB-bmimClの水素生成特性(総水素放出量[質量%])を調査した。本実施例においては、アンモニアボラン(AB)及びイオン液体(bmimCl)の配合量を一定とし、金属水素化物(LiH)の配合比率を変化させた。その結果を図10に示す。
[Example 6]
The hydrogen production characteristics (total hydrogen release amount [mass%]) of LiH-AB-bmimCl were investigated by changing the ratio of raw materials. In this example, the blending amounts of ammonia borane (AB) and ionic liquid (bmimCl) were kept constant, and the blending ratio of the metal hydride (LiH) was changed. The results are shown in FIG.

図10に示すように、LiH:AB:bmimClが、7:7:3(LiH:AB=5:5)及び16.3:7:3(LiH:AB=7:3)の場合、水素生成量が多かった。LiH量の増加により頻度因子が大きくなるため反応速度が向上するものの、LiHはABのモル数以上は反応しないと考えられることから、水素放出に最適なLiH:AB比率は、原料が過不足なく消費されるLiH:AB=5:5程度であると考えられる。 As shown in FIG. 10, when LiH: AB: bmimCl is 7: 7: 3 (LiH: AB = 5: 5) and 16.3: 7: 3 (LiH: AB = 7: 3), hydrogen generation. The amount was large. Although the reaction rate improves as the frequency factor increases as the amount of LiH increases, it is considered that LiH does not react more than the number of moles of AB. Therefore, the optimum LiH: AB ratio for hydrogen release is just enough raw materials. It is considered that LiH: AB = 5: 5 is consumed.

[実施例7]
実施例6と同様に、原料の比率を変化させ、LiH-AB-bmimClの水素生成特性(総水素放出量[質量%])を調査した。本実施例においては、アンモニアボラン(AB)に対するイオン液体(bmimCl)の配合比率を変化させた。なお、LiHは、ABと同じ量とした。その結果を図11に示す。
[Example 7]
Similar to Example 6, the ratio of raw materials was changed, and the hydrogen production characteristics (total hydrogen release amount [mass%]) of LiH-AB-bmimCl were investigated. In this example, the compounding ratio of the ionic liquid (bmimCl) to the ammonia borane (AB) was changed. The amount of LiH was the same as that of AB. The result is shown in FIG.

図11に示すように、LiH:AB:bmimClが、9.5:9.5:0.5(AB:bmimCl=19:1)の場合、最も水素生成量が多かった。また、LiH:AB:bmimClが、9:9:1(AB:bmimCl=9:1)の場合も同様に、水素生成量が多かった。 As shown in FIG. 11, when LiH: AB: bmimCl was 9.5: 9.5: 0.5 (AB: bmimCl = 19: 1), the amount of hydrogen produced was the largest. Further, when LiH: AB: bmimCl was 9: 9: 1 (AB: bmimCl = 9: 1), the amount of hydrogen produced was also large.

[実施例8]
反応温度を室温から60℃に変更して、実施例7と同様にして水素生成特性(総水素放出量[質量%])を調査した。なお、原料としては、LiH:AB:bmimCl(7:7:3、8:8:2及び9:9:1)、並びにLiH:AB:emimCl(9:9:1)を用いた。その結果を図12に示す。
[Example 8]
The reaction temperature was changed from room temperature to 60 ° C., and the hydrogen production characteristics (total hydrogen release amount [mass%]) were investigated in the same manner as in Example 7. As raw materials, LiH: AB: bmimCl (7: 7: 3, 8: 8: 2 and 9: 9: 1) and LiH: AB: emimCl (9: 9: 1) were used. The results are shown in FIG.

図12に示すように、室温の場合と同様、LiH:AB:IL=9:9:1の場合、水素生成量が多く、この比率でイオン液体(IL)としてemimClを用いた場合に最もよい結果が得られた。 As shown in FIG. 12, when LiH: AB: IL = 9: 9: 1, the amount of hydrogen produced is large as in the case of room temperature, and it is best when emimCl is used as the ionic liquid (IL) at this ratio. Results were obtained.

以上の実施例の結果から、LiH:AB:emimCl=9:9:1の比率で、原料3種を同時に60℃で混合して反応させることが最も好ましいと考えられる。 From the results of the above examples, it is considered most preferable to mix and react the three raw materials at the same time at 60 ° C. at a ratio of LiH: AB: emimCl = 9: 9: 1.

本発明の水素生成方法は、低温であっても効率的に水素を生成することができ、ポータブル燃料電池充電器や燃料電池車等など分散型電源への応用が期待されるものであり、産業上有用である。 The hydrogen generation method of the present invention can efficiently generate hydrogen even at low temperatures, and is expected to be applied to distributed power sources such as portable fuel cell chargers and fuel cell vehicles. It is useful above.

Claims (6)

金属水素化物とアンモニアボランとイオン液体とを混合することを特徴とする水素生成方法。 A hydrogen production method characterized by mixing a metal hydride, ammonia borane, and an ionic liquid. 90℃以下で混合することを特徴とする請求項1記載の水素生成方法。 The hydrogen generation method according to claim 1, wherein the hydrogen is mixed at 90 ° C. or lower. 非加熱で混合することを特徴とする請求項2記載の水素生成方法。 The hydrogen generation method according to claim 2, wherein the hydrogen is mixed without heating. 混合するイオン液体が、固体であることを特徴とする請求項1~3のいずれかに記載の水素生成方法。 The hydrogen generation method according to any one of claims 1 to 3, wherein the ionic liquid to be mixed is a solid. イオン液体が、イミダゾリウム系イオン液体であることを特徴とする請求項1~4のいずれか記載の水素生成方法。 The hydrogen generation method according to any one of claims 1 to 4, wherein the ionic liquid is an imidazolium-based ionic liquid. 金属水素化物の金属が、第1族に属する金属であることを特徴とする請求項1~5のいずれか記載の水素生成方法。 The hydrogen generation method according to any one of claims 1 to 5, wherein the metal of the metal hydride is a metal belonging to Group 1.
JP2018083551A 2017-04-26 2018-04-25 Hydrogen generation method Active JP7017236B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017087096 2017-04-26
JP2017087096 2017-04-26

Publications (2)

Publication Number Publication Date
JP2018184340A JP2018184340A (en) 2018-11-22
JP7017236B2 true JP7017236B2 (en) 2022-02-08

Family

ID=64355600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018083551A Active JP7017236B2 (en) 2017-04-26 2018-04-25 Hydrogen generation method

Country Status (1)

Country Link
JP (1) JP7017236B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7354051B2 (en) * 2020-04-13 2023-10-02 三菱重工業株式会社 Hydrogen release/storage systems, hydrogen release/storage methods, ammonia production equipment, gas turbines, fuel cells, and steel plants

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070203A (en) 2005-09-09 2007-03-22 Toyota Central Res & Dev Lab Inc Composite hydrogen storing material, and hydrogen generating and storing apparatus
EP2030948A1 (en) 2007-08-17 2009-03-04 Linde AG Storage of hydrogen
JP2016502968A (en) 2012-12-21 2016-02-01 セラ アクイジション リミテッド Hydrogen storage pellet
US20160087295A1 (en) 2013-04-23 2016-03-24 Novaucd Catalyst and Process for the Production of Hydrogen from Ammonia Boranes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070203A (en) 2005-09-09 2007-03-22 Toyota Central Res & Dev Lab Inc Composite hydrogen storing material, and hydrogen generating and storing apparatus
EP2030948A1 (en) 2007-08-17 2009-03-04 Linde AG Storage of hydrogen
JP2016502968A (en) 2012-12-21 2016-02-01 セラ アクイジション リミテッド Hydrogen storage pellet
US20160087295A1 (en) 2013-04-23 2016-03-24 Novaucd Catalyst and Process for the Production of Hydrogen from Ammonia Boranes

Also Published As

Publication number Publication date
JP2018184340A (en) 2018-11-22

Similar Documents

Publication Publication Date Title
Luedtke et al. Hydrogen release studies of alkali metal amidoboranes
Yuan et al. Complex ammine titanium (III) borohydrides as advanced solid hydrogen-storage materials with favorable dehydrogenation properties
Ichikawa et al. Mechanism of novel reaction from LiNH2 and LiH to Li2NH and H2 as a promising hydrogen storage system
McGillicuddy et al. Metal–organic phase-change materials for thermal energy storage
Leng et al. Hydrogen storage properties of Li− Mg− N− H systems with different ratios of LiH/Mg (NH2) 2
Yang et al. Synthesis and thermal decomposition behaviors of magnesium borohydride ammoniates with controllable composition as hydrogen storage materials
Aoki et al. Thermodynamics on ammonia absorption of metal halides and borohydrides
WO2006104607A2 (en) Hydrolysis of chemical hydrides utilizing hydrated compounds
Amica et al. Hydrogen storage properties of LiNH2–LiH system with MgH2, CaH2 and TiH2 added
Tang et al. Enthalpy–Entropy Compensation Effect in Hydrogen Storage Materials: Striking Example of Alkali Silanides MSiH3 (M= K, Rb, Cs)
US8377415B2 (en) Methods for synthesizing alane without the formation of adducts and free of halides
Manilevich et al. Studies of the hydrolysis of aluminum activated by additions of Ga–In–Sn eutectic alloy, bismuth, or antimony
Hu et al. Beneficial effects of stoichiometry and nanostructure for a LiBH 4–MgH 2 hydrogen storage system
JP7017236B2 (en) Hydrogen generation method
Suri et al. Growth and thermal kinetics of pure and cadmium doped barium phosphate single crystal
Chen et al. Thermal decomposition behavior of hydrated magnesium dodecahydrododecaborates
He et al. The roles of alkali/alkaline earth metals in the materials design and development for hydrogen storage
CA2636295C (en) Synthesis of alh3 and structurally related phases
Ignat'ev et al. Cyanoborates
Lombardo et al. Destabilizing sodium borohydride with an ionic liquid
Wu et al. A new family of metal borohydride guanidinate complexes: Synthesis, structures and hydrogen-storage properties
JP2016155756A (en) Hydrogen storage materials, metal hydrides and complex hydrides prepared using low-boiling-point solvents
Ji et al. Effects of metal borohydrides on the dehydrogenation kinetics of the Li–Mg–N–H hydrogen-storage system
JP5768895B2 (en) Method for producing solid carbazic acid derivative powder
Tsubota et al. Reaction between magnesium ammine complex compound and lithium hydride

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20180524

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210201

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220120

R150 Certificate of patent or registration of utility model

Ref document number: 7017236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150