JP2022097312A - Water collection type hydroelectric power generation device using stepwise decompression type water channel - Google Patents

Water collection type hydroelectric power generation device using stepwise decompression type water channel Download PDF

Info

Publication number
JP2022097312A
JP2022097312A JP2020210838A JP2020210838A JP2022097312A JP 2022097312 A JP2022097312 A JP 2022097312A JP 2020210838 A JP2020210838 A JP 2020210838A JP 2020210838 A JP2020210838 A JP 2020210838A JP 2022097312 A JP2022097312 A JP 2022097312A
Authority
JP
Japan
Prior art keywords
wall
water
hydroelectric power
power generation
water channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020210838A
Other languages
Japanese (ja)
Other versions
JP6840451B1 (en
Inventor
義英 土橋
Yoshihide Dobashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2020210838A priority Critical patent/JP6840451B1/en
Application granted granted Critical
Publication of JP6840451B1 publication Critical patent/JP6840451B1/en
Priority to PCT/JP2021/045021 priority patent/WO2022131088A1/en
Publication of JP2022097312A publication Critical patent/JP2022097312A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • E02B9/02Water-ways
    • E02B9/04Free-flow canals or flumes; Intakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • F03B11/02Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B7/00Water wheels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Abstract

To provide a water collection type hydroelectric power generation device in which a new wall is provided outside a wall of a hydroelectric power generation device for collecting fluid using the wall to make a water channel, and pressure applied to the wall of the hydroelectric power generation device is stepwisely lowered with respect to fluid flowing outside using the pressure of water flowing in the water channel, so that the strength of the wall can be reduced.SOLUTION: A water channel is made using a wall in the flow of fluid; a turbine of a hydroelectric power generator is provided at a point where a cross-sectional area is gradually reduced from a water intake of the water channel; also, although a new wall is provided outside the wall of the water channel for hydroelectric power generation to make a water channel, the cross-sectional area of the water channel is gradually reduced from the water intake; and the water channel is designed to have pressure lower than the pressure of the fluid in the water channel flowing to the hydroelectric power generator and higher than the pressure of the fluid flowing outside the new wall, in each site.SELECTED DRAWING: Figure 1

Description

本発明は、壁を用いて流体を集める集水型水力発電装置において、その外側に新たな壁を設けることで、壁に掛かる圧力の低減を目的とした段階減圧式水路型集水型水力発電装置に関するものである。 The present invention is a water collecting type hydroelectric power generation device that collects fluid using a wall. By providing a new wall on the outside thereof, the present invention aims to reduce the pressure applied to the wall. It is about the device.

従来の集水型水力発電装置において、流体の圧力に抗するためケーブルを用いる技術があったが、ケーブルの接続点に力が集中するため、局所的に非常な強度が要求されるものであった。 In the conventional water collecting type hydroelectric power generation device, there was a technique of using a cable to resist the pressure of the fluid, but since the force is concentrated at the connection point of the cable, very strong strength is locally required. rice field.

特許第6143315号Patent No. 6143315 特許第6172830号Patent No. 6172830 特許第6257120号Patent No. 6257120 特許第6366155号Patent No. 6366155 特許第6393893号Patent No. 6393893 特許第6418623号Patent No. 6418623 特許第6478362号Patent No. 6478362 特許第6578552号Patent No. 6578552 特願2020-180048Japanese Patent Application No. 2020-180048 特願2020-180968Japanese Patent Application No. 2020-180968 特開2014-234759JP-A-2014-234759 特開2011-74921JP-A-2011-79421

本発明は、流体の流れの中で壁を用い、流体を集める集水型水力発電装置において、その壁の外側に新たな壁を設け水路を作り、その水路を用い水力発電装置の壁に掛かる圧力を、外側を流れる流体に対して段階的に下げることで、壁の強度を低くする手段を提供するものである。 In the present invention, in a water collecting type hydroelectric power generation device that collects fluid by using a wall in the flow of fluid, a new wall is provided on the outside of the wall to create a water channel, and the water channel is used to hang on the wall of the hydroelectric power generation device. It provides a means of reducing the strength of the wall by gradually reducing the pressure against the fluid flowing outside.

上記目的を達成するために、段階減圧式水路型集水型水力発電装置において、請求項1に係るものは、流体の流れの中に壁を用いて水路を作り、その水路において、取水口より断面積を徐々に小さくし、且つ、その先に水力発電機の水車を設ける。発電機本体はその水路の中にあってもよいし、なくてもよい。そして、水力発電用の水路の壁の外側に新たな壁を設けて水路を作る。ただし、その水路も取水口より断面積を徐々に小さくし、且つ、その水路は各部分で、水力発電機へ流れる水路の流体の圧力より低くなるようにし、また、新たな壁の外側を流れる流体の圧力より高くなるように設けられたものである。 In order to achieve the above object, in the step decompression type water channel type hydroelectric power generator according to claim 1, a water channel is created by using a wall in the flow of fluid, and in the water channel, from the intake port. The cross-sectional area is gradually reduced, and a hydroelectric turbine is installed ahead of it. The generator body may or may not be in the channel. Then, a new wall is provided on the outside of the wall of the waterway for hydroelectric power generation to create a waterway. However, the canal also has a gradual reduction in cross-sectional area from the intake, and the canal is made to be lower than the pressure of the fluid in the canal flowing to the hydroelectric generator at each part, and also flows outside the new wall. It is provided so as to be higher than the pressure of the fluid.

請求項2に係るものは、請求項1に係るものにおいて、四角形状の取水口の対面する2辺より取水口前方に向けて、三角柱をなすように網の面を張る。また、網の面にはそれぞれ、流体の流入量を調整する開閉幕を複数以上設け、三角柱の2つの底面に防水幕を設けたものである。 According to the second aspect, in the first aspect, a net surface is stretched so as to form a triangular prism from the two facing sides of the square intake port toward the front of the intake port. Further, each of the surfaces of the net is provided with a plurality of opening / closing curtains for adjusting the inflow amount of fluid, and waterproof curtains are provided on the two bottom surfaces of the triangular prism.

本発明は、以上説明したように構成されており、以下に記載されるような効果を有する。 請求項1に係る仕組みを用いた場合、流体の流れの中に壁を用いて水路を作り、その水路において、取水口より断面積を徐々に小さくした先の部分に水力発電機の水車を設けることで、集水型水力発電装置が構成される。発電機本体はその水路の中にあってもよいし、水車からの動力を伝えることで、別の場所で発電してもよい。次に水力発電用の水路の壁の外側に新たな壁を設けることで、水力発電用の水路の壁と新たな壁の間に流体が流れる水路を作る。ただし、その水路も取水口より断面積を徐々に小さくすることで、圧力が高まるようにする。さらにその水路は各部分で、水力発電機へ流れる水路の流体の圧力より低くなるようにし、また、新たな壁の外側を流れる流体の圧力より高くなるように設ける。「その水路は各部分で」と述べたのは、集水型水力発電装置の水路はハの字のように取水口が広く、発電機手前は狭くなり、水流の圧力は取水口から発電機に向けて徐々に高くなってゆくので、それに応じて、新たな壁と発電装置用の壁との間の水路に流れる水流も徐々に絞り込み、水流の圧力を上げて行くようにしなければならない。こうすることによって、集水型水力発電装置の壁に掛かる圧力の何割かを外側の水路に流れる流体の圧力で支えることになり、集水型水力発電装置の壁の耐圧性能を下げることができる。またケーブルで局所的に支える場合と異なり、全体的に支えるので装置を大型化しやすい。 The present invention is configured as described above and has the effects described below. When the mechanism according to claim 1 is used, a water channel is created by using a wall in the flow of fluid, and a water turbine of a hydroelectric generator is provided in the water channel at a portion where the cross-sectional area is gradually reduced from the intake port. As a result, a catchment type hydroelectric power generation device is configured. The main body of the generator may be in the water channel, or may generate power in another place by transmitting the power from the water turbine. Next, by providing a new wall on the outside of the wall of the hydroelectric channel, a channel through which fluid flows is created between the wall of the hydroelectric channel and the new wall. However, the pressure of the channel is increased by gradually reducing the cross-sectional area from the intake. Further, the channel is provided at each portion so as to be lower than the pressure of the fluid flowing to the hydroelectric generator and higher than the pressure of the fluid flowing outside the new wall. "The waterway is in each part," he said, because the waterway of the catchment type hydroelectric power generator has a wide intake like a C, the front of the generator is narrow, and the pressure of the water flow is from the intake to the generator. As it gradually rises toward, the water flow flowing in the water channel between the new wall and the wall for the power generator must be gradually narrowed down to increase the pressure of the water flow. By doing so, some percentage of the pressure applied to the wall of the water collecting type hydroelectric power generation device is supported by the pressure of the fluid flowing in the outer water channel, and the pressure resistance performance of the wall of the water collecting type hydroelectric power generation device can be lowered. .. Also, unlike the case where it is supported locally with a cable, it is easy to increase the size of the device because it is supported as a whole.

壁は直線状でも曲線状でもかまわない。また、外側の壁は複数以上設けても構わないが、複数以上の壁によって作られた各水路の水圧は、集水型水力発電装置の中心線から直交方向の断面で見た場合、集水型水力発電装置側から外側の水路に移るにしたがって段階的に低くなるようにする。 The wall can be straight or curved. In addition, although a plurality of outer walls may be provided, the water pressure of each water channel created by the plurality of walls is the water collection when viewed in a cross section in the direction orthogonal to the center line of the water collection type hydroelectric power generation device. It should be gradually lowered as it moves from the type hydroelectric power generation device side to the outer channel.

請求項2に係る仕組みを用いた場合、請求項1に係る仕組みを用いた場合に加え、四角形状の取水口の対面する2辺より取水口前方に向けて、三角柱をなすように網の面を張る。また、網の面にはそれぞれ、流体の流入量を調整する開閉幕を複数以上設け、三角柱の2つの底面に防水幕を設ける。こうすることで流体の流入方向に対して鋭角の網面が設けられ、流体中の異物を受け流すことができる。流体の流入量を調整する開閉幕を複数以上設ける理由は、段階減圧式水路型集水型水力発電装置の設置時やメンテナンス時など、取水を止めたいときに、各水路に流れる水圧のバランスを極力保つための措置である。集水型水力発電装置の壁に掛かる圧力の何割かを外側の水路に流れる流体の圧力で支えているので、外側の水路に流れる流体の圧力が相対的に低くなりすぎると集水型水力発電装置の壁が壊れてしまう。三角柱の底面は上下方向でも左右方向でも、どちら側に形成してもよい。 When the mechanism according to claim 2 is used, in addition to the case where the mechanism according to claim 1 is used, the surface of the net so as to form a triangular prism from the two facing sides of the square intake port toward the front of the intake port. Put up. Further, a plurality of opening / closing curtains for adjusting the inflow amount of fluid are provided on each surface of the net, and waterproof curtains are provided on the two bottom surfaces of the triangular prism. By doing so, a mesh surface having an acute angle with respect to the inflow direction of the fluid is provided, and foreign matter in the fluid can be discharged. The reason for providing more than one opening / closing curtain to adjust the inflow of fluid is to balance the water pressure flowing in each channel when you want to stop water intake, such as when installing or maintaining a step-down decompression channel type hydroelectric power generator. This is a measure to keep it as much as possible. Since some percentage of the pressure applied to the wall of the water collecting type hydroelectric power generation device is supported by the pressure of the fluid flowing in the outer waterway, if the pressure of the fluid flowing in the outer waterway becomes too low, the water collecting type hydroelectric power generation The wall of the device breaks. The bottom surface of the triangular prism may be formed in either the vertical direction or the horizontal direction, or on either side.

各壁に比較的強度の弱い箇所を設け、圧力異常が起きた際に破損する箇所を限定し、装置全体が倒壊しないようにするのもよい。また、各方形壁内に圧力センサーと流量調整装置を設置し、各方形壁内の圧力をコントロールできるようにしてもよい。 It is also good to provide a relatively weak part on each wall to limit the part that is damaged when a pressure abnormality occurs so that the entire device does not collapse. Further, a pressure sensor and a flow rate adjusting device may be installed in each square wall so that the pressure in each square wall can be controlled.

発明を実施するための形態を示す上面図である。It is a top view which shows the embodiment for carrying out an invention. 実施例1を示す斜視図である。It is a perspective view which shows Example 1. FIG. 実施例2を示す斜視図である。It is a perspective view which shows Example 2. FIG. 実施例2を示す斜視図である。It is a perspective view which shows Example 2. FIG. 実施例3を示す横面図である。It is a horizontal view which shows Example 3. FIG. 実施例4を示す断面図である。It is sectional drawing which shows Example 4. FIG. 実施例5を示す断面図である。It is sectional drawing which shows Example 5. FIG. 実施例6を示す斜視図である。It is a perspective view which shows Example 6. 実施例7を示す横面図である。It is a horizontal view which shows Example 7. FIG. 実施例8を示す断面図である。It is sectional drawing which shows Example 8. FIG. 実施例9を示す横面図である。It is a horizontal view which shows Example 9. FIG. 実施例10を示す斜視図である。It is a perspective view which shows Example 10. 実施例10を示す斜視図である。It is a perspective view which shows Example 10.

左右の水力発電用の壁の中心線方向を内側、または内方向、そして、中心線の反対側を外側、または外方向と呼称する。水力発電用の壁の外側に設けられた壁を段階減圧水路の壁と呼称する。 The direction of the center line of the left and right hydroelectric walls is referred to as the inside or inside direction, and the opposite side of the center line is referred to as the outside or outside direction. The wall provided on the outside of the wall for hydroelectric power generation is called the wall of the step decompression channel.

本発明を実施するための形態を図1に基づいて説明する。流体の流れの中に水力発電用の壁(1)が2つ設けられ水路を形成している。左右の水力発電用の壁(1)の間に水力発電機(4)が備えられている。左右の水力発電用の壁(1)の間隔は水流の流入口側で広く、水力発電機(4)の方向に向かうにつれて狭くなっている。左右の水力発電用の壁(1)の外側には、それぞれ、段階減圧水路の壁(2)が設けられており、水力発電用の壁(1)と段階減圧水路の壁(2)の間にも流体が流れることが可能であり、これを段階減圧水路(3)と呼称する。段階減圧水路(3)は取水口が広く、排水口は狭くなっているので、排水口に向かうにしたがって水圧が高くなる。ただしその水圧は、水路の各所において、水力発電用の壁で形成される水路内の水圧より低く、且つ、段階減圧水路の壁(2)の外側を流れる流体の水圧より高くなるようにする。各水路の高い圧力が部分は、水底が削られないようにモルタルで固めたり、シート敷くなどの対処が必要になる。 A mode for carrying out the present invention will be described with reference to FIG. Two walls (1) for hydroelectric power generation are provided in the flow of fluid to form a water channel. A hydroelectric generator (4) is provided between the left and right hydroelectric power generation walls (1). The distance between the left and right hydroelectric wall (1) is wide on the inlet side of the water flow, and narrows toward the hydroelectric generator (4). On the outside of the left and right hydroelectric power generation walls (1), a step decompression channel wall (2) is provided, respectively, between the hydroelectric power generation wall (1) and the step decompression channel wall (2). It is also possible for fluid to flow, which is called the step decompression channel (3). Since the intake port of the step decompression channel (3) is wide and the drain port is narrow, the water pressure increases toward the drain port. However, the water pressure should be lower than the water pressure in the water channel formed by the wall for hydroelectric power generation and higher than the water pressure of the fluid flowing outside the wall (2) of the step decompression water channel in various parts of the water channel. For the high pressure part of each channel, it is necessary to take measures such as hardening with mortar or laying a sheet so that the bottom of the water is not scraped.

図2は実施例1を示す斜視図である。段階減圧式水路の壁を上下方向にも備えたもので、上下左右の壁が四角形をなしていることから方形壁と呼称する。水力発電用の方形壁(5)の外側に第一減圧水路の方形壁(6)を設け、第一減圧水路の方形壁(6)の外側に、第二減圧水路の方形壁(7)を設けている。各方形壁は等脚台形四角柱の上底に四角柱を取り付けたような形状をしている。ただし、水力発電用の方形壁(5)は、第一減圧水路の方形壁(6)の排水口から突き出ており、さらに排水口側にも等脚台形四角柱が取り付けられたような形状になっている。そして、各方形壁は中空構造であり、内部に流体を流すことができる。まず、このような立体的な構造にすることで、水流で水底を削られなくなるというメリットが生じる。また、水面下に設置できるため、台風などの強風対策をする必要がなくなる。円形でもよいがこの装置で実用的な発電をするためには、取水口の高さや幅を数十m以上にする必要があると思われるので、直線状の構造にした方が、コストが低く抑えられる。鉄骨に幕を張るといった手法を取れば、工期も短くなり、重量も軽くなる。各方形壁は隙間を一定に保つため、支柱などによって固定しなければならない。集水部の形状は長方形にしてもよい。 FIG. 2 is a perspective view showing the first embodiment. The wall of the stepped decompression type canal is also provided in the vertical direction, and it is called a square wall because the upper, lower, left and right walls form a quadrangle. A square wall (6) of the first decompression channel is provided outside the square wall (5) for hydroelectric power generation, and a square wall (7) of the second decompression channel is provided outside the square wall (6) of the first decompression channel. It is provided. Each square wall is shaped like an isosceles trapezoidal prism with a prism attached to the upper base. However, the square wall (5) for hydroelectric power generation protrudes from the drainage port of the square wall (6) of the first decompression channel, and is shaped like an isosceles trapezoidal square pillar is also attached to the drainage port side. It has become. Each square wall has a hollow structure and allows fluid to flow inside. First, by making such a three-dimensional structure, there is an advantage that the bottom of the water cannot be scraped by the water flow. In addition, since it can be installed under the surface of the water, it is not necessary to take measures against strong winds such as typhoons. It may be circular, but in order to generate practical power with this device, it seems necessary to make the height and width of the intake port several tens of meters or more, so a linear structure is cheaper. It can be suppressed. If you take a method such as putting a curtain on the steel frame, the construction period will be shorter and the weight will be lighter. Each square wall must be fixed with stanchions to keep the gap constant. The shape of the water collecting portion may be rectangular.

第一減圧水路の方形壁(6)と第二減圧水路の方形壁(7)の排水口側が、水力発電用の方形壁(5)より短くなっているのは、水力発電用の方形壁(5)内部に設置された水力発電機の水車の位置に準じている。流体は流速や水圧といったエネルギーで水力発電機の水車を回して発電するのだが、水車通過後のエネルギーを失った流体は流速や圧力が低くなるので、減圧水路による補助はそれほど必要なくなる。また、水力発電用の方形壁(5)の排水口側にも等脚台形四角柱が取り付けられたような形状になっているのは、排水口から出る流体の速度を、装置の外を流れる流体の速度以下にするためである。もし、排水口から出る流体の速度が速すぎると、装置の外を流れる流体が壁のように働き、流れが悪くなり、水力発電用の方形壁(5)の取水口からの流体の流入量が少なくなる。水力発電機の発電効率が高いほど、排水口の大きさは小さくてよい。効率の悪い水力発電機を使用する場合、水流から十分エネルギーを取り出せず、水力発電用の方形壁(5)内部の圧力もそれなりに高いので、必要に応じて第一減圧水路の方形壁(6)や第二減圧水路の方形壁(7)の排水口の位置を調整する。 The drainage port side of the square wall (6) of the first decompression water channel and the square wall (7) of the second decompression water channel is shorter than the square wall (5) for hydroelectric power generation. 5) It conforms to the position of the water turbine of the hydroelectric generator installed inside. The fluid generates energy by turning the water wheel of the hydraulic generator with energy such as flow velocity and water pressure, but the fluid that has lost the energy after passing through the water wheel has a low flow velocity and pressure, so assistance by the decompression water channel is not so necessary. In addition, the shape of the square wall (5) for hydroelectric power generation, which is shaped like an isosceles trapezoidal prism attached to the drainage port side, allows the speed of the fluid flowing out of the drainage port to flow outside the device. This is to keep it below the speed of the fluid. If the speed of the fluid coming out of the drain is too fast, the fluid flowing outside the device will act like a wall and the flow will be impaired, and the amount of fluid flowing in from the intake of the square wall (5) for hydroelectric power generation. Is reduced. The higher the power generation efficiency of the hydroelectric generator, the smaller the size of the drainage port may be. When using an inefficient hydroelectric generator, sufficient energy cannot be extracted from the water flow, and the pressure inside the square wall (5) for hydroelectric power generation is also high, so if necessary, the square wall of the first decompression channel (6). ) And the position of the drain port of the square wall (7) of the second decompression channel.

図3、図4は実施例2を示す斜視図である。図2の取水口の前方に、三角柱をなすように流量を調整する装置を設けたものである。三角柱の側面の一つは第二減圧水路の方形壁(7)の取水口に接続され、他の二つの側面は網(8)で覆われ、流量調整装置の巻き軸(10)がそれぞれ二つずつ取り付けられている。また、上下の面は異物流入防止カバー(9)で覆われている。図14は流量調整装置の幕(11)の展開中を示している。先端を鋭角にすることで網に異物が張り付くのを防ぎ、また、流量調整装置の幕(11)を展開した時に掛かる流体の圧力を受け流す。 3 and 4 are perspective views showing the second embodiment. In front of the water intake of FIG. 2, a device for adjusting the flow rate so as to form a triangular prism is provided. One of the sides of the triangular prism is connected to the intake of the square wall (7) of the second decompression channel, the other two sides are covered with a net (8), and the winding shaft (10) of the flow regulator is two each. They are installed one by one. Further, the upper and lower surfaces are covered with a foreign matter inflow prevention cover (9). FIG. 14 shows the development of the curtain (11) of the flow rate adjusting device. The sharp tip prevents foreign matter from sticking to the net, and also dissipates the pressure of the fluid applied when the curtain (11) of the flow rate adjusting device is unfolded.

図5は実施例3を示す横面図である。実施例2を海底(13)に設置した図である。装置各所は支柱(12)で支えられ、装置全体は海面(14)より下に設置されている。この装置は海底に沈めることを想定している。海に設置する場合は、干潮時においても海面より上に出ないことが望ましい。 FIG. 5 is a horizontal view showing the third embodiment. It is a figure which installed Example 2 on the seabed (13). Each part of the device is supported by stanchions (12), and the entire device is installed below sea level (14). This device is supposed to be submerged on the seabed. When installing in the sea, it is desirable not to go above the sea level even at low tide.

図6は実施例4を示す段階減圧式方形水路型集水型水力発電装置の断面図である。第二減圧水路の方形壁(7)の内側に第一減圧水路の方形壁(6)があり、第一減圧水路の方形壁(6)の内側に水力発電用の方形壁(5)がある。第二減圧水路の方形壁(7)と第一減圧水路の方形壁(6)の間は流体の流れる隙間があり、これを第二減圧水路(16)と呼称し、一減圧水路の方形壁(6)と水力発電用の方形壁(5)の間にも流体の流れる隙間があり、これを第一減圧水路(15)と呼称する。第一減圧水路(15)内の各箇所の水圧は、隣接する箇所の、水力発電用の方形壁(5)内の流体の圧力より低く、第二減圧水路(16)内の流体の圧力より高い。同様に第二減圧水路(16)内の各箇所の水圧は、隣接する箇所の、第一減圧水路(15)内の流体の圧力より低く、装置外を流れる流体の圧力より高い。水力発電用の方形壁(5)の内側には水力発電機(4)が備えられている。水力発電用の方形壁(5)の断面は四角形なので、水力発電機(4)の水車が効率よく発電が行えるように、水路の断面を円形になるようにしてもよい。各方形壁や水力発電機(4)は支持部によって内部の隙間を保つように固定されているが、図では省略している。また、段階減圧式方形水路型集水型水力発電装置は海底(13)に沈められ支柱(12)によって保持されている。 FIG. 6 is a cross-sectional view of a stepwise decompression type square water channel type water collecting type hydroelectric power generation device showing the fourth embodiment. Inside the square wall (7) of the second decompression channel is the square wall (6) of the first decompression channel, and inside the square wall (6) of the first decompression channel is the square wall (5) for hydroelectric power generation. .. There is a gap through which fluid flows between the square wall (7) of the second decompression channel and the square wall (6) of the first decompression channel, which is called the second decompression channel (16), and the square wall of one decompression channel. There is also a gap through which fluid flows between (6) and the square wall (5) for hydroelectric power generation, and this is called the first decompression channel (15). The water pressure at each location in the first decompression channel (15) is lower than the pressure of the fluid in the square wall (5) for hydroelectric power generation at the adjacent location, and higher than the pressure of the fluid in the second decompression channel (16). high. Similarly, the water pressure at each location in the second decompression channel (16) is lower than the pressure of the fluid in the first decompression channel (15) at the adjacent location and higher than the pressure of the fluid flowing outside the apparatus. A hydroelectric generator (4) is provided inside the square wall (5) for hydroelectric power generation. Since the cross section of the square wall (5) for hydroelectric power generation is square, the cross section of the water channel may be circular so that the water turbine of the hydroelectric generator (4) can generate electricity efficiently. Each square wall and the hydroelectric generator (4) are fixed by a support portion so as to maintain an internal gap, but are omitted in the figure. Further, the stepwise decompression type square water channel type water collecting type hydroelectric power generation device is submerged in the seabed (13) and held by a support (12).

図7は実施例5を示す水平方向の断面図である。この水力発電装置を海底に設置することを先に述べた。ただ海流は河と違い、流れは常に一定方向であるとは限らない。海流の流れる方向の変化に対して流量調整装置の幕(11)を、片面のみ展開することにより、海流の流れる方向が変化しても海流を取り込み、発電量を減らさないようにすることができる。流体の圧力を受け流すだけであれば取水口の前方に備えられた流量を調整する装置の鋭角の辺が水平方向になっていてもよいが、海流の流れる方向の変化に対応するためには、流量を調整する装置の鋭角の辺が垂直方向になっていたほうがよい。また、第二減圧水路の方形壁(7)が間口を広げることなく平行に張り出して第二減圧水路の方形壁(7b)を形成しており、水力発電用の方形壁(5)と第一減圧水路の方形壁の集水部(6)より前方に伸びているが、これは海流の圧力の偏りを減らすためである。また、第二減圧水路の方形壁(7b)の部分に網(8)や流量調整装置の幕(11)を設けてもよい。 FIG. 7 is a cross-sectional view in the horizontal direction showing the fifth embodiment. It was mentioned earlier that this hydroelectric power generation device would be installed on the seabed. However, unlike ocean currents, ocean currents are not always in a fixed direction. By deploying the curtain (11) of the flow rate adjusting device for changes in the direction of the ocean current on only one side, it is possible to take in the ocean current even if the direction of the ocean current changes and not reduce the amount of power generation. .. If only the pressure of the fluid is to be passed, the acute-angled side of the flow rate adjusting device provided in front of the intake may be horizontal, but in order to cope with the change in the direction of the ocean current, it is necessary to make it horizontal. The sharp sides of the device that regulates the flow rate should be vertical. Further, the square wall (7) of the second decompression channel projects in parallel without widening the frontage to form the square wall (7b) of the second decompression channel, and the square wall (5) for hydroelectric power generation and the first. It extends forward from the catchment part (6) of the square wall of the decompression channel in order to reduce the bias of the pressure of the sea current. Further, a net (8) or a curtain (11) of the flow rate adjusting device may be provided on the rectangular wall (7b) of the second decompression channel.

図8は実施例6を示す斜視図である。段階減圧式方形水路型集水型水力発電装置を骨組み(19)で補強したものである。図5のように海中に備え付けようとした場合、構造物を海中で組み立てるには多大なコストがかかる。そこで、陸上で骨組み(19)を組んでその中に段階減圧式方形水路型集水型水力発電装置を組み上げ、海に輸送して設置した方がよい。土台(20)は事前に海底に設置してもよいし、海底の形状に合わせて陸上で調整してもよい。また、骨組み(19)が大きくなりすぎるのであれば、骨組み全体を幾つかのパーツに分けて製造し、ブロックのように積み上げるようにしてもよい。発電機は比較的メンテナンスが必要になるため、その部分だけ取り外しができるようにすると、引上げや設置が楽になるし、取り外し時に代替品を持って行き入れ替えて設置すれば、稼働率を上げることができる。 FIG. 8 is a perspective view showing the sixth embodiment. This is a skeleton (19) reinforced with a staged decompression type square water channel type water collecting type hydroelectric power generation device. When it is attempted to be installed in the sea as shown in FIG. 5, it costs a lot to assemble the structure in the sea. Therefore, it is better to assemble a skeleton (19) on land, assemble a stepwise decompression type square waterway type water collecting type hydroelectric power generation device in it, and transport it to the sea for installation. The base (20) may be installed on the seabed in advance, or may be adjusted on land according to the shape of the seabed. Further, if the skeleton (19) becomes too large, the entire skeleton may be manufactured by dividing it into several parts and stacked like a block. Since the generator requires relatively maintenance, if only that part can be removed, it will be easier to pull up and install it, and if you replace it with a substitute when removing it, you can increase the operating rate. can.

図9は実施例7を示す横面図である。クレーン船(21)を用いて、海底(13)に骨組み内に格納された段階減圧式方形水路型集水型水力発電装置(24)を設置しようとしている図である。海流は海底だと流れが遅くなるのが一般的なので、骨組み内に格納された段階減圧式方形水路型集水型水力発電装置(24)の足を高くしている。ただし、骨組み内に格納された段階減圧式方形水路型集水型水力発電装置(24)は干潮でも海面に露出しない方が望ましい。メンテナンスするときは海上に引き上げた方が楽なので、連結部(23)や本体側のケーブルは引き上げる時に装着する手間を省くためそのまま海中に沈めておけばよい。 FIG. 9 is a side view showing the seventh embodiment. It is a figure which is going to install the stage decompression type square waterway type water collection type hydroelectric power generation device (24) housed in the frame on the seabed (13) by using a crane vessel (21). Since the ocean current generally slows down on the seabed, the legs of the stepped decompression type square waterway type water collecting type hydroelectric power generation device (24) stored in the skeleton are raised. However, it is desirable that the step decompression type square waterway type water collecting type hydroelectric power generation device (24) housed in the frame is not exposed to the sea surface even at low tide. Since it is easier to pull it up to the sea for maintenance, the connecting part (23) and the cable on the main body side can be submerged in the sea as it is to save the trouble of attaching it when pulling up.

図10は実施例8を示す断面図である。水力発電用の方形壁(5)の外側に第一減圧水路の方形壁(6)を設け、さらにその外側に第二減圧水路の方形壁(7)を設けたものであるが、水力発電用の方形壁(5)の先には接続部(25)が設けられ、円筒形耐圧管(26)に接続されている。段階減圧式の水路で、図6のような入れ子状にした場合、発電装置などの設置やメンテナンスに手間がかかる。水流を数mまで絞り込むことができるのであれば、耐圧性の高い鋼管を用いた方が良い場合もある。円筒形耐圧管(26)を用いると、段階減圧式水路は不要になるので、第一減圧水路(15)の排水口と第二減圧水路(16)の排水口を接続部(25)あたりに配置して、不要となった水路の水流を放出する。また、取水口付近の水圧は低く、減圧水路による補助が不要であれば、水力発電用の方形壁(5)と第一減圧水路の方形壁(6)第二減圧水路の方形壁(7)の取水口は同じ位置にしなくてもよい。円筒形耐圧管(26)を用いることができれば、設置できる水力発電機の選択肢が広がる。 FIG. 10 is a cross-sectional view showing the eighth embodiment. The square wall (6) of the first decompression channel is provided on the outside of the square wall (5) for hydroelectric power generation, and the square wall (7) of the second decompression channel is further provided on the outside of the square wall (7) for hydroelectric power generation. A connecting portion (25) is provided at the tip of the square wall (5), and is connected to a cylindrical pressure resistant tube (26). If the water channel is a step-decompressed water channel and is nested as shown in FIG. 6, it takes time and effort to install and maintain the power generation device and the like. If the water flow can be narrowed down to several meters, it may be better to use a steel pipe with high pressure resistance. If the cylindrical pressure-resistant pipe (26) is used, the step decompression channel is not required, so the drain port of the first decompression channel (15) and the drain port of the second decompression channel (16) are located around the connection portion (25). Place and discharge the water flow of the canal that is no longer needed. If the water pressure near the intake is low and assistance from the decompression canal is not required, the square wall for hydroelectric power generation (5) and the square wall of the first decompression canal (6) and the square wall of the second decompression canal (7). The water intakes do not have to be in the same position. If the cylindrical pressure-resistant tube (26) can be used, the options for the hydroelectric generator that can be installed are expanded.

図11は実施例9を示す横面図である。発電機格納部(31)は海上の台(32)の上に設置され、海上の台は支柱(12)によって支えられている。発電機格納部(31)から回転軸(27)が海中に伸びており、海中の台に設置された水車格納部(28)に接続されている。水車格納部(28)からは円筒耐圧管(26)が伸びており、骨組み内に格納された段階減圧式方形集水器(30)に連結されている。骨組み内に格納された段階減圧式方形集水器(30)が海流を集め、その力で水車格納部(28)の水車を回し、水車格納部(28)の水車は回転軸(27)を回して、発電機格納部(31)の中の発電機に発電をさせる。発電機は海中に沈めないことで、既存の設計の発電機が流用でき、開発費を押さえることができる。回転軸(27)は直接波風にさらさないように円筒内に格納してもよい。 FIG. 11 is a side view showing the ninth embodiment. The generator storage unit (31) is installed on a pedestal (32) on the sea, and the pedestal on the sea is supported by a support (12). A rotating shaft (27) extends from the generator storage unit (31) into the sea and is connected to a water turbine storage unit (28) installed on a platform under the sea. A cylindrical pressure-resistant tube (26) extends from the water turbine storage portion (28) and is connected to a step decompression type square water collector (30) stored in the framework. The step decompression type square water collector (30) stored in the frame collects the sea current, and the water wheel of the water wheel storage part (28) is rotated by the force, and the water wheel of the water wheel storage part (28) has a rotating shaft (27). Turn it to cause the generator in the generator storage unit (31) to generate electricity. By not submerging the generator in the sea, the generator of the existing design can be diverted and the development cost can be suppressed. The axis of rotation (27) may be stored in a cylinder so as not to be directly exposed to the wave wind.

図12、図13を基に実施例10を基に説明する。骨組み全体を幾つかのパーツに分けて製造し、ブロックのように積み上げてもよいと先述したが、その実施例である。図12は取水口部分を7個からなる骨組み(19a~19g)で組み立てた図で、図13は7個の骨組み(19a~19g)を分解した図である。本発明は海流の流れの弱い海域に設置することを想定しており、そのため取水口は可能な限り大きい方が望ましい。しかし、装置全体が大きくなると、建造場所が限られ、また搬送や設置も難しくなる。もし、当装置を10m四方程度のブロックに分けることができたならば、コストが抑えられ製造期間も早くなると思われる。 An explanation will be given based on the tenth embodiment with reference to FIGS. 12 and 13. As mentioned above, the entire skeleton may be manufactured by dividing it into several parts and stacked like a block, but this is an example. FIG. 12 is a diagram in which the intake portion is assembled with a skeleton consisting of seven pieces (19a to 19g), and FIG. 13 is a diagram in which the seven skeletons (19a to 19g) are disassembled. The present invention is intended to be installed in a sea area where the current of the ocean current is weak, and therefore it is desirable that the intake is as large as possible. However, when the entire device becomes large, the construction site is limited and it becomes difficult to transport and install it. If this device could be divided into blocks of about 10 m square, the cost would be reduced and the manufacturing period would be shortened.

1 水力発電用の壁
2 段階減圧水路の壁
3 段階減圧水路
4 水力発電機
5 水力発電用の方形壁
6 第一減圧水路の方形壁
7 第二減圧水路の方形壁
7b 第二減圧水路の方形壁
8 網面
9 異物流入防止カバー
10 流量調整装置の幕の巻き軸
11 流量調整装置の幕
12 支柱
13 海底
14 海面
15 第一減圧水路
16 第二減圧水路
17 流量調整装置の幕の巻き軸の先端
18 海流
19 骨組み
19a 骨組み
19b 骨組み
19c 骨組み
19d 骨組み
19e 骨組み
19f 骨組み
19g 骨組み
20 土台
21 クレーン船
22 ケーブル
23 連結部
24 骨組み内に格納された段階減圧式方形水路型集水型水力発電装置
25 接続部
26 円筒形耐圧管
27 回転軸
28 水車格納部
29 排水口
30 骨組み内に格納された段階減圧式方形集水器
31 発電機格納部
32 台
1 Wall for hydroelectric power generation 2 Stage decompression water channel wall 3 Stage decompression water channel 4 Hydroelectric generator 5 Square wall for hydroelectric power generation 6 Square wall of 1st decompression water channel 7 Square wall of 2nd decompression water channel 7b Square of 2nd decompression water channel Wall 8 Net surface 9 Foreign matter inflow prevention cover 10 Wind adjustment device curtain winding shaft 11 Flow adjustment device curtain 12 Pillar 13 Sea bottom 14 Sea surface 15 First decompression water channel 16 Second decompression water channel 17 Flow adjustment device curtain winding shaft Tip 18 Sea flow 19 Frame 19a Frame 19b Frame 19c Frame 19d Frame 19e Frame 19f Frame 19g Frame 20 Base 21 Crane ship 22 Cable 23 Connection part 24 Stage decompression type square water channel type hydroelectric generator 25 connection Part 26 Cylindrical pressure resistant tube 27 Rotating shaft 28 Water turbine storage part 29 Drain port 30 Stage decompression type square water collector 31 Generator storage part 32 units stored in the frame

Claims (2)

流体の流れの中に壁を用いて水路を作り、その水路において、取水口より断面積を徐々に小さくし、且つ、その先に水力発電機の水車を設け、また、水力発電用の水路の壁の外側に新たな壁を設けて水路を作るが、その水路も取水口より断面積を徐々に小さくし、且つ、その水路は各部分で、水力発電機へ流れる水路の流体の圧力より低く、また、新たな壁の外側を流れる流体の圧力より高くなるように作られた段階減圧式水路型集水型水力発電装置。 A water channel is created by using a wall in the flow of fluid, the cross-sectional area is gradually reduced from the intake port in the water channel, and a water wheel of a hydroelectric generator is installed at the end of the water channel. A new wall will be created on the outside of the wall to create a waterway, but the cross-sectional area of the waterway will be gradually smaller than that of the intake, and the waterway will be lower than the pressure of the fluid in the waterway flowing to the hydroelectric generator at each part. Also, a staged decompression canal type hydroelectric power generator designed to be higher than the pressure of the fluid flowing outside the new wall. 四角形状の取水口において、対面する2辺より取水口前方に向けて、三角柱をなすように網の面を張り、網の面にはそれぞれ、流体の流入量を調整する開閉幕を複数以上設け、三角柱の2つの底面に防水幕を設けた請求項1の段階減圧式水路型集水型水力発電装置。 In the square-shaped intake, the surface of the net is stretched so as to form a triangular prism from the two facing sides toward the front of the intake, and each of the surfaces of the net is provided with multiple opening / closing curtains for adjusting the inflow of fluid. , The stage decompression type water channel type water collecting type hydroelectric power generation device according to claim 1, wherein waterproof curtains are provided on the two bottom surfaces of the triangular prism.
JP2020210838A 2020-12-18 2020-12-18 Stage decompression type waterway type water collection type hydroelectric power generation device Active JP6840451B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020210838A JP6840451B1 (en) 2020-12-18 2020-12-18 Stage decompression type waterway type water collection type hydroelectric power generation device
PCT/JP2021/045021 WO2022131088A1 (en) 2020-12-18 2021-12-07 Staged pressure reduction water path–type, water collection–type hydraulic power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020210838A JP6840451B1 (en) 2020-12-18 2020-12-18 Stage decompression type waterway type water collection type hydroelectric power generation device

Publications (2)

Publication Number Publication Date
JP6840451B1 JP6840451B1 (en) 2021-03-10
JP2022097312A true JP2022097312A (en) 2022-06-30

Family

ID=74845293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020210838A Active JP6840451B1 (en) 2020-12-18 2020-12-18 Stage decompression type waterway type water collection type hydroelectric power generation device

Country Status (2)

Country Link
JP (1) JP6840451B1 (en)
WO (1) WO2022131088A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5094339A (en) * 1973-12-24 1975-07-28
JPS55112876A (en) * 1979-02-19 1980-09-01 Fumihide Sugihara Power generating method and device for the same which utilizes fluid energy in the form of rotation energy
JP2005155334A (en) * 2003-11-20 2005-06-16 Hokuriku Regional Development Bureau Ministry Land Infrastructure & Transport Hydraulic energy recovering unit
JP2005240786A (en) * 2004-02-27 2005-09-08 Mitsubishi Heavy Ind Ltd Tidal current power generation device
JP2007009833A (en) * 2005-07-01 2007-01-18 Masaharu Uchida Ocean current power-generating device and seabed installation type ocean current power generation facilities
WO2007031592A1 (en) * 2005-08-10 2007-03-22 Risto Tapio Yli-Kovero Flow pressure power plant
US7874788B2 (en) * 2004-09-17 2011-01-25 Clean Current Limited Partnership Flow enhancement for underwater turbine
WO2013058510A1 (en) * 2011-10-21 2013-04-25 (주)파워이에프씨 Hydraulic power generator
JP2015102090A (en) * 2013-11-22 2015-06-04 國立臺灣▲海▼洋大學 Ocean current power generating apparatus using dual ducts producing boundary layer control effect
JP2016040465A (en) * 2015-02-20 2016-03-24 有限会社マツムラ Water flow power generator and tidal current power generation method using the same
JP6143315B1 (en) * 2016-08-17 2017-06-07 義英 土橋 Acting waterway
JP6478362B1 (en) * 2018-09-05 2019-03-06 義英 土橋 Floating ginger current generator

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5094339A (en) * 1973-12-24 1975-07-28
JPS55112876A (en) * 1979-02-19 1980-09-01 Fumihide Sugihara Power generating method and device for the same which utilizes fluid energy in the form of rotation energy
JP2005155334A (en) * 2003-11-20 2005-06-16 Hokuriku Regional Development Bureau Ministry Land Infrastructure & Transport Hydraulic energy recovering unit
JP2005240786A (en) * 2004-02-27 2005-09-08 Mitsubishi Heavy Ind Ltd Tidal current power generation device
US7874788B2 (en) * 2004-09-17 2011-01-25 Clean Current Limited Partnership Flow enhancement for underwater turbine
JP2007009833A (en) * 2005-07-01 2007-01-18 Masaharu Uchida Ocean current power-generating device and seabed installation type ocean current power generation facilities
WO2007031592A1 (en) * 2005-08-10 2007-03-22 Risto Tapio Yli-Kovero Flow pressure power plant
WO2013058510A1 (en) * 2011-10-21 2013-04-25 (주)파워이에프씨 Hydraulic power generator
JP2015102090A (en) * 2013-11-22 2015-06-04 國立臺灣▲海▼洋大學 Ocean current power generating apparatus using dual ducts producing boundary layer control effect
JP2016040465A (en) * 2015-02-20 2016-03-24 有限会社マツムラ Water flow power generator and tidal current power generation method using the same
JP6143315B1 (en) * 2016-08-17 2017-06-07 義英 土橋 Acting waterway
JP6478362B1 (en) * 2018-09-05 2019-03-06 義英 土橋 Floating ginger current generator

Also Published As

Publication number Publication date
WO2022131088A1 (en) 2022-06-23
JP6840451B1 (en) 2021-03-10

Similar Documents

Publication Publication Date Title
KR101608814B1 (en) Modular ocean energy generating plant
CN101560941B (en) Apparatus for hydroelectric power production expansion
KR101761173B1 (en) Apparatus for Generation Power from Fluid Flow
JP6547753B2 (en) Coast protection and wave energy generation system
CN105484935B (en) Modularization bi-directional current energy power generator
US20140044521A1 (en) Multipurpose rotary device and generating system including same
US8500364B2 (en) Method and apparatus for installing tidal barrages
US20120248776A1 (en) Wave energy extraction system using an oscillating water column attached to the columns of an offshore platform
JP5688764B2 (en) Water power generator
US20100171313A1 (en) Under the bottom ocean wave energy converter
JP2012501397A (en) Ocean wave energy extraction system and method
EP2593665B1 (en) Extracting energy from flowing fluids
KR102090179B1 (en) Construction method for water flow driven type hydropower plant
EP4134541A1 (en) Wave power generation unit and wave power generation device comprising same, and wave power generation method of wave power generation device
WO2022131088A1 (en) Staged pressure reduction water path–type, water collection–type hydraulic power generation device
DE102005040805A1 (en) Through-flow water turbine for power and irrigation has horizontal inflow focusing funnel and diverting device to direct water in two flows onto turbine wheel
KR102090182B1 (en) Multiple-type water flow driven type hydropower plant
TWI659154B (en) Coastal protection and wave energy generation system
KR101034820B1 (en) Oscillating water column in wave generation system for the minimum inflow loss type
KR20110073182A (en) Enhanced structure of waterpower generation and a boat-type wing structure of watermill
GB2478743A (en) Series of venturi pump water power generators
JP2011196361A (en) Floating power-generating device
KR20100111927A (en) Tidal generator system
JP2018135694A (en) Screen type underwater wall
JP6418623B1 (en) Folding channel for hydroelectric power generation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201222

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201222

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210216

R150 Certificate of patent or registration of utility model

Ref document number: 6840451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150