JP2022102367A - Treatment method for water containing neutral polysaccharides - Google Patents

Treatment method for water containing neutral polysaccharides Download PDF

Info

Publication number
JP2022102367A
JP2022102367A JP2020217056A JP2020217056A JP2022102367A JP 2022102367 A JP2022102367 A JP 2022102367A JP 2020217056 A JP2020217056 A JP 2020217056A JP 2020217056 A JP2020217056 A JP 2020217056A JP 2022102367 A JP2022102367 A JP 2022102367A
Authority
JP
Japan
Prior art keywords
containing water
neutral polysaccharide
water
neutral
starch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020217056A
Other languages
Japanese (ja)
Inventor
貴子 岩見
Takako Iwami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2020217056A priority Critical patent/JP2022102367A/en
Publication of JP2022102367A publication Critical patent/JP2022102367A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

To provide a method for treating neutral polysaccharide-containing water that can efficiently aggregate and settle neutral polysaccharides such as SS and starch in water containing neutral polysaccharides such as boiling water of noodles, for example, Japanese wheat noodles and pasta, and rice washing water.SOLUTION: In a method for treating neutral polysaccharide-containing water by adding a coagulant, an aluminum-based coagulant is used as the coagulant, and the pH of the neutral polysaccharide-containing water is adjusted to 8 or higher. Prior to the addition of the aluminum-based coagulant, a polymer having a site hydrogen-bondable with the neutral polysaccharides may be added.SELECTED DRAWING: Figure 1

Description

本発明は、中性多糖類含有水の処理方法に係るものである。本発明の一態様は、うどんやパスタなどの麺のゆで汁や、米のとぎ汁等の、デンプンを多く含む排水を凝集処理する方法に関する。 The present invention relates to a method for treating neutral polysaccharide-containing water. One aspect of the present invention relates to a method for coagulating wastewater containing a large amount of starch, such as boiled noodle soup such as udon and pasta, and rice soup.

食品業界が節水、特に水の再利用を検討する際に、アレルギー源混入防止の観点から、製造のラインをまたがずに水を再利用する方法が求められる。また、水を製造工程内で再利用するためには、排水の改質・清浄化に界面活性剤や特殊な化学物質を凝集凝結剤として用いることは倦厭される。 When the food industry considers water saving, especially water reuse, a method of reusing water without crossing the production line is required from the viewpoint of preventing contamination with allergens. In addition, in order to reuse water in the manufacturing process, it is reluctant to use a surfactant or a special chemical substance as a coagulant and condensing agent for reforming and cleaning wastewater.

食品工場排水、特にうどんやパスタなど麺のゆで汁や米のとぎ汁等の排水は、高濃度のデンプン、老化デンプンを主体とした高濃度のSS(懸濁固形物)を含む。これらを凝集させるのに非常に高濃度の無機凝集剤が使用される。デンプンなど中性多糖類は、それ自体に電荷が乏しく、カチオン/アニオン凝結剤や無機凝集剤により荷電中和作用を受けにくい。そのため、デンプン含有排水は、非常に凝集処理が困難である。 Wastewater from food factories, especially boiled noodle juice such as udon and pasta, and wastewater such as rice broth contains high-concentration starch and high-concentration SS (suspended solids) mainly composed of aged starch. Very high concentrations of inorganic flocculants are used to aggregate these. Neutral polysaccharides such as starch are poorly charged by themselves and are less susceptible to charge neutralization by cationic / anionic coagulants and inorganic flocculants. Therefore, starch-containing wastewater is very difficult to aggregate.

うどんやパスタの製造時に、無機炭酸塩水溶液、リン酸塩水溶液が原料に混合される。そのため、麺のゆで汁や米のとぎ汁等の排水は、凝集剤を分散させる作用を有する炭酸イオン、リン酸イオンを多く含むため、凝集不良が生じやすく、凝集処理に必要な凝集剤の必要量が多い。また、凝集剤を多量に添加するところから、凝集汚泥の発生量が多い。 During the production of udon and pasta, an aqueous solution of inorganic carbonate and an aqueous solution of phosphate are mixed with the raw materials. Therefore, wastewater such as boiled noodle soup and rice soup contains a large amount of carbonate ions and phosphate ions having the effect of dispersing the aggregating agent, so that poor aggregation is likely to occur, and the required amount of the aggregating agent required for the aggregating treatment. There are many. In addition, since a large amount of coagulant is added, a large amount of coagulated sludge is generated.

特許文献1には、酵素を用いた自己凝集によって排水中の不溶解性デンプンを沈降させる技術が記載されている。しかしながら、本技術には酵素反応に時間を要するという欠点がある。 Patent Document 1 describes a technique for precipitating insoluble starch in wastewater by self-aggregation using an enzyme. However, this technique has the disadvantage that the enzymatic reaction takes time.

特許文献2には、うどんのゆで汁や米のとぎ汁を凝集させる凝集剤として、オクラを粉砕した高粘度性有機物と、凝集剤成分(アルミ凝集剤およびアニオン、カチオン、ノニオン高分子ポリマー)と、両性界面活性剤と、凝集助剤(ベントナイト、カオリンなどの無機物)とを含む凝集剤組成物が記載されている。しかしながらこの凝集剤組成物は、薬剤が多く、添加点や攪拌設備が煩雑かつ重厚になるほか、界面活性剤を用いるため発泡性の可能性がある。また、一般にポリマーを含むことで凝集フロックの沈降速度は鈍化し、上清濁度が増加するため、無機物を凝集剤に用いることで、フロックの沈降性を維持していると考えられるが、無機物が含まれる分だけ汚泥量が増加する。 Patent Document 2 describes a highly viscous organic substance obtained by crushing okra as a flocculant for agglomerating boiled udon juice and rice broth, a flocculant component (aluminum flocculant and anion, cation, and nonionic polymer). A flocculant composition containing an amphoteric surfactant and a flocculation aid (inorganic substances such as bentonite and kaolin) is described. However, this flocculant composition has a large amount of chemicals, the addition point and the stirring equipment are complicated and heavy, and since a surfactant is used, there is a possibility of foaming. In general, the inclusion of a polymer slows the sedimentation rate of aggregated sludge and increases the turbidity of the supernatant. Therefore, it is considered that the sedimentation property of floc is maintained by using an inorganic substance as a flocculant. The amount of sludge increases by the amount contained.

特開2007-38214号公報Japanese Unexamined Patent Publication No. 2007-38214 特開2012-61372号公報Japanese Unexamined Patent Publication No. 2012-61372

本発明は、うどんやパスタなど麺のゆで汁や米のとぎ汁等の中性多糖類含有水のSSおよびデンプン等の中性多糖類を効率よく凝集及び沈降させ、迅速に清浄水を得ることが可能な中性多糖類含有水の処理方法を提供することを課題とする。 INDUSTRIAL APPLICABILITY According to the present invention, SS of water containing neutral polysaccharides such as boiled noodle juice such as udon and pasta and neutral polysaccharide-containing water of rice and neutral polysaccharides such as starch can be efficiently aggregated and settled to quickly obtain clean water. It is an object of the present invention to provide a possible method for treating neutral polysaccharide-containing water.

本発明の中性多糖類含有水の処理方法は、次を要旨とする。 The gist of the method for treating neutral polysaccharide-containing water of the present invention is as follows.

[1] 中性多糖類含有水に凝集剤を添加して処理する方法において、該凝集剤として、アルミニウム系凝集剤を用い、中性多糖類含有水のpHを8以上とすることを特徴とする中性多糖類含有水の処理方法。 [1] In a method of adding a flocculant to a neutral polysaccharide-containing water for treatment, an aluminum-based flocculant is used as the flocculant, and the pH of the neutral polysaccharide-containing water is set to 8 or more. A method for treating water containing neutral polysaccharides.

[2] 前記アルミニウム系凝集剤が高塩基性塩化アルミニウムであることを特徴とする[1]の中性多糖類含有水の処理方法。 [2] The method for treating neutral polysaccharide-containing water according to [1], wherein the aluminum-based flocculant is highly basic aluminum chloride.

[3] 前記中性多糖類含有水のpHをpH8~10とすることを特徴とする[1]又は[2]の中性多糖類含有水の処理方法。 [3] The method for treating neutral polysaccharide-containing water according to [1] or [2], wherein the pH of the neutral polysaccharide-containing water is pH 8 to 10.

[4] 前記アルミニウム系凝集剤の添加の前に、中性多糖類と水素結合可能な部位をもつポリマーを添加することを特徴とする[1]~[3]のいずれかの中性多糖類含有水の処理方法。 [4] The neutral polysaccharide according to any one of [1] to [3], which comprises adding a polymer having a hydrogen-bondable moiety to the neutral polysaccharide before the addition of the aluminum-based flocculant. Method of treating contained water.

[5] 前記ポリマーがフェノール樹脂及び/又はメラミン樹脂であることを特徴とする[4]の中性多糖類含有水の処理方法。 [5] The method for treating neutral polysaccharide-containing water according to [4], wherein the polymer is a phenol resin and / or a melamine resin.

[6] 凝集処理水をセラミック膜に通水することを特徴とする[1]~[5]のいずれかの中性多糖類含有水の処理方法。 [6] The method for treating neutral polysaccharide-containing water according to any one of [1] to [5], which comprises passing the aggregated treated water through the ceramic membrane.

本発明の中性多糖類含有水の処理方法によると、中性多糖類含有水を効率よく凝集及び沈降させることができ、迅速に清浄水(凝集処理水)を得ることができる。 According to the method for treating neutral polysaccharide-containing water of the present invention, neutral polysaccharide-containing water can be efficiently aggregated and settled, and clean water (aggregated treated water) can be quickly obtained.

実験結果を示すグラフである。It is a graph which shows the experimental result. 実験結果を示すグラフである。It is a graph which shows the experimental result. 実験結果を示すグラフである。It is a graph which shows the experimental result. 実験結果を示すグラフである。It is a graph which shows the experimental result. 実験結果を示すグラフである。It is a graph which shows the experimental result.

本発明の中性多糖類含有水の処理方法では、中性多糖類含有水に対しアルミニウム系凝集剤を添加し、かつ中性多糖類含有水のpHを8以上、好ましくは8~10とする。 In the method for treating neutral polysaccharide-containing water of the present invention, an aluminum-based flocculant is added to the neutral polysaccharide-containing water, and the pH of the neutral polysaccharide-containing water is set to 8 or more, preferably 8 to 10. ..

中性多糖類含有水としては、うどんやパスタなどの麺のゆで汁や、米のとぎ汁等、あるいは該ゆで汁やとぎ汁を含む排水が挙げられる。中性多糖類含有水がうどんやパスタなどの麺のゆで汁や、米のとぎ汁である場合、該ゆで汁又はとぎ汁中のデンプンの濃度は50~10,00mg/L程度である。 Examples of the neutral polysaccharide-containing water include boiled noodle soup such as udon and pasta, rice soup, and wastewater containing the boiled soup and soup. When the neutral polysaccharide-containing water is boiled noodle soup such as udon or pasta or rice soup, the concentration of starch in the boiled soup or soup is about 50 to 10,000 mg / L.

うどんやパスタなど麺のゆで汁や米のとぎ汁等のデンプンを多く含む排水中には、溶解性のデンプンのほかに、タンパク質、アミノ酸、デンプンが分解された還元糖が液中溶解性有機物として存在している。不溶解性分としては老化デンプンなどが含まれる。 In addition to soluble starch, reducing sugars in which proteins, amino acids, and starch are decomposed are present as soluble organic substances in the wastewater containing a large amount of starch such as boiled noodle juice such as udon and pasta and starch juice of rice. is doing. The insoluble component includes aged starch and the like.

中性多糖類含有水に対し添加するアルミニウム系凝集剤としては高塩基性塩化アルミニウムが好適である。高塩基性塩化アルミニウムは、一般式Al(OH)Cl3n-mで表わされるものである。本発明で使用されるものとしては、1≦n≦5,m≦10のものが好適である。 Highly basic aluminum chloride is suitable as the aluminum-based flocculant to be added to the neutral polysaccharide-containing water. Highly basic aluminum chloride is represented by the general formula Al n (OH) m Cl 3 nm . As the one used in the present invention, 1 ≦ n ≦ 5 and m ≦ 10 are suitable.

高塩基性塩化アルミニウムの添加量は、排水濃度によって異なるが、およそ50~10,000mg/L程度である。高塩基性塩化アルミニウムは水溶液の形態で中性多糖類含有水に添加されることが好ましい。 The amount of highly basic aluminum chloride added varies depending on the wastewater concentration, but is about 50 to 10,000 mg / L. Highly basic aluminum chloride is preferably added to neutral polysaccharide-containing water in the form of an aqueous solution.

高塩基性塩化アルミニウムが添加される中性多糖類含有水のpHは8以上であり、特に8~10とりわけ8~9が好適である。中性多糖類含有水のpHがこの範囲外であるときには、高塩基性塩化アルミニウムの添加前に又は添加後にNaOH、塩酸、硫酸などを用いて中性多糖類含有水のpHを調整することが好ましい。 The pH of the neutral polysaccharide-containing water to which the highly basic aluminum chloride is added is 8 or more, and 8 to 10 is particularly preferable, and 8 to 9 is particularly preferable. When the pH of the neutral polysaccharide-containing water is out of this range, the pH of the neutral polysaccharide-containing water may be adjusted with NaOH, hydrochloric acid, sulfuric acid, etc. before or after the addition of the highly basic aluminum chloride. preferable.

デンプンなどを主体とするSSは、酸性~中性領域では表面電荷が中性であるため、凝集しにくいが、塩基性環境下では負電荷を帯びるため、アルミニウム系凝集剤による荷電中和反応を受けやすく、凝集されやすい。また、その凝集フロックも塩基性環境下で負電荷を帯びるため、共存カチオン成分を介してフロックが成長しやすく、沈降しやすい。 SS, which is mainly composed of starch, has a neutral surface charge in the acidic to neutral region, so that it is difficult to aggregate. Easy to receive and agglomerate. Further, since the aggregated flocs are also negatively charged in a basic environment, the flocs tend to grow and settle through the coexisting cation component.

デンプンなどの有機物は、電荷を有する官能基を内包しておらず、アニオン・カチオン高分子および無機凝集剤との親和性が低い。しかしながら、本発明者の試験により、凝集における共沈作用を受けることが明らかになった。すなわち、塩基性条件において、カチオン性のポリマー凝結剤を用いることにより、液中のSS濃度およびデンプン濃度を低減することが可能であった。また、デンプンは自身の分子構造内に水を有する。それにより、フェノール樹脂などの水素結合可能な部位を有するポリマーは、デンプン、およびデンプンに内包された水分子と水素結合性結合を形成して凝結することが可能であることが分かった。 Organic substances such as starch do not contain charged functional groups and have low affinity for anionic / cationic polymers and inorganic flocculants. However, the inventor's tests have revealed that they are subject to coprecipitation in aggregation. That is, it was possible to reduce the SS concentration and the starch concentration in the liquid by using a cationic polymer coagulant under basic conditions. Starch also has water in its molecular structure. As a result, it was found that a polymer having a hydrogen-bondable site such as a phenol resin can form a hydrogen-bonding bond with starch and water molecules contained in the starch and can be condensed.

この2種のデンプン除去法において、カチオン性凝結剤を用いた除去法では共沈作用を利用するため、当然高分子が嵩高く、分子構造が大きいほうが高いデンプン除去効果を示した。しかしながら、その構造の反作用として、フロックがもろく、軽いため、凝集の上清濁度を増加させた。一方で水素結合を利用した樹脂は、凝結した樹脂とデンプン自体が凝集の核となるため、凝結剤添加による上清濁度上昇は観られなかった。 In these two types of starch removing methods, the removal method using a cationic coagulant utilizes a coprecipitation effect, and therefore, naturally, the higher the polymer and the larger the molecular structure, the higher the starch removing effect. However, as a reaction to its structure, the flocs are brittle and light, thus increasing the supernatant turbidity of the aggregates. On the other hand, in the resin using hydrogen bonds, the condensed resin and starch itself become the core of aggregation, so that the addition of the coagulant did not increase the turbidity of the supernatant.

以上より、水素結合可能な部位をもつポリマーを有効成分とする凝結剤を添加した後に、高塩基性塩化アルミニウムを添加してpH8~10で凝集することで、至って簡単にうどんやパスタなど麺のゆで汁や米のとぎ汁等の排水中のSSおよびデンプンを凝集によって沈降させ、迅速に清浄水を得ることが可能である。なお、高塩基性塩化アルミニウム凝集剤がpH増加によって再溶解しにくいpH8~9で凝集することが望ましい。 From the above, by adding a coagulant containing a polymer having a hydrogen-bondable site as an active ingredient and then adding highly basic aluminum chloride to aggregate at pH 8 to 10, it is very easy to make noodles such as udon and pasta. It is possible to quickly obtain clean water by precipitating SS and starch in wastewater such as boiled juice and rice broth by aggregation. It is desirable that the highly basic aluminum chloride flocculant aggregates at pH 8 to 9, which is difficult to redissolve due to an increase in pH.

本発明で使用されるフェノール系樹脂としては、フェノール、クレゾール、キシレノール等の一価フェノール等のフェノール類とホルムアルデヒド等のアルデヒドとの縮合物或いはその変性物であって、架橋硬化する前のフェノール系樹脂が挙げられる。具体的には次のようなものが挙げられる。
[1] フェノールとホルムアルデヒドとの縮合物
[2] クレゾールとホルムアルデヒドとの縮合物
[3] キシレノールとホルムアルデヒドとの縮合物
[4] 上記[1]~[3]のフェノール系樹脂をアルキル化して得られるアルキル変性フェノール系樹脂
[5] ポリビニルフェノール
The phenolic resin used in the present invention is a condensate or a modified product of a phenol such as monovalent phenol such as phenol, cresol, xylenol and an aldehyde such as formaldehyde, and is a phenolic resin before cross-linking and curing. Resin is mentioned. Specific examples include the following.
[1] Condensate of phenol and formaldehyde
[2] Condensate of cresol and formaldehyde
[3] Condensate of xylenol and formaldehyde
[4] Alkyl-modified phenolic resin obtained by alkylating the phenolic resins of [1] to [3] above.
[5] Polyvinyl phenol

これらのフェノール系樹脂はノボラック型であってもレゾール型であっても良い。なお、ノボラック型フェノール系樹脂、レゾール型フェノール系樹脂又はポリビニルフェノールとしては、下記一般式で示されるものが好適である。 These phenolic resins may be novolak type or resol type. As the novolak-type phenol-based resin, the resol-type phenol-based resin, or the polyvinylphenol, those represented by the following general formula are suitable.

Figure 2022102367000002
Figure 2022102367000002

本発明では、上記の凝集処理により生じた凝集処理水をさらに固液分離処理してフロックを分離してもよい。固液分離処理としては、セラミック膜への通水が好適であるが、浮上処理等であってもよい。 In the present invention, the agglomeration-treated water generated by the above-mentioned agglomeration treatment may be further subjected to a solid-liquid separation treatment to separate flocs. As the solid-liquid separation treatment, water flow through the ceramic film is preferable, but a floating treatment or the like may be used.

[無機凝集剤の評価試験]
<試験水>
国内冷凍麺製造工場における麺の茹で排水(デンプン濃度496mg/L、IC(無機炭酸)200mg/L)
[Evaluation test of inorganic flocculants]
<Test water>
Boiled drainage of noodles at a domestic frozen noodle manufacturing factory (starch concentration 496 mg / L, IC (inorganic carbonic acid) 200 mg / L)

<デンプン測定方法>
HACH製残留塩素計(HACH2470)を用いて以下の方法で測定した。
(1) 試験水3.2mLに1+10塩酸を4.4mL添加して、ゼロ合わせをする。
(2) N/500ヨウ素溶液を0.4mL添加して、3分後の吸光度を測定する。
(3) 既知デンプン濃度溶液を(1)~(2)の方法で測定して作成した検量線を用いて、試料のデンプン濃度を求める。
<Starch measurement method>
It was measured by the following method using a HACH residual chlorine meter (HACH2470).
(1) Add 4.4 mL of 1 + 10 hydrochloric acid to 3.2 mL of test water to adjust to zero.
(2) Add 0.4 mL of N / 500 iodine solution and measure the absorbance after 3 minutes.
(3) The starch concentration of the sample is determined using the calibration curve prepared by measuring the known starch concentration solution by the methods (1) and (2).

<濁度測定法>
HACH製濁度計(2100Q)を用いて測定した。
<Turbidity measurement method>
It was measured using a HACH turbidity meter (2100Q).

<試験方法>
上記の試験水300mLを150rpmで室温にて攪拌しながら、後述の無機凝集剤を後述の濃度で添加した。
<Test method>
While stirring 300 mL of the above test water at 150 rpm at room temperature, the inorganic flocculant described below was added at the concentration described below.

添加後直ちにpHを10g/L HSO又は10g/L NaOHで6、7、8、9、10又は12に調整し、無機凝集剤添加から6分間後に、攪拌速度を50rpmに下げて5分間緩速攪拌した。緩速攪拌後、5分間静置した後の上澄みを約10mL採水し、濁度とデンプン濃度を測定した。 Immediately after the addition, the pH was adjusted to 6, 7, 8, 9, 10 or 12 with 10 g / L H2 SO 4 or 10 g / L NaOH, and 6 minutes after the addition of the inorganic flocculant, the stirring speed was reduced to 50 rpm 5 Stir slowly for 1 minute. After slow stirring and allowing to stand for 5 minutes, about 10 mL of the supernatant was sampled, and the turbidity and starch concentration were measured.

<無機凝集剤及び添加量>
下記の凝集剤を水溶液の形態にて添加した。固形分としての添加量は下記の通りである。
・実施例1 高塩基性塩化アルミニウム 3000mg/L
([Al(OH)Cl6-n(0<n<6,m≦10),
Al換算15wt%)
・実施例2 PAC(Al約10wt%) 3000mg/L
・比較例1 35%FeCl 3000mg/L
・比較例2 FeSO・7HO 5000mg/L
<Inorganic flocculant and amount added>
The following flocculants were added in the form of an aqueous solution. The amount added as a solid content is as follows.
Example 1 Highly basic aluminum chloride 3000 mg / L
([Al 2 (OH) n Cl 6-n ] m (0 <n <6, m ≦ 10),
Al 2 O 3 conversion 15 wt%)
Example 2 PAC (Al 2 O 3 about 10 wt%) 3000 mg / L
Comparative Example 1 35% FeCl 3 3000 mg / L
-Comparative Example 2 FeSO 4.7H 2 O 5000 mg / L

<結果及び考察>
凝集処理水の上清濁度及びデンプン濃度の測定結果を図1,2に示す。
図1,2の通り、比較例1,2(鉄系凝集剤添加)に比べて、実施例1,2(アルミニウム系凝集剤添加)は、凝集処理水上清の濁度及びデンプン濃度が低い。また、その際の適正pHは8~10であった。
<Results and discussion>
The measurement results of the supernatant turbidity and the starch concentration of the aggregated water are shown in FIGS. 1 and 2.
As shown in FIGS. 1 and 2, the turbidity and starch concentration of the aggregate-treated water supernatant are lower in Examples 1 and 2 (addition of aluminum-based flocculant) than in Comparative Examples 1 and 2 (addition of iron-based flocculant). The appropriate pH at that time was 8 to 10.

この試験における凝集後の上清中のAl濃度を図3に示す。図3の通り、実施例1の方が添加したAl量が多いにもかかわらず、処理水に残留するAl量は実施例2に比べて少ない。一般的に水中においてAlは6個のHO分子が正八面体に配位したアコ錯体[Al(OH として存在しており、実施例2のPACを添加した際にもその状態で存在する。一方で、高塩基性塩化アルミでは水和しているOHを架橋して数個のアルミニウムが重縮合した一種の高分子を形成しているため、フロック形成に効率よくAlを使用することが可能であり、処理水中にAlが残留しにくいという利点がある。 The Al concentration in the supernatant after aggregation in this test is shown in FIG. As shown in FIG. 3, although the amount of Al added in Example 1 is larger, the amount of Al remaining in the treated water is smaller than that in Example 2. Generally, Al exists in water as an acocomplex [Al (OH 2 ) 6 ] 3+ in which 6 H2O molecules are coordinated to a regular octahedron, and even when the PAC of Example 2 is added. It exists in that state. On the other hand, in highly basic aluminum chloride, hydrated OH is crosslinked to form a kind of polymer in which several aluminums are polycondensed, so Al can be efficiently used for floc formation. Therefore, there is an advantage that Al does not easily remain in the treated water.

[凝結剤の評価試験] [Evaluation test of coagulant]

<試験水>
国内冷凍麺製造工場における麺の茹で排水(デンプン濃度2112mg/L、IC18mg/L)
<Test water>
Boiled drainage of noodles at a domestic frozen noodle manufacturing factory (starch concentration 2112 mg / L, IC 18 mg / L)

<濁度・デンプン濃度測定法>
上記の通り。
<Measurement method of turbidity / starch concentration>
As above.

<試験方法>
上記試験水300mLを室温にて150rpmで攪拌しながら、後述の凝結剤を添加し、添加から約5分後に上記の高塩基性塩化アルミニウムを固形分として500mg/L、水溶液の形態にて添加した。
<Test method>
While stirring 300 mL of the above test water at room temperature at 150 rpm, the coagulant described below was added, and about 5 minutes after the addition, the above highly basic aluminum chloride was added as a solid content at 500 mg / L in the form of an aqueous solution. ..

添加後直ちに10g/L NaOHでpH8.5に調整し、無機凝集剤添加から6分間後に、攪拌速度50rpmに下げて5分間緩速攪拌した。 Immediately after the addition, the pH was adjusted to 8.5 with 10 g / L NaOH, and 6 minutes after the addition of the inorganic flocculant, the stirring speed was reduced to 50 rpm and the mixture was slowly stirred for 5 minutes.

緩速攪拌後、5分間静置した後の上澄みを約10mL採水し、濁度とデンプン濃度を測定した。 After slow stirring and allowing to stand for 5 minutes, about 10 mL of the supernatant was sampled, and the turbidity and starch concentration were measured.

<凝結剤>
次の凝結剤を用いた。なお、DAAはジメチルアミノエチルアクリレートであり、DADMACはジアリルジメチルアンモニウムクロライドであり、DAMBzはジメチルアミノエチルメタクリレート塩化ベンジル4級塩ホモポリマーであり、AAmはアクリルアミドである。
・参考例1 メラミン・ホルムアルデヒド縮合体
・参考例2 フェノール樹脂
・参考例3 DAAとAAm共重合体(DAA/AAm=50mol%/50mol%、重量平均分子量200万)
・参考例4 DAAとAAm共重合体(DAA/AAm=95mol%/5mol%、重量平均分子量400万)
・参考例5 DADMACの単独重合物
・参考例6 DAMBzの単独重合物(重量平均分子量1400万)
・参考例7 DAAメチクロ/DAABz/AAm共重合体(重量平均分子量800万)
<Caking agent>
The following coagulants were used. DAA is dimethylaminoethyl acrylate, DADMAC is diallyldimethylammonium chloride, DAMBz is dimethylaminoethyl methacrylate benzyl chloride quaternary salt homopolymer, and AAm is acrylamide.
-Reference Example 1 Melamine-formaldehyde condensate-Reference Example 2 Phenol resin-Reference Example 3 DAA and AAm copolymer (DAA / AAm = 50 mol% / 50 mol%, weight average molecular weight 2 million)
Reference Example 4 DAA and AAm copolymer (DAA / AAm = 95 mol% / 5 mol%, weight average molecular weight 4 million)
-Reference Example 5 DADMAC homopolymer-Reference Example 6 DAMBS homopolymer (weight average molecular weight 14 million)
-Reference Example 7 DAA methiculo / DAABz / AAm copolymer (weight average molecular weight 8 million)

<結果及び考察>
凝結処理水の上清水のデンプン濃度と濁度の測定結果を図4,5に示す。
<Results and discussion>
The measurement results of the starch concentration and the turbidity of the supernatant water of the condensed water are shown in FIGS. 4 and 5.

図4,5の通り、デンプン除去効果は強カチオンポリマー(参考例3,4,5)の方が非カチオン性の構造を有する低カチオンポリマー(参考例6,7)よりも優れていた。さらに、強カチオンポリマーのデンプン除去効果は分子量の大きいものほど優れていた(参考例4>参考例3>参考例5)。しかしながら、重量平均分子量200万以上の高分子ポリマーを添加すると、上清濁度は増加した。 As shown in FIGS. 4 and 5, the starch removing effect of the strong cationic polymer (Reference Examples 3, 4 and 5) was superior to that of the low cationic polymer having a non-cationic structure (Reference Examples 6 and 7). Further, the starch removing effect of the strong cationic polymer was superior as the molecular weight increased (Reference Example 4> Reference Example 3> Reference Example 5). However, the addition of high molecular weight polymers with a weight average molecular weight of 2 million or more increased the supernatant turbidity.

これらのポリマーの構造および効果に対し、参考例1,2に示した樹脂は少量の添加で直ちに上清中のデンプン濃度を低下させ、著しいデンプン除去効果を発揮した。また、添加量増加に伴う上清濁度増加は観察されなかった。 With respect to the structure and effect of these polymers, the resins shown in Reference Examples 1 and 2 immediately lowered the starch concentration in the supernatant with the addition of a small amount, and exhibited a remarkable starch removing effect. In addition, no increase in supernatant turbidity was observed with the increase in the amount added.

Claims (7)

中性多糖類含有水に凝集剤を添加して処理する方法において、
該凝集剤として、アルミニウム系凝集剤を用い、
中性多糖類含有水のpHを8以上とすることを特徴とする中性多糖類含有水の処理方法。
In the method of adding a flocculant to water containing neutral polysaccharides for treatment.
An aluminum-based flocculant is used as the flocculant.
A method for treating neutral polysaccharide-containing water, which comprises setting the pH of the neutral polysaccharide-containing water to 8 or more.
前記アルミニウム系凝集剤が高塩基性塩化アルミニウムであることを特徴とする請求項1の中性多糖類含有水の処理方法。 The method for treating neutral polysaccharide-containing water according to claim 1, wherein the aluminum-based flocculant is highly basic aluminum chloride. 前記中性多糖類含有水のpHをpH8~10とすることを特徴とする請求項1又は2の中性多糖類含有水の処理方法。 The method for treating neutral polysaccharide-containing water according to claim 1 or 2, wherein the pH of the neutral polysaccharide-containing water is pH 8 to 10. 前記アルミニウム系凝集剤の添加の前に、中性多糖類と水素結合可能な部位をもつポリマーを添加することを特徴とする請求項1~3のいずれかの中性多糖類含有水の処理方法。 The method for treating neutral polysaccharide-containing water according to any one of claims 1 to 3, wherein a polymer having a hydrogen-bondable moiety with the neutral polysaccharide is added before the addition of the aluminum-based flocculant. .. 前記ポリマーがフェノール樹脂及び/又はメラミン樹脂であることを特徴とする請求項4の中性多糖類含有水の処理方法。 The method for treating neutral polysaccharide-containing water according to claim 4, wherein the polymer is a phenol resin and / or a melamine resin. 凝集処理水をセラミック膜に通水することを特徴とする請求項1~5のいずれかの中性多糖類含有水の処理方法。 The method for treating neutral polysaccharide-containing water according to any one of claims 1 to 5, wherein the agglomerated treated water is passed through a ceramic membrane. 中性多糖類含有水が、麺のゆで汁、米のとぎ汁、又は該ゆで汁もしくはとぎ汁を含む排水であることを特徴とする請求項1~6のいずれかの中性多糖類含有水の処理方法。 Treatment of the neutral polysaccharide-containing water according to any one of claims 1 to 6, wherein the neutral polysaccharide-containing water is boiled noodle juice, rice broth, or wastewater containing the boiled juice or broth. Method.
JP2020217056A 2020-12-25 2020-12-25 Treatment method for water containing neutral polysaccharides Pending JP2022102367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020217056A JP2022102367A (en) 2020-12-25 2020-12-25 Treatment method for water containing neutral polysaccharides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020217056A JP2022102367A (en) 2020-12-25 2020-12-25 Treatment method for water containing neutral polysaccharides

Publications (1)

Publication Number Publication Date
JP2022102367A true JP2022102367A (en) 2022-07-07

Family

ID=82273422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020217056A Pending JP2022102367A (en) 2020-12-25 2020-12-25 Treatment method for water containing neutral polysaccharides

Country Status (1)

Country Link
JP (1) JP2022102367A (en)

Similar Documents

Publication Publication Date Title
Sahu et al. Review on chemical treatment of industrial waste water
Naceradska et al. On the importance of pH value in coagulation
TW467870B (en) Method for treatment of aqueous streams comprising biosolids
Matilainen et al. Natural organic matter removal by coagulation during drinking water treatment: A review
Lee et al. Flocculation activity of novel ferric chloride–polyacrylamide (FeCl3-PAM) hybrid polymer
Zhao et al. Influence of floc structure on coagulation–microfiltration performance: effect of Al speciation characteristics of PACls
Miranda et al. Efficiency of chitosans for the treatment of papermaking process water by dissolved air flotation
JP5364298B2 (en) Dispersant-containing water treatment method
JP5621260B2 (en) Wastewater coagulation method
JP5621254B2 (en) Oil-containing wastewater treatment method
Hassan et al. Pre-treatment of palm oil mill effluent (POME): a comparison study using chitosan and alum
Miranda et al. Understanding the efficiency of aluminum coagulants used in dissolved air flotation (DAF)
JP5659487B2 (en) Wastewater coagulation method
Lekniute et al. Structural characteristics and flocculation properties of amphoteric starch
JP2011131166A (en) Method for flocculating waste water
JP2009154095A (en) Water treatment method
Hu et al. The feasibility and mechanism of poly-aluminum/titanium silicate composite coagulants for the efficient removal of nano-and micro-sized plastics
JP5621255B2 (en) Treatment method of inorganic waste water
JP5145823B2 (en) Organic flocculant and wastewater flocculation treatment method using the chemical
JP6134940B2 (en) Coagulation treatment method for oil-containing cleaning wastewater
JP2007313492A (en) Method and apparatus for treating soluble cod component-containing water
JP2022102367A (en) Treatment method for water containing neutral polysaccharides
JP5843428B2 (en) Coagulation treatment method for colored wastewater
JP2008006382A (en) Method of treating oil-containing waste water
Mohammadi et al. Effect of chitosan as a coagulant aid combined with poly aluminum chloride removing of turbidity from drinking water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240927