JP2022104495A - ロボットのためのマップを生成する方法、システムおよび非一過性のコンピュータ読み取り可能記録媒体 - Google Patents
ロボットのためのマップを生成する方法、システムおよび非一過性のコンピュータ読み取り可能記録媒体 Download PDFInfo
- Publication number
- JP2022104495A JP2022104495A JP2021084820A JP2021084820A JP2022104495A JP 2022104495 A JP2022104495 A JP 2022104495A JP 2021084820 A JP2021084820 A JP 2021084820A JP 2021084820 A JP2021084820 A JP 2021084820A JP 2022104495 A JP2022104495 A JP 2022104495A
- Authority
- JP
- Japan
- Prior art keywords
- pixel
- flow obstacle
- map
- presumed
- robot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000012937 correction Methods 0.000 claims description 24
- 230000008602 contraction Effects 0.000 claims description 11
- 238000004364 calculation method Methods 0.000 claims description 8
- 238000004422 calculation algorithm Methods 0.000 claims description 3
- 238000004590 computer program Methods 0.000 claims description 3
- 230000001052 transient effect Effects 0.000 claims description 3
- 230000008685 targeting Effects 0.000 abstract 1
- 238000004891 communication Methods 0.000 description 37
- 230000006870 function Effects 0.000 description 22
- 230000009467 reduction Effects 0.000 description 10
- 238000004140 cleaning Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 4
- 230000015654 memory Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000035622 drinking Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/38—Electronic maps specially adapted for navigation; Updating thereof
- G01C21/3804—Creation or updating of map data
- G01C21/3807—Creation or updating of map data characterised by the type of data
- G01C21/383—Indoor data
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0268—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
- G05D1/0274—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/38—Electronic maps specially adapted for navigation; Updating thereof
- G01C21/3863—Structures of map data
- G01C21/3867—Geometry of map features, e.g. shape points, polygons or for simplified maps
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0219—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0246—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/20—Image enhancement or restoration using local operators
- G06T5/30—Erosion or dilatation, e.g. thinning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
- G01C21/206—Instruments for performing navigational calculations specially adapted for indoor navigation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10028—Range image; Depth image; 3D point clouds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20036—Morphological image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30244—Camera pose
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Automation & Control Theory (AREA)
- Multimedia (AREA)
- Aviation & Aerospace Engineering (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Geometry (AREA)
- Electromagnetism (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Manipulator (AREA)
Abstract
Description
200 マップ管理システム
210 基礎マップ獲得部
220 ピクセル識別部
230 境界決定部
240 ノイズ除去部
250 境界補正部
260 通信部
270 制御部
300 ロボット
Claims (19)
- ロボットのためのマップを生成する方法であって、
前記ロボットのタスクと関連する基礎マップを獲得する獲得段階、
前記基礎マップで特定されるピクセルの色相および前記ピクセルと関連する領域の大きさのうち少なくとも一つに基づいて、前記基礎マップで流動障害物と推定される前記ピクセルを識別する識別段階、および
前記流動障害物と推定される前記ピクセルを対象に拡張(dilate)演算および収縮(erode)演算を遂行し、多角形(polygon)を基盤として前記流動障害物の境界を決定する決定段階を含む、方法。 - 前記獲得段階で、前記ロボットの外部に配置される少なくとも一つの客体に対するセンシング情報に基づいて前記基礎マップを生成する、請求項1に記載の方法。
- 前記識別段階で、前記基礎マップで特定される前記ピクセルの色相および前記ピクセルと関連する領域の大きさのうち少なくとも一つに基づいて、前記基礎マップでノイズと推定される前記ピクセルおよび固定障害物と推定される前記ピクセルのうち少なくとも一つをさらに識別する、請求項1に記載の方法。
- 前記基礎マップで前記ノイズと推定される前記ピクセルを除去する除去段階をさらに含む、請求項3に記載の方法。
- 前記基礎マップで前記固定障害物と推定される前記ピクセルの境界の色相および厚さのうち少なくとも一つを補正する補正段階をさらに含む、請求項3に記載の方法。
- 前記補正段階で、前記補正のために前記流動障害物と推定される前記ピクセルを抑制する、請求項5に記載の方法。
- 前記決定段階で、前記流動障害物と推定される前記ピクセルを対象に前記拡張演算および前記収縮演算を続けて遂行する、請求項1に記載の方法。
- 前記決定段階で、前記流動障害物から所定距離以内に存在する少なくとも一つの他の前記流動障害物を前記流動障害物と共にグループ化し、グループ化された前記流動障害物の境界を決定することによって前記流動障害物の境界を決定する、請求項1に記載の方法。
- 前記決定段階で、凸包(convex hull)アルゴリズムを基盤として前記流動障害物と関連する凸包を識別し、前記識別される凸包を基盤として前記流動障害物の境界を決定する、請求項1に記載の方法。
- 請求項1に記載された方法を遂行するためのコンピュータプログラムを記録した、非一過性のコンピュータ読み取り可能記録媒体。
- ロボットのためのマップを生成するシステムであって、
前記ロボットのタスクと関連する基礎マップを獲得する基礎マップ獲得部、
前記基礎マップで特定されるピクセルの色相および前記ピクセルと関連する領域の大きさのうち少なくとも一つに基づいて、前記基礎マップで流動障害物と推定される前記ピクセルを識別するピクセル識別部、および
前記流動障害物と推定される前記ピクセルを対象に拡張演算および収縮演算を遂行し、多角形を基盤として前記流動障害物の境界を決定する境界決定部を含む、システム。 - 前記基礎マップ獲得部は、前記ロボットの外部に配置される少なくとも一つの客体に対するセンシング情報に基づいて前記基礎マップを生成する、請求項11に記載のシステム。
- 前記ピクセル識別部は、前記基礎マップで特定される前記ピクセルの色相および前記ピクセルと関連する領域の大きさのうち少なくとも一つに基づいて、前記基礎マップでノイズと推定される前記ピクセルおよび固定障害物と推定される前記ピクセルのうち少なくとも一つをさらに識別する、請求項11に記載のシステム。
- 前記基礎マップで前記ノイズと推定される前記ピクセルを除去するノイズ除去部をさらに含む、請求項13に記載のシステム。
- 前記基礎マップで前記固定障害物と推定される前記ピクセルの境界の色相および厚さのうち少なくとも一つを補正する境界補正部をさらに含む、請求項13に記載のシステム。
- 前記境界補正部は、前記補正のために前記流動障害物と推定される前記ピクセルを抑制する、請求項15に記載のシステム。
- 前記境界決定部は、前記流動障害物と推定される前記ピクセルを対象に前記拡張演算および前記収縮演算を続けて遂行する、請求項11に記載のシステム。
- 前記境界決定部は、前記流動障害物から所定距離以内に存在する少なくとも一つの他の前記流動障害物を前記流動障害物と共にグループ化し、グループ化された前記流動障害物の境界を決定することによって前記流動障害物の境界を決定する、請求項11に記載のシステム。
- 前記境界決定部は、凸包アルゴリズムを基盤として前記流動障害物と関連する凸包を識別し、前記識別される凸包を基盤として前記流動障害物の境界を決定する、請求項11に記載のシステム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/134,888 US11885638B2 (en) | 2020-12-28 | 2020-12-28 | Method, system, and non-transitory computer-readable recording medium for generating a map for a robot |
US17/134,888 | 2020-12-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022104495A true JP2022104495A (ja) | 2022-07-08 |
JP7358419B2 JP7358419B2 (ja) | 2023-10-10 |
Family
ID=79730335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021084820A Active JP7358419B2 (ja) | 2020-12-28 | 2021-05-19 | ロボットのためのマップを生成する方法、システムおよび非一過性のコンピュータ読み取り可能記録媒体 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11885638B2 (ja) |
EP (1) | EP4024338A1 (ja) |
JP (1) | JP7358419B2 (ja) |
KR (1) | KR102671839B1 (ja) |
CN (1) | CN114756020A (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11885638B2 (en) * | 2020-12-28 | 2024-01-30 | Bear Robotics, Inc. | Method, system, and non-transitory computer-readable recording medium for generating a map for a robot |
CN114968045A (zh) * | 2022-07-27 | 2022-08-30 | 广州物大人科技有限责任公司 | 一种地图规划方法、系统以及计算机可读存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007280387A (ja) * | 2006-03-31 | 2007-10-25 | Aisin Seiki Co Ltd | 物体移動の検出方法及び検出装置 |
JP2018177074A (ja) * | 2017-04-18 | 2018-11-15 | 国立大学法人 東京大学 | 自律型水中ロボット及びその制御方法 |
US20190311205A1 (en) * | 2018-04-05 | 2019-10-10 | Here Global B.V. | Method, apparatus, and system for determining polyline homogeneity |
US20200394813A1 (en) * | 2019-06-17 | 2020-12-17 | SafeAI, Inc. | Techniques for volumetric estimation |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6202517B2 (ja) * | 2013-03-07 | 2017-09-27 | 株式会社国際電気通信基礎技術研究所 | 地図作成装置、地図作成プログラムおよび地図作成方法 |
JP2014203429A (ja) | 2013-04-10 | 2014-10-27 | トヨタ自動車株式会社 | 地図生成装置、地図生成方法及び制御プログラム |
WO2016076449A1 (en) * | 2014-11-11 | 2016-05-19 | Movon Corporation | Method and system for detecting an approaching obstacle based on image recognition |
US9285227B1 (en) * | 2015-01-29 | 2016-03-15 | Qualcomm Incorporated | Creating routing paths in maps |
US20170372018A1 (en) * | 2016-06-28 | 2017-12-28 | Melrose Pain Solutions LLC | Melrose Pain Solutions® Method and Algorithm: Managing Pain in Opioid Dependent Patients |
US10380429B2 (en) * | 2016-07-11 | 2019-08-13 | Google Llc | Methods and systems for person detection in a video feed |
KR101922953B1 (ko) * | 2016-08-29 | 2018-11-28 | 엘지전자 주식회사 | 이동 로봇 및 그 제어방법 |
KR102235271B1 (ko) * | 2017-02-27 | 2021-04-01 | 엘지전자 주식회사 | 이동 로봇 및 그 제어방법 |
US10634504B2 (en) * | 2017-06-06 | 2020-04-28 | Clearpath Robotics Inc. | Systems and methods for electronic mapping and localization within a facility |
US11684886B1 (en) * | 2017-06-23 | 2023-06-27 | AI Incorporated | Vibrating air filter for robotic vacuums |
US10386851B2 (en) * | 2017-09-22 | 2019-08-20 | Locus Robotics Corp. | Multi-resolution scan matching with exclusion zones |
US10853561B2 (en) * | 2019-04-10 | 2020-12-01 | Fetch Robotics, Inc. | System and method for automatically annotating a map |
US11917127B2 (en) * | 2018-05-25 | 2024-02-27 | Interdigital Madison Patent Holdings, Sas | Monitoring of video streaming events |
US11024037B2 (en) * | 2018-11-15 | 2021-06-01 | Samsung Electronics Co., Ltd. | Foreground-background-aware atrous multiscale network for disparity estimation |
CN111238465B (zh) | 2018-11-28 | 2022-02-18 | 台达电子工业股份有限公司 | 地图建置设备及其地图建置方法 |
KR102255273B1 (ko) | 2019-01-04 | 2021-05-24 | 삼성전자주식회사 | 청소 공간의 지도 데이터를 생성하는 장치 및 방법 |
US10916019B2 (en) * | 2019-02-01 | 2021-02-09 | Sony Corporation | Moving object detection in image frames based on optical flow maps |
US11554785B2 (en) * | 2019-05-07 | 2023-01-17 | Foresight Ai Inc. | Driving scenario machine learning network and driving environment simulation |
US11803981B2 (en) * | 2019-05-30 | 2023-10-31 | Mobileye Vision Technologies Ltd. | Vehicle environment modeling with cameras |
CN110522359B (zh) * | 2019-09-03 | 2021-09-03 | 深圳飞科机器人有限公司 | 清洁机器人以及清洁机器人的控制方法 |
CN110703747B (zh) | 2019-10-09 | 2021-08-03 | 武汉大学 | 一种基于简化广义Voronoi图的机器人自主探索方法 |
CN111063029B (zh) * | 2019-12-11 | 2023-06-09 | 深圳市优必选科技股份有限公司 | 地图构建方法、装置、计算机可读存储介质及机器人 |
CN111337941B (zh) | 2020-03-18 | 2022-03-04 | 中国科学技术大学 | 一种基于稀疏激光雷达数据的动态障碍物追踪方法 |
CN111104933B (zh) * | 2020-03-20 | 2020-07-17 | 深圳飞科机器人有限公司 | 地图处理方法、移动机器人及计算机可读存储介质 |
CN111481105A (zh) * | 2020-04-20 | 2020-08-04 | 北京石头世纪科技股份有限公司 | 一种自行走机器人避障方法、装置、机器人和存储介质 |
US11561553B1 (en) * | 2020-05-11 | 2023-01-24 | Vecna Robotics, Inc. | System and method of providing a multi-modal localization for an object |
US11885638B2 (en) * | 2020-12-28 | 2024-01-30 | Bear Robotics, Inc. | Method, system, and non-transitory computer-readable recording medium for generating a map for a robot |
US12008817B2 (en) * | 2021-03-11 | 2024-06-11 | GM Global Technology Operations LLC | Systems and methods for depth estimation in a vehicle |
-
2020
- 2020-12-28 US US17/134,888 patent/US11885638B2/en active Active
-
2021
- 2021-04-01 KR KR1020210042938A patent/KR102671839B1/ko active IP Right Grant
- 2021-05-19 JP JP2021084820A patent/JP7358419B2/ja active Active
- 2021-12-28 CN CN202111625475.6A patent/CN114756020A/zh active Pending
- 2021-12-28 EP EP21217941.0A patent/EP4024338A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007280387A (ja) * | 2006-03-31 | 2007-10-25 | Aisin Seiki Co Ltd | 物体移動の検出方法及び検出装置 |
JP2018177074A (ja) * | 2017-04-18 | 2018-11-15 | 国立大学法人 東京大学 | 自律型水中ロボット及びその制御方法 |
US20190311205A1 (en) * | 2018-04-05 | 2019-10-10 | Here Global B.V. | Method, apparatus, and system for determining polyline homogeneity |
US20200394813A1 (en) * | 2019-06-17 | 2020-12-17 | SafeAI, Inc. | Techniques for volumetric estimation |
Also Published As
Publication number | Publication date |
---|---|
KR102671839B1 (ko) | 2024-06-04 |
JP7358419B2 (ja) | 2023-10-10 |
KR20220094089A (ko) | 2022-07-05 |
EP4024338A1 (en) | 2022-07-06 |
CN114756020A (zh) | 2022-07-15 |
US11885638B2 (en) | 2024-01-30 |
US20220206510A1 (en) | 2022-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2022104495A (ja) | ロボットのためのマップを生成する方法、システムおよび非一過性のコンピュータ読み取り可能記録媒体 | |
US11554495B2 (en) | Method of localization using multi sensor and robot implementing same | |
CN110147706A (zh) | 障碍物的识别方法和装置、存储介质、电子装置 | |
TW201732739A (zh) | 集中於物件的有效三維重構 | |
US20200238523A1 (en) | Method, system and non-transitory computer-readable recording medium for determining a movement path of a robot | |
Asadi et al. | Building an integrated mobile robotic system for real-time applications in construction | |
CN108780319A (zh) | 软件更新方法、系统、移动机器人及服务器 | |
JP7330162B2 (ja) | ロボットの目的地を制御するための方法、システムおよび非一過性のコンピュータ読み取り可能記録媒体 | |
CN113191174A (zh) | 物品定位方法和装置、机器人及计算机可读存储介质 | |
US12085951B2 (en) | Method of updating map in fusion SLAM and robot implementing same | |
KR20220120908A (ko) | 이동 로봇 및 이동 로봇의 제어 방법 | |
CN117256008A (zh) | 利用图像数据的实时定位 | |
CN118385157A (zh) | 一种基于深度学习和自适应抓取的视觉分类垃圾自动分拣系统 | |
CN114510022A (zh) | 一种医疗运输机器人及其控制方法 | |
Gaffin et al. | Autonomous visual navigation of an indoor environment using a parsimonious, insect inspired familiarity algorithm | |
US20220371198A1 (en) | Method, system, and non-transitory computer-readable recording medium for controlling a patrolling robot | |
CN113487590B (zh) | 分块处理方法、装置、计算设备及存储介质 | |
US11759949B2 (en) | Method, system, and non-transitory computer-readable recording medium for controlling a robot | |
KR102694556B1 (ko) | 로봇을 제어하기 위한 방법, 시스템 및 비일시성의 컴퓨터 판독 가능한 기록 매체 | |
US20230129346A1 (en) | Capability-aware pathfinding for autonomous mobile robots | |
Azizul et al. | Waypoint planning for mono visual drone using the minimal bounded space method | |
WO2024215574A1 (en) | Method and system for controlling a robot | |
CN118031950A (zh) | 自走车及校正取物路径的方法 | |
KR20230057117A (ko) | 인공 신경망 적용 객체 감지 과정에서의 효과적인 하드웨어 사용을 위한 시스템 및 방법 | |
CN117047760A (zh) | 机器人的控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220712 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20221012 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230314 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230608 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230905 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230927 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7358419 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |