JP2022100265A - Abnormality detection method of soaking type membrane separator - Google Patents

Abnormality detection method of soaking type membrane separator Download PDF

Info

Publication number
JP2022100265A
JP2022100265A JP2021203833A JP2021203833A JP2022100265A JP 2022100265 A JP2022100265 A JP 2022100265A JP 2021203833 A JP2021203833 A JP 2021203833A JP 2021203833 A JP2021203833 A JP 2021203833A JP 2022100265 A JP2022100265 A JP 2022100265A
Authority
JP
Japan
Prior art keywords
differential pressure
pressure measurement
period
measurement value
value group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021203833A
Other languages
Japanese (ja)
Inventor
昭宏 ▲吉▼田
Akihiro Yoshida
康之 吉田
Yasuyuki Yoshida
一登 小松
Kazuto Komatsu
裕司 大塚
Yuji Otsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Publication of JP2022100265A publication Critical patent/JP2022100265A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing And Monitoring For Control Systems (AREA)

Abstract

To provide an abnormality detection method of a soaking type membrane separator capable of mitigating a monitoring person's load and quickly and accurately diagnosing a condition of a filtration film even when a monitoring person is absent.SOLUTION: An abnormality detection method of a soaking type membrane separator that alternately repeats filtration running and relaxation running includes a data acquisition step of measuring and acquiring an inter-membrane differential pressure of a soaking type membrane separator at intervals of a predetermined time, a condition separation step of separating a group of inter-membrane differential pressure measured values for a first period, which encompasses an object period during which an abnormality is detected. out of acquired time-sequential inter-membrane differential pressure measured values into a first group of inter-membrane differential pressure measured values for filtration running and a second group of inter-membrane differential pressure measured values for relaxation running, a noise removing step of removing noise data from each of the groups of inter-membrane differential pressure measured values, and an abnormality determination step of calculating a dispersing condition from a group of differential pressure measured values for a second period shorter than the first period from the group of inter-membrane differential pressure measured values resulting from noise removal, and determining based on the dispersing condition whether the soaking type membrane separator is abnormal.SELECTED DRAWING: Figure 4

Description

本発明は、浸漬型膜分離装置の異常検知方法に関する。 The present invention relates to an abnormality detection method for an immersion type membrane separation device.

汚水処理などの各種の水処理プラントには、処理槽に浸漬型膜分離装置が配置され、当該浸漬型膜分離装置に組み込まれたろ過膜により処理槽中の被処理水を吸引ろ過することで固液分離した処理水が得られる。 In various water treatment plants such as sewage treatment, an immersion type membrane separation device is arranged in the treatment tank, and the water to be treated in the treatment tank is suction-filtered by the filtration membrane incorporated in the immersion type membrane separation device. The treated water separated into solid and liquid can be obtained.

浸漬型膜分離装置は膜分離装置の下方に散気装置が設置され、散気装置により散気された状態でろ過膜を用いて吸引ろ過するろ過運転が実行される。しかし、時間の経過と共にろ過膜に目詰まりや固形成分の堆積が生じ、ろ過効率が低下するため、通常はろ過運転と、散気装置からの散気を維持した状態で吸引ろ過を停止するリラクゼーション運転とを所定時間間隔で繰返し、リラクゼーション運転でもろ過運転時と同様に散気装置からの気泡と被処理水の気液混相の上向流でろ過膜面をクリーニングするように運転管理する管理装置を備えている。 In the immersion type membrane separation device, an air diffuser is installed below the membrane separation device, and a filtration operation is executed in which suction filtration is performed using a filtration membrane while the air is diffused by the air diffuser. However, with the passage of time, clogging and accumulation of solid components occur in the filtration membrane, and the filtration efficiency decreases. Therefore, normally, the filtration operation and the relaxation to stop the suction filtration while maintaining the air diffusion from the air diffuser A management device that repeats the operation at predetermined time intervals and manages the operation so that the filtration film surface is cleaned by the upward flow of the gas-liquid mixed phase of the air bubbles from the air diffuser and the water to be treated even in the relaxation operation as in the filtration operation. It is equipped with.

そして、管理装置は、ろ過膜の表面(一次側面)側と裏面(二次側面)側の圧力差つまり膜間差圧を計測し、膜間差圧が管理閾値を超えるタイミングまたは急激に増大するタイミングで逆圧洗浄や薬液洗浄が必要であると判断するように構成されている。 Then, the management device measures the pressure difference between the front surface (primary side surface) side and the back surface (secondary side surface) side of the filtration membrane, that is, the intermembrane differential pressure, and the intermembrane differential pressure exceeds the control threshold or suddenly increases. It is configured to determine that reverse pressure cleaning or chemical cleaning is necessary at the timing.

例えば、特許文献1には、ろ過処理装置におけるろ過部材に対して閉塞の発生を抑制しながら、効果的なタイミングでろ過部材に対して逆圧洗浄を行うことができるろ過部材洗浄システムが提案されている。 For example, Patent Document 1 proposes a filtration member cleaning system capable of performing back pressure cleaning on a filtration member at an effective timing while suppressing the occurrence of blockage on the filtration member in the filtration processing apparatus. ing.

当該ろ過部材洗浄システムは、一次側から二次側に向かって被処理水を通過させ被処理水のろ過を行うろ過部材と、該ろ過部材により区画される一次側領域及び二次側領域と、を有し、一次側領域から前記二次側領域に向かって被処理水をろ過部材に通過させることにより被処理水のろ過処理を行うろ過処理装置と、一次側領域から二次側領域に向かって被処理水を流通させる被処理水流通手段と、ろ過部材に二次側から一次側に向けて洗浄液を供給する洗浄液供給手段と、一次側領域と二次側領域との圧力差の測定を行う圧力差測定手段と、所定の閾値を設定可能で、設定された該閾値に基づいて洗浄液供給手段の起動の判定を行う判定手段と、判定手段による判定結果に基づいて、洗浄液供給手段の起動の制御を行う制御手段と、を備え、判定手段は、洗浄液供給手段による洗浄液の供給終了後において、前記閾値を、圧力差測定手段により測定された圧力差である測定圧力差値に基づいて算出される洗浄後圧力差値に所定のオフセット値を加えた値に、再設定するように構成されている。 The filtration member cleaning system includes a filtration member that allows the water to be treated to pass from the primary side to the secondary side to filter the water to be treated, and a primary side region and a secondary side region partitioned by the filtration member. A filtration treatment device that performs filtration treatment of the water to be treated by passing the water to be treated through the filtration member from the primary side region toward the secondary side region, and from the primary side region to the secondary side region. To measure the pressure difference between the primary side region and the secondary side region, the treatment water distribution means for circulating the water to be treated, the cleaning liquid supply means for supplying the cleaning liquid from the secondary side to the primary side to the filtration member. A pressure difference measuring means to be performed, a determination means that can set a predetermined threshold and determine the activation of the cleaning liquid supply means based on the set threshold, and an activation of the cleaning liquid supply means based on the determination result by the determination means. The determination means calculates the threshold value based on the measured pressure difference value, which is the pressure difference measured by the pressure difference measuring means, after the supply of the cleaning liquid by the cleaning liquid supply means is completed. It is configured to reset to a value obtained by adding a predetermined offset value to the pressure difference value after cleaning.

ところで、近年、ろ過膜の管理の効率化などの観点で、水処理プラントに設置され、所定時間間隔でろ過運転とリラクゼーション運転の間で運転切替するように膜分離装置を管理する管理装置と、管理装置と通信可能に接続され、各管理装置により所定時間間隔でサンプリングされた各ろ過膜の膜間差圧を集信して管理する遠隔監視装置とを備えた遠隔監視システムが構築されつつある。 By the way, in recent years, from the viewpoint of improving the efficiency of filtration membrane management, a management device installed in a water treatment plant that manages a membrane separation device so as to switch between filtration operation and relaxation operation at predetermined time intervals, A remote monitoring system is being constructed equipped with a remote monitoring device that is communicably connected to the management device and that collects and manages the intermembrane differential pressure of each filter membrane sampled by each management device at predetermined time intervals. ..

遠隔監視装置に集信された各膜分離装置の時系列的な膜間差圧に基づいて、膜間差圧のトレンドグラフがモニターに表示され、複数の監視員がトレンドグラフを目視して各膜分離装置のろ過膜に異常が生じているか否かを判断するように構成されている。 Based on the time-series intermembrane differential pressure of each membrane separation device collected by the remote monitoring device, a trend graph of the intermembrane differential pressure is displayed on the monitor, and multiple observers visually observe the trend graph. It is configured to determine whether or not an abnormality has occurred in the filtration membrane of the membrane separation device.

特開2011-31145号公報Japanese Unexamined Patent Publication No. 2011-31145

しかし、監視対象となる膜分離装置の数の増大とともに、監視員の処理負荷が増大し、個別のトレンドグラフを目視して異常であるか正常であるかを判断するために監視員に許容される時間が制限され、正確かつ迅速な判断という観点で困難な状況になりつつあった。 However, as the number of membrane separation devices to be monitored increases, the processing load of the observer increases, and the observer is allowed to visually check the individual trend graphs to judge whether they are abnormal or normal. Time was limited, and it was becoming difficult in terms of accurate and quick judgment.

そこで、監視員を増員することも考えられるが、多くの監視員が同質の判断を安定的に行なえるように訓練するのは非常に時間がかかり、どうしても個人差により判断結果に揺らぎが生じるという問題があった。設備毎に膜分離装置の運転態様が区々であり、それに応じて表示装置に表示される膜間差圧のトレンドグラフの傾向も区々であるため、短時間で正常であるか異常であるかを適切に判断できるようになるには十分な経験が要求されるためである。 Therefore, it is conceivable to increase the number of observers, but it takes a long time to train many observers to make stable judgments of the same quality, and the judgment results will inevitably fluctuate due to individual differences. There was a problem. Since the operation mode of the membrane separation device is different for each facility and the tendency of the trend graph of the intermembrane differential pressure displayed on the display device is also different, it is normal or abnormal in a short time. This is because sufficient experience is required to be able to properly judge whether or not.

また、監視員が不在の夜間や休日には異常が生じていても発見できないという不都合もあった。 In addition, there was an inconvenience that even if an abnormality occurred at night or on holidays when the guard was absent, it could not be found.

本発明の目的は、上述した問題点に鑑み、監視員の負担を軽減するとともに、監視員が不在であっても、ろ過膜の状態を迅速且つ正確に診断可能な浸漬型膜分離装置の異常検知方法を提供する点にある。 An object of the present invention is to reduce the burden on the observer in view of the above-mentioned problems, and to make an abnormality of the immersion type membrane separation device capable of quickly and accurately diagnosing the state of the filtration membrane even in the absence of the observer. The point is to provide a detection method.

上述の目的を達成するため、本発明による浸漬型膜分離装置の異常検知方法の第一の特徴構成は、ろ過運転とリラクゼーション運転を交互に繰り返す浸漬型膜分離装置の異常検知方法であって、前記浸漬型膜分離装置の膜間差圧を所定時間ごとに計測して収集するデータ収集工程と、前記データ収集工程で収集した時系列の膜間差圧計測値のうち、異常を検知する対象期間を含む第1の期間の膜間差圧計測値群を、ろ過運転時の第1膜間差圧計測値群とリラクゼーション運転時の第2膜間差圧計測値群に分離する状態分離工程と、前記第1膜間差圧計測値群および/または前記第2膜間差圧計測値群からノイズデータを除去するノイズ除去工程と、前記ノイズ除去工程でノイズを除去した前記第1膜間差圧計測値群および/または前記第2膜間差圧計測値群に対して、前記第1の期間より短い第2の期間の差圧計測値群から分散状態を算出し、当該分散状態に基づいて前記浸漬型膜分離装置が異常であるか否かを判定する異常判定工程と、を含む点にある。 In order to achieve the above object, the first characteristic configuration of the abnormality detection method of the immersion type membrane separation device according to the present invention is the abnormality detection method of the immersion type membrane separation device in which the filtration operation and the relaxation operation are alternately repeated. Of the data collection step of measuring and collecting the intermembrane differential pressure of the immersion type membrane separation device at predetermined time intervals and the time-series intermembrane differential pressure measurement value collected in the data collection step, the target for detecting an abnormality. A state separation step of separating the intermembrane differential pressure measurement value group of the first period including the period into the first intermembrane differential pressure measurement value group during the filtration operation and the second intermembrane differential pressure measurement value group during the relaxation operation. And / or the noise removing step of removing noise data from the first intermembrane differential pressure measurement value group and / or the second intermembrane differential pressure measurement value group, and the first intermembrane noise removing noise in the noise removing step. For the differential pressure measurement value group and / or the second membrane differential pressure measurement value group, the dispersion state is calculated from the differential pressure measurement value group in the second period shorter than the first period, and the dispersion state is obtained. It is a point including an abnormality determination step of determining whether or not the immersion type membrane separation device is abnormal based on the above.

所定時間ごとに膜間差圧を計測した膜間差圧計測値の集合である膜間差圧計測値群という一種類の時系列のデータがデータ収集工程で収集され、状態分離工程が実行されることにより、第1の期間つまり異常を検知する対象期間を含む期間の膜間差圧計測値群がろ過運転時に対応する第1膜間差圧計測値群とリラクゼーション運転時に対応する第2膜間差圧計測値群とに分離される。分離された第1膜間差圧計測値群および/または第2膜間差圧計測値群に対してノイズ除去工程が実行されることで異常判定に揺らぎを与えるノイズデータが除去された後に異常判定工程が実行される。異常判定工程では、第1の期間より短い第2の期間の膜間差圧計測値群から分散状態が算出され、当該分散状態に基づいて浸漬型膜分離装置が異常であるか否かが判定される。 One type of time-series data called the intermembrane differential pressure measurement value group, which is a set of intermembrane differential pressure measurement values obtained by measuring the intermembrane differential pressure at predetermined time intervals, is collected in the data collection process, and the state separation process is executed. As a result, the intermembrane differential pressure measurement value group corresponding to the first period, that is, the period including the target period for detecting an abnormality, corresponds to the first intermembrane differential pressure measurement value group during the filtration operation and the second membrane corresponding to the relaxation operation. It is separated from the differential pressure measurement value group. Abnormality after noise data that fluctuates the abnormality determination is removed by executing the noise removal step for the separated first intermembrane differential pressure measurement value group and / or the second intermembrane differential pressure measurement value group. The determination process is executed. In the abnormality determination step, the dispersion state is calculated from the intermembrane differential pressure measurement value group in the second period shorter than the first period, and it is determined whether or not the immersion type membrane separation device is abnormal based on the dispersion state. Will be done.

同第二の特徴構成は、上述した第一の特徴構成に加えて、前記ノイズ除去工程は、前記第1膜間差圧計測値群および前記第2膜間差圧計測値群の其々に対して上下所定範囲から逸脱するデータを除去する工程である点にある。 In the second feature configuration, in addition to the first feature configuration described above, the noise reduction step is performed in each of the first intermembrane differential pressure measurement value group and the second intermembrane differential pressure measurement value group. On the other hand, it is a process of removing data deviating from the upper and lower predetermined ranges.

第1膜間差圧計測値群および第2膜間差圧計測値群の其々に対して、上下所定範囲から逸脱するデータを除去することで、例えば膜間差圧を計測するセンサの出力信号線に混入する電磁ノイズや、ろ過運転とリラクゼーション運転とを切り替えたときの遷移時期のデータなど、異常判定に揺らぎを与えるノイズデータが効果的に除去される。 By removing data that deviates from the upper and lower predetermined ranges for each of the first intermembrane differential pressure measurement value group and the second intermembrane differential pressure measurement value group, for example, the output of a sensor that measures the intermembrane differential pressure. Noise data that fluctuates the abnormality determination, such as electromagnetic noise mixed in the signal line and data of the transition time when the filtration operation and the relaxation operation are switched, is effectively removed.

同第三の特徴構成は、ろ過運転とリラクゼーション運転を交互に繰り返す浸漬型膜分離装置の異常検知方法であって、前記浸漬型膜分離装置の膜間差圧を所定時間ごとに計測して収集するデータ収集工程と、前記データ収集工程で収集した時系列の膜間差圧計測値からノイズデータを除去するノイズ除去工程と、前記ノイズ除去工程でノイズを除去した膜間差圧計測値を、予めサンプリングした正常時の最大計測値と最小計測値に基づいて正規化する正規化処理工程と、前記正規化処理工程で正規化した膜間差圧計測値のうち、異常を検知する対象期間を含む第1の期間の膜間差圧計測値群を、ろ過運転時の第1膜間差圧計測値群とリラクゼーション運転時の第2膜間差圧計測値群に分離する状態分離工程と、前記状態分離工程で分離した前記第1膜間差圧計測値群および/または前記第2膜間差圧計測値群に対して、前記第1の期間より短い第2の期間の差圧計測値群から分散状態を算出し、当該分散状態に基づいて前記浸漬型膜分離装置が異常であるか否かを判定する異常判定工程と、を含む点にある。 The third characteristic configuration is a method for detecting an abnormality in an immersion type membrane separation device that alternately repeats a filtration operation and a relaxation operation, and measures and collects the intermembrane differential pressure of the immersion type membrane separation device at predetermined time intervals. The data collection step, the noise removal step of removing noise data from the time-series differential pressure measurement values collected in the data collection step, and the intermembrane differential pressure measurement value of removing noise in the noise removal step. Of the normalization processing step that normalizes based on the maximum and minimum measured values in the normal state sampled in advance and the intermembrane differential pressure measurement value normalized in the normalization processing step, the target period for detecting an abnormality is set. A state separation step of separating the intermembrane differential pressure measurement value group in the first period including the first intermembrane differential pressure measurement value group during the filtration operation and the second intermembrane differential pressure measurement value group during the relaxation operation. The differential pressure measurement value in the second period shorter than the first period with respect to the first membrane differential pressure measurement value group and / or the second membrane differential pressure measurement value group separated in the state separation step. The point includes an abnormality determination step of calculating a dispersion state from the group and determining whether or not the immersion type membrane separation device is abnormal based on the dispersion state.

異常検知の対象となる浸漬型膜分離装置に対して、データ収集工程で所定時間ごとに膜間差圧が計測され、ノイズ除去工程でノイズデータが除去され、ノイズデータが除去された膜間差圧計測値に対して、予めサンプリングした当該浸漬型膜分離装置の正常運転時の膜間差圧の最大計測値と最小計測値に基づいて正規化処理工程が実行される。正規化処理された膜間差圧計測値に対して状態分離工程が実行され、異常を検知する対象期間を含む第1の期間の膜間差圧計測値群が、ろ過運転時の第1膜間差圧計測値群とリラクゼーション運転時の第2膜間差圧計測値群に分離され、第1膜間差圧計測値群および/または第2膜間差圧計測値群に対して異常判定工程が実行される。即ち、第1の期間より短い第2の期間の差圧計測値群から分散状態が算出され、当該分散状態に基づいて浸漬型膜分離装置が異常であるか否かが判定される。データ収集工程で計測された膜間差圧計測値群に、ノイズとは異なるある程度の大きさの変動が見られ、その変動が正常な範囲である場合に、異常であると誤判定されるような状況を未然に回避することができる。 For the immersion type membrane separation device that is the target of abnormality detection, the intermembrane pressure is measured at predetermined time intervals in the data collection process, the noise data is removed in the noise removal process, and the noise data is removed. The normalization processing step is executed based on the maximum measured value and the minimum measured value of the intermembrane differential pressure during normal operation of the immersion type membrane separation device sampled in advance with respect to the pressure measured value. The state separation step is executed for the normalized intermembrane differential pressure measurement value, and the intermembrane differential pressure measurement value group in the first period including the target period for detecting an abnormality is the first membrane during the filtration operation. It is separated into a differential pressure measurement value group and a second intermembrane differential pressure measurement value group during relaxation operation, and an abnormality is determined for the first intermembrane differential pressure measurement value group and / or the second intermembrane differential pressure measurement value group. The process is carried out. That is, the dispersion state is calculated from the differential pressure measurement value group in the second period shorter than the first period, and it is determined whether or not the immersion type membrane separation device is abnormal based on the dispersion state. In the intermembrane differential pressure measurement value group measured in the data acquisition process, a certain amount of fluctuation different from noise is seen, and if the fluctuation is within the normal range, it is erroneously judged as abnormal. It is possible to avoid such a situation.

同第四の特徴構成は、上述した第三の特徴構成に加えて、前記ノイズ除去工程は、前記膜間差圧計測値に対して上下所定範囲から逸脱するデータを除去する工程である点にある。 The fourth feature configuration is that, in addition to the third feature configuration described above, the noise reduction step is a step of removing data deviating from the upper and lower predetermined ranges with respect to the intermembrane differential pressure measurement value. be.

データ収集工程で計測された複数の膜間差圧計測値に対して、ノイズ除去工程により上下所定範囲から逸脱するデータを、本来の異常判定の対象とならないノイズとして除去することで、適切に異常判定できるようになる。 Appropriate abnormalities are obtained by removing data that deviates from the upper and lower predetermined ranges by the noise reduction process as noise that is not the target of the original abnormality judgment for multiple intermembrane differential pressure measurement values measured in the data collection process. You will be able to judge.

同第五の特徴構成は、上述した第一から第四の何れかの特徴構成に加えて、前記状態分離工程は、教師なし機械学習に基づく非階層的クラスター分析を実行することにより前記第1膜間差圧計測値群と前記第2膜間差圧計測値群に分離する工程である点にある。 In the fifth feature configuration, in addition to any of the first to fourth feature configurations described above, the state separation step is performed by performing a non-hierarchical cluster analysis based on unsupervised machine learning. The point is that it is a step of separating the intermembrane differential pressure measurement value group and the second intermembrane differential pressure measurement value group.

教師なし機械学習に基づく非階層的クラスター分析を採用することで、第1膜間差圧計測値群と第2膜間差圧計測値群に適切に状態分離できるようになる。 By adopting non-hierarchical cluster analysis based on unsupervised machine learning, it becomes possible to appropriately separate the states into the first intermembrane differential pressure measurement value group and the second intermembrane differential pressure measurement value group.

同第六の特徴構成は、上述した第一から第五の何れかの特徴構成に加えて、前記異常判定工程で算出する前記分散状態は、前記第2の期間の膜間差圧計測値群に対する分散または標準偏差を変数とする所定の評価関数の出力値であり、当該出力値が予め設けた閾値を超えると運転状態が異常であると判定する点にある。 In the sixth feature configuration, in addition to any of the first to fifth feature configurations described above, the dispersion state calculated in the abnormality determination step is the intermembrane differential pressure measurement value group in the second period. It is an output value of a predetermined evaluation function having a variance or standard deviation as a variable, and when the output value exceeds a preset threshold value, it is determined that the operating state is abnormal.

異常判定のために用いる分散状態として、第2の期間の膜間差圧計測値群に対する分散または標準偏差を変数とする所定の評価関数の出力値を採用することが好ましく、当該出力値が予め設けた閾値を超えると運転状態が異常であると適切に判定できるようになる。第2の期間において何らかの原因で安定性が損なわれると、第2の期間の差圧計測値群の分散または標準偏差が大きくなることに着目するものである。なお、評価関数は特に限定されるものではなく、分散または標準偏差を変数とする一次関数などを適宜用いることができる。 As the dispersion state used for abnormality determination, it is preferable to adopt the output value of a predetermined evaluation function whose variable is the dispersion or standard deviation with respect to the intermembrane differential pressure measurement value group in the second period, and the output value is set in advance. When the set threshold is exceeded, it becomes possible to appropriately determine that the operating state is abnormal. It is noted that if the stability is impaired for some reason in the second period, the variance or standard deviation of the differential pressure measurement value group in the second period becomes large. The evaluation function is not particularly limited, and a linear function or the like having a variance or a standard deviation as a variable can be appropriately used.

同第七の特徴構成は、上述した第一から第六の何れかの特徴構成に加えて、前記状態分離工程から前記異常判定工程に到る一連の工程を第3の期間毎で繰り返し実行するように構成され、前記第1の期間は前記第2の期間と前記第3の期間を加算した期間より長い期間に設定している点にある。 In the seventh feature configuration, in addition to any of the first to sixth feature configurations described above, a series of steps from the state separation step to the abnormality determination step is repeatedly executed every third period. The first period is set to be longer than the sum of the second period and the third period.

異常を検知する対象期間を含む第1の期間に、第1の期間より短い第3の期間が経過する毎に状態分離工程から異常判定工程が繰り返されるので、第3の期間より長い第1の期間の膜間差圧計測値群を利用した状態分離工程により状態分離の精度を確保しつつ、第1の期間より短い第3の期間が経過する毎に異常判定工程を実行することで、監視員による監視のタイミングに合わせて異常を判定できるようになる。 Since the abnormality determination step is repeated from the state separation step every time a third period shorter than the first period elapses in the first period including the target period for detecting an abnormality, the first period longer than the third period Monitoring is performed by executing an abnormality determination process every time a third period shorter than the first period elapses, while ensuring the accuracy of the state separation by the state separation process using the intermembrane differential pressure measurement value group of the period. Abnormalities can be determined according to the timing of monitoring by personnel.

同第八の特徴構成は、上述した第一から第七の何れかの特徴構成に加えて、前記異常判定工程は、前記第2の期間を所定時間毎に時系列的にシフトさせた各期間で実行する点にある。 In the eighth feature configuration, in addition to any of the first to seventh feature configurations described above, in the abnormality determination step, each period in which the second period is shifted in time series at predetermined time intervals. It is in the point of executing with.

第2の期間を所定時間毎に時系列的にシフトさせることにより、異常を検知する対象期間の全域で異常判定できるようになる。 By shifting the second period in time series at predetermined time intervals, it becomes possible to determine the abnormality in the entire target period for detecting the abnormality.

以上説明した通り、本発明によれば、監視員の負担を軽減するとともに、監視員が不在であっても、ろ過膜の状態を迅速且つ正確に診断可能な浸漬型膜分離装置の異常検知方法を提供することができるようになった。 As described above, according to the present invention, there is an abnormality detection method for an immersion type membrane separation device that can reduce the burden on the observer and can quickly and accurately diagnose the state of the filtration membrane even in the absence of the observer. Can now be provided.

本発明の適用対象となる遠隔監視システムの説明図Explanatory drawing of remote monitoring system to which this invention is applied 浸漬型膜分離装置の異常検知方法の第1の態様を示し、(a)はデータ収集工程で収集した膜間差圧計測値群の説明図、(b)は状態分離工程で状態分離されたろ過運転時の第1膜間差圧計測値群とリラクゼーション運転時の第2膜間差圧計測値群の説明図The first aspect of the abnormality detection method of the immersion type membrane separation apparatus is shown, (a) is an explanatory diagram of the membrane differential pressure measurement value group collected in a data collection step, and (b) is state separation in a state separation step. Explanatory drawing of the first intermembrane differential pressure measurement value group during the filtration operation and the second intermembrane differential pressure measurement value group during the relaxation operation 浸漬型膜分離装置の異常検知方法の第1の態様を示し、(a)は状態分離工程で状態分離されたろ過運転時の第1膜間差圧計測値群の説明図、(b)は分散状態の演算処理の説明図、(c)は分散状態に基づいて算出された評価値の説明図The first aspect of the abnormality detection method of the immersion type membrane separation apparatus is shown, FIG. An explanatory diagram of the arithmetic processing of the distributed state, (c) is an explanatory diagram of the evaluation value calculated based on the distributed state. 浸漬型膜分離装置の異常検知方法の第1の態様の処理手順を示すフローチャートA flowchart showing the processing procedure of the first aspect of the abnormality detection method of the immersion type membrane separation device. 浸漬型膜分離装置の異常検知方法の第1の態様を示し、(a)はデータ収集工程で収集した膜間差圧計測値群の説明図、(b)は状態分離工程で状態分離されたろ過運転時の第1膜間差圧計測値群とリラクゼーション運転時の第2膜間差圧計測値群の説明図、(c)は異常判定工程で判断される評価関数の出力特性と異常判定閾値の説明図The first aspect of the abnormality detection method of the immersion type membrane separation apparatus is shown, (a) is an explanatory diagram of the membrane differential pressure measurement value group collected in a data collection step, and (b) is state separation in a state separation step. An explanatory diagram of the first intermembrane differential pressure measurement value group during the filtration operation and the second intermembrane differential pressure measurement value group during the relaxation operation, (c) is the output characteristics and abnormality determination of the evaluation function determined in the abnormality determination process. Explanatory diagram of the threshold 浸漬型膜分離装置の異常検知方法の第2の態様の処理手順を示すフローチャートA flowchart showing the processing procedure of the second aspect of the abnormality detection method of the immersion type membrane separation device. 浸漬型膜分離装置の異常検知方法の第2の態様を示し、(a)はデータ収集工程で収集した膜間差圧計測値群の説明図、(b)は状態分離工程で状態分離されたろ過運転時の第1膜間差圧計測値群とリラクゼーション運転時の第2膜間差圧計測値群の説明図、(c)は異常判定工程で判断される評価関数の出力特性と異常判定閾値の説明図The second aspect of the abnormality detection method of the immersion type membrane separation device is shown, (a) is an explanatory diagram of a group of measured differential pressures between membranes collected in a data collection step, and (b) is a state separation in a state separation step. An explanatory diagram of the first intermembrane differential pressure measurement value group during the filtration operation and the second intermembrane differential pressure measurement value group during the relaxation operation, (c) is the output characteristics and abnormality determination of the evaluation function determined in the abnormality determination process. Explanatory diagram of the threshold

以下、本発明による浸漬型膜分離装置の異常検知方法の実施形態を説明する。
図1には、浸漬型膜分離装置の異常検知方法が適用される遠隔監視システムが示されている。
Hereinafter, embodiments of the abnormality detection method of the immersion type membrane separation device according to the present invention will be described.
FIG. 1 shows a remote monitoring system to which an abnormality detection method of an immersion type membrane separation device is applied.

遠隔監視システム100は、水処理プラント1(1A,1B,・・・,1N)に設置された浸漬型膜分離装置2(2A,2B,・・・,2N)(以下、単に「膜分離装置2」とも記す。)を管理する管理装置3(3A,3B,・・・,3N)と、管理装置3(3A,3B,・・・,3N)とインターネットなどを介して通信可能に接続されたクラウドサーバである遠隔監視装置4と、診断装置10を備えている。なお、診断装置10は、遠隔監視装置4がその機能を備えていてもよく、遠隔管理装置4と同じくインターネットなどを介して通信可能に接続されたものであってもよい。 The remote monitoring system 100 is an immersion type membrane separation device 2 (2A, 2B, ..., 2N) installed in the water treatment plant 1 (1A, 1B, ..., 1N) (hereinafter, simply "membrane separation device". 2 ”) is managed by the management device 3 (3A, 3B, ..., 3N) and the management device 3 (3A, 3B, ..., 3N) are connected to each other via the Internet or the like. It is equipped with a remote monitoring device 4 which is a cloud server and a diagnostic device 10. The diagnostic device 10 may be a remote monitoring device 4 having a function thereof, or may be connected so as to be communicable via the Internet or the like like the remote management device 4.

各管理装置3(3A,3B,・・・,3N)は、水処理プラント1(1A,1B,・・・,1N)に設置された単一または複数系列の膜分離装置2(2A,2B,・・・,2N)に対して、例えば9分間のろ過運転と1分間のリラクゼーション運転を1単位として繰返すように運転管理する。 Each control device 3 (3A, 3B, ..., 3N) is a single or multiple series of membrane separation devices 2 (2A, 2B) installed in the water treatment plant 1 (1A, 1B, ..., 1N). , ..., 2N), for example, 9 minutes of filtration operation and 1 minute of relaxation operation are repeated as one unit.

ろ過運転時には膜分離装置2の下方に設置した散気装置により散気した状態でろ過膜から処理水を吸引ろ過し、リラクゼーション運転時には散気装置により散気された状態を維持しつつろ過膜からの処理水の吸引ろ過を停止する。リラクゼーション運転時にも膜分離装置2の下方に設置された散気装置からの気泡と被処理水の気液混相の上向流によってろ過膜面がクリーニングされる。 During the filtration operation, the treated water is suction-filtered from the filter membrane in a state of being diffused by the air diffuser installed under the membrane separation device 2, and during the relaxation operation, the treated water is suction-filtered from the filter membrane while maintaining the state of being diffused by the air diffuser during the relaxation operation. Stop suction filtration of the treated water. Even during the relaxation operation, the filtration membrane surface is cleaned by the upward flow of the gas-liquid mixed phase of the air bubbles from the air diffuser installed below the membrane separation device 2 and the water to be treated.

各管理装置3は、圧力センサを介して1分間隔で膜間差圧を計測して内部の記憶部に格納するとともに、所定時間間隔でインターネットなどを介して計測した膜間差圧のサンプリングデータを含む運転情報を遠隔監視装置4に送信するように構成されている。 Each management device 3 measures the intermembrane differential pressure at 1-minute intervals via a pressure sensor and stores it in an internal storage unit, and at the same time, sampling data of the intermembrane differential pressure measured via the Internet or the like at predetermined time intervals. It is configured to transmit the operation information including the above to the remote monitoring device 4.

遠隔監視装置4は各管理装置3から送信された膜間差圧のサンプリングデータつまり膜間差圧計測値をデータベース4Aに格納するとともに、現場担当者などからのスマートフォンなどの情報端末を用いた閲覧要求に応じて、データベース4Aに格納された膜間差圧のサンプリングデータを例えばトレンドグラフの形で提供するように構成されている。 The remote monitoring device 4 stores the sampling data of the intermembrane differential pressure transmitted from each management device 3, that is, the measured value of the intermembrane differential pressure in the database 4A, and also browses using an information terminal such as a smartphone from a person in charge at the site. Upon request, it is configured to provide sampling data of the intermembrane differential pressure stored in the database 4A, for example, in the form of a trend graph.

遠隔監視装置4には、データベース4Aに格納した膜間差圧計測値に基づいて各水処理プラント1(1A,1B,・・・,1N)に設置された浸漬型膜分離装置2(2A,2B,・・・,2N)が正常に稼働しているか何らかの異常が発生しているかを検知する異常検知プログラムがインストールされている。 The remote monitoring device 4 includes an immersion type membrane separation device 2 (2A, 1N) installed in each water treatment plant 1 (1A, 1B, ..., 1N) based on the measured differential pressure between membranes stored in the database 4A. An abnormality detection program that detects whether 2B, ..., 2N) is operating normally or some abnormality has occurred is installed.

つまり、遠隔監視装置4が診断装置10を兼ねており、各管理装置3および遠隔監視装置4によって本発明の浸漬型膜分離装置の異常検知方法が実行される。診断結果はデータベース4Aに格納され、現場担当者などからのスマートフォンなどの情報端末を用いた閲覧要求に応じて閲覧される。なお、浸漬型膜分離装置の異常検知方法を実行する診断装置10は、遠隔監視装置4とは別に構成し、遠隔監視装置4とインターネットなどを介して通信可能な汎用のパーソナルコンピュータで構成してもよい。 That is, the remote monitoring device 4 also serves as the diagnostic device 10, and each management device 3 and the remote monitoring device 4 execute the abnormality detection method of the immersion type membrane separation device of the present invention. The diagnosis result is stored in the database 4A and is browsed in response to a browsing request using an information terminal such as a smartphone from a person in charge at the site. The diagnostic device 10 that executes the abnormality detection method of the immersion type membrane separation device is configured separately from the remote monitoring device 4, and is composed of a general-purpose personal computer that can communicate with the remote monitoring device 4 via the Internet or the like. May be good.

以下、浸漬型膜分離装置の異常検知方法の第1の態様について詳述する。
浸漬型膜分離装置の異常検知方法は、データ収集工程と、状態分離工程と、ノイズ除去工程と、異常判定工程とを含む。
Hereinafter, the first aspect of the abnormality detection method of the immersion type membrane separation device will be described in detail.
The abnormality detection method of the immersion type membrane separation device includes a data collection step, a state separation step, a noise removal step, and an abnormality determination step.

データ収集工程は、各浸漬型膜分離装置2の膜間差圧を所定時間ごとに計測して収集する工程である。各管理装置3により圧力センサを介して1分間隔でサンプリングされた膜間差圧が収集され、内部の記憶部に記憶される。記憶された膜間差圧は他のデータと共に例えば半日に1回程度の所定時期にインターネットを介して遠隔監視装置4に送信され、遠隔監視装置4に備えたデータベース4Aに格納される。 The data collection step is a step of measuring and collecting the intermembrane differential pressure of each immersion type membrane separation device 2 at predetermined time intervals. Intermembrane differential pressure sampled at 1-minute intervals is collected by each management device 3 via a pressure sensor and stored in an internal storage unit. The stored differential pressure between the membranes is transmitted to the remote monitoring device 4 via the Internet at a predetermined time, for example, about once every half a day, and is stored in the database 4A provided in the remote monitoring device 4.

他のデータには、水処理プラント1を固有に識別するIDコード、膜分離装置を固有に識別するためのIDコードが含まれ、さらに各膜間差圧のサンプリング時刻などが含まれる。水処理プラント1に複数系統の膜分離装置2が設置されている場合には、各系統の膜分離装置2に対するIDコードが含まれる。 Other data include an ID code uniquely identifying the water treatment plant 1, an ID code uniquely identifying the membrane separation device, and a sampling time of the differential pressure between the membranes. When a plurality of systems of membrane separation devices 2 are installed in the water treatment plant 1, an ID code for each system of membrane separation devices 2 is included.

図2(a)には1分間隔でサンプリングされた複数の膜間差圧計測値、つまり膜間差圧計測値群が例示されている。同図には時系列でサンプリングされ、プロットされた膜間差圧計測値を直線で接続した状態が示されており、ろ過運転時とリラクゼーション運転時の双方の膜間差圧計測値が混在し、また圧力センサの信号線に混入したノイズ信号が重畳されている。なお、膜間差圧計測値は負の値であり、図中において下方の値ほど膜間差圧計測値の絶対値が大きくなる。そこで、以降の説明では、下方にある膜間差圧ほど膜間差圧が高いと表現する。 FIG. 2A exemplifies a plurality of intermembrane differential pressure measurement values sampled at 1-minute intervals, that is, a group of intermembrane differential pressure measurement values. The figure shows a state in which the measured differential pressure between membranes sampled in time series and plotted is connected by a straight line, and the measured differential pressure between membranes during both filtration operation and relaxation operation are mixed. In addition, a noise signal mixed in the signal line of the pressure sensor is superimposed. The measured differential pressure between membranes is a negative value, and the lower the value in the figure, the larger the absolute value of the measured differential pressure between membranes. Therefore, in the following description, it is expressed that the lower the intermembrane differential pressure is, the higher the intermembrane differential pressure is.

状態分離工程は、データ収集工程で収集した時系列の膜間差圧計測値のうち、異常を検知する対象期間を含む第1の期間P1の膜間差圧計測値群を、ろ過運転時の第1膜間差圧計測値群とリラクゼーション運転時の第2膜間差圧計測値群に分離する工程である。 In the state separation step, among the time-series intermembrane differential pressure measurement values collected in the data collection step, the intermembrane differential pressure measurement value group of the first period P1 including the target period for detecting an abnormality is filtered during the filtration operation. This is a step of separating the first intermembrane differential pressure measurement value group and the second intermembrane differential pressure measurement value group during relaxation operation.

状態分離工程は、教師なし機械学習に基づく非階層的クラスター分析を実行することにより第1膜間差圧計測値群と第2膜間差圧計測値群の二つのクラスターに分離するように構成されている。非階層的クラスター分析としてk平均法を好適に用いることができる。 The state separation process is configured to separate into two clusters, a first intermembrane differential pressure measurement group and a second intermembrane differential pressure measurement group, by performing non-hierarchical cluster analysis based on unsupervised machine learning. Has been done. The k-means method can be preferably used as a non-hierarchical cluster analysis.

k平均法では、先ず、二つのクラスターの仮重心位置を初期設定し、膜間差圧計測値と仮重心とのユークリッド距離に基づいて近いものを各仮重心位置に属するクラスターとして分離し、同一クラスターに含まれる膜間差圧計測値から新たな重心を算出し、次に新たな重心と膜間差圧計測値とのユークリッド距離を算出し、膜間差圧計測値を距離の近い側の重心のクラスターに分離する処理を、収束するまで繰り返すことで第1膜間差圧計測値群と第2膜間差圧計測値群に分離される。 In the k-means method, first, the temporary center of gravity positions of the two clusters are initially set, and those that are close to each other based on the Euclidean distance between the measured differential pressure between the membranes and the temporary center of gravity are separated as clusters belonging to each temporary center of gravity position and are the same. A new center of gravity is calculated from the measured value of the differential pressure between the membranes contained in the cluster, then the Euclidean distance between the new center of gravity and the measured value of the differential pressure between the membranes is calculated, and the measured value of the differential pressure between the membranes is on the side closer to the distance. By repeating the process of separating into the cluster of the center of gravity until it converges, it is separated into the first intermembrane differential pressure measurement value group and the second intermembrane differential pressure measurement value group.

図2(b)は、図2(a)の膜間差圧計測値群を、k平均法を用いて、ろ過運転時の第1膜間差圧計測値群とリラクゼーション運転時の第2膜間差圧計測値群に分離した結果を示している。濃度の濃い部分が第2膜間差圧計測値群を示し、濃度の薄い部分が第1膜間差圧計測値群を示している。第1膜間差圧計測値群および第2膜間差圧計測値群の其々には塊から離散した孤立点が散見される。当該孤立点がノイズとなる。ノイズには、圧力センサの信号線に混入したノイズ信号や、ろ過運転からリラクゼーション運転への遷移時やリラクゼーション運転からろ過運転への遷移時に検出される膜間差圧が含まれる。 FIG. 2B shows the intermembrane differential pressure measurement value group of FIG. 2A, the first intermembrane differential pressure measurement value group during the filtration operation and the second membrane during the relaxation operation using the k-means method. The results of separation into the differential pressure measurement value group are shown. The high-concentration portion indicates the second intermembrane differential pressure measurement value group, and the low-concentration portion indicates the first intermembrane differential pressure measurement value group. Isolated points discrete from the mass are scattered in each of the first intermembrane differential pressure measurement value group and the second intermembrane differential pressure measurement value group. The isolated point becomes noise. The noise includes a noise signal mixed in the signal line of the pressure sensor and an intermembrane differential pressure detected at the transition from the filtration operation to the relaxation operation or at the transition from the relaxation operation to the filtration operation.

ノイズ除去工程は、第1の期間P1より短い第2の期間P2における第1膜間差圧計測値群および/または第2膜間差圧計測値群からノイズデータを除去する工程で、詳述すると第1膜間差圧計測値群および第2膜間差圧計測値群の其々に対して上下所定範囲から逸脱するデータを除去する工程である。 The noise removal step is a step of removing noise data from the first intermembrane differential pressure measurement value group and / or the second intermembrane differential pressure measurement value group in the second period P2 shorter than the first period P1. Then, it is a step of removing data deviating from the upper and lower predetermined ranges for each of the first intermembrane differential pressure measurement value group and the second intermembrane differential pressure measurement value group.

例えば、第1膜間差圧計測値群および/または第2膜間差圧計測値群のデータ数に対して値が高い上位95%以上のデータおよび値が低い下位5%の数のデータがノイズとして除去される。また、例えば膜間差圧計測値がとり得る範囲の5%から95%に設定された適正範囲から上下に逸脱するデータをノイズとして除去することも可能である。なお、この範囲は特に5%から95%の範囲に限定するものではなく適宜設定すればよい。 For example, the data of the upper 95% or more with a high value and the data of the lower 5% with a low value with respect to the number of data of the first intermembrane differential pressure measurement value group and / or the second intermembrane differential pressure measurement value group It is removed as noise. Further, for example, it is possible to remove data deviating up and down from an appropriate range set to 5% to 95% of the range in which the measured value of the differential pressure between membranes can be taken as noise. It should be noted that this range is not particularly limited to the range of 5% to 95%, and may be appropriately set.

異常判定工程は、ノイズ除去工程でノイズを除去した第1の期間P1より短い第2の期間P2の第1膜間差圧計測値群および/または第2膜間差圧計測値群から分散状態を算出し、当該分散状態に基づいて浸漬型膜分離装置が異常であるか否かを判定する工程である。 The abnormality determination step is a dispersed state from the first intermembrane differential pressure measurement value group and / or the second intermembrane differential pressure measurement value group of the second period P2 shorter than the first period P1 in which noise is removed in the noise removal step. Is a step of determining whether or not the immersion type membrane separation device is abnormal based on the dispersed state.

ろ過運転時の第1膜間差圧計測値群であるクラスターと、リラクゼーション運転時の第2膜間差圧計測値群であるクラスターに分離されることにより、ろ過運転時に焦点を当てた異常診断、リラクゼーション運転時に焦点を当てた異常診断が行なえるようになる。 Abnormality diagnosis focused on filtration operation by separating into a cluster that is a group of first intermembrane differential pressure measurement values during filtration operation and a cluster that is a group of second intermembrane differential pressure measurement values during relaxation operation. , You will be able to perform focused abnormality diagnosis during relaxation driving.

図3(a)には状態分離工程で分離されたろ過運転時の第1膜間差圧計測値群が例示され、図3(b)には、ノイズ除去工程を実行するとともに分散状態を算出する第2の期間P2が破線または実線の四角形で示されている。第1膜間差圧計測値群の中で破線または実線の四角形の時間幅に含まれる膜間差圧計測値群に対してノイズ除去工程が行なわれたうえで分散状態が算出される。なお、破線の四角形は過去に実行された第2の期間P2を示し、実線の四角形は現在実行中の第2の期間P2を示している。 FIG. 3A exemplifies a group of measured values of the first intermembrane differential pressure during the filtration operation separated in the state separation step, and FIG. 3B shows the noise removal step and the dispersion state is calculated. The second period P2 to be used is indicated by a dashed line or a solid rectangle. In the first intermembrane differential pressure measurement value group, the dispersion state is calculated after the noise reduction step is performed on the intermembrane differential pressure measurement value group included in the time width of the quadrangle of the broken line or the solid line. The broken line rectangle indicates the second period P2 executed in the past, and the solid line rectangle indicates the second period P2 currently being executed.

本実施形態では、第1の期間P1が24時間(1日)に設定され、第2の期間P2が1時間に設定されているが、このような値に限るものではない。さらに、第2の期間P2を第2の期間P2よりも短い所定時間毎(例えば1分毎)に時系列的にシフトさせた各期間でノイズ除去工程が行なわれるとともに分散状態が算出される。例えば第2の期間P2を1分単位で時系列的にシフトさせた各期間で分散状態を算出する場合、1時間で60の分散状態が算出されることになる。なお、第2の期間P2の各期間のノイズ除去工程に用いる膜間差圧計測値群は、ノイズ除去する前の元データが対象となる。 In the present embodiment, the first period P1 is set to 24 hours (1 day) and the second period P2 is set to 1 hour, but the value is not limited to this. Further, the noise reduction step is performed and the dispersion state is calculated in each period in which the second period P2 is time-series shifted at predetermined time intervals (for example, every minute) shorter than the second period P2. For example, when the dispersion state is calculated in each period in which the second period P2 is shifted in time series in 1-minute units, 60 dispersion states are calculated in 1 hour. The intermembrane differential pressure measurement value group used in the noise reduction step of each period of the second period P2 is the original data before noise reduction.

図3(c)に示すように、異常判定のために用いる分散状態として、第2の期間P2の膜間差圧計測値群に対する分散または標準偏差を変数とする所定の評価関数の出力値、即ち評価値を採用することが好ましく、当該出力値が予め設けた閾値Ref(異常判定閾値)を超えると運転状態が異常であると判定する。 As shown in FIG. 3C, as the dispersion state used for abnormality determination, the output value of a predetermined evaluation function whose variable is the dispersion or standard deviation with respect to the intermembrane differential pressure measurement value group in the second period P2. That is, it is preferable to adopt an evaluation value, and when the output value exceeds a preset threshold value Ref (abnormality determination threshold value), it is determined that the operating state is abnormal.

評価関数は特に限定されるものではなく、分散または標準偏差を変数とする一次関数などを適宜用いることができる。本実施形態では、分散または標準偏差に所定の係数を乗じる一次関数が採用されている。係数が1の場合には分散または標準偏差が評価値となる。 The evaluation function is not particularly limited, and a linear function having a variance or a standard deviation as a variable can be appropriately used. In this embodiment, a linear function that multiplies the variance or standard deviation by a predetermined coefficient is adopted. When the coefficient is 1, the variance or standard deviation is the evaluation value.

図3(b)によれば、膜間差圧計測値のばらつきが次第に大きくなる領域Rで、評価値が異常判定閾値を超えている、つまり異常が発生していると判定される。第2の期間P2において何らかの原因で安定性が損なわれると、第2の期間P2の差圧計測値群の分散または標準偏差が大きくなることに着目するものである。 According to FIG. 3B, it is determined that the evaluation value exceeds the abnormality determination threshold value, that is, an abnormality has occurred in the region R in which the variation in the measured value of the differential pressure between the membranes gradually increases. It is noted that if the stability is impaired in the second period P2 for some reason, the variance or standard deviation of the differential pressure measurement value group in the second period P2 becomes large.

図3(b)の破線矢印で示すように、状態分離工程から異常判定工程に到る一連の工程を第3の期間P3の経過毎に繰り返し実行するように構成することが好ましい。この場合、対象となる第1の期間P1(24時間)は、前回に対象となった第1の期間P1から第3の期間P3(6時間)経過した後の第1の期間P1(24時間)となる。そして、第1の期間P1は第2の期間P2と第3の期間P3を加算した期間より長い期間に設定している。 As shown by the broken line arrow in FIG. 3B, it is preferable to configure the series of steps from the state separation step to the abnormality determination step to be repeatedly executed every time the third period P3 elapses. In this case, the target first period P1 (24 hours) is the first period P1 (24 hours) after the lapse of the third period P3 (6 hours) from the previously targeted first period P1. ). The first period P1 is set to a period longer than the sum of the second period P2 and the third period P3.

異常を検知する対象期間を含む第1の期間P1に、第1の期間P1より短い第3の期間P3の経過毎に状態分離工程から異常判定工程が繰り返されるので、第3の期間P3より長く設定された第1の期間P1の第1膜間差圧計測値群を利用した状態分離工程により状態分離の精度を確保しつつ、第3の期間P3を監視員による監視のタイミングに合わせるなど所定の期間に設定することで、診断の対象となる浸漬型膜分離装置の数が増えた場合でも、診断装置10の計算負荷を分散させることができる。この例では第3の期間P3は6時間に設定されている。したがって、6時間ごとに状態分離工程から異常判定工程に到る一連の工程が繰り返される。 Since the abnormality determination step is repeated from the state separation step every time the third period P3, which is shorter than the first period P1, elapses in the first period P1 including the target period for detecting the abnormality, it is longer than the third period P3. Predetermined such as adjusting the third period P3 to the timing of monitoring by the observer while ensuring the accuracy of the state separation by the state separation process using the first membrane differential pressure measurement value group of the set first period P1. By setting the period of, even when the number of immersion type membrane separation devices to be diagnosed increases, the calculation load of the diagnostic device 10 can be distributed. In this example, the third period P3 is set to 6 hours. Therefore, a series of steps from the state separation step to the abnormality determination step is repeated every 6 hours.

さらに、第2膜間差圧計測値群に対しても同様の処理が行なわれ、ろ過運転時とリラクゼーション運転時の其々について異常判定が行われる。なお、第1膜間差圧計測値群から捉えられる異常と第2膜間差圧計測値群から捉えられる異常とで異常の種類が異なる場合もあるため、第1および第2膜間差圧計測値群の双方に対して一連の工程を実行することが必須ではなく、捉えたい異常状態に応じて何れかについて一連の工程が実行されればよい。 Further, the same processing is performed on the second intermembrane differential pressure measurement value group, and abnormality determination is performed for each of the filtration operation and the relaxation operation. Since the type of abnormality may differ between the abnormality captured from the first intermembrane differential pressure measurement value group and the abnormality captured from the second intermembrane differential pressure measurement value group, the first and second intermembrane differential pressures may be different. It is not essential to execute a series of steps for both of the measured value groups, and it is sufficient that a series of steps are executed for any of the abnormal states to be captured.

図4には、上述した浸漬型膜分離装置の異常検知方法の手順が示されている。
即ち、ろ過運転とリラクゼーション運転を交互に繰り返す浸漬型膜分離装置の異常検知方法は、浸漬型膜分離装置の膜間差圧を所定時間ごとに計測して収集するデータ収集工程と(S1)、データ収集工程で収集した時系列の膜間差圧計測値のうち、異常を検知する対象期間を含む第1の期間P1の膜間差圧計測値群を、ろ過運転時の第1膜間差圧計測値群とリラクゼーション運転時の第2膜間差圧計測値群に分離する状態分離工程と(S2)、が実行される。
FIG. 4 shows the procedure of the abnormality detection method of the above-mentioned immersion type membrane separation device.
That is, the abnormality detection method of the immersion type membrane separation device that alternately repeats the filtration operation and the relaxation operation includes a data collection step of measuring and collecting the intermembrane differential pressure of the immersion type membrane separation device at predetermined time intervals (S1). Among the time-series intermembrane differential pressure measurement values collected in the data collection process, the intermembrane differential pressure measurement value group of the first period P1 including the target period for detecting an abnormality is the first intermembrane difference during the filtration operation. The state separation step (S2) of separating into the pressure measurement value group and the second membrane differential pressure measurement value group during the relaxation operation is executed.

その後に、第1の期間P1より短い第2の期間P2が設定され(S3)、第2の期間P2における第1膜間差圧計測値群および第2膜間差圧計測値群からノイズデータを除去するノイズ除去工程が実行され(S4)、ノイズが除去された第2の期間P2の第1膜間差圧計測値群および第2膜間差圧計測値群に対して分散状態を算出する処理が実行される(S5)。 After that, a second period P2 shorter than the first period P1 is set (S3), and noise data is obtained from the first intermembrane differential pressure measurement value group and the second intermembrane differential pressure measurement value group in the second period P2. The noise removal step of removing noise is executed (S4), and the dispersion state is calculated for the first intermembrane differential pressure measurement value group and the second intermembrane differential pressure measurement value group in the second period P2 in which the noise is removed. Processing is executed (S5).

ステップS3からステップS5の各処理を対象期間の全期間で実行すべく、第2の期間P2を所定時間毎に時系列的にシフトさせて繰り返し(S6)、得られた各分散状態に基づいて浸漬型膜分離装置が異常であるか否かを所定の異常判定閾値を基準に正常であるか異常であるかを判定する異常判定工程を実行する(S7,S8,S9,S10)。 In order to execute each process from step S3 to step S5 in the entire period of the target period, the second period P2 is shifted in chronological order at predetermined time intervals and repeated (S6), and based on each distributed state obtained. An abnormality determination step of determining whether or not the immersion type membrane separation device is abnormal is executed based on a predetermined abnormality determination threshold value (S7, S8, S9, S10).

図4に示したフローチャートでは第1の期間P1の全期間をカバーするように第2の期間P2を所定時間間隔でシフトして、第2の期間P2の何れか一つで評価値が異常判定閾値を超えると異常が発生したと判定する例を示したが、第2の期間P2で評価値が異常判定閾値を超える回数が所定回数に達すると異常が発生したと判定するように構成してもよい。 In the flowchart shown in FIG. 4, the second period P2 is shifted at predetermined time intervals so as to cover the entire period of the first period P1, and the evaluation value is determined to be abnormal in any one of the second period P2. An example of determining that an abnormality has occurred when the threshold value is exceeded has been shown, but it is configured to determine that an abnormality has occurred when the number of times the evaluation value exceeds the abnormality determination threshold value reaches a predetermined number of times in the second period P2. May be good.

また、図3(b)で破線矢印を用いて説明したように、第1の期間P1より短い第3の期間で上述した異常判定処理を繰り返すように構成してもよい。 Further, as described with reference to the broken line arrow in FIG. 3B, the above-mentioned abnormality determination process may be repeated in a third period shorter than the first period P1.

以下、浸漬型膜分離装置の異常検知方法の第2の態様について詳述する。以下の説明では、主に第一の態様と相違する点について詳述する。
浸漬型膜分離装置の異常検知方法は、データ収集工程と、ノイズ除去工程と、正規化処理工程と、状態分離工程と、異常判定工程とを含む。
Hereinafter, the second aspect of the abnormality detection method of the immersion type membrane separation device will be described in detail. In the following description, the differences from the first aspect will be mainly described in detail.
The abnormality detection method of the immersion type membrane separation device includes a data collection step, a noise removal step, a normalization processing step, a state separation step, and an abnormality determination step.

データ収集工程では、浸漬型膜分離装置の膜間差圧が所定時間ごとに計測され、収集される。ノイズ除去工程では、データ収集工程で収集した時系列の膜間差圧計測値からノイズデータが除去される。ノイズ除去工程では、膜間差圧計測値に対して上下所定範囲から逸脱するデータが除去される。第一の態様と同様、例えば、膜間差圧計測値群のデータ数に対して値が高い上位95%以上のデータおよび値が低い下位5%の数のデータをノイズとして除去する。また例えば、膜間差圧計測値がとり得る範囲の5%から95%に設定された適正範囲から上下に逸脱するデータをノイズとして除去することも可能である。なお、この範囲は特に5%から95%の範囲に限定するものではなく適宜設定すればよい。 In the data collection step, the intermembrane differential pressure of the immersion type membrane separation device is measured and collected at predetermined time intervals. In the noise reduction step, noise data is removed from the time-series differential pressure measurement values collected in the data collection step. In the noise reduction step, data deviating from the upper and lower predetermined ranges with respect to the measured value of the differential pressure between the films is removed. Similar to the first aspect, for example, the data of the upper 95% or more having a high value and the data of the lower 5% having a low value with respect to the number of data of the intermembrane differential pressure measurement value group are removed as noise. Further, for example, it is possible to remove data deviating up and down from an appropriate range set to 5% to 95% of the range in which the measured value of the differential pressure between membranes can be taken as noise. It should be noted that this range is not particularly limited to the range of 5% to 95%, and may be appropriately set.

正規化処理工程では、異常判定対象である浸漬型膜分離装置に対して、予めサンプリングした正常時の最大計測値と最小計測値に基づいて、データ収集工程で収集された膜間差圧計測値群が正規化される。例えば、リラクゼーション運転時に0kPa、ろ過運転時に-1kPaが設定される。 In the normalization process, the intermembrane differential pressure measurement value collected in the data acquisition process based on the maximum and minimum measured values in the normal state sampled in advance for the immersion type membrane separation device that is the target of abnormality determination. The group is normalized. For example, 0 kPa is set during the relaxation operation and -1 kPa is set during the filtration operation.

状態分離工程では、正規化処理工程で正規化した膜間差圧計測値のうち、異常を検知する対象期間を含む第1の期間P1の膜間差圧計測値群が、ろ過運転時の第1膜間差圧計測値群とリラクゼーション運転時の第2膜間差圧計測値群に分離される。第1の態様と同様に、状態分離工程では、教師なし機械学習に基づく非階層的クラスター分析を実行することにより第1膜間差圧計測値群と第2膜間差圧計測値群の二つのクラスターに分離するように構成されている。非階層的クラスター分析としてk平均法を好適に用いることができる。 In the state separation step, among the intermembrane differential pressure measurement values normalized in the normalization processing step, the intermembrane differential pressure measurement value group in the first period P1 including the target period for detecting an abnormality is the first in the filtration operation. It is separated into one intermembrane differential pressure measurement value group and a second intermembrane differential pressure measurement value group during relaxation operation. Similar to the first aspect, in the state separation step, the first intermembrane differential pressure measurement value group and the second intermembrane differential pressure measurement value group are performed by performing non-hierarchical cluster analysis based on unsupervised machine learning. It is configured to be separated into two clusters. The k-means method can be preferably used as a non-hierarchical cluster analysis.

異常判定工程では、第1の態様と同様、状態分離工程で分離された第1膜間差圧計測値群および/または第2膜間差圧計測値群に対して、第1の期間より短い第2の期間の差圧計測値群から分散状態を算出し、当該分散状態に基づいて浸漬型膜分離装置が異常であるか否かが判定される。 In the abnormality determination step, as in the first aspect, it is shorter than the first period with respect to the first intermembrane differential pressure measurement value group and / or the second intermembrane differential pressure measurement value group separated in the state separation step. The dispersion state is calculated from the differential pressure measurement value group in the second period, and it is determined whether or not the immersion type membrane separation device is abnormal based on the dispersion state.

図5(a)に示すように、浸漬型膜分離装置によっては、ろ過膜から処理水を吸引ろ過するろ過運転時に、被処理水の水量が多い時間帯などに対応して、吸引ポンプによる吸引量を二段に切替える場合がある。この例では、リラクゼーション運転時に-20kPa、ポンプの吸引量が少ないろ過運転時に約-65kPa、ポンプの吸引量が多いろ過運転時に約-85kPaとなっている。 As shown in FIG. 5A, depending on the immersion type membrane separation device, suction by a suction pump corresponds to a time zone in which the amount of water to be treated is large during the filtration operation in which the treated water is suction-filtered from the filtration membrane. The amount may be switched in two stages. In this example, it is −20 kPa during the relaxation operation, about −65 kPa during the filtration operation with a small pump suction amount, and about −85 kPa during the filtration operation with a large pump suction amount.

図5(b)に示すように、このような特性を示す膜間差圧計測値に対して、第1の態様で説明した状態分離工程を実行すると、ろ過運転時の第1膜間差圧計測値群では、吸引ポンプによる吸引量の切替えに起因したデータのばらつきが現れるため、図5(c)に示すように、本来は正常な挙動であっても、ばらつきが大きな領域R1,R2では、異常判定工程で評価値が異常判定閾値を上回り、異常であるとの誤判定を招く虞がある。 As shown in FIG. 5B, when the state separation step described in the first aspect is executed for the intermembrane differential pressure measured value exhibiting such characteristics, the first intermembrane differential pressure during the filtration operation is executed. In the measured value group, the data varies due to the switching of the suction amount by the suction pump. Therefore, as shown in FIG. 5 (c), even if the behavior is originally normal, in the regions R1 and R2 where the variation is large. In the abnormality determination step, the evaluation value exceeds the abnormality determination threshold value, which may lead to erroneous determination as an abnormality.

また、ポンプによる吸引量が一定に維持される浸漬型膜分離装置であっても、ろ過膜が浸漬された処理槽の水位が変動すると、それに伴ってろ過運転時の第1膜間差圧計測値群が変動して、同様の誤判定を招く場合もある。さらに、ろ過運転とリラクゼーション運転の切替え時に、ろ過運転時とリラクゼーション運転時の膜間差圧の中間値が測定されるような場合でも、同様の誤判定を招く虞がある。 Further, even in the immersion type membrane separation device in which the suction amount by the pump is maintained constant, when the water level of the treatment tank in which the filtration membrane is immersed fluctuates, the differential pressure between the first membranes during the filtration operation is measured accordingly. The value group may fluctuate, leading to the same misjudgment. Further, even when the intermediate value of the differential pressure between the membranes during the filtration operation and the relaxation operation is measured at the time of switching between the filtration operation and the relaxation operation, the same erroneous determination may occur.

そのような場合であっても、上述した第2の態様の浸漬型膜分離装置の異常検知方法を採用すると、誤判定を招くことなく適切に異常判定できるようになる。 Even in such a case, if the abnormality detection method of the immersion type membrane separation device according to the second aspect described above is adopted, the abnormality can be appropriately determined without causing an erroneous determination.

図6には、第2の態様の浸漬型膜分離装置の異常検知方法の手順が示されている。
即ち、ろ過運転とリラクゼーション運転を交互に繰り返す浸漬型膜分離装置の異常検知方法は、後に必要となる正規化処理のために、正常時の浸漬型膜分離装置に対して膜間差圧を計測して最大計測値と最小計測値を取得する正常時の膜間差圧計測データ収集工程を、予め実行しておき(S100)、続いて異常判定のために、当該浸漬型膜分離装置の膜間差圧を所定時間ごとに計測して収集するデータ収集工程を実行する(S101)。
FIG. 6 shows a procedure for detecting an abnormality in the immersion type membrane separation device according to the second aspect.
That is, the abnormality detection method of the immersion type membrane separation device, which repeats the filtration operation and the relaxation operation alternately, measures the intermembrane differential pressure with respect to the normal immersion type membrane separation device for the normalization process required later. The normal intermembrane differential pressure measurement data acquisition step of acquiring the maximum and minimum measured values is executed in advance (S100), and then the membrane of the immersion type membrane separation device is used for abnormality determination. A data collection step of measuring and collecting the differential pressure at predetermined time intervals is executed (S101).

データ収集工程で収集した時系列の膜間差圧計測値からノイズデータを除去するノイズ除去工程を実行し(S102)、ノイズ除去工程でノイズを除去した膜間差圧計測値を、正常時の膜間差圧計測データ収集工程で予めサンプリングした最大計測値と最小計測値に基づいて正規化する正規化処理工程を実行する(S103)。 A noise removal step of removing noise data from the time-series interfilm differential pressure measurement values collected in the data collection step is executed (S102), and the intermembrane differential pressure measurement values of which noise is removed in the noise removal step are measured at normal times. A normalization processing step of normalizing based on the maximum measured value and the minimum measured value sampled in advance in the intermembrane differential pressure measurement data collecting step is executed (S103).

次に、正規化処理工程で正規化した膜間差圧計測値のうち、異常を検知する対象期間を含む第1の期間P1の膜間差圧計測値群を、ろ過運転時の第1膜間差圧計測値群とリラクゼーション運転時の第2膜間差圧計測値群に分離する状態分離工程を実行する(S104)。 Next, among the intermembrane differential pressure measurement values normalized in the normalization processing step, the intermembrane differential pressure measurement value group of the first period P1 including the target period for detecting an abnormality is the first membrane during the filtration operation. A state separation step of separating into a differential pressure measurement value group and a second membrane differential pressure measurement value group during relaxation operation is executed (S104).

さらに、第1の期間P1より短い第2の期間P2が設定され(S105)、第2の期間P2の第1膜間差圧計測値群および/または第2膜間差圧計測値群に対して分散状態を算出する処理を実行する(S106)。 Further, a second period P2 shorter than the first period P1 is set (S105), and the first intermembrane differential pressure measurement value group and / or the second intermembrane differential pressure measurement value group of the second period P2 is set. The process of calculating the distributed state is executed (S106).

ステップS105およびステップS106の各処理を対象期間の全期間で実行すべく、第2の期間P2を所定時間毎に時系列的にシフトさせて繰り返し(S107)、得られた各分散状態に基づいて浸漬型膜分離装置が異常であるか否かを所定の異常判定閾値を基準に正常であるか異常であるかを判定する異常判定工程を実行する(S108,S109,S110,S111)。 In order to execute each process of step S105 and step S106 in the entire period of the target period, the second period P2 is shifted in chronological order at predetermined time intervals and repeated (S107), and based on each distributed state obtained. An abnormality determination step of determining whether or not the immersion type membrane separation device is abnormal is executed based on a predetermined abnormality determination threshold value (S108, S109, S110, S111).

なお、状態分離工程は、第1の態様と同様、教師なし機械学習に基づく非階層的クラスター分析を実行することにより第1膜間差圧計測値群と前記第2膜間差圧計測値群に分離する工程であり、異常判定工程で算出する分散状態は、第2の期間の膜間差圧計測値群に対する分散または標準偏差を変数とする所定の評価関数の出力値であり、当該出力値が予め設けた閾値を超えると運転状態が異常であると判定する。 In the state separation step, as in the first aspect, the first intermembrane differential pressure measurement value group and the second intermembrane differential pressure measurement value group are performed by performing non-hierarchical cluster analysis based on unsupervised machine learning. The dispersion state calculated in the abnormality determination step is the output value of a predetermined evaluation function whose variable is the dispersion or standard deviation with respect to the intermembrane differential pressure measurement value group in the second period. When the value exceeds a preset threshold, it is determined that the operating state is abnormal.

また、第1の態様と同様、状態分離工程から異常判定工程に到る一連の工程を第3の期間P3毎で繰り返し実行するように構成され、第1の期間P1は第2の期間P2と第3の期間P3を加算した期間より長い期間に設定している。さらに、異常判定工程は、第2の期間P2を所定時間毎に時系列的にシフトさせた各期間で実行する。 Further, as in the first aspect, a series of steps from the state separation step to the abnormality determination step are repeatedly executed every third period P3, and the first period P1 is the second period P2. The third period is set to be longer than the period obtained by adding P3. Further, the abnormality determination step is executed in each period in which the second period P2 is shifted in time series at predetermined time intervals.

図7(a)には、第1の態様で処理された図5(a)の膜間差圧計測値群が正規化処理された特性図が示されている。リラクゼーション運転時に0.0kPa、ポンプの吸引量が多いろ過運転時に-1.0kPaに正規化されている。図7(b)には、図7(a)に示したデータが状態分離された結果が示されている。正規化処理することにより、ポンプの吸引量の変動に対して算出される分散または標準偏差が然程大きく変動することが無くなり、異常判定閾値を適宜設定することにより、誤判定を招くことが無くなる。 FIG. 7A shows a characteristic diagram in which the intermembrane differential pressure measurement value group of FIG. 5A processed in the first aspect is normalized. It is normalized to 0.0 kPa during relaxation operation and -1.0 kPa during filtration operation when the suction amount of the pump is large. FIG. 7B shows the result of state separation of the data shown in FIG. 7A. By the normalization process, the variance or standard deviation calculated for the fluctuation of the suction amount of the pump does not fluctuate so much, and by setting the abnormality judgment threshold value appropriately, erroneous judgment does not occur. ..

上述した第1の態様と第2の態様の何れを採用するのが好ましいのかは、各浸漬型膜分離装置の設置環境に基づいて決定する必要がある。処理水を引き抜く吸引ポンプを複数台備え、運転台数を切り替えるような環境であるのか、1台の吸引ポンプであっても吸引量を増減切替え運転するような環境であるのか、処理水の引抜き量が一定であってもろ過膜が浸漬された水槽の水位が大きく変動するような環境であるのか、など個々の環境に応じて予め決定する必要がある。 It is necessary to determine which of the first aspect and the second aspect described above is preferable based on the installation environment of each immersion type membrane separation device. Is it an environment where multiple suction pumps for drawing out treated water are provided and the number of operating units is switched, or is it an environment where even one suction pump is operated by switching the suction amount up or down? It is necessary to determine in advance according to the individual environment, such as whether the environment is such that the water level of the water tank in which the filter membrane is immersed fluctuates greatly even if the value is constant.

以上の説明は、本発明による浸漬型膜分離装置の異常検知方法の一例であり、各工程の具体的な態様は本発明の作用効果が奏される範囲で適宜変更設計することが可能であることは言うまでもない。 The above description is an example of the abnormality detection method of the immersion type membrane separation device according to the present invention, and the specific embodiment of each step can be appropriately modified and designed within the range in which the action and effect of the present invention are exhibited. Needless to say.

100:遠隔監視システム
1(1A,1B,1C):水処理プラント
2:浸漬型膜分離装置
3:管理装置
4:遠隔監視装置(診断装置)
4A:データベース
100: Remote monitoring system 1 (1A, 1B, 1C): Water treatment plant 2: Immersion type membrane separation device 3: Management device 4: Remote monitoring device (diagnostic device)
4A: Database

Claims (8)

ろ過運転とリラクゼーション運転を交互に繰り返す浸漬型膜分離装置の異常検知方法であって、
前記浸漬型膜分離装置の膜間差圧を所定時間ごとに計測して収集するデータ収集工程と、
前記データ収集工程で収集した時系列の膜間差圧計測値のうち、異常を検知する対象期間を含む第1の期間の膜間差圧計測値群を、ろ過運転時の第1膜間差圧計測値群とリラクゼーション運転時の第2膜間差圧計測値群に分離する状態分離工程と、
前記第1膜間差圧計測値群および/または前記第2膜間差圧計測値群に対して、前記第1膜間差圧計測値群および/または前記第2膜間差圧計測値群からノイズデータを除去するノイズ除去工程と、
前記ノイズ除去工程でノイズを除去した前記第1膜間差圧計測値群および/または前記第2膜間差圧計測値群に対して、前記第1の期間より短い第2の期間の差圧計測値群から分散状態を算出し、当該分散状態に基づいて前記浸漬型膜分離装置が異常であるか否かを判定する異常判定工程と、
を含む浸漬型膜分離装置の異常検知方法。
It is an abnormality detection method for an immersion type membrane separation device that alternately repeats filtration operation and relaxation operation.
A data acquisition step of measuring and collecting the intermembrane differential pressure of the immersion type membrane separation device at predetermined time intervals, and
Among the time-series intermembrane differential pressure measurement values collected in the data acquisition step, the intermembrane differential pressure measurement value group in the first period including the target period for detecting an abnormality is the first intermembrane difference during the filtration operation. A state separation process that separates the pressure measurement value group and the second membrane differential pressure measurement value group during relaxation operation, and
The first intermembrane differential pressure measurement value group and / or the second intermembrane differential pressure measurement value group with respect to the first intermembrane differential pressure measurement value group and / or the second intermembrane differential pressure measurement value group. Noise removal process to remove noise data from
The differential pressure in the second period shorter than the first period with respect to the first intermembrane differential pressure measurement value group and / or the second intermembrane differential pressure measurement value group from which noise was removed in the noise removal step. An abnormality determination step of calculating the dispersion state from the measured value group and determining whether or not the immersion type membrane separation device is abnormal based on the dispersion state, and
Anomaly detection method for immersion type membrane separation devices including.
前記ノイズ除去工程は、前記第1膜間差圧計測値群および前記第2膜間差圧計測値群の其々に対して上下所定範囲から逸脱するデータを除去する工程である請求項1記載の浸漬型膜分離装置の異常検知方法。 The noise removing step is a step of removing data deviating from the upper and lower predetermined ranges with respect to each of the first intermembrane differential pressure measurement value group and the second intermembrane differential pressure measurement value group. Abnormality detection method for immersion type membrane separation device. ろ過運転とリラクゼーション運転を交互に繰り返す浸漬型膜分離装置の異常検知方法であって、
前記浸漬型膜分離装置の膜間差圧を所定時間ごとに計測して収集するデータ収集工程と、
前記データ収集工程で収集した時系列の膜間差圧計測値からノイズデータを除去するノイズ除去工程と、
前記ノイズ除去工程でノイズを除去した膜間差圧計測値を、予めサンプリングした正常時の最大計測値と最小計測値に基づいて正規化する正規化処理工程と、
前記正規化処理工程で正規化した膜間差圧計測値のうち、異常を検知する対象期間を含む第1の期間の膜間差圧計測値群を、ろ過運転時の第1膜間差圧計測値群とリラクゼーション運転時の第2膜間差圧計測値群に分離する状態分離工程と、
前記状態分離工程で分離した前記第1膜間差圧計測値群および/または前記第2膜間差圧計測値群に対して、前記第1の期間より短い第2の期間の差圧計測値群から分散状態を算出し、当該分散状態に基づいて前記浸漬型膜分離装置が異常であるか否かを判定する異常判定工程と、
を含む浸漬型膜分離装置の異常検知方法。
It is an abnormality detection method for an immersion type membrane separation device that alternately repeats filtration operation and relaxation operation.
A data acquisition step of measuring and collecting the intermembrane differential pressure of the immersion type membrane separation device at predetermined time intervals, and
A noise reduction step of removing noise data from the time-series differential pressure measurement values collected in the data collection step, and a noise reduction step.
A normalization process that normalizes the measured differential pressure between membranes from which noise has been removed in the noise reduction step based on the maximum and minimum measured values in the normal state sampled in advance.
Among the intermembrane differential pressure measurement values normalized in the normalization processing step, the intermembrane differential pressure measurement value group in the first period including the target period for detecting an abnormality is the first intermembrane differential pressure during the filtration operation. A state separation process that separates the measured value group into the second intermembrane differential pressure measured value group during relaxation operation, and
The differential pressure measurement value in the second period shorter than the first period with respect to the first membrane differential pressure measurement value group and / or the second membrane differential pressure measurement value group separated in the state separation step. An abnormality determination step of calculating the dispersion state from the group and determining whether or not the immersion type membrane separation device is abnormal based on the dispersion state, and
Anomaly detection method for immersion type membrane separation devices including.
前記ノイズ除去工程は、前記膜間差圧計測値に対して上下所定範囲から逸脱するデータを除去する工程である請求項3記載の浸漬型膜分離装置の異常検知方法。 The abnormality detection method for an immersion type membrane separation device according to claim 3, wherein the noise removing step is a step of removing data deviating from a predetermined range above and below the measured value of the differential pressure between the membranes. 前記状態分離工程は、教師なし機械学習に基づく非階層的クラスター分析を実行することにより前記第1膜間差圧計測値群と前記第2膜間差圧計測値群に分離する工程である請求項1から4の何れかに記載の浸漬型膜分離装置の異常検知方法。 The state separation step is a step of separating into the first intermembrane differential pressure measurement value group and the second intermembrane differential pressure measurement value group by performing non-hierarchical cluster analysis based on unsupervised machine learning. Item 4. The method for detecting an abnormality in the immersion type membrane separation device according to any one of Items 1 to 4. 前記異常判定工程で算出する前記分散状態は、前記第2の期間の膜間差圧計測値群に対する分散または標準偏差を変数とする所定の評価関数の出力値であり、当該出力値が予め設けた閾値を超えると運転状態が異常であると判定する請求項1から5の何れかに記載の浸漬型膜分離装置の異常検知方法。 The dispersion state calculated in the abnormality determination step is an output value of a predetermined evaluation function whose variable is the dispersion or standard deviation with respect to the intermembrane differential pressure measurement value group in the second period, and the output value is provided in advance. The method for detecting an abnormality in the immersion type membrane separation device according to any one of claims 1 to 5, wherein it is determined that the operating state is abnormal when the threshold value is exceeded. 前記状態分離工程から前記異常判定工程に到る一連の工程を第3の期間毎で繰り返し実行するように構成され、前記第1の期間は前記第2の期間と前記第3の期間を加算した期間より長い期間に設定している請求項1から6の何れかに記載の浸漬型膜分離装置の異常検知方法。 A series of steps from the state separation step to the abnormality determination step are repeatedly executed every third period, and the first period is the sum of the second period and the third period. The method for detecting an abnormality in the immersion type membrane separation device according to any one of claims 1 to 6, which is set to a period longer than the period. 前記異常判定工程は、前記第2の期間を所定時間毎に時系列的にシフトさせた各期間で実行する請求項1から7の何れかに記載の浸漬型膜分離装置の異常検知方法。 The abnormality detection method for an immersion type membrane separation device according to any one of claims 1 to 7, wherein the abnormality determination step is executed in each period in which the second period is shifted in time series at predetermined time intervals.
JP2021203833A 2020-12-23 2021-12-16 Abnormality detection method of soaking type membrane separator Pending JP2022100265A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020213492 2020-12-23
JP2020213492 2020-12-23

Publications (1)

Publication Number Publication Date
JP2022100265A true JP2022100265A (en) 2022-07-05

Family

ID=82269410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021203833A Pending JP2022100265A (en) 2020-12-23 2021-12-16 Abnormality detection method of soaking type membrane separator

Country Status (1)

Country Link
JP (1) JP2022100265A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117861296A (en) * 2024-03-13 2024-04-12 晋江艺森建筑工程有限公司 Sewage station solid impurity interception and filtration device
CN117861296B (en) * 2024-03-13 2024-06-04 晋江艺森建筑工程有限公司 Sewage station solid impurity interception and filtration device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117861296A (en) * 2024-03-13 2024-04-12 晋江艺森建筑工程有限公司 Sewage station solid impurity interception and filtration device
CN117861296B (en) * 2024-03-13 2024-06-04 晋江艺森建筑工程有限公司 Sewage station solid impurity interception and filtration device

Similar Documents

Publication Publication Date Title
JP4542819B2 (en) Hydraulic machine, system and method for monitoring the health status of a hydraulic machine
JP5996384B2 (en) Process monitoring diagnostic device, process monitoring diagnostic program
US7321845B2 (en) Method and system for removing very low frequency noise from a time-based data set
US9314742B2 (en) Method and system for reverse osmosis predictive maintenance using normalization data
US20090037121A1 (en) System and method for detection of rotor eccentricity baseline shift
EP2519895B1 (en) Method and apparatus for monitoring performance and anticipate failures of plant instrumentation
JP4604987B2 (en) Operation management method and apparatus for water treatment plant
CN108661987B (en) Alarm system and method acting on hydraulic system
JP4480019B2 (en) Refinery monitoring system
US10500528B2 (en) Clogging estimation method and filter monitoring system
CN113982850B (en) Fan comprehensive health analysis method and system integrating high-low frequency signals
CN107426013A (en) Facility information monitoring method, apparatus and system
JP6714498B2 (en) Equipment diagnosis device and equipment diagnosis method
CN105466707A (en) Method, system and computer program for fault detection in a machine
JP6861564B2 (en) Monitoring and control device
JP2011008403A (en) State change detecting device
CN117195018A (en) Mining water pump intelligent monitoring system based on multiple sensors
JP2022100265A (en) Abnormality detection method of soaking type membrane separator
WO2015198898A1 (en) Plant abnormality predicting device, abnormality predicting device, display device and display method
JP2022099626A (en) Abnormality detection method of immersion type membrane separation apparatus
JP2023092779A (en) Abnormality detection method of immersion type membrane separation device
JP7441731B2 (en) Information processing device, information processing method, and computer program
CN117710364B (en) Machine vision-based antiwear hydraulic oil impurity removal full-flow analysis management system
DE102020204488B4 (en) Method and evaluation system for determining a filter contamination condition, as well as filter system and machine
JP2024016374A (en) Monitoring system, monitoring method and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231214