JP2022097342A - Fire extinguisher and fire extinguishing method - Google Patents

Fire extinguisher and fire extinguishing method Download PDF

Info

Publication number
JP2022097342A
JP2022097342A JP2021036954A JP2021036954A JP2022097342A JP 2022097342 A JP2022097342 A JP 2022097342A JP 2021036954 A JP2021036954 A JP 2021036954A JP 2021036954 A JP2021036954 A JP 2021036954A JP 2022097342 A JP2022097342 A JP 2022097342A
Authority
JP
Japan
Prior art keywords
fire
fire extinguishing
voltage
unit
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021036954A
Other languages
Japanese (ja)
Inventor
利秀 辻
Toshihide Tsuji
哲雄 吉田
Tetsuo Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Publication of JP2022097342A publication Critical patent/JP2022097342A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Abstract

To enable the high fire extinguishing performance to be secured by efficiently inputting charged water particles from the outside of a building where fire occurs.SOLUTION: A spray air stream releasing part 10 is provided on a ladder tip or the like of a fire engine with a ladder and releases charged fine spray air streams 12 containing charged water particles in the air stream to a fire extinguishing object or fire prevention object. Water for fire extinguishing is supplied from a fire-extinguishing agent supply part 16 of the fire engine with a ladder to the spray air stream releasing part 10, and the high voltage for generating the charged water particles is supplied from a high voltage power supply part 18 to the spray air stream releasing part 10. A release direction adjustment part adjusts the release direction of the charged fine spray air streams 12 by the spray air stream releasing part 10 in the vertical direction and longitudinal direction.SELECTED DRAWING: Figure 1

Description

本発明は、はしご消防車のはしご先端などから帯電水粒子を含有した微噴霧気流を放出して消火する消火装置及び消火方法に関する。 The present invention relates to a fire extinguishing device and a fire extinguishing method for extinguishing a fire by discharging a fine spray airflow containing charged water particles from the tip of a ladder of a ladder fire engine.

従来、スプリンクラー設備等の自動消火装置を設置してない共同住宅やビルなどの建物における出火に際して、消火器や消火栓による初期消火ができなかった場合には、消防隊の出動による消火や延焼防止の作業が行われる。 Conventionally, when a fire breaks out in a building such as a condominium or a building that does not have an automatic fire extinguishing device such as a sprinkler system, if the initial fire cannot be extinguished by a fire extinguisher or a fire hydrant, the fire brigade is dispatched to extinguish the fire or prevent the spread of fire. Work is done.

このとき消防隊は、火勢や濃煙の状況が激しく、要救助者がいないと思われ、防火区画がしっかりしている場合には、火災区画内には突入せず、火災区画に窓などの外壁開口がある場合には、その開口からの噴出火炎や熱放射によって延焼や熱破壊の可能性のある部分へ、延焼防止目的で濡らしと冷却の放水を行う。 At this time, the fire brigade did not rush into the fire area, and if the fire area and heavy smoke were severe and there seemed to be no rescuers, and the fire area was solid, the fire area would have windows, etc. If there is an opening on the outer wall, wet and cool water is discharged to the part where there is a possibility of fire spreading or heat destruction due to the flame or heat radiation ejected from the opening.

しかしながら、外壁開口から火災区画内へ消火用水を筒先放水する場合、火源が見えないことが多く、適切に狙いが定まらない場合がある。また、例えば、共同住宅の火災では、火災区画の下階に居住区画や商業施設がある場合、火災区画への大量放水を行うと、水は下階に流れて、大きな水損被害が起きる。 However, when the fire extinguishing water is discharged from the opening of the outer wall into the fire section, the fire source is often invisible and the aim may not be properly determined. Further, for example, in the case of a fire in an apartment house, if there is a residential area or a commercial facility on the lower floor of the fire area, if a large amount of water is discharged to the fire area, the water will flow to the lower floor and cause great water damage.

消火に有効な放水であれば、致し方ないところであるが、むやみに打つことでの多量の水による水損被害は避けたい。したがって、外壁開口からの火災区画への放水は、濃煙により火源の把握が困難で、適切に狙いが定まらない場合には、積極的には行わないことが多い。その結果、火災対応としては、火災区画外への延焼防止のための放水や火災区画を形成する防火戸、壁、窓の熱破壊防止のための放水作業を重点的に行い、火災区画内への消火用放水は最小限にして、燃え尽きによる火勢の衰えを待つという戦術にならざるを得ないことがある。 If the water can be discharged effectively to extinguish the fire, there is no choice but to avoid water damage caused by a large amount of water by hitting it unnecessarily. Therefore, it is often difficult to grasp the source of water from the opening of the outer wall to the fire area due to heavy smoke, and if the aim is not properly determined, it is often not actively performed. As a result, as a fire response, we will focus on water discharge work to prevent the spread of fire outside the fire area and water discharge work to prevent thermal destruction of the fire doors, walls, and windows that form the fire area, and enter the fire area. It may be necessary to minimize the amount of water discharged for extinguishing the fire and wait for the fire to decline due to burning out.

このような消防戦術をとる場合、焼失物の被害が大きくなることはもとより、火災の燃焼継続時間が長くかつ燃焼室が高温となるために、共同住宅のような棟単位で消防設備の設置基準が適用される令8区画として知られた耐火建物であっても、建築構造に大きなダメージを与え、加えて濃煙による被害も大きくなるという課題があった。 When such a firefighting tactic is adopted, not only the damage of the burnt material becomes large, but also the burning duration of the fire is long and the combustion chamber becomes high temperature. Even in the case of a fire-resistant building known as the 8th section to which the decree is applied, there is a problem that the building structure is greatly damaged and the damage caused by heavy smoke is also large.

この課題を解決するため、消防隊が主に用いる管鎗(放水ノズル)による棒状放水に対して、従来、微噴霧水粒子を放出する微噴霧消火装置や、帯電した微噴霧水粒子を放出する帯電微噴霧消火装置が知られており、これらの装置は、小水量で効率よく消火でき、水損低減になるのではないかと期待されている。 In order to solve this problem, a fine spray fire extinguishing device that discharges fine spray water particles and a charged fine spray water particle are discharged to the rod-shaped water discharge by the pipe (water discharge nozzle) mainly used by the fire brigade. Charged fine spray fire extinguishing devices are known, and it is expected that these devices can efficiently extinguish a fire with a small amount of water and reduce water damage.

特開2009-106405号公報Japanese Unexamined Patent Publication No. 2009-106405 特開2018-183712号公報Japanese Unexamined Patent Publication No. 2018-183712

しかしながら、従来の微噴霧消火装置は、小水量でありながら高効率に消火できて水損が小さいと思われやすいが、実際には消火能力は低く消火できないことが多い。理由として粒子径が数十~数百μmの微噴霧水粒子は放射されてすぐに空気抵抗により失速してしまい、射程が短く火源に対して十分な衝突速度をもって到達することができない。さらに火源付近には激しい上昇気流が存在するので、微噴霧水粒子は飛ばされてしまい、火源まで到達できる微噴霧水粒子は少ない。 However, although the conventional fine spray fire extinguishing device can extinguish a fire with high efficiency even with a small amount of water and it is easy to think that the water loss is small, in reality, the fire extinguishing ability is low and the fire cannot be extinguished in many cases. The reason is that finely sprayed water particles with a particle size of several tens to several hundreds of μm are radiated and immediately stall due to air resistance, and the range is short and they cannot reach the fire source with sufficient collision speed. Furthermore, since there is a violent updraft near the fire source, the fine spray water particles are blown away, and there are few fine spray water particles that can reach the fire source.

加えて、火源の燃焼表面は高温であることから、例えば熾きの表面のような条件においては、高温のために燃焼表面の境界付近のガスは激しく分子運動をしており、すでに失速している微噴霧水粒子は運動量が小いために、激しい分子運動の領域を突破できず、はじかれてしまう。ここで、ガスが激しく分子運動している燃焼表面の境界付近の空間を無塵空間というが、この無塵空間を突破するためには、ある程度の大きさの粒子径と速度つまり運動量が必要であり、スプリンクラー設備に見られるミリメートル単位の粒子径の水粒子が望ましい。このような理由により、微噴霧水粒子は高温表面に当たって十分に濡らすことが期待できない。 In addition, since the combustion surface of the fire source is hot, for example, under conditions such as the surface of a fire, the gas near the boundary of the combustion surface violently undergoes molecular motion due to the high temperature and has already stalled. Since the finely sprayed water particles have a small momentum, they cannot break through the region of intense molecular motion and are repelled. Here, the space near the boundary of the combustion surface where the gas is violently moving is called a dust-free space, but in order to break through this dust-free space, a certain size of particle size and speed, that is, momentum is required. Yes, water particles with a particle size in millimeters found in sprinkler equipment are desirable. For this reason, the finely sprayed water particles cannot be expected to hit the high temperature surface and be sufficiently wetted.

また、微噴霧水粒子は、燃焼面近傍の空間にて受熱して蒸発し、多くが水蒸気になり、その気化熱による雰囲気温度の低下と発生水蒸気による酸素濃度の低下により火勢を弱める、という考え方があるが間違いであり、実際には発生する水蒸気の比重が空気の6割程度と軽いため、水蒸気は浮力により上昇してしまい、火源付近での上昇気流を加速させてしまう作用があり、その対流によって新鮮空気を火源に導入して逆に火災をあおってしまうことがある。このため微噴霧消火装置は水損低減というメリットは考えられるものの肝心の消火性能や火災抑制性能は非常に低いという課題がある。 In addition, the idea is that the finely sprayed water particles receive heat in the space near the combustion surface and evaporate, and most of them become water vapor, and the fire force is weakened by the decrease in the atmospheric temperature due to the heat of vaporization and the decrease in the oxygen concentration due to the generated water vapor. However, it is a mistake, and since the specific gravity of the generated water vapor is as light as about 60% of the air, the water vapor rises due to buoyancy, which has the effect of accelerating the updraft near the fire source. The convection may introduce fresh air into the fire source and conversely fuel the fire. For this reason, the fine spray fire extinguishing device has the merit of reducing water damage, but has the problem that the essential fire extinguishing performance and fire suppression performance are very low.

また、従来の帯電微噴霧消火装置にあっては、ヘッドから散布された帯電した微噴霧水粒子は静電吸引力によってガスが激しく分子運動している燃焼表面の境界付近の無塵空間を突破できるものであるが、帯電微噴霧は帯電微噴霧ヘッドから放出された直後に、微噴霧水粒子同士が同極性であることから、反発しあって四方八方に瞬時に広がって微噴霧の流れを形成できず、そもそも、少し離れた火源の近傍にすら届くことができないという課題が残されている。 Further, in the conventional charged fine spray fire extinguishing device, the charged fine spray water particles sprayed from the head break through the dust-free space near the boundary of the combustion surface where the gas violently moves due to electrostatic attraction. Although it can be done, since the finely sprayed water particles have the same polarity immediately after being discharged from the charged fine spray head, they repel each other and spread instantly in all directions to flow the fine spray. There remains the problem that it cannot be formed and cannot reach even the vicinity of a fire source that is a little far away.

本発明は、帯電水粒子を消火対象や防火対象へ向けて効率よく投入して高い消火性能や火災抑制性能を確保可能とする消火装置及び消火方法を提供することを目的とする。 An object of the present invention is to provide a fire extinguishing device and a fire extinguishing method capable of efficiently injecting charged water particles toward a fire extinguishing target or a fire prevention target to ensure high fire extinguishing performance and fire suppression performance.

(消火装置1)
本発明は、消火装置であって、空気流の中に帯電水粒子が含有された帯電微噴霧気流を、消火対象又は防火対象へ向けて放出することを特徴とする。
(Fire extinguishing device 1)
The present invention is a fire extinguishing device, characterized in that a charged fine spray airflow containing charged water particles in an air flow is discharged toward a fire extinguishing target or a fire prevention target.

(消火装置2)
本発明は、消火装置であって、
空気流の中に帯電水粒子が含有された帯電微噴霧気流を、消火対象又は防火対象へ向けて放出する噴霧気流放出部と、
噴霧気流放出部に消火用水を供給する消火剤供給部と、
噴霧気流放出部に帯電水粒子を生成するための高電圧を供給する高圧電源部と、
噴霧気流放出部による帯電微噴霧気流の放出方向を調整する放出方向調整部と、
が設けられたことを特徴とする。
(Fire extinguishing device 2)
The present invention is a fire extinguishing device.
A spray airflow discharging unit that discharges a charged fine spray airflow containing charged water particles in the airflow toward a fire extinguishing target or a fire prevention target.
A fire extinguishing agent supply unit that supplies fire extinguishing water to the spray airflow discharge unit,
A high-voltage power supply unit that supplies a high voltage for generating charged water particles to the spray airflow discharge unit,
Charged by the spray airflow discharge part The discharge direction adjustment unit that adjusts the discharge direction of the fine spray airflow,
Is characterized by being provided.

(噴霧気流放出部)
噴霧気流放出部は、
空気流を発生する送風部と、
送風部により発生した空気流の中に帯電水粒子を噴霧して含有させる帯電微噴霧ヘッドと、
を備える。
(Spray airflow discharge part)
The spray airflow discharge part is
The air blower that generates air flow and
A charged fine spray head that sprays and contains charged water particles in the air flow generated by the blower.
To prepare for.

(印加電圧の調整と極性切替)
高圧電源部は、
消火対象又は防火対象に対応して、帯電微噴霧ヘッドに印加する電圧を調整する電圧調整部と、
消火対象又は防火対象に対応して、帯電微噴霧ヘッドに印加する電圧極性を切り替える極性切替部と、
を備える。
(Adjustment of applied voltage and polarity switching)
The high voltage power supply unit
A voltage adjusting unit that adjusts the voltage applied to the charged fine spray head according to the fire extinguishing target or fire prevention target,
A polarity switching unit that switches the polarity of the voltage applied to the charged fine spray head according to the fire extinguishing target or fire prevention target.
To prepare for.

(放出方向調整部)
放出方向調整部は、
帯電微噴霧気流の放出方向を上下方向で調整する上下方向調整部と、
帯電微噴霧気流の放出方向を左右方向で調整する左右方向調整部と、
を備え、
上下方向調整部の回転軸及び左右方向調整部の回転軸は、噴霧気流放出部の重心位置より先端側の所定位置に配置される。
(Discharge direction adjustment unit)
The emission direction adjustment unit is
A vertical adjustment unit that adjusts the discharge direction of the charged fine spray airflow in the vertical direction,
A left-right direction adjustment unit that adjusts the discharge direction of the charged fine spray airflow in the left-right direction,
Equipped with
The rotation axis of the vertical direction adjustment unit and the rotation axis of the left-right direction adjustment unit are arranged at predetermined positions on the tip side of the center of gravity position of the spray airflow discharge unit.

(消火装置を搭載した消防車)
噴霧気流放出部は、はしご消防車のはしご先端、高所作業消防車の高所作業台、又は、ブーム付消防車のブーム先端に設けられる。
(Fire engine equipped with fire extinguishing device)
The spray airflow discharge unit is provided at the tip of the ladder of the ladder fire engine, the aerial work platform of the aerial work platform, or the boom tip of the fire engine with a boom.

(消火方法1)
本発明は、消火方法であって、消火装置により、空気流の中に帯電水粒子が含有された帯電微噴霧気流を、消火対象又は防火対象へ向けて放出することを特徴とする。
(Fire extinguishing method 1)
The present invention is a fire extinguishing method, characterized in that a fire extinguishing device discharges a charged fine spray air flow containing charged water particles in an air flow toward a fire extinguishing target or a fire prevention target.

(消火方法2)
本発明は、消火方法であって、
噴霧気流放出部により、空気流の中に帯電水粒子が含有された帯電微噴霧気流を、消火対象又は防火対象へ向けて放出し、
消火剤供給部により、噴霧気流放出部に消火用水を供給し、
高圧電源部により、噴霧気流放出部に帯電水粒子を生成するための高電圧を供給し、
放出方向調整部により、噴霧気流放出部による帯電微噴霧気流の放出方向を調整する、
ことを特徴とする。
(Fire extinguishing method 2)
The present invention is a fire extinguishing method.
The spray airflow discharge unit discharges a charged fine spray airflow containing charged water particles in the airflow toward a fire extinguishing target or a fire prevention target.
The fire extinguishing agent supply unit supplies fire extinguishing water to the spray airflow discharge unit.
The high-voltage power supply unit supplies a high voltage to the spray airflow discharge unit to generate charged water particles.
The discharge direction adjusting unit adjusts the discharge direction of the charged fine spray airflow by the spray airflow discharge part.
It is characterized by that.

(消火装置の効果)
本発明は、消火装置によれば、ビル等の建物の火災時に、例えば、はしご消防車のはしご先端に設けられた噴霧気流放出部により、帯電水粒子を含有する帯電微噴霧気流を放出して、窓などの外壁開口から火災階の火災区画やその周辺の区画へ投入することから、従来の管鎗(ノズル)による放水では濃煙により火源が確認できず、下階への水損の恐れから、放水できない場合があったり、より小水量の微噴霧消火装置では火災気流に流されてしまったりして、火源近傍に微噴霧が到達せず消火効果が期待できなかったが、帯電微噴霧気流は、火災気流に流されにくく火源近傍に帯電水粒子を効率良く届けることができ、さらに火源近傍に届けられた帯電水粒子は、静電気力により、従来の微噴霧消火では死角となった複雑な形状の燃焼面に対しても回り込むことで取り囲むように到着して有効に消火できる。
(Effect of fire extinguishing device)
According to the present invention, in the event of a fire in a building such as a building, for example, a charged fine spray airflow containing charged water particles is discharged by a spray airflow discharge portion provided at the tip of a ladder of a ladder fire truck. Since the fire is thrown into the fire section of the fire floor and the surrounding section through the opening of the outer wall such as a window, the fire source cannot be confirmed due to the thick smoke when the water is discharged by the conventional pipe (nozzle), and the water is damaged to the lower floor. Due to fear, water may not be discharged, or the fire extinguishing device with a smaller amount of water may be swept away by the fire airflow, so the fine spray did not reach the vicinity of the fire source and the fire extinguishing effect could not be expected. The fine spray airflow is hard to be swept away by the fire airflow and can efficiently deliver charged water particles to the vicinity of the fire source, and the charged water particles delivered to the vicinity of the fire source are blind spots in the conventional fine spray fire extinguishing due to electrostatic force. It is possible to effectively extinguish the fire by wrapping around the combusting surface with a complicated shape and arriving to surround it.

また、高温燃焼表面の境界部分に存在する無塵空間を従来の微噴霧消火装置では運動量が小さくて突破できなかったが、帯電水粒子は、静電気力によって無塵空間を突破して燃焼面に付着するために、高い消火性能を有する。 In addition, the dust-free space existing at the boundary of the high-temperature combustion surface could not be breached by the conventional fine spray fire extinguishing device due to its small momentum. It has high fire extinguishing performance because it adheres.

また、従来の微噴霧消火装置では、空間中において、水粒子がたまたま衝突した煙粒子を捕捉する程度であったが、帯電微噴霧気流により投入された帯電水粒子は空間中においては静電気力により煙粒子を集めて捕捉することから高い消煙性能も有する。 Further, in the conventional fine spray fire extinguishing device, the smoke particles that happen to collide with water particles are captured in the space, but the charged water particles introduced by the charged fine spray air flow are caused by electrostatic force in the space. It also has high smoke extinguishing performance because it collects and captures smoke particles.

また、投入された帯電水粒子は高い消煙性能が得られ、棒状放水とは異なり人体に衝撃を加えることはなく、帯電微噴霧気流の投入と並行して消防隊の突入や救助活動を行うことを可能とする。 In addition, the charged water particles that have been introduced have high smoke-dissipating performance, and unlike rod-shaped water discharge, they do not give an impact to the human body, and the fire brigade rushes in and rescues in parallel with the introduction of the charged fine spray airflow. Make it possible.

(噴霧気流放出部の効果)
また、噴霧気流放出部は、送風部と帯電微噴霧ヘッドにより構成された簡単な構造であり、送風部の口径や帯電微噴霧ヘッドの数を変えることで、放出する帯電微噴霧気流の大きさや強さなどを、消火対象や防火対象に応じて最適に設定可能とする。
(Effect of spray airflow discharge part)
In addition, the spray airflow discharge part has a simple structure composed of a blower part and a charged fine spray head, and by changing the diameter of the blower part and the number of charged fine spray heads, the size of the charged fine spray airflow can be adjusted. The strength can be set optimally according to the fire extinguishing target and fire prevention target.

(印加電圧の調整と極性切替による効果)
また、高圧電源部の電圧調整部と極性切替部により、帯電微噴霧ヘッドから噴霧する水粒子の帯電極性や帯電量を自在に調整可能であり、火災現場での消火や消煙に適した帯電極性と帯電量の水粒子を含有した帯電微噴霧気流を投入することができる。また、消火対象又は防火対象が帯電しているか又は帯電し易い場合には、その帯電の極性と反対極性(または、反対の極性)の帯電水粒子を含有した帯電微噴霧気流を投入することで、より高い消火性能と消煙性能が期待でき、帯電し易い消火対象又は防火対象に対して帯電微噴霧水による帯電量が増えることによって起きる可能性のある放電事故を未然に防ぐことを可能とする。
(Effect of adjusting applied voltage and switching polarity)
In addition, the voltage adjustment unit and polarity switching unit of the high-voltage power supply unit can freely adjust the charge polarity and amount of water particles sprayed from the charge fine spray head, making it suitable for extinguishing fires and smoke at fire sites. A charged fine spray air stream containing water particles having a polarity and a charge amount can be introduced. If the fire extinguishing target or the fire prevention target is charged or easily charged, a charged fine spray air stream containing charged water particles having the opposite polarity (or opposite polarity) to the charging polarity can be introduced. Higher fire extinguishing performance and smoke extinguishing performance can be expected, and it is possible to prevent discharge accidents that may occur due to an increase in the amount of charge due to charged fine spray water for a fire extinguishing target or a fire prevention target that is easily charged. do.

(放出方向調整部の効果)
また、放出方向調整部は、帯電微噴霧気流の放出方向を上下方向及び左右方向で自由に調整することで、操作員は、帯電微噴霧気流を消火対象又は防火対象に向けて適確に放出することを可能とする。また、上下調整部の回転軸及び左右調整部の回転軸が、噴霧気流放出部の重心位置より先端側の所定位置に配置されたことで、噴霧気流放出部が放出している帯電微噴霧気流の反動力を受けても放出方向が安定し、操作員の意のもとに放出方向を容易に調整することができる。また、例えば、消防用はしご車のはしご先端のバケット部に噴霧気流放出部が設置されているような場合には、バスケット部が傾いた際にも、噴霧気流放出部の安定性が高いことから、帯電微噴霧気流の放出が思わぬ方向に向くようなことが防止でき、安全に運用できる。
(Effect of emission direction adjustment part)
In addition, the discharge direction adjusting unit freely adjusts the discharge direction of the charged fine spray airflow in the vertical direction and the horizontal direction, so that the operator can accurately discharge the charged fine spray airflow toward the fire extinguishing target or the fire prevention target. It is possible to do. In addition, the rotation axis of the vertical adjustment unit and the rotation axis of the left / right adjustment unit are arranged at predetermined positions on the tip side of the center of gravity of the spray airflow discharge unit, so that the charged fine spray airflow emitted by the spray airflow discharge unit is generated. The discharge direction is stable even if it receives the reaction force of, and the discharge direction can be easily adjusted according to the operator's will. Further, for example, when the spray airflow discharge part is installed in the bucket part at the tip of the ladder of the fire engine ladder, the stability of the spray airflow discharge part is high even when the basket part is tilted. It is possible to prevent the emission of the charged fine spray airflow from going in an unexpected direction, and it can be operated safely.

(消火装置を搭載した消防車の効果)
また、例えば、建物の2階以上の高所での火災であっても、はしご消防車のはしご先端、高所作業消防車の高所作業台、又は、ブーム付消防車のブーム先端に設けられた噴霧気流放出部を、窓などの外壁開口に寄り付いて容易且つ効率良く建物内に帯電微噴霧気流を投入して高い消火性能や消煙性能を確保可能とする。
(Effect of fire engine equipped with fire extinguishing device)
Further, for example, even in the case of a fire at a high place on the second floor or higher of a building, it is provided at the tip of a ladder of a ladder fire engine, a high work table of a high-altitude work fire engine, or a boom tip of a fire engine with a boom. It is possible to secure high fire extinguishing performance and smoke extinguishing performance by easily and efficiently injecting a charged fine spray airflow into the building by approaching the spray airflow discharging part to the opening of the outer wall such as a window.

(消火方法の効果)
本発明の消火方法にあっては、前述した消火装置と同様の効果が得られる。
(Effect of fire extinguishing method)
In the fire extinguishing method of the present invention, the same effect as the above-mentioned fire extinguishing device can be obtained.

本発明の消火装置の実施形態を示した説明図である。It is explanatory drawing which showed the embodiment of the fire extinguishing apparatus of this invention. 図1の噴霧気流放出部の実施形態を示した説明図である。It is explanatory drawing which showed the embodiment of the spray airflow discharge part of FIG. 図2の噴霧気流放出部に設けられる帯電微噴霧ヘッドの実施形態を示した説明図である。It is explanatory drawing which showed the embodiment of the charge fine spray head provided in the spray air flow discharge part of FIG. 図1の高圧電源部の実施形態を帯電微噴霧ヘッドと共に示した説明図である。It is explanatory drawing which showed the embodiment of the high voltage power source part of FIG. 1 together with the charge fine spray head. 図4の高圧電源部により帯電微噴霧ヘッドに印加するパルス電圧を示した説明図である。It is explanatory drawing which showed the pulse voltage applied to the charge fine spray head by the high voltage power source part of FIG. 図4の高圧電源部により帯電微噴霧ヘッドに印加する脈流電圧を示した説明図である。It is explanatory drawing which showed the pulsating current voltage applied to the charge fine spray head by the high voltage power source part of FIG. 図4の高圧電源部により帯電微噴霧ヘッドに印加する交流電圧を示した説明図である。It is explanatory drawing which showed the AC voltage applied to the charge fine spray head by the high voltage power source part of FIG. 本発明の消火装置を搭載したはしご消防車による消火活動を示した説明図である。It is explanatory drawing which showed the fire extinguishing activity by the ladder fire engine equipped with the fire extinguishing apparatus of this invention.

以下に、本発明に係る消火装置及び消火方法の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態により、この発明が限定されるものではない。 Hereinafter, embodiments of the fire extinguishing device and the fire extinguishing method according to the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following embodiments.

[実施形態の基本的な概念]
まず、実施形態の基本的概念について説明する。実施形態は、概略的に、消防車などの移動体に設けられる消火装置に関するものである。なお、消火装置は、消火設備や消火器具の概念を含むものである。
[Basic concept of embodiment]
First, the basic concept of the embodiment will be described. The embodiment generally relates to a fire extinguishing device provided on a moving body such as a fire engine. The fire extinguishing device includes the concept of fire extinguishing equipment and fire extinguishing equipment.

消火装置は、一例として、噴霧気流放出部、消火剤供給部、高圧電源部、及び放出方向調整部で構成されるものである。 As an example, the fire extinguishing device is composed of a spray air flow discharge unit, a fire extinguishing agent supply unit, a high-voltage power supply unit, and a discharge direction adjusting unit.

「噴霧気流放出部」とは、空気流の中に帯電水粒子が含有された帯電微噴霧気流を、消火対象又は防火対象へ向けて放出するものであり、一例として、送風部と複数の帯電微噴霧ヘッドを備えた帯電水粒子生成部で構成されるものである。 The "spray airflow discharge unit" is a unit that discharges a charged fine spray airflow containing charged water particles in the air flow toward a fire extinguishing target or a fire prevention target. It is composed of a charged water particle generation unit provided with a fine spray head.

ここで、「送風部」とは、空気流を発生するものである。また、「帯電微噴霧ヘッド」とは、送風部により発生した空気流の中に帯電水粒子を噴霧して含有させるものである。なお、「含有」とは、混和、混合、混在などを含む概念である。 Here, the "blower" is one that generates an air flow. Further, the "charged fine spray head" is for spraying and containing charged water particles in the air flow generated by the blower unit. In addition, "containing" is a concept including miscibility, mixing, mixing and the like.

また、「帯電水粒子」とは、帯電微噴霧ヘッドから放出された水系の噴霧液の噴霧流に含まれる液滴を、高圧電源装置から帯電微噴霧ヘッドに印加された所定の高電圧により発生した高電界中を通過させる誘導帯電方式で帯電させたものである。 Further, the "charged water particles" are droplets contained in the spray flow of the water-based spray liquid discharged from the charged fine spray head, generated by a predetermined high voltage applied to the charged fine spray head from the high voltage power supply device. It is charged by an induced charging method that allows the particles to pass through the high voltage.

また、「帯電微噴霧気流」とは、送風部で発生した空気流の中に帯電微噴霧ヘッドから噴霧された帯電水粒子が含有されたものであり、火災気流に流されにくく火源近傍に帯電水粒子を効率良く届けることができるものである。 Further, the "charged fine spray airflow" is an air flow generated in the blower portion containing charged water particles sprayed from the charged fine spray head, and is difficult to be flown by the fire airflow in the vicinity of the fire source. It can efficiently deliver charged water particles.

帯電微噴霧気流により火災区画に届けられた帯電水粒子は、静電気力により燃焼面に付着して消火するものであり、また、帯電水粒子は、高温燃焼表面の境界部分に存在する無塵空間を静電気力によって突破して燃焼面に付着して消火するものである。さらに、火災区間に届けられた帯電水粒子は、静電気力により空間中の煙粒子を集めて捕捉することで消煙するものである。 The charged water particles delivered to the fire compartment by the charged fine spray air flow adhere to the combustion surface due to electrostatic force to extinguish the fire, and the charged water particles are dust-free spaces existing at the boundary portion of the high-temperature combustion surface. Is breached by electrostatic force and adheres to the combustion surface to extinguish the fire. Further, the charged water particles delivered to the fire section are extinguished by collecting and capturing smoke particles in the space by electrostatic force.

また、噴霧気流放出部は、一例として、はしご消防車のはしご先端、高所作業消防車の高所作業台、又は、ブーム付消防車のブーム先端に設けられるものであり、噴霧気流放出部を火災区画の窓などの外壁開口に寄り付いて建物内に帯電微噴霧気流を効率良く投入して消火や消煙を可能とするものである。 Further, as an example, the spray airflow discharging part is provided at the tip of the ladder of the ladder fire engine, the high-altitude work table of the high-altitude work fire engine, or the boom tip of the fire engine with a boom. It is possible to extinguish a fire or smoke by efficiently injecting a charged fine spray airflow into the building by approaching an opening of an outer wall such as a window of a fire section.

「消火剤供給部」とは、噴霧気流放出部に消火用水を供給するものであり、一例として、消火ポンプなどの加圧送水装置を含む概念である。 The "fire extinguishing agent supply unit" is a unit that supplies fire extinguishing water to a spray airflow discharge unit, and is a concept including, for example, a pressurized water supply device such as a fire extinguishing pump.

「高圧電源部」とは、噴霧気流放出部に帯電水粒子を生成するための高電圧を供給するものであり、例えば、直流電圧、脈流電圧、交流電圧、又は、パルス電圧を帯電微噴霧ヘッドに印加するものである。また、「高圧電源部」は、一例として、電圧調整部と極性切替部で構成されるものである。ここで「電圧調整部」とは、帯電微噴霧ヘッドに印加する電圧を調整するものであり、火災現場での消火や消煙に適した帯電量の水粒子を含有した帯電微噴霧気流を投入することを可能とするものである。 The "high voltage power supply unit" supplies a high voltage for generating charged water particles to the spray airflow discharge unit, and for example, a DC voltage, a pulsating current voltage, an AC voltage, or a pulse voltage is charged and finely sprayed. It is applied to the head. Further, the "high voltage power supply unit" is composed of a voltage adjusting unit and a polarity switching unit as an example. Here, the "voltage adjusting unit" adjusts the voltage applied to the charged fine spray head, and inputs a charged fine spray airflow containing water particles of a charged amount suitable for extinguishing a fire or smoke at a fire site. It is what makes it possible to do.

また、「極性切替部」とは、帯電微噴霧ヘッドに印加する電圧極性を切り替えるものであり、火災現場での消火や消煙に適した帯電極性の水粒子を含有した帯電微噴霧気流を投入することを可能とするものであり、また消火対象又は防火対象が帯電しているか又は帯電し易い場合には、その帯電の極性と反対極の極性の帯電水粒子を含有した帯電微噴霧気流を投入することで、より高い消火と消煙を可能とするものである。 In addition, the "polarity switching unit" switches the voltage polarity applied to the charged fine spray head, and inputs a charged fine spray airflow containing water particles with a charged polarity suitable for fire extinguishing and smoke extinguishing at a fire site. If the fire extinguishing target or the fire prevention target is charged or easily charged, a charged fine spray airflow containing charged water particles having a polarity opposite to the charge polarity is applied. By putting it in, it is possible to extinguish more fire and smoke.

「放出方向調整部」とは、噴霧気流放出部による帯電微噴霧気流の放出方向を調整するものであり、一例として、上下方向調整部と左右方向調整部で構成される。ここで、「上下方向調整部」とは、帯電微噴霧気流の放出方向を上下方向(垂直旋回方向)で調整するものであり、また、「左右方向調整部」とは、帯電微噴霧気流の放出方向を左右方向(水平旋回方向)で調整するものである。更に、放出方向調整部は、上下方向調整部の回転軸及び左右方向調整部の回転軸を、噴霧気流放出部の重心位置より先端側の所定位置に配置するものであり、これにより放出している帯電微噴霧気流の反動力を受けても噴霧気流放出部の放出方向が安定し、操作員の意のもとに放出方向を容易に調整することを可能とするものである。 The "emission direction adjusting unit" adjusts the emission direction of the charged fine spray airflow by the spray airflow emission unit, and is composed of, for example, a vertical direction adjustment unit and a left-right direction adjustment unit. Here, the "vertical direction adjusting unit" adjusts the discharge direction of the charged fine spray airflow in the vertical direction (vertical turning direction), and the "left-right direction adjusting unit" refers to the charged fine spray airflow. The emission direction is adjusted in the left-right direction (horizontal turning direction). Further, the discharge direction adjusting unit arranges the rotation axis of the vertical direction adjustment unit and the rotation axis of the left-right direction adjustment unit at a predetermined position on the tip side of the center of gravity of the spray airflow discharge unit, thereby discharging. Even if it receives the reaction force of the charged fine spray airflow, the discharge direction of the spray airflow discharge part is stable, and it is possible to easily adjust the discharge direction at the will of the operator.

以下、具体的な実施形態を説明する。以下に示す具体的な実施形態では、「消火対象」が「建物の火災区画」であり、「噴霧気流放出部」がはしご消防車のはしご先端に設けられたものである場合について説明する。 Hereinafter, specific embodiments will be described. In the specific embodiment shown below, a case where the "fire extinguishing target" is the "fire section of the building" and the "spray airflow discharging part" is provided at the tip of the ladder of the ladder fire engine will be described.

[消火装置の具体的な実施形態]
本実施形態の消火装置は、はしご消防車等の消防車両に搭載され、空気流の中に帯電水粒子が含有された帯電微噴霧気流を、消火対象又は防火対象へ向けて放出するものであり、その構成や構造は任意であるが、例えば、図1に示すように、噴霧気流放出部10、操作盤14、消火剤供給部16及び高圧電源部18を備え、操作盤14には操作表示部20と制御部21が設けられる。噴霧気流放出部10は架台40に上下方向および左右方向に回動自在に配置され、消火剤供給部16からの送水管22が接続され、高圧電源部18からの高圧ケーブル24が接続され、操作盤14の制御部21からの信号ケーブル26が接続されている。
[Specific Embodiment of Fire Extinguishing Device]
The fire extinguishing device of the present embodiment is mounted on a fire engine such as a ladder fire engine and discharges a charged fine spray airflow containing charged water particles in the air flow toward a fire extinguishing target or a fire prevention target. The configuration and structure thereof are arbitrary, but for example, as shown in FIG. 1, the operation panel 14 is provided with a spray air flow discharge unit 10, an operation panel 14, a fire extinguishing agent supply unit 16 and a high-pressure power supply unit 18, and the operation panel 14 has an operation display. A unit 20 and a control unit 21 are provided. The spray airflow discharge unit 10 is rotatably arranged vertically and horizontally on the gantry 40, the water supply pipe 22 from the fire extinguishing agent supply unit 16 is connected, and the high voltage cable 24 from the high voltage power supply unit 18 is connected and operated. The signal cable 26 from the control unit 21 of the board 14 is connected.

[噴霧気流放出部]
噴霧気流放出部10について、より詳細に説明する。噴霧気流放出部10は、帯電微噴霧気流12を、消火対象又は防火対象へ向けて放出するものであり、その構成や構造は任意であるが、例えば、送風部28と帯電水粒子生成部30を備える。送風部28は前方へ向けて空気流を発生するものであり、送風部28の吹き出し口に配置された帯電水粒子生成部30により送風部28からの空気流の中に帯電水粒子を噴霧して含有させ、帯電水粒子が含有された帯電微噴霧気流12を前方に向けて放出する。噴霧気流放出部10は、例えば、はしご消防車のはしご先端に設けられ、ビル等の火災が発生した建物の外側から窓等の外壁開口を介して火災区画へ帯電微噴霧気流12を投入して消火する。
[Spray airflow discharge part]
The spray airflow discharging unit 10 will be described in more detail. The spray airflow discharge unit 10 discharges the charged fine spray airflow 12 toward a fire extinguishing target or a fire prevention target, and the configuration and structure thereof are arbitrary. For example, the blower unit 28 and the charged water particle generation unit 30. To prepare for. The blower unit 28 generates an air flow toward the front, and the charged water particle generation unit 30 arranged at the outlet of the blower unit 28 sprays the charged water particles into the air flow from the blower unit 28. The charged microspray airflow 12 containing the charged water particles is discharged toward the front. The spray airflow discharging unit 10 is provided at the tip of a ladder of a ladder fire engine, for example, and charges a fine spray airflow 12 from the outside of a building or the like where a fire has occurred to the fire section through an opening of an outer wall such as a window. extinguish a fire.

図2は図1の噴霧気流放出部10を取り出して、より詳細に示したものであり、図2(A)に後方から見た背面図を示し、図2(B)に側面図を示し、図2(C)に前方から見た正面図を示している。 2A and 2B show the spray airflow discharging unit 10 of FIG. 1 in more detail. FIG. 2A shows a rear view and FIG. 2B shows a side view. FIG. 2C shows a front view seen from the front.

[送風部]
送風部28について、より詳細に説明する。送風部28は前後に開口した空洞内に、一例として、ファンモータ36で駆動される軸流ファン34が配置されており、軸流ファン34の回転により後方開口から吸い込んだ空気を加圧して前方開口から空気流を放出するものである。送風部28から放出される空気流の風量は任意であるが、例えば、最大風量が400m3/分程度とする。また、ファンモータ36により軸流ファン34の回転数を変えることで、必要に応じて風量を変えることが可能である。
[Blower]
The blower unit 28 will be described in more detail. As an example, the axial flow fan 34 driven by the fan motor 36 is arranged in the cavity opened in the front-rear direction of the blower portion 28, and the air sucked from the rear opening is pressurized by the rotation of the axial flow fan 34 to the front. It releases an air flow from the opening. The air volume of the air flow discharged from the blower unit 28 is arbitrary, but for example, the maximum air volume is about 400 m 3 / min. Further, by changing the rotation speed of the axial flow fan 34 by the fan motor 36, it is possible to change the air volume as needed.

噴霧気流放出部10がはしご消防車のはしご先端に設けられた場合、建物の火災区画に対し数メートル程度に近付くことが可能であることから、前方に対する帯電微噴霧気流12の到達距離が、例えば10メートル程度となるように送風部28の送風量が設定される。また、送風部28の後方側の吸込口28aには、多重リングや金網などを用いた保護カバー38が装着されている。 When the spray airflow discharge unit 10 is provided at the tip of the ladder of the ladder fire engine, it is possible to approach the fire section of the building by several meters, so that the reach of the charged fine spray airflow 12 toward the front is, for example. The amount of air blown by the air blower unit 28 is set so as to be about 10 meters. Further, a protective cover 38 using a multiple ring, a wire mesh, or the like is attached to the suction port 28a on the rear side of the blower portion 28.

[帯電水粒子生成部]
帯電水粒子生成部30について、より詳細に説明する。送風部28の前方側の開口には帯電水粒子生成部30が配置される。帯電水粒子生成部30は、図2(C)のように前方から見ると、支持リング31の内側に複数の帯電微噴霧ヘッド32、例えば10台の帯電微噴霧ヘッド32が円環状に配置されている。ここで、複数の帯電微噴霧ヘッド32の噴霧軸は帯電微噴霧気流12の放出軸25と交差するように配置されており、且つ、図2(B)の側面から見ると、複数の帯電微噴霧ヘッド32の噴霧軸は、放出軸25上の前方のP点で交差するように配置されている。
[Charged water particle generator]
The charged water particle generation unit 30 will be described in more detail. A charged water particle generation unit 30 is arranged in the opening on the front side of the blower unit 28. When viewed from the front as shown in FIG. 2C, the charged water particle generation unit 30 has a plurality of charged fine spray heads 32, for example, 10 charged fine spray heads 32 arranged in an annular shape inside the support ring 31. ing. Here, the spray shafts of the plurality of charged fine spray heads 32 are arranged so as to intersect the discharge shaft 25 of the charged fine spray airflow 12, and when viewed from the side surface of FIG. 2B, the plurality of charged fine spray heads 32 are arranged. The spray shafts of the spray head 32 are arranged so as to intersect at a point P in front of the discharge shaft 25.

ここで、P点で交差する帯電微噴霧ヘッド32の噴霧軸と帯電微噴霧気流12の放出軸25との交差角度θは、帯電微噴霧ヘッド32からの帯電水粒子の噴出速度と噴出拡がり角度、送風部28からの空気流の風速等を考慮して、噴出された帯電水粒子が空気流に良好に含有される所定角度であり、一例として、45°~90°の範囲の所定角度、例えば60°としている。 Here, the crossing angle θ between the spray shaft of the charged fine spray head 32 and the discharge shaft 25 of the charged fine spray airflow 12 intersecting at point P is the ejection speed and ejection spread angle of the charged water particles from the charged fine spray head 32. A predetermined angle in which the ejected charged water particles are well contained in the air flow in consideration of the wind speed of the air flow from the air blower 28, for example, a predetermined angle in the range of 45 ° to 90 °. For example, it is set to 60 °.

[帯電微噴霧ヘッド]
次に、図2の帯電水粒子生成部30に設けられた帯電微噴霧ヘッド32について、より詳細に説明する。図3は帯電微噴霧ヘッド32を取り出して示しており、図3(A)に噴霧側から見た斜視図を示し、図3(B)に側面図を示す。
[Charged fine spray head]
Next, the charged fine spray head 32 provided in the charged water particle generation unit 30 of FIG. 2 will be described in more detail. FIG. 3 shows the charged fine spray head 32 taken out, FIG. 3 (A) shows a perspective view seen from the spray side, and FIG. 3 (B) shows a side view.

図3に示すように、帯電微噴霧ヘッド32は、送風部28からの空気流の中に帯電水粒子を噴霧して含有させるものであり、その構成や構造は任意であるが、一例として、ボディー54、噴射ノズル部56、電極保持部58、誘導電極部60、水側電極部62、及び給水接続部64で構成されるものである。ボディー54、噴射ノズル部56、電極保持部58及び給水接続部64は絶縁材質で作られている。 As shown in FIG. 3, the charged fine spray head 32 sprays and contains charged water particles in the air flow from the blower unit 28, and the configuration and structure thereof are arbitrary, but as an example. It is composed of a body 54, an injection nozzle portion 56, an electrode holding portion 58, an induction electrode portion 60, a water side electrode portion 62, and a water supply connecting portion 64. The body 54, the injection nozzle portion 56, the electrode holding portion 58, and the water supply connection portion 64 are made of an insulating material.

ボディー54の内部には噴霧軸55の方向に貫通穴が形成され、下側から導電性の水側電極部62が嵌め込まれ、その上側に給水接続部64が嵌め込まれ、水側電極部62の電極接続部62aに外部からアースケーブルが接続される。給水接続部64には加圧された水が供給される。水側電極部62の先端側には噴射ノズル部56が設けられ、例えば、平均粒子径が100~300μmの水粒子を放出させる。 A through hole is formed inside the body 54 in the direction of the spray shaft 55, a conductive water-side electrode portion 62 is fitted from below, a water supply connection portion 64 is fitted above the water supply connection portion 64, and the water-side electrode portion 62 is fitted. An earth cable is connected to the electrode connection portion 62a from the outside. Pressurized water is supplied to the water supply connection portion 64. An injection nozzle portion 56 is provided on the tip end side of the water side electrode portion 62, and for example, water particles having an average particle diameter of 100 to 300 μm are discharged.

噴射ノズル部56の先端側の開放空間には、電極保持部58によりリング形状の誘導電極部60が配置される。誘導電極部60の構成や構造は任意であるが、例えば、導電性の電極心材を絶縁被覆して形成されている。誘導電極部60のケーブル接続部60aには外部から電圧印加ケーブルが接続される。 A ring-shaped induction electrode portion 60 is arranged by the electrode holding portion 58 in the open space on the tip end side of the injection nozzle portion 56. The structure and structure of the inductive electrode portion 60 are arbitrary, but are formed by, for example, insulatingly coating a conductive electrode core material. A voltage application cable is connected from the outside to the cable connection portion 60a of the induction electrode portion 60.

誘導電極部60と水側電極部62との間には、図1に示した高圧電源部18から、例えば水粒子を帯電させることが可能な電圧範囲中の所定調整範囲(例えば0.5kV~20kV)から調整された所定電圧(例えば10kVの直流電圧)が印加される。この印加電圧により、誘導電極部60のリング部の周囲に所定の外部電界が形成され、誘導帯電方式により噴射ノズル部56から噴霧された水粒子が帯電され、帯電された水粒子の噴霧流が放出される。 Between the induction electrode unit 60 and the water side electrode unit 62, from the high voltage power supply unit 18 shown in FIG. 1, for example, a predetermined adjustment range (for example, 0.5 kV to A predetermined voltage adjusted from 20 kV) (for example, a DC voltage of 10 kV) is applied. By this applied voltage, a predetermined external electric field is formed around the ring portion of the induction electrode portion 60, the water particles sprayed from the injection nozzle portion 56 are charged by the induction charging method, and the spray flow of the charged water particles is generated. It is released.

ここで、所定調整範囲(すなわち、調整可能な所定範囲)は、水粒子を帯電させることのできない電圧範囲を含んでも良く、そのうえで、水粒子を帯電させることが可能な所定電圧に調整できれば良いものである。印加電圧の極性(正/負)は、極性切替部で切り替える。なお、上記の各電圧値は例示であり、これらに限定されず、パルス電圧、脈流電圧、交流電圧を印加しても良い。 Here, the predetermined adjustment range (that is, the adjustable predetermined range) may include a voltage range in which the water particles cannot be charged, and it is sufficient if the voltage can be adjusted to a predetermined voltage in which the water particles can be charged. Is. The polarity (positive / negative) of the applied voltage is switched by the polarity switching unit. It should be noted that each of the above voltage values is an example, and the present invention is not limited to these, and a pulse voltage, a pulsating current voltage, and an AC voltage may be applied.

例えば、誘導電極部60と水側電極部62との間に直流電圧を印加した場合には、水側電極部62基準電位(アース電位、0V)とした場合の誘導電極部60の極性に応じて、正電荷と負電荷の何れか一方の帯電した水粒子が生成される。ここでは、水側電極部62を基準電位(アース電位、0V)として誘導電極部60の電位が負(マイナス)となり、水粒子を正(プラス)に帯電させる印加電圧を負(マイナス)の印加電圧、水側電極部62を基準電位(アース電位、0V)として誘導電極部60の電位が正(プラス)となり、水粒子を負(マイナス)に帯電させる印加電圧を正(プラス)の印加電圧とする。また、誘導電極部60と水側電極部62との間に印加する電圧を、例えば0.5kV~20kVの範囲にすると、火花放電の発生が防止され、安全を確保しながら帯電した水粒子の噴霧流が生成される。 For example, when a DC voltage is applied between the induction electrode unit 60 and the water side electrode unit 62, it depends on the polarity of the induction electrode unit 60 when the water side electrode unit 62 reference potential (earth potential, 0V) is used. Therefore, charged water particles having either a positive charge or a negative charge are generated. Here, the potential of the induction electrode portion 60 becomes negative (minus) with the water side electrode portion 62 as the reference potential (earth potential, 0V), and the applied voltage for positively charging the water particles is applied negative (minus). With the voltage and water side electrode portion 62 as the reference potential (earth potential, 0V), the potential of the induction electrode portion 60 becomes positive (plus), and the applied voltage that charges the water particles negatively (minus) is the positive (plus) applied voltage. And. Further, when the voltage applied between the induction electrode portion 60 and the water side electrode portion 62 is set to, for example, in the range of 0.5 kV to 20 kV, the generation of spark discharge is prevented and the charged water particles are charged while ensuring safety. A spray stream is generated.

なお、帯電微噴霧ヘッド32の構成や構造は任意であり、図3に限定されず、水粒子を生成すると共に生成した水粒子を帯電させて帯電水粒子を生成させる適宜の構造や公知の構造を含むものである。 The configuration and structure of the charged fine spray head 32 are arbitrary and are not limited to FIG. 3, and an appropriate structure or a known structure that generates water particles and charges the generated water particles to generate charged water particles. Is included.

[放出方向調整部]
噴霧気流放出部10に設けられた放出方向調整部について、より詳細に説明する。放出方向調整部は、噴霧気流放出部10による帯電微噴霧気流12の放出方向を調整するものであり、その構成や構造は任意であるが、一例として、図2に示すように、左右方向調整部44と上下方向調整部48が設けられる。
[Discharge direction adjustment unit]
The discharge direction adjusting unit provided in the spray airflow discharge unit 10 will be described in more detail. The discharge direction adjusting unit adjusts the discharge direction of the charged fine spray airflow 12 by the spray airflow discharge unit 10, and its configuration and structure are arbitrary, but as an example, as shown in FIG. 2, left-right direction adjustment. A portion 44 and a vertical adjustment portion 48 are provided.

噴霧気流放出部10の送風部28は、架台40上で左右回転軸46により左右方向(水平回り)に回転自在に軸支された回動支持部42に、上下回転軸50により上下方向(垂直回り)に回転自在に軸支されている。架台40の下側には左右方向調整部44が配置される。左右方向調整部44は例えばモータ駆動部であり、駆動軸に回動支持部42が軸支され、回動支持部42に上下回転軸50で軸支された噴霧気流放出部10を、左右回転軸46を中心に左右方向(水平回り)に回転して帯電微噴霧気流12の左右の放出方向を調整可能としている。 The blower portion 28 of the spray airflow discharge portion 10 is vertically (vertically) by the vertical rotation shaft 50 to the rotation support portion 42 rotatably supported in the left-right direction (horizontal rotation) by the left-right rotation shaft 46 on the gantry 40. It is rotatably supported around). A left-right direction adjusting portion 44 is arranged on the lower side of the gantry 40. The left-right direction adjusting unit 44 is, for example, a motor drive unit, and a rotation support unit 42 is pivotally supported by a drive shaft, and a spray airflow discharge unit 10 pivotally supported by a vertical rotation shaft 50 is rotated left and right by the rotation support unit 42. The left and right discharge directions of the charged fine spray airflow 12 can be adjusted by rotating in the left-right direction (horizontally) about the shaft 46.

噴霧気流放出部10を回動支持部42に回転自在に支持する上下回転軸50の片側には、上下方向調整部48が設けられる。上下方向調整部48は例えばモータ駆動部であり、駆動軸に送風部28を軸支し、上下回転軸50を中心に噴霧気流放出部10を、上下方向(垂直回り)に回転して帯電微噴霧気流12の上下の放出方向を調整可能とする。 A vertical direction adjusting portion 48 is provided on one side of the vertical rotating shaft 50 that rotatably supports the spray airflow discharging portion 10 on the rotating support portion 42. The vertical direction adjusting unit 48 is, for example, a motor drive unit, the blower unit 28 is pivotally supported on the drive shaft, and the spray airflow discharge unit 10 is rotated in the vertical direction (vertical rotation) around the vertical rotation shaft 50 to be charged finely. The vertical emission direction of the spray airflow 12 can be adjusted.

ここで、左右方向調整部44の左右回転軸46と上下方向調整部48の上下回転軸50は、噴霧気流放出部10の重心位置より前方側(放出側)の所定位置に配置されている。このため、噴霧気流放出部10が放出している帯電微噴霧気流12の反動力を受けても放出方向が安定し、操作員の意のもとに放出方向を容易に調整することができる。また、例えば、はしご消防車のはしご先端に設けられたバケット部に噴霧気流放出部10が設置されているような場合には、バスケット部が傾いた際にも、噴霧気流放出部10の安定性が高いことから、帯電微噴霧気流の放出が思わぬ方向に向くようなことが防止でき、安全に運用できる。 Here, the left-right rotation shaft 46 of the left-right direction adjustment unit 44 and the up-down rotation shaft 50 of the up-down direction adjustment unit 48 are arranged at predetermined positions on the front side (discharge side) from the position of the center of gravity of the spray airflow discharge unit 10. Therefore, the discharge direction is stable even when the reaction force of the charged fine spray airflow 12 discharged by the spray airflow discharge unit 10 is received, and the discharge direction can be easily adjusted at the will of the operator. Further, for example, when the spray airflow discharge unit 10 is installed in the bucket portion provided at the tip of the ladder of the ladder fire engine, the stability of the spray airflow discharge unit 10 even when the basket portion is tilted. Because of the high value, it is possible to prevent the emission of the charged fine spray airflow from going in an unexpected direction, and it can be operated safely.

[高圧電源部]
高圧電源部18について、より詳細に説明する。高圧電源部18は、噴霧気流放出部10に帯電水粒子を生成するための高電圧を高圧ケーブル24により供給するものであり、その構成や機能は任意であるが、例えば、図4に示すように、電圧調整部として機能する高電圧可変回路66と、極性切替部として機能する転極回路68を備えるものである。
[High voltage power supply]
The high voltage power supply unit 18 will be described in more detail. The high-voltage power supply unit 18 supplies a high voltage for generating charged water particles to the spray airflow discharge unit 10 by a high-voltage cable 24, and its configuration and function are arbitrary, but as shown in FIG. 4, for example. In addition, a high voltage variable circuit 66 that functions as a voltage adjusting unit and a repolarization circuit 68 that functions as a polarity switching unit are provided.

ここで、図4は高圧電源部18を複数の帯電微噴霧ヘッド32を備えた帯電水粒子生成部30の回路構成と共に示している。帯電微噴霧ヘッド32は誘導電極部60と水側電極部62を備え、高圧電源部18から電圧印加ケーブル24aが誘導電極部60に電流制限抵抗72を介して接続され、また、高圧電源部18からアースケーブル24bが水側電極部62に電流制限抵抗74を介して接続され、誘導電極部60と水側電極部62の間に高電圧を印加し、帯電微噴霧ヘッド32から噴霧される水粒子を帯電させる。ここで、電圧印加ケーブル24aとアースケーブル24bは、絶縁性の高い耐圧ケーブルを使用するが、直流電圧のみを印加する場合は、正極側のケーブルを耐圧ケーブルとし、負極側のケーブルは通常の低圧ケーブルでよい。 Here, FIG. 4 shows the high-voltage power supply unit 18 together with the circuit configuration of the charged water particle generation unit 30 provided with the plurality of charged fine spray heads 32. The charged fine spray head 32 includes an induction electrode unit 60 and a water side electrode unit 62, and a voltage application cable 24a is connected from the high voltage power supply unit 18 to the induction electrode unit 60 via a current limiting resistor 72, and the high voltage power supply unit 18 is also provided. The ground cable 24b is connected to the water side electrode portion 62 via the current limiting resistor 74, a high voltage is applied between the induction electrode portion 60 and the water side electrode portion 62, and water sprayed from the charged fine spray head 32. Charges the particles. Here, the voltage application cable 24a and the ground cable 24b use a withstand voltage cable having high insulation, but when only a DC voltage is applied, the cable on the positive electrode side is used as the withstand voltage cable, and the cable on the negative electrode side is a normal low voltage cable. A cable is fine.

高電圧可変回路66は、操作盤14の制御部21からの制御信号に応じて、誘導電極部60と水側電極部62との間に印加する電圧を調整するものであり、これにより帯電微噴霧ヘッド32から火災現場での消火や消煙に適した帯電量の水粒子を含有した帯電微噴霧気流を投入することができる。また、印加電圧の絶対値を下げることによって帯電量を減らした水粒子とすることで、帯電し易い消火対象又は防火対象に対して帯電水粒子による帯電量が増えることによって起きる可能性のある放電事故を、未然に防ぐことを可能とする。 The high voltage variable circuit 66 adjusts the voltage applied between the induction electrode unit 60 and the water side electrode unit 62 according to the control signal from the control unit 21 of the operation panel 14, whereby the charge is fine. From the spray head 32, a charged fine spray air stream containing water particles having a charged amount suitable for extinguishing a fire or smoke at a fire site can be introduced. In addition, by reducing the absolute value of the applied voltage to reduce the amount of charge, the discharge that may occur due to the increase in the amount of charge due to the charged water particles with respect to the fire extinguishing target or fire prevention target that is easily charged. It makes it possible to prevent accidents.

転極回路68は、操作盤14の制御部21からの制御信号に応じて、誘導電極部60と水側電極部62との間に印加する電圧の極性を切替えるものであり、これにより帯電微噴霧ヘッド32から噴霧する水粒子の帯電極性を正(プラス)又は負(マイナス)に切替え、火災現場での消火や消煙に適した帯電極性の水粒子を含有した帯電微噴霧気流を投入することができる。例えば、消火対象又は防火対象が帯電しているか又は帯電し易い場合には、その帯電の極性と反対極の極性の帯電水粒子を含有した帯電微噴霧気流を投入することで、より高い消火性能と消煙性能が期待できる。 The repolarization circuit 68 switches the polarity of the voltage applied between the induction electrode unit 60 and the water side electrode unit 62 in response to the control signal from the control unit 21 of the operation panel 14, whereby the charge is fine. The charging polarity of the water particles sprayed from the spray head 32 is switched to positive (plus) or negative (minus), and a charged fine spray airflow containing water particles having a charging polarity suitable for fire extinguishing or smoke extinguishing at a fire site is input. be able to. For example, when the fire extinguishing target or the fire prevention target is charged or easily charged, a charged fine spray airflow containing charged water particles having a polarity opposite to the polarity of the charge is introduced to achieve higher fire extinguishing performance. And smoke extinguishing performance can be expected.

ここで、高圧電源部18から帯電微噴霧ヘッド32の誘導電極部60と水側電極部62との間に印加される電圧の種類として、例えば、直流電圧、パルス電圧、脈流電圧、及び交流電圧等が挙げられる。 Here, as the types of voltage applied from the high voltage power supply unit 18 between the induction electrode unit 60 of the charged fine spray head 32 and the water side electrode unit 62, for example, a DC voltage, a pulse voltage, a pulsating current voltage, and an alternating current are used. Examples include voltage.

[直流電圧を印加する場合]
まず、高圧電源部18から帯電微噴霧ヘッド32の誘導電極部60と水側電極部62との間に直流電圧を印加する場合について、より詳細に説明する。
[When applying DC voltage]
First, a case where a DC voltage is applied from the high voltage power supply unit 18 between the induction electrode unit 60 of the charged fine spray head 32 and the water side electrode unit 62 will be described in more detail.

高電圧可変回路66は、操作盤14の制御部21からの制御信号に応じて、高電圧可変回路66から出力する電圧を所定の直流電圧に調整する。ここでいう「所定の直流電圧に調整する」とは、水粒子を帯電させることが可能な直流電圧に調整することであり、例えば水粒子を帯電させることが可能な電圧範囲である0.5kV~20kV(+0.5kV~+20kVまたは-0.5kV~-20kV)の範囲から選択された電圧の直流電圧に調整することである。 The high voltage variable circuit 66 adjusts the voltage output from the high voltage variable circuit 66 to a predetermined DC voltage according to the control signal from the control unit 21 of the operation panel 14. The term "adjusting to a predetermined DC voltage" here means adjusting to a DC voltage capable of charging water particles, for example, 0.5 kV, which is a voltage range in which water particles can be charged. It is to adjust to the DC voltage of the voltage selected from the range of about 20 kV (+0.5 kV to +20 kV or −0.5 kV to −20 kV).

転極回路68は、操作盤14の制御部21からの制御信号に応じて、高電圧可変回路66で調整され出力された所定の直流電圧の極性を切り替えるか否かを決定し、誘導電極部60と水側電極部62との間に印加される直流電圧の極性を調整する。 The repolarization circuit 68 determines whether or not to switch the polarity of a predetermined DC voltage adjusted and output by the high voltage variable circuit 66 according to the control signal from the control unit 21 of the operation panel 14, and determines whether or not to switch the polarity of the predetermined DC voltage. The polarity of the DC voltage applied between the 60 and the water side electrode portion 62 is adjusted.

例えば、高電圧可変回路66で所定の直流電圧が+10kVの直流電圧(正の直流電圧)に調整され、転極回路68で極性の切り替えが行われない場合は、水側電極部62を基準電位(アース電位、0V)として誘導電極部60の電位が+10kVとなり、水側電極部62の電位に対して誘導電極部60の電位が高くなる+10kVの直流電圧(正の直流電圧)が誘導電極部60と水側電極部62との間に印加される。これにより、噴霧される水粒子は負(マイナス)に帯電されることになる。 For example, when the predetermined DC voltage is adjusted to a DC voltage (positive DC voltage) of +10 kV in the high voltage variable circuit 66 and the polarity is not switched in the repolarization circuit 68, the water side electrode portion 62 is set to the reference potential. As (earth potential, 0V), the potential of the induction electrode portion 60 becomes + 10kV, and the potential of the induction electrode portion 60 becomes higher than the potential of the water side electrode portion 62. The DC voltage (positive DC voltage) of +10 kV is the induction electrode portion. It is applied between the 60 and the water side electrode portion 62. As a result, the sprayed water particles are negatively charged.

一方、高電圧可変回路66で所定の直流電圧が+10kVの直流電圧(正の直流電圧)に調整され、転極回路68で極性の切り替えが行われる場合は、水側電極部62を基準電位(アース電位、0V)として誘導電極部60の電位が-10kVとなり、水側電極部62の電位に対して誘導電極部60の電位が低くなる-10kVの直流電圧(負の直流電圧)が誘導電極部60と水側電極部62との間に印加される。これにより、噴霧される水粒子は正(プラス)に帯電されることになる。 On the other hand, when the predetermined DC voltage is adjusted to a DC voltage (positive DC voltage) of +10 kV by the high voltage variable circuit 66 and the polarity is switched by the repolarization circuit 68, the water side electrode portion 62 is set to the reference potential ( As the earth potential (0V), the potential of the induction electrode unit 60 becomes -10kV, and the potential of the induction electrode unit 60 becomes lower than the potential of the water side electrode unit 62. The DC voltage (negative DC voltage) of -10kV is the induction electrode. It is applied between the portion 60 and the water side electrode portion 62. As a result, the sprayed water particles are positively charged.

ここで、操作盤14の制御部21から転極回路68への極性切り替えのための制御信号の出力は、例えば操作盤14の操作表示部20を操作した場合等の手動操作による出力や、予め消火装置に設定された所定の周期に従った場合等の自動出力の両方の場合が含まれる。つまり、手動操作による出力の場合には任意のタイミングで誘導電極部60と水側電極部62との間に印加する直流電圧の極性を切り替えることができ、所定の周期に従った場合等の自動出力の場合には予め設定されたタイミングで誘導電極部60と水側電極部62との間に印加する直流電圧の極性を切り替えることができる。 Here, the output of the control signal for switching the polarity from the control unit 21 of the operation panel 14 to the pole turning circuit 68 may be an output by manual operation such as when the operation display unit 20 of the operation panel 14 is operated, or in advance. This includes both cases of automatic output, such as when a predetermined cycle set in the fire extinguishing device is followed. That is, in the case of output by manual operation, the polarity of the DC voltage applied between the induction electrode unit 60 and the water side electrode unit 62 can be switched at any timing, and it is automatically performed when a predetermined cycle is followed. In the case of output, the polarity of the DC voltage applied between the induction electrode unit 60 and the water side electrode unit 62 can be switched at a preset timing.

また、転極回路68で極性の切り替えを行わずに、転極回路68が高電圧可変回路66に対して、反対の極性の直流電圧に調整させて出力させるように制御してもよい。例えば、高電圧可変回路66が+10kVの直流電圧(正の直流電圧)に調整して出力しているのであれば、高電圧可変回路66から-10kVの直流電圧(負の直流電圧)が出力されるように制御する。 Further, the repolarization circuit 68 may be controlled so that the high voltage variable circuit 66 is adjusted to a DC voltage having the opposite polarity and output without switching the polarity in the repolarization circuit 68. For example, if the high voltage variable circuit 66 is adjusted to a DC voltage of + 10 kV (positive DC voltage) and output, the high voltage variable circuit 66 outputs a DC voltage of -10 kV (negative DC voltage). To control.

[パルス電圧を印加する場合]
続いて、高圧電源部18から帯電微噴霧ヘッド32の誘導電極部60と水側電極部62との間にパルス電圧を印加する場合について、より詳細に説明する。
[When applying pulse voltage]
Subsequently, a case where a pulse voltage is applied between the induction electrode portion 60 of the charged fine spray head 32 and the water side electrode portion 62 from the high voltage power supply unit 18 will be described in more detail.

高電圧可変回路66は、操作盤14の制御部21からの制御信号に応じて、高電圧可変回路66から出力する電圧を所定のパルス電圧に調整する。ここでいう「所定のパルス電圧に調整する」とは、例えばパルス周期、パルス幅(或いはパルス周期に対するパルス幅の割合を示すデューティ比)、パルス振幅、及びパルス極性の調整により、パルス電圧の電圧波形を調整することである。尚、電圧波形を調整するに必要なパラメータであれば、前述したパラメータ以外も適宣利用することができる。 The high voltage variable circuit 66 adjusts the voltage output from the high voltage variable circuit 66 to a predetermined pulse voltage according to the control signal from the control unit 21 of the operation panel 14. "Adjusting to a predetermined pulse voltage" here means the voltage of the pulse voltage by, for example, adjusting the pulse period, the pulse width (or the duty ratio indicating the ratio of the pulse width to the pulse period), the pulse amplitude, and the pulse polarity. It is to adjust the waveform. It should be noted that any parameter other than the above-mentioned parameters can be appropriately used as long as it is a parameter necessary for adjusting the voltage waveform.

また、ここでいう「パルス極性の調整」とは、例えば一方の極性側に振れる単極性パルス及び両極性方向に振れる両極性パルスが選択されることであり、単極性パルスには正(プラス)側に振れる正の単極性パルスと、負(マイナス)側に振れる負の単極性パルスを含むものである。 Further, "adjustment of pulse polarity" here means that, for example, a unipolar pulse swinging to one polar side and a unipolar pulse swinging in both polar directions are selected, and the unipolar pulse is positive (plus). It includes a positive unipolar pulse swinging to the side and a negative unipolar pulse swinging to the negative (minus) side.

高電圧可変回路66で調整されるパルス電圧の電圧波形は任意であるが、例えば、図5(A)に示す、パルス周期がT、パルス幅がT1、パルス振幅がV1、正の単極性パルスとして調整された電圧波形である。ここでパルス振幅V1は、水粒子を帯電させることが可能な電圧が誘導電極部60と水側電極部62との間に印加できるのであれば任意のパルス振幅としていいが、例えば水粒子を帯電させることが可能な電圧範囲である0.5kV~20kVの範囲から選択された電圧と同じ値とする。 The voltage waveform of the pulse voltage adjusted by the high voltage variable circuit 66 is arbitrary. For example, as shown in FIG. 5A, the pulse period is T, the pulse width is T1, the pulse amplitude is V1, and a positive unipolar pulse. It is a voltage waveform adjusted as. Here, the pulse amplitude V1 may be any pulse amplitude as long as a voltage capable of charging the water particles can be applied between the induction electrode portion 60 and the water side electrode portion 62. For example, the water particles may be charged. The voltage shall be the same as the voltage selected from the range of 0.5 kV to 20 kV, which is the voltage range in which the particles can be generated.

また、パルス周期Tは任意であり、例えば図5(B)に示すパルス電圧の電圧波形は、図5(A)のパルス電圧の電圧波形のパルス周期Tに対し、周期を2倍としたパルス周期2Tとして調整したものである。 Further, the pulse cycle T is arbitrary. For example, the voltage waveform of the pulse voltage shown in FIG. 5 (B) is a pulse whose cycle is doubled with respect to the pulse cycle T of the voltage waveform of the pulse voltage of FIG. 5 (A). It is adjusted as a period 2T.

また、パルス幅T1は周期Tを超えない範囲であれば任意であり、例えば図5(C)のパルス電圧の電圧波形は、図5(A)のパルス電圧の電圧波形のパルス周期Tの50%としたパルス幅T1に対し、パルス周期Tの75%としたパルス幅T2(=3T/4)として調整したものである。 Further, the pulse width T1 is arbitrary as long as it does not exceed the period T. For example, the voltage waveform of the pulse voltage in FIG. 5 (C) is 50 of the pulse period T of the voltage waveform of the pulse voltage in FIG. 5 (A). The pulse width T1 is adjusted to 75% of the pulse period T as the pulse width T2 (= 3T / 4).

また、パルス幅自体を調整するのではなく、パルス周期に対するパルス幅の割合を示すデューティ比を調整することで、パルス幅を調整するようにしても良い。図5(A)のパルス電圧の電圧波形におけるデューティ比は50%であり、図5(C)のパルス電圧の電圧波形におけるデューティ比は75%であり、デューティ比は0%~100%の間の任意の割合で調整できる。 Further, instead of adjusting the pulse width itself, the pulse width may be adjusted by adjusting the duty ratio indicating the ratio of the pulse width to the pulse period. The duty ratio in the voltage waveform of the pulse voltage of FIG. 5 (A) is 50%, the duty ratio in the voltage waveform of the pulse voltage of FIG. 5 (C) is 75%, and the duty ratio is between 0% and 100%. Can be adjusted at any rate.

また、パルス極性は、図5(A)のように正(プラス)側に振れる正の単極性パルスとして調整されたパルス電圧に対し、図5(D)のように負(マイナス)側に振れる負の単極性パルスとして調整されたパルス電圧や、図5(E)(F)のように両極性方向に振れる両極性パルスとして調整されたパルス電圧としてもよい。尚、図5(E)のような両極性パルスとして調整する場合には、正(プラス)側に振れるパルスのパルス幅をT1として扱い、負(プラス)側に振れるパルスのパルス幅はT-T1とし、パルス周期に対する正(プラス)側に振れるパルスのパルス幅の割合をデューティ比として扱う。 Further, the pulse polarity swings to the negative (minus) side as shown in FIG. 5 (D) with respect to the pulse voltage adjusted as a positive unipolar pulse swinging to the positive (plus) side as shown in FIG. 5 (A). It may be a pulse voltage adjusted as a negative unipolar pulse or a pulse voltage adjusted as a bipolar pulse swinging in both polar directions as shown in FIGS. 5 (E) and 5 (F). When adjusting as a bipolar pulse as shown in FIG. 5 (E), the pulse width of the pulse swinging to the positive (plus) side is treated as T1, and the pulse width of the pulse swinging to the negative (plus) side is T-. Let T1 be used, and the ratio of the pulse width of the pulse swinging to the positive (plus) side to the pulse period is treated as the duty ratio.

転極回路68は、操作盤14の制御部21からの制御信号に応じて、高電圧可変回路66で調整され出力された所定のパルス電圧の極性を切り替えるか否かを決定し、誘導電極部60と水側電極部62との間に印加されるパルス電圧の極性を調整する。 The repolarization circuit 68 determines whether or not to switch the polarity of a predetermined pulse voltage adjusted and output by the high voltage variable circuit 66 according to the control signal from the control unit 21 of the operation panel 14, and determines whether or not to switch the polarity of the predetermined pulse voltage. The polarity of the pulse voltage applied between the 60 and the water side electrode portion 62 is adjusted.

単極性パルスの例として、高電圧可変回路66で図5(A)の電圧波形のパルス電圧に調整され、転極回路68で極性の切り替えが行われない場合は、水側電極部62を基準電位(アース電位、0V)として誘導電極部60の電位が+V1となり、水側電極部62の電位に対して誘導電極部60の電位が高くなる正の電圧(+V1)が誘導電極部60と水側電極部62との間に印加された期間(t0-t1間)で噴霧される水粒子は負(マイナス)に帯電され、誘導電極部60と水側電極部62との間の電圧が0Vである期間(t1-t2間)で噴霧される水粒子は帯電されず、これら2つの期間(t0-t2間)を1周期として繰り替えされる。 As an example of a unipolar pulse, when the high voltage variable circuit 66 is adjusted to the pulse voltage of the voltage waveform of FIG. 5 (A) and the polarity is not switched by the repolarization circuit 68, the water side electrode portion 62 is used as a reference. As the potential (earth potential, 0V), the potential of the induction electrode portion 60 becomes + V1, and the positive voltage (+ V1) at which the potential of the induction electrode portion 60 becomes higher than the potential of the water side electrode portion 62 is the induction electrode portion 60 and water. The water particles sprayed between the side electrode portion 62 and the applied period (between t0 and t1) are negatively charged, and the voltage between the induction electrode portion 60 and the water side electrode portion 62 is 0V. The water particles sprayed during the period (between t1 and t2) are not charged, and these two periods (between t0 and t2) are repeated as one cycle.

一方、高電圧可変回路66で図5(A)の電圧波形のパルス電圧に調整され、転極回路68で極性の切り替えが行われる場合は、水側電極部62を基準電位(アース電位、0V)として誘導電極部60の電位が-V1となり、水側電極部62の電位に対して誘導電極部60の電位が低くなる負の電圧(-V1)が誘導電極部60と水側電極部62との間に印加された期間(t0-t1間)で噴霧される水粒子は正(プラス)に帯電され、誘導電極部60と水側電極部62との間の電圧が0Vである期間(t1-t2間)で噴霧される水粒子は帯電されず、これら2つの期間(t0-t2間)を1周期として繰り替えされる。 On the other hand, when the high voltage variable circuit 66 is adjusted to the pulse voltage of the voltage waveform shown in FIG. 5A and the polarity is switched by the repolarization circuit 68, the water side electrode portion 62 is set to the reference potential (earth potential, 0V). ), The potential of the induction electrode portion 60 becomes −V1, and the negative voltage (−V1) at which the potential of the induction electrode portion 60 becomes lower than the potential of the water side electrode portion 62 is the induction electrode portion 60 and the water side electrode portion 62. The water particles sprayed during the period applied between and (t0 to t1) are positively charged, and the voltage between the induction electrode portion 60 and the water side electrode portion 62 is 0V (during the period (between t0 and t1)). The water particles sprayed between t1 and t2) are not charged, and these two periods (between t0 and t2) are repeated as one cycle.

また両極性パルスの例として、高電圧可変回路66で図5(E)の電圧波形のパルス電圧に調整され、転極回路68で極性の切り替えが行われない場合は、水側電極部62を基準電位(アース電位、0V)として誘導電極部60の電位が+V1となり、水側電極部62の電位に対して誘導電極部60の電位が高くなる正の電圧(+V1)が誘導電極部60と水側電極部62との間に印加された期間(t0-t1間)で噴霧される水粒子は負(マイナス)に帯電され、水側電極部62を基準電位(アース電位、0V)として誘導電極部60の電位が-V1となり、水側電極部62の電位に対して誘導電極部60の電位が低くなる負の電圧(-V1)が誘導電極部60と水側電極部62との間に印加された期間(t1-t2間)で噴霧される水粒子は正(プラス)に帯電され、これら2つの期間(t0-t2間)を1周期として繰り替えされる。また、転極回路68で極性の切り替えが行われた場合は、水粒子は負(マイナス)に帯電される期間と水粒子は正(プラス)に帯電される期間が入れ替わることになる。 Further, as an example of the bipolar pulse, when the high voltage variable circuit 66 is adjusted to the pulse voltage of the voltage waveform of FIG. 5 (E) and the polarity is not switched by the repolarization circuit 68, the water side electrode portion 62 is used. As the reference potential (earth potential, 0V), the potential of the induction electrode portion 60 becomes + V1, and the positive voltage (+ V1) at which the potential of the induction electrode portion 60 becomes higher than the potential of the water side electrode portion 62 is the induction electrode portion 60. The water particles sprayed between the water side electrode portion 62 and the applied period (between t0 and t1) are negatively charged, and the water side electrode portion 62 is induced as a reference potential (earth potential, 0V). A negative voltage (-V1) at which the potential of the electrode portion 60 becomes −V1 and the potential of the induction electrode portion 60 becomes lower than the potential of the water side electrode portion 62 is between the induction electrode portion 60 and the water side electrode portion 62. The water particles sprayed during the period (between t1-t2) applied to the are positively charged, and these two periods (between t0-t2) are repeated as one cycle. Further, when the polarity is switched in the repolarization circuit 68, the period in which the water particles are negatively charged and the period in which the water particles are positively charged are switched.

パルス電圧が両極性パルスとして、図5(E)の電圧波形でデューティ比を50%に調整された場合、又は図5(F)の電圧波形に調整された場合、転極回路68で極性の切り替えを行った電圧波形は、転極回路68で極性の切り替えを行う前の電圧波形を半周期又は1周期遅らせた電圧波形に過ぎずないため、このように転極回路68での切り替え前後の波形が位相をずらすことで同等の波形となる場合は、転極回路68での極性の切り替えは行わないようにしてもよい。 When the pulse voltage is ambivalent and the duty ratio is adjusted to 50% in the voltage waveform of FIG. 5 (E), or when the voltage waveform of FIG. 5 (F) is adjusted, the polarity is changed in the repolarization circuit 68. Since the switched voltage waveform is only a voltage waveform obtained by delaying the voltage waveform before the polarity switching in the repolarization circuit 68 by half a cycle or one cycle, before and after the switching in the repolarization circuit 68 in this way. If the waveforms have the same waveforms due to the phase shift, the polarity switching in the repolarization circuit 68 may not be performed.

また直流電圧を印加する場合と同様に、操作盤14の制御部21から転極回路68への極性の切り替えのための制御信号の出力は、例えば操作盤14の操作表示部20を操作した場合等の手動操作による出力や、予め消火装置に設定された所定の周期に従った場合等の自動出力の両方が含まれ、転極回路68で極性の切り替えを行わずに、転極回路68が高電圧可変回路66に対して、反対の極性のパルス電圧に調整させて出力させるように制御してもよい。 Further, as in the case of applying a DC voltage, the output of the control signal for switching the polarity from the control unit 21 of the operation panel 14 to the repolarization circuit 68 is, for example, when the operation display unit 20 of the operation panel 14 is operated. Both the output by manual operation such as, and the automatic output when following a predetermined cycle set in the fire extinguishing device in advance are included, and the pole turning circuit 68 does not switch the polarity in the turning pole circuit 68. The high voltage variable circuit 66 may be controlled so as to be adjusted to a pulse voltage having the opposite polarity and output.

[脈流電圧を印加する場合]
続いて、高圧電源部18から帯電微噴霧ヘッド32の誘導電極部60と水側電極部62との間に脈流電圧を印加する場合について、より詳細に説明する。
[When applying pulsating voltage]
Subsequently, a case where a pulsating current voltage is applied between the induction electrode portion 60 of the charged fine spray head 32 and the water side electrode portion 62 from the high voltage power supply unit 18 will be described in more detail.

高電圧可変回路66は、操作盤14の制御部21からの制御信号に応じて、高電圧可変回路66から出力する電圧を所定の脈流電圧に調整する。ここでいう「所定の脈流電圧に調整する」とは、例えば脈流波形、脈流周期、脈流振幅の調整により、脈流電圧の電圧波形を調整することである。尚、電圧波形を調整するに必要なパラメータであれば、前述したパラメータ以外も適宣利用することができる。 The high voltage variable circuit 66 adjusts the voltage output from the high voltage variable circuit 66 to a predetermined pulsating current voltage according to the control signal from the control unit 21 of the operation panel 14. The term "adjusting to a predetermined pulsating current voltage" as used herein means adjusting the voltage waveform of the pulsating current voltage by, for example, adjusting the pulsating current waveform, the pulsating current cycle, and the pulsating current amplitude. It should be noted that any parameter other than the above-mentioned parameters can be appropriately used as long as it is a parameter necessary for adjusting the voltage waveform.

また、ここでいう「脈流波形の調整」とは、出力電圧の極性を変えることなく、電圧の大きさが周期的に変化する波形に調整することができればよく、例えば全波整流波、半波整流波、方形波、及び三角波等の決められた波形種類から選択されることを含むものである。 Further, the "adjustment of the pulsating current waveform" here means that it is sufficient if the waveform can be adjusted so that the magnitude of the voltage changes periodically without changing the polarity of the output voltage. For example, a full-wave rectified wave or a half wave. It includes selecting from a predetermined waveform type such as a wave rectified wave, a square wave, and a triangular wave.

高電圧可変回路66で調整される脈流電圧の電圧波形は任意であるが、例えば、図6に示す、脈流周期がT3、脈流振幅がV2、正(プラス)の全波整流波として調整された電圧波形である。ここで脈流振幅V2は、1周期内の所定期間に水粒子を帯電させることが可能な電圧が誘導電極部60と水側電極部62との間に印加できるのであれば任意の脈流振幅V1としていいが、例えば水粒子を帯電させることが可能な電圧範囲である0.5kV~20kVの範囲から選択された電圧と同じ値とする。これにより0~+V2(極性が切り替えられた場合は-V2~0)の範囲で電圧が変化するため、1周期内の所定期間は水粒子を帯電させることが可能な電圧を印加することになる。また、脈流周期T3は任意である。 The voltage waveform of the pulsating voltage adjusted by the high voltage variable circuit 66 is arbitrary, but as shown in FIG. 6, for example, the pulsating period is T3, the pulsating amplitude is V2, and a positive (plus) full-wave rectified wave is used. It is a tuned voltage waveform. Here, the pulsating current amplitude V2 is an arbitrary pulsating current amplitude as long as a voltage capable of charging water particles in a predetermined period within one cycle can be applied between the induction electrode portion 60 and the water side electrode portion 62. V1 may be used, but the voltage may be the same as the voltage selected from the range of 0.5 kV to 20 kV, which is a voltage range in which water particles can be charged. As a result, the voltage changes in the range of 0 to + V2 (-V2 to 0 when the polarity is switched), so that a voltage capable of charging the water particles is applied for a predetermined period within one cycle. .. Further, the pulsating current cycle T3 is arbitrary.

転極回路68は、操作盤14の制御部21からの制御信号に応じて、高電圧可変回路66で調整され出力された所定の脈流電圧の極性を切り替えるか否かを決定し、誘導電極部60と水側電極部62との間に印加される脈流電圧の極性を調整する。 The repolarization circuit 68 determines whether or not to switch the polarity of a predetermined pulsating current voltage adjusted and output by the high voltage variable circuit 66 in response to a control signal from the control unit 21 of the operation panel 14, and determines whether or not to switch the polarity of the predetermined pulsating voltage. The polarity of the pulsating current voltage applied between the portion 60 and the water side electrode portion 62 is adjusted.

例えば、高電圧可変回路66で図6の電圧波形の脈流電圧に調整され、転極回路68で極性の切り替えが行われない場合は、水側電極部62を基準電位(アース電位、0V)として誘導電極部60の電位が0~+V2の範囲で変化し、誘導電極部60と水側電極部62との間に印加される正の電圧(0~+V2)も変化し、噴霧される水粒子の負(マイナス)の帯電量が変化する。 For example, when the high voltage variable circuit 66 is adjusted to the pulsating voltage of the voltage waveform of FIG. 6 and the polarity is not switched by the repolarization circuit 68, the water side electrode portion 62 is set to the reference potential (earth potential, 0V). As a result, the potential of the induction electrode unit 60 changes in the range of 0 to + V2, and the positive voltage (0 to + V2) applied between the induction electrode unit 60 and the water side electrode unit 62 also changes, and the sprayed water The amount of negative charge of the particles changes.

一方、高電圧可変回路66で図6の電圧波形の脈流電圧に調整され、転極回路68で極性の切り替えが行われる場合は、水側電極部62を基準電位(アース電位、0V)として誘導電極部60の電位が-V2~0の範囲で変化し、誘導電極部60と水側電極部62との間に印加される負の電圧(-V2~0)も変化し、噴霧される水粒子の正(プラス)の帯電量が変化する。 On the other hand, when the high voltage variable circuit 66 is adjusted to the pulsating voltage of the voltage waveform of FIG. 6 and the polarity is switched by the repolarization circuit 68, the water side electrode portion 62 is set as the reference potential (earth potential, 0V). The potential of the induction electrode portion 60 changes in the range of −V2 to 0, and the negative voltage (−V2 to 0) applied between the induction electrode portion 60 and the water side electrode portion 62 also changes and is sprayed. The positive charge amount of the water particles changes.

また直流電圧を印加する場合と同様に、操作盤14の制御部21から転極回路68への極性の切り替えのための制御信号の出力は、例えば操作盤14の操作表示部20を操作した場合等の手動操作による出力や、予め消火装置に設定された所定の周期に従った場合等の自動出力の両方が含まれ、転極回路68で極性の切り替えを行わずに、転極回路68が高電圧可変回路66に対して、反対の極性の脈流電圧に調整させて出力させるように制御してもよい。 Further, as in the case of applying a DC voltage, the output of the control signal for switching the polarity from the control unit 21 of the operation panel 14 to the repolarization circuit 68 is, for example, when the operation display unit 20 of the operation panel 14 is operated. Both the output by manual operation such as, and the automatic output when following a predetermined cycle set in the fire extinguishing device in advance are included, and the pole turning circuit 68 does not switch the polarity in the turning pole circuit 68. The high voltage variable circuit 66 may be controlled so as to be adjusted to a pulsation voltage of the opposite polarity and output.

[交流電圧を印加する場合]
続いて、高圧電源部18から帯電微噴霧ヘッド32の誘導電極部60と水側電極部62との間に交流電圧を印加する場合について、より詳細に説明する。
[When applying AC voltage]
Subsequently, a case where an AC voltage is applied between the induction electrode portion 60 of the charged fine spray head 32 and the water side electrode portion 62 from the high voltage power supply unit 18 will be described in more detail.

高電圧可変回路66は、操作盤14の制御部21からの制御信号に応じて、高電圧可変回路66から出力する電圧を所定の交流電圧に調整する。ここでいう「所定の交流電圧に調整する」とは、例えば交流波形、交流周期、交流振幅の調整により、交流電圧の電圧波形を調整することである。尚、電圧波形を調整するに必要なパラメータであれば、前述したパラメータ以外も適宣利用することができる。 The high voltage variable circuit 66 adjusts the voltage output from the high voltage variable circuit 66 to a predetermined AC voltage according to the control signal from the control unit 21 of the operation panel 14. The term "adjusting to a predetermined AC voltage" here means adjusting the voltage waveform of the AC voltage by, for example, adjusting the AC waveform, the AC cycle, and the AC amplitude. It should be noted that any parameter other than the above-mentioned parameters can be appropriately used as long as it is a parameter necessary for adjusting the voltage waveform.

また、ここでいう「交流波形の調整」とは、出力電圧の極性、及び電圧の大きさが周期的に変化する波形に調整することができればよく、例えば正弦波交流、方形波交流、及び三角波交流等の決められた波形種類から選択されることを含むものである。 Further, the term "adjustment of AC waveform" as used herein means that the polarity of the output voltage and the magnitude of the voltage can be adjusted to a waveform that changes periodically, for example, sinusoidal AC, square wave AC, and triangular wave. It includes selecting from a fixed waveform type such as alternating current.

高電圧可変回路66で調整される交流電圧は任意であるが、例えば、図7に示す、交流周期がT4、交流振幅がV3、正弦波交流として調整された電圧波形である。ここで交流振幅V3は、1周期内の所定期間に水粒子を帯電させることが可能な電圧が誘導電極部60と水側電極部62との間に印加できるのであれば任意の交流振幅V3としていいが、例えば水粒子を帯電させることが可能な電圧範囲である0.5kV~20kVの範囲から選択された電圧と同じ値とする。これにより-V3~+V3の範囲で電圧が変化するため、1周期の所定期間は水粒子を帯電させることが可能な電圧を印加することになる。また、交流周期T4は任意である。 The AC voltage adjusted by the high voltage variable circuit 66 is arbitrary, but is, for example, a voltage waveform adjusted as an AC cycle of T4, an AC amplitude of V3, and a sinusoidal AC shown in FIG. 7. Here, the AC amplitude V3 is an arbitrary AC amplitude V3 as long as a voltage capable of charging the water particles in a predetermined period within one cycle can be applied between the induction electrode portion 60 and the water side electrode portion 62. However, for example, the voltage is the same as the voltage selected from the range of 0.5 kV to 20 kV, which is the voltage range in which water particles can be charged. As a result, the voltage changes in the range of −V3 to + V3, so that a voltage capable of charging the water particles is applied for a predetermined period of one cycle. Further, the AC cycle T4 is arbitrary.

転極回路68は、操作盤14の制御部21からの制御信号に応じて、高電圧可変回路66で調整され出力された所定の交流電圧の極性を切り替えるか否かを決定し、誘導電極部60と水側電極部62との間に印加される交流電圧の極性を調整する。 The repolarization circuit 68 determines whether or not to switch the polarity of a predetermined AC voltage adjusted and output by the high voltage variable circuit 66 according to the control signal from the control unit 21 of the operation panel 14, and determines whether or not to switch the polarity of the predetermined AC voltage. The polarity of the AC voltage applied between the 60 and the water side electrode portion 62 is adjusted.

例えば、高電圧可変回路66で図7の電圧波形の交流電圧に調整され、転極回路68で極性の切り替えが行われない場合は、水側電極部62を基準電位(アース電位、0V)として誘導電極部60の電位が0~+V3の範囲で変化し、誘導電極部60と水側電極部62との間に印加される正の電圧(0~+V3)が変化する期間(t3-t4間)で噴霧される水粒子の負(マイナス)の帯電量が変化し、水側電極部62を基準電位(アース電位、0V)として誘導電極部60の電位が-V3~0の範囲で変化し、誘導電極部60と水側電極部62との間に印加される負の電圧(-V3~0)が変化する期間(t4-t5間)で噴霧される水粒子の正(プラス)の帯電量が変化する。 For example, when the high voltage variable circuit 66 is adjusted to the AC voltage of the voltage waveform of FIG. 7 and the polarity is not switched by the repolarization circuit 68, the water side electrode portion 62 is set as the reference potential (earth potential, 0V). The period (between t3-t4) in which the potential of the induction electrode unit 60 changes in the range of 0 to + V3 and the positive voltage (0 to + V3) applied between the induction electrode unit 60 and the water side electrode unit 62 changes. ) Changes the negative (minus) charge amount of the water particles sprayed, and the potential of the induction electrode portion 60 changes in the range of −V3 to 0 with the water side electrode portion 62 as the reference potential (earth potential, 0V). , Positive (plus) charge of water particles sprayed during the period (between t4-t5) where the negative voltage (-V3 to 0) applied between the induction electrode portion 60 and the water side electrode portion 62 changes. The amount changes.

一方、高電圧可変回路66で図7の電圧波形の脈流電圧に調整され、転極回路68で極性の切り替えが行われる場合は、水側電極部62を基準電位(アース電位、0V)として誘導電極部60の電位が-V3~0の範囲で変化し、誘導電極部60と水側電極部62との間に印加される負の電圧(-V3~0)が変化する期間(t3-t4間)で噴霧される水粒子の正(プラス)の帯電量が変化し、水側電極部62を基準電位(アース電位、0V)として誘導電極部60の電位が0~+V3の範囲で変化し、当該誘導電極部60の電位の変化に対応して誘導電極部60と水側電極部62との間に印加される正の電圧(0~+V3)が変化する期間(t4-t5間)で噴霧される水粒子の負(マイナス)の帯電量が変化する。 On the other hand, when the high voltage variable circuit 66 is adjusted to the pulsating voltage of the voltage waveform of FIG. 7 and the polarity is switched by the repolarization circuit 68, the water side electrode portion 62 is set as the reference potential (earth potential, 0V). The period (t3-) in which the potential of the induction electrode portion 60 changes in the range of −V3 to 0 and the negative voltage (−V3 to 0) applied between the induction electrode portion 60 and the water side electrode portion 62 changes. The positive (plus) charge amount of the water particles sprayed during t4) changes, and the potential of the induction electrode portion 60 changes in the range of 0 to + V3 with the water side electrode portion 62 as the reference potential (earth potential, 0V). Then, the period (between t4-t5) in which the positive voltage (0 to + V3) applied between the lead electrode portion 60 and the water side electrode portion 62 changes in response to the change in the potential of the lead electrode portion 60. The amount of negative charge of the water particles sprayed by is changed.

転極回路68で極性の切り替えを行った電圧波形は、転極回路で極性の切り替えを行う前の電圧波形を半周期遅らせた電圧波形に過ぎず、転極回路68での切り替え前後の波形が位相をずらすことで同等の波形となるため、転極回路68での極性の切り替えは行わないようにしてもよい。 The voltage waveform whose polarity is switched in the repolarization circuit 68 is only a voltage waveform in which the voltage waveform before the polarity switching in the repolarization circuit is delayed by half a cycle, and the waveform before and after the switching in the repolarization circuit 68 is Since the same waveform can be obtained by shifting the phase, it is possible not to switch the polarity in the repolarization circuit 68.

また直流電圧を印加する場合と同様に、操作盤14の制御部21から転極回路68への極性の切り替えのための制御信号の出力は、例えば操作盤14の操作表示部20を操作した場合等の手動操作による出力や、予め消火装置に設定された所定の周期に従った場合等の自動出力の両方が含まれ、転極回路68で極性の切り替えを行わずに、転極回路68が高電圧可変回路66に対して、反対の極性の交流電圧に調整させて出力させるように制御してもよい。 Further, as in the case of applying a DC voltage, the output of the control signal for switching the polarity from the control unit 21 of the operation panel 14 to the repolarization circuit 68 is, for example, when the operation display unit 20 of the operation panel 14 is operated. Both the output by manual operation such as, and the automatic output when following a predetermined cycle set in the fire extinguishing device in advance are included, and the pole turning circuit 68 does not switch the polarity in the turning pole circuit 68. The high voltage variable circuit 66 may be controlled so as to be adjusted to an AC voltage having the opposite polarity and output.

以上、印加電圧を、直流電圧、パルス電圧、脈流電圧、及び交流電圧とした場合について記載したが、印加する電圧の種類はこれらに限られない。 The above has described the case where the applied voltage is a DC voltage, a pulse voltage, a pulsating current voltage, and an AC voltage, but the type of the applied voltage is not limited to these.

また、パルス電圧、脈流電圧、及び交流電圧を印加する場合には、例えばファンクションジェネレータで生成された電圧波形(±数V程度)をkVオーダーに増幅可能な高電圧アンプにて増幅する方法により実現することができる。 When applying a pulse voltage, a pulsating current voltage, and an AC voltage, for example, by a method of amplifying a voltage waveform (about ± several V) generated by a function generator with a high voltage amplifier capable of amplifying in the order of kV. It can be realized.

[消火剤供給部]
図1に示した消火剤供給部16について、より詳細に説明する。消火剤供給部16は、噴霧気流放出部10に消火用水を供給するものであり、その構成や構造は任意であるが、一例として、本実施形態の消火装置がはしご消防車に搭載されることから、消火剤供給部16は消防車に設けられている消火ポンプを含む加圧送水装置または加圧送水設備で構成されるものである。この場合の水源としては、消防車に搭載された水タンクやホース接続される消火栓が含まれる。また、消火剤供給部16は操作盤14の放水開始又は放水停止の操作により動作して消火用水の供給と停止を行うものである。
[Fire extinguishing agent supply unit]
The fire extinguishing agent supply unit 16 shown in FIG. 1 will be described in more detail. The fire extinguishing agent supply unit 16 supplies fire extinguishing water to the spray air flow discharge unit 10, and the configuration and structure thereof are arbitrary, but as an example, the fire extinguishing device of the present embodiment is mounted on a ladder fire truck. Therefore, the fire extinguishing agent supply unit 16 is composed of a pressurized water supply device or a pressurized water supply facility including a fire extinguishing pump provided in the fire extinguishing vehicle. The water source in this case includes a water tank mounted on a fire engine and a fire hydrant connected to a hose. Further, the fire extinguishing agent supply unit 16 operates by operating the operation panel 14 to start or stop the water discharge to supply and stop the fire extinguishing water.

また、消火剤供給部16からの送水管22は、噴霧気流放出部10の接続部分で分岐され、帯電水粒子生成部30に設けられた複数の帯電微噴霧ヘッド32に接続されている。さらに、送水管22は、はしご消防車のはしご部分においては、はしごの長さに応じて伸縮する公知の伸縮配管構造を備えるものである。 Further, the water pipe 22 from the fire extinguishing agent supply unit 16 is branched at the connection portion of the spray airflow discharge unit 10 and is connected to a plurality of charged fine spray heads 32 provided in the charged water particle generation unit 30. Further, the water pipe 22 is provided with a known telescopic piping structure that expands and contracts according to the length of the ladder in the ladder portion of the ladder fire engine.

[操作盤]
図1に示した操作盤14について、より詳細に説明する。操作盤14は、操作員が本実施形態の消火装置を操作するものであり、操作内容は任意であるが、一例として、噴霧気流放出部10の起動停止操作、噴霧気流放出部10からの帯電微噴霧流12の放出方向の調整操作、高圧電源部18による印加する電圧の種類の選択、電圧調整や極性切替の操作などが含まれる。
[Operation board]
The operation panel 14 shown in FIG. 1 will be described in more detail. The operation panel 14 is for the operator to operate the fire extinguishing device of the present embodiment, and the operation content is arbitrary, but as an example, the start / stop operation of the spray airflow discharge unit 10 and the charge from the spray airflow discharge unit 10 are performed. The operation of adjusting the emission direction of the fine spray flow 12, selection of the type of voltage to be applied by the high-voltage power supply unit 18, operation of voltage adjustment and polarity switching, and the like are included.

操作盤14には、操作表示部20と制御部21が設けられる。操作表示部20は噴霧気流放出部10の遠隔操作に必要な各種の操作釦、操作レバー、ディスプレイ、表示灯等が設けられる。制御部21は操作表示部20による操作員の操作等に基づいて制御信号を出力し、噴霧気流放出部10を制御するものであり、その機能や構成は任意であるが、例えば、CPU、メモリ、各種の入出力ポートなどを備えたコンピュータ回路で構成されるものであり、CPUによるプログラムの実行により所定の制御機能が実現されるものである。 The operation panel 14 is provided with an operation display unit 20 and a control unit 21. The operation display unit 20 is provided with various operation buttons, operation levers, displays, indicator lights, etc. necessary for remote control of the spray airflow discharge unit 10. The control unit 21 outputs a control signal based on the operation of the operator by the operation display unit 20 and controls the spray air flow emission unit 10. The function and configuration thereof are arbitrary, but for example, a CPU and a memory. , It is composed of a computer circuit provided with various input / output ports and the like, and a predetermined control function is realized by executing a program by a CPU.

[消火装置を搭載したはしご消防車]
本実施形態の消火装置を搭載したはしご消防車による消火について、より詳細に説明する。図8は火災現場において本実施形態の消火装置を搭載したはしご消防車による消火作業の一例を示した説明図である。図8に示すように、はしご消防車76には、本実施形態の消火装置が搭載されており、一例として、伸縮自在なはしご78の先端のバスケット80に、図1に示した噴霧気流放出部10が設けられ、操作盤14、消火剤給水部16及び高圧電源部18は、はしご消防車76側に設けられている。
[Ladder fire engine equipped with fire extinguishing device]
The fire extinguishing by the ladder fire engine equipped with the fire extinguishing device of this embodiment will be described in more detail. FIG. 8 is an explanatory diagram showing an example of fire extinguishing work by a ladder fire engine equipped with the fire extinguishing device of the present embodiment at a fire site. As shown in FIG. 8, the ladder fire engine 76 is equipped with the fire extinguishing device of the present embodiment. The operation panel 14, the fire extinguishing agent water supply unit 16, and the high-pressure power supply unit 18 are provided on the ladder fire engine 76 side.

例えば、建物82の3階で火災が発生したとすると、火災現場に到着したはしご消防車76は、バスケット80に設けられた噴霧気流放出部10を建物の窓などの外壁開口に寄せ付けるようにはしご78を伸ばす。続いて、操作盤14の操作により放出起動操作を行うことで、消火剤給水部16から噴霧気流放出部10へ消火用水が供給されるとともに、高圧電源部18から噴霧気流放出部10へ高電圧が印加され、更に、操作盤14からの制御信号により送風部28が起動される。これによって送風部28からの空気流の中に帯電微噴霧ヘッド32から噴霧された帯電水粒子が含有された帯電微噴霧気流12が火災区画82に向けて放出されることになる。 For example, if a fire breaks out on the third floor of the building 82, the ladder fire engine 76 arriving at the fire site will bring the spray airflow discharge unit 10 provided in the basket 80 closer to the outer wall opening such as the window of the building. Extend the ladder 78. Subsequently, by operating the discharge start operation by operating the operation panel 14, fire extinguishing water is supplied from the fire extinguishing agent water supply unit 16 to the spray airflow discharge unit 10, and a high voltage is supplied from the high voltage power supply unit 18 to the spray airflow discharge unit 10. Is applied, and further, the blower unit 28 is activated by the control signal from the operation panel 14. As a result, the charged fine spray airflow 12 containing the charged water particles sprayed from the charged fine spray head 32 in the air flow from the blower unit 28 is discharged toward the fire compartment 82.

このとき操作員は、操作盤14の遠隔操作により、帯電微噴霧気流12の方向を上下及び又は左右に調整して火災区画84に向けて帯電微噴霧気流12を投入する。また、操作員は、帯電微噴霧気流12の投入による消火や消煙の状況に基づき、高圧電源部18による印加電圧の調整や電圧極性の切替えを行い、火災現場での消火や消煙に適した帯電量や帯電極性の水粒子を含有した帯電微噴霧気流12を火災区画84へ投入して消火や防火を行うことになる。 At this time, the operator adjusts the direction of the charged fine spray airflow 12 up and down and or left and right by remote control of the operation panel 14, and inputs the charged fine spray airflow 12 toward the fire section 84. In addition, the operator adjusts the applied voltage and switches the voltage polarity by the high-voltage power supply unit 18 based on the situation of fire extinguishing and smoke extinguishing by turning on the charged fine spray airflow 12, and is suitable for fire extinguishing and smoke extinguishing at the fire site. A charged fine spray airflow 12 containing water particles having a charged amount and a charging polarity is introduced into the fire section 84 to extinguish or prevent a fire.

[本発明の変形例]
(消防車)
上記の実施形態は、はしご消防車に消火装置を搭載した場合を例にとっているが、建物の高所となる火災区画に対し外側から噴霧気流放出部10を寄り付けることが可能な消防車であれば、適宜の消防車に搭載することを妨げない。例えば、高所作業消防車であれば高所作業台に噴霧気流放出部10を設け、また、ブーム付消防車であればブーム先端に噴霧気流放出部10を設ければよい。更に、無限軌道自走車に噴霧気流放出部10を搭載し、遠隔操作により人の近づくことのできない火災区画に移動して帯電微噴霧気流を投入するようにしてもよい。
[Modified example of the present invention]
(Fire engine)
The above embodiment takes the case where a fire extinguishing device is mounted on a ladder fire engine, but any fire engine capable of approaching the spray airflow discharge unit 10 from the outside to a fire section which is a high place of a building. If so, it does not prevent it from being installed in an appropriate fire engine. For example, in the case of an aerial work platform, the spray airflow discharge unit 10 may be provided on the aerial work platform, and in the case of a fire engine with a boom, the spray airflow discharge unit 10 may be provided at the tip of the boom. Further, the spray airflow discharging unit 10 may be mounted on the track self-propelled vehicle, and may be moved to a fire section inaccessible to humans by remote control to inject the charged fine spray airflow.

(高電圧供給部)
上記の実施形態にあっては、高圧電源部18から誘導電極部60と水側電極部62との間に電圧を印加する場合に、電圧調整及び極性切替えを可能としているが、これに限定されず、任意であり、例えば、印加電圧及び又は極性を固定してもよい。
(High voltage supply unit)
In the above embodiment, when a voltage is applied from the high voltage power supply unit 18 to the induction electrode unit 60 and the water side electrode unit 62, voltage adjustment and polarity switching are possible, but the present invention is limited to this. However, it is optional, and for example, the applied voltage and / or the polarity may be fixed.

(その他)
また本発明は上記の実施形態に限定されず、その目的と利点を損なうことのない適宜の変形を含み、更に上記の実施形態に示した数値による限定はうけない。
(others)
Further, the present invention is not limited to the above-described embodiment, includes appropriate modifications that do not impair its purpose and advantages, and is not further limited by the numerical values shown in the above-described embodiment.

10:噴霧気流放出部
12:帯電微噴霧気流
14:操作盤
16:消火剤供給部
18:高圧電源部
20:操作表示部
21:制御部
22:送水管
24:高圧ケーブル
26:信号ケーブル
28:送風部
30:帯電水粒子生成部
31:支持リング
32:帯電微噴霧ヘッド
34:軸流ファン
36:ファンモータ
38:防護カバー
40:架台
42:回動支持部
44:左右方向調整部
46:左右回転軸
48:上下方向調整部
50:上下回転軸
52:重心
54:ボディー
56:噴射ノズル部
58:電極保持部
60:誘導電極部
62:水側電極部
64:給水接続部
66:高電圧可変回路
68:転極回路
72,74:電流制限抵抗
76:はしご消防車
78:はしご
80:バスケット
84:火災区画
10: Spray air flow discharge unit 12: Charged fine spray air flow 14: Operation panel 16: Fire extinguishing agent supply unit 18: High-voltage power supply unit 20: Operation display unit 21: Control unit 22: Water supply pipe 24: High-voltage cable 26: Signal cable 28: Blower 30: Charged water particle generation unit 31: Support ring 32: Charged fine spray head 34: Axial flow fan 36: Fan motor 38: Protective cover 40: Stand 42: Rotating support unit 44: Left / right direction adjustment unit 46: Left / right Rotating shaft 48: Vertical adjustment part 50: Vertical rotating shaft 52: Center of gravity 54: Body 56: Injection nozzle part 58: Electrode holding part 60: Induction electrode part 62: Water side electrode part 64: Water supply connection part 66: High voltage variable Circuit 68: Polarization circuit 72, 74: Current limiting resistance 76: Ladder fire truck 78: Ladder 80: Basket 84: Fire compartment

Claims (8)

空気流の中に帯電水粒子が含有された帯電微噴霧気流を、消火対象又は防火対象へ向けて放出することを特徴とする消火装置。
A fire extinguishing device characterized by discharging a charged fine spray air flow containing charged water particles in an air flow toward a fire extinguishing target or a fire prevention target.
空気流の中に帯電水粒子が含有された帯電微噴霧気流を、消火対象又は防火対象へ向けて放出する噴霧気流放出部と、
前記噴霧気流放出部に消火用水を供給する消火剤供給部と、
前記噴霧気流放出部に帯電水粒子を生成するための高電圧を供給する高圧電源部と、
前記噴霧気流放出部による前記帯電微噴霧気流の放出方向を調整する放出方向調整部と、
が設けられたことを特徴とする消火装置。
A spray airflow discharging unit that discharges a charged fine spray airflow containing charged water particles in the airflow toward a fire extinguishing target or a fire prevention target.
A fire extinguishing agent supply unit that supplies fire extinguishing water to the spray airflow discharge unit,
A high-voltage power supply unit that supplies a high voltage for generating charged water particles to the spray airflow discharge unit, and
A discharge direction adjusting unit for adjusting the discharge direction of the charged fine spray airflow by the spray airflow discharge unit, and a discharge direction adjusting unit.
A fire extinguishing device characterized by being provided with.
請求項2記載の消火装置に於いて、
前記噴霧気流放出部は、
前記空気流を発生する送風部と、
前記送風部により発生した前記空気流の中に前記帯電水粒子を噴霧して含有させる帯電微噴霧ヘッドと、
を備えたことを特徴とする消火装置。
In the fire extinguishing device according to claim 2,
The spray airflow emitting part is
The blower that generates the air flow and
A charged fine spray head that sprays and contains the charged water particles in the air flow generated by the blower.
A fire extinguishing device characterized by being equipped with.
請求項3記載の消火装置に於いて、
前記高圧電源部は、
前記消火対象又は前記防火対象に対応して、前記帯電微噴霧ヘッドに印加する電圧を調整する電圧調整部と、
前記消火対象又は前記防火対象に対応して、前記帯電微噴霧ヘッドに印加する電圧極性を切り替える極性切替部と、
を備えたことを特徴とする消火装置。
In the fire extinguishing device according to claim 3,
The high voltage power supply unit
A voltage adjusting unit that adjusts the voltage applied to the charged fine spray head in response to the fire extinguishing target or the fire prevention target.
A polarity switching unit that switches the polarity of the voltage applied to the charged fine spray head according to the fire extinguishing target or the fire prevention target.
A fire extinguishing device characterized by being equipped with.
請求項2乃至4何れかに記載の消火装置に於いて、
前記放出方向調整部は、
前記帯電微噴霧気流の放出方向を上下方向で調整する上下方向調整部と、
前記帯電微噴霧気流の放出方向を左右方向で調整する左右方向調整部と、
を備え、
前記上下方向調整部の回転軸及び前記左右方向調整部の回転軸は、前記噴霧気流放出部の重心位置より先端側の所定位置に配置されたことを特徴とする消火装置。
In the fire extinguishing device according to any one of claims 2 to 4.
The emission direction adjusting unit is
A vertical adjustment unit that adjusts the discharge direction of the charged fine spray airflow in the vertical direction,
A left-right direction adjusting unit that adjusts the discharge direction of the charged fine spray airflow in the left-right direction,
Equipped with
A fire extinguishing device characterized in that the rotation axis of the vertical direction adjustment section and the rotation axis of the left-right direction adjustment section are arranged at predetermined positions on the tip side of the center of gravity position of the spray air flow release section.
請求項1乃至5何れかに記載の消火装置に於いて、
前記噴霧気流放出部は、はしご消防車のはしご先端、高所作業消防車の高所作業台、又は、ブーム付消防車のブーム先端に設けられたことを特徴とする消火装置。
In the fire extinguishing device according to any one of claims 1 to 5.
The spray airflow discharging unit is a fire extinguishing device provided at the tip of a ladder of a ladder fire engine, an aerial work platform of an aerial work platform, or the boom tip of a fire engine with a boom.
消火装置により、空気流の中に帯電水粒子が含有された帯電微噴霧気流を、消火対象又は防火対象へ向けて放出することを特徴とする消火方法。
A fire extinguishing method comprising a fire extinguishing device for discharging a charged microspray airflow containing charged water particles in an air flow toward a fire extinguishing target or a fire prevention target.
噴霧気流放出部により、空気流の中に帯電水粒子が含有された帯電微噴霧気流を、消火対象又は防火対象へ向けて放出し、
消火剤供給部により、前記噴霧気流放出部に消火用水を供給し、
高圧電源部により、前記噴霧気流放出部に帯電水粒子を生成するための高電圧を供給し、
放出方向調整部により、前記噴霧気流放出部による前記帯電微噴霧気流の放出方向を調整する、
ことを特徴とする消火方法。
The spray airflow discharge unit discharges a charged fine spray airflow containing charged water particles in the airflow toward a fire extinguishing target or a fire prevention target.
The fire extinguishing agent supply unit supplies fire extinguishing water to the spray airflow discharge unit.
The high-voltage power supply unit supplies a high voltage for generating charged water particles to the spray airflow discharge unit.
The discharge direction adjusting unit adjusts the discharge direction of the charged fine spray airflow by the spray airflow discharge unit.
A fire extinguishing method characterized by that.
JP2021036954A 2020-12-18 2021-03-09 Fire extinguisher and fire extinguishing method Pending JP2022097342A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020209932 2020-12-18
JP2020209932 2020-12-18

Publications (1)

Publication Number Publication Date
JP2022097342A true JP2022097342A (en) 2022-06-30

Family

ID=82165062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021036954A Pending JP2022097342A (en) 2020-12-18 2021-03-09 Fire extinguisher and fire extinguishing method

Country Status (1)

Country Link
JP (1) JP2022097342A (en)

Similar Documents

Publication Publication Date Title
KR101263071B1 (en) Nozzle head device for firefighting
CN103845835B (en) A kind of multifunctional fire-fighting gun and application thereof
JP4989419B2 (en) Fire disaster prevention equipment and spraying method
CN203954511U (en) A kind of firefighting fire extinguishing robot
CN206566399U (en) Self-extinguishing machine people
KR101936200B1 (en) Fire fighting system for building
US8505641B2 (en) Electrification spray head
JP2022097342A (en) Fire extinguisher and fire extinguishing method
CN207071182U (en) A kind of extinguishing device with monitoring function
JPH08266676A (en) Combined fire-extinguisher spray nozzle
CN201431726Y (en) Dedicated suspension type automatic super fine powder fire extinguishing equipment for cable channel
CN207734507U (en) Extinguishing device
CN203736762U (en) Multi-agent combined type fire monitor
CN213347579U (en) All-round autogiration's multi-functional automatic shower nozzle is used in fire control
CN202682608U (en) Suspension type automatic dry powder extinguisher
CN113101565A (en) Intelligent fire extinguishing system for automobile fire of charging station
JPH0972695A (en) Injecting apparatus
JP2004067324A (en) Fire engine
JP2023033790A (en) Electrified water particle spraying system and electrified water particle spraying method
RU2407571C1 (en) Dry chemical fire fighting unit
JP2023033787A (en) Charged water particle spray system
JP2023033793A (en) Charged water particle spray system
JPH119715A (en) Telescopic boom type fire engine
TWI397434B (en) Fire disaster prevention equipment
TWI383815B (en) Fire and disaster prevention equipment, spraying methods, spray air-conditioning equipment and spray methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240216