JP2022096820A - Storage battery control device - Google Patents

Storage battery control device Download PDF

Info

Publication number
JP2022096820A
JP2022096820A JP2020210021A JP2020210021A JP2022096820A JP 2022096820 A JP2022096820 A JP 2022096820A JP 2020210021 A JP2020210021 A JP 2020210021A JP 2020210021 A JP2020210021 A JP 2020210021A JP 2022096820 A JP2022096820 A JP 2022096820A
Authority
JP
Japan
Prior art keywords
storage battery
pbat
power
solar
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020210021A
Other languages
Japanese (ja)
Inventor
和 東海林
Kazu Shoji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2020210021A priority Critical patent/JP2022096820A/en
Publication of JP2022096820A publication Critical patent/JP2022096820A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Electrical Variables (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

To provide a storage battery control device that can perform maximum power point tracking control without detecting an output current of a solar cell.SOLUTION: A storage battery control device includes a DC/DC converter 52 connected between a common connection point (DC line 40) of a solar cell 30 having a solar panel and a solar power conditioner 32 that operates independently and a storage battery 20, and a DC converter control unit 54 that controls the DC/DC converter 52, and the DC converter control unit 54 changes a DC voltage by ΔV, and MPPT control (mountain climbing method) is performed to follow the maximum power point by repeating the change in a DC voltage Vdc by ΔV of the same code when the storage battery output power Pbat decreases, and by ΔV of the inverted code when the storage battery output power Pbat increases.SELECTED DRAWING: Figure 1

Description

本発明は、太陽光パワーコンディショナー(以下、太陽光PCSと称することもある)の自立運転時に、最大電力点追従制御(以下、MPPT(Maximum Power Point Tracking)制御と称することもある)を補助するために、直流リンクに太陽光パネルを有した太陽電池と並列に接続される蓄電池制御装置に関する。 The present invention assists maximum power point tracking control (hereinafter, also referred to as MPPT (Maximum Power Point Tracking) control) during independent operation of a solar power conditioner (hereinafter, also referred to as solar PCS). The present invention relates to a storage battery control device connected in parallel with a solar cell having a solar panel on a DC link.

従来、太陽光PCSの直流リンクに接続される蓄電池制御装置は、例えば特許文献1に記載の装置が提案されていた。 Conventionally, as a storage battery control device connected to a DC link of a photovoltaic PCS, for example, the device described in Patent Document 1 has been proposed.

図3は特許文献1に記載の電力供給システムの構成を示し、電力系統との連系運転中の太陽光PCSのMPPT制御を補助するために、直流リンクに蓄電池制御装置を並列に接続している。 FIG. 3 shows the configuration of the power supply system described in Patent Document 1, in which a storage battery control device is connected in parallel to a DC link in order to assist MPPT control of the photovoltaic PCS during interconnection operation with the power system. There is.

太陽光パネルを有した太陽電池30の出力側は、DCライン40を介して太陽光PCS32の直流側に接続されている。太陽光PCS32の交流側は負荷34および電力系統36に接続されている。DCライン40には蓄電池制御装置10を介して蓄電池20が接続されている。 The output side of the solar cell 30 having the solar panel is connected to the DC side of the solar PCS 32 via the DC line 40. The AC side of the solar PCS 32 is connected to the load 34 and the power system 36. The storage battery 20 is connected to the DC line 40 via the storage battery control device 10.

蓄電池制御装置10は、DCライン40と蓄電池20の間に接続され、太陽電池30の出力を蓄電池20へ充電させるか、又は蓄電池20の電力をDCライン40へ放電させるDC/DCコンバータ(直流電力変換器)12と、太陽電池30の出力電流を検出する電流センサ41、太陽光PCS32の入力電流を検出する電流センサ42、DC/DCコンバータ12のDCライン40側の電圧を検出する電圧センサ16の各検出信号に基づいて、蓄電池20の充放電電力が所望値となるようにDC/DCコンバータ12を制御する直流変換器制御部14を備えている。 The storage battery control device 10 is connected between the DC line 40 and the storage battery 20, and is a DC / DC converter (DC power) that charges the output of the solar battery 30 to the storage battery 20 or discharges the power of the storage battery 20 to the DC line 40. Converter) 12, a current sensor 41 that detects the output current of the solar cell 30, a current sensor 42 that detects the input current of the solar PCS 32, and a voltage sensor 16 that detects the voltage on the DC line 40 side of the DC / DC converter 12. A DC converter control unit 14 that controls the DC / DC converter 12 so that the charge / discharge power of the storage battery 20 becomes a desired value based on each detection signal of the above is provided.

図3は、電力系統36との連系運転時に、太陽光PCS32が主としてMPPT制御を行う構成であるが、電力系統36から太陽光PCS32を解列し、自立運転を行う場合は、図4に示す構成が考えられる。 FIG. 3 shows a configuration in which the photovoltaic PCS 32 mainly performs MPPT control during interconnection operation with the power system 36. However, when the photovoltaic PCS 32 is disconnected from the power system 36 and operated independently, FIG. 4 shows. The configuration shown is conceivable.

図4において図3と同一部分は同一符号をもって示しており、電力系統36は除外している。 In FIG. 4, the same parts as those in FIG. 3 are indicated by the same reference numerals, and the power system 36 is excluded.

直流変換器制御部14は、電流センサ41で検出した太陽電池30の出力電流Ipv、図示省略の電圧センサで検出した、DC/DCコンバータ12のDCライン40側の直流電圧Vdc、電流センサ18で検出した蓄電池電流Ibat、図示省略の電圧センサで検出した蓄電池電圧Vbatに基づいてDC/DCコンバータ12を駆動し、DCライン40の直流電圧を制御する。 The DC converter control unit 14 has an output current Ipv of the solar cell 30 detected by the current sensor 41, a DC voltage Vdc on the DC line 40 side of the DC / DC converter 12 detected by a voltage sensor (not shown), and a current sensor 18. The DC / DC converter 12 is driven based on the detected storage battery current Ibat and the storage battery voltage Vbat detected by a voltage sensor (not shown) to control the DC voltage of the DC line 40.

この際、太陽光出力電力Ppv=Ipv*Vdcが最大になるようにMPPT制御を行う。 At this time, MPPT control is performed so that the solar output power Ppv = Ipv * Vdc is maximized.

太陽光PCS32は、直流電力を交流電力に変換するDC/ACコンバータ32aと、電流センサ32bで検出した太陽電池30の出力電流Ipv、図示省略の電圧センサで検出したDCライン40の直流電圧Vdcに基づいてDC/ACコンバータ32aを駆動し、交流電圧制御を行う太陽光PCS制御部32cとを備えている。 The solar PCS 32 has a DC / AC converter 32a that converts DC power into AC power, an output current Ipv of the solar cell 30 detected by the current sensor 32b, and a DC voltage Vdc of the DC line 40 detected by a voltage sensor (not shown). Based on this, it is equipped with a solar PCS control unit 32c that drives a DC / AC converter 32a and controls an AC voltage.

蓄電池制御装置10は、直流電圧をΔVだけ変化させ、そのときに太陽光出力電力Ppvが増加した場合は同符号のΔVで、減少した場合は反転した符号のΔVで直流電圧Vdcを変化させることを繰り返して最大電力点に追従させる一般的なMPPT制御(山登り法)を図5のフローチャートに沿って実行する。 The storage battery control device 10 changes the DC voltage by ΔV, and changes the DC voltage Vdc by ΔV having the same sign when the photovoltaic output power Ppv increases and ΔV having the inverted sign when the solar output power Ppv decreases. Is repeated to follow the maximum power point, and general MPPT control (mountain climbing method) is executed according to the flowchart of FIG.

図5において、ステップS1~S5の処理を一制御周期として繰り返し制御が実行される。まずステップS1では太陽光出力電力Ppv=Vdc*Ipv(太陽電池30の出力電力)を検出する。 In FIG. 5, repeated control is executed with the processes of steps S1 to S5 as one control cycle. First, in step S1, the solar output power Ppv = Vdc * Ipv (output power of the solar cell 30) is detected.

次にステップS2において、前回制御周期時の太陽光出力電力Ppv_zと今回検出した太陽光出力電力Ppvを比較する。比較結果がPpv≧Ppv_zの場合はそのままステップS4へ進み、Ppv<Ppv_zの場合はステップS3においてΔVの符号を反転した後ステップS4へ進む。 Next, in step S2, the solar output power Ppv_z at the previous control cycle and the solar output power Ppv detected this time are compared. If the comparison result is Ppv ≧ Ppv_z, the process proceeds to step S4 as it is, and if Ppv <Ppv_z, the sign of ΔV is inverted in step S3 and then the process proceeds to step S4.

ステップS4では、直流電圧VdcをΔV変化させ(Vdc=Vdc+ΔV)、その後ステップS5において電力値を保存する(Ppv_z=Ppv)。 In step S4, the DC voltage Vdc is changed by ΔV (Vdc = Vdc + ΔV), and then the power value is stored in step S5 (Ppv_z = Ppv).

特許第6531496号公報Japanese Patent No. 6531496

図4の蓄電池制御装置10では、太陽光出力電力Ppvを演算するために太陽電池30の出力電流Ipvを検出する必要があり、そのため蓄電池制御装置10の外部に電流センサ(41)が必要であるという問題があった。 In the storage battery control device 10 of FIG. 4, it is necessary to detect the output current Ipv of the solar cell 30 in order to calculate the solar output power Ppv, and therefore a current sensor (41) is required outside the storage battery control device 10. There was a problem.

本発明は、上記課題を解決するものであり、その目的は、太陽電池の出力電流を検出することなく最大電力点追従制御を行うことができる蓄電池制御装置を提供することにある。 The present invention solves the above problems, and an object of the present invention is to provide a storage battery control device capable of performing maximum power point tracking control without detecting the output current of the solar cell.

上記課題を解決するための請求項1に記載の蓄電池制御装置は、
太陽光パネルを有した太陽電池および自立運転を行う太陽光パワーコンディショナーの共通接続点と蓄電池の間に接続された直流電力変換器と、前記直流電力変換器を制御する制御部とを備えた蓄電池制御装置であって、
前記制御部は、
一制御周期毎に、前回制御周期時に前記直流電力変換器の前記共通接続点側直流電圧VdcをΔV変化させたときの蓄電池電力検出値Pbat_zと、今回制御周期時の蓄電池電力検出値Pbatを比較し、前記PbatがPbat_zよりも小さいときは同一符号のΔVで前記Vdcを変化させ、前記PbatがPbat_z以上のときは反転した符号のΔVで前記Vdcを変化させることによって、最大電力点追従制御を行うことを特徴とする。
The storage battery control device according to claim 1 for solving the above problems is
A storage battery equipped with a DC power converter connected between a common connection point of a solar cell having a solar panel and a solar power conditioner that operates independently and a storage battery, and a control unit that controls the DC power converter. It ’s a control device,
The control unit
For each control cycle, the storage battery power detection value Pbat_z when the DC voltage Vdc on the common connection point side of the DC power converter is changed by ΔV during the previous control cycle is compared with the storage battery power detection value Pbat during the current control cycle. When the Pbat is smaller than Pbat_z, the Vdc is changed by ΔV of the same code, and when the Pbat is Pbat_z or more, the Vdc is changed by ΔV of the inverted code to control the maximum power point tracking. Characterized by doing.

本発明によれば、蓄電池電力検出値を利用して最大電力点追従制御を行っているので、太陽電池の出力電流を検出する必要がなく、装置外部の電流検出点が削減され、装置構成を簡易化することができる。 According to the present invention, since the maximum power point tracking control is performed using the storage battery power detection value, it is not necessary to detect the output current of the solar cell, the current detection points outside the device are reduced, and the device configuration can be configured. It can be simplified.

本発明の実施形態例による装置の構成図。The block diagram of the apparatus according to the Embodiment of this invention. 本発明の実施形態例によるMPPT制御のフローチャート。The flowchart of MPPT control according to the Embodiment of this invention. 先行文献1に記載の電力供給システムの構成図。The block diagram of the power supply system described in the prior art 1. 図3の電力供給システムで自立運転を行う場合の構成図。The block diagram in the case of self-sustaining operation in the power supply system of FIG. 従来のMPPT制御のフローチャート。Flow chart of conventional MPPT control.

以下、図面を参照しながら本発明の実施の形態を説明するが、本発明は下記の実施形態例に限定されるものではない。本発明の実施形態では、蓄電池制御装置によるMPPT制御の判定に使用する電力を、太陽光出力電力Ppvから蓄電池出力電力Pbatに変更した。蓄電池制御装置では蓄電池の電圧、電流を制御する必要があるため、装置内部に蓄電池電圧Vbatと蓄電池電流Ibatの検出点が用意されており、外部に検出点を追加する必要はない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments. In the embodiment of the present invention, the electric power used for the determination of MPPT control by the storage battery control device is changed from the solar output power Ppv to the storage battery output power Pbat. Since it is necessary to control the voltage and current of the storage battery in the storage battery control device, a detection point for the storage battery voltage Vbat and the storage battery current Ibat is prepared inside the device, and it is not necessary to add a detection point to the outside.

図1は実施形態例による装置構成を表し、図4と同一部分は同一符号をもって示している。図1において図4と異なる点は、太陽電池30の出力電流Ipvの検出点を不要とし(電流センサ41を除去し)、太陽光出力電力Ppvに基づいてMPPT制御の判定を行う蓄電池制御装置10に代えて、蓄電池出力電力Pbatに基づいてMPPT制御の判定を行う蓄電池制御装置50を設けた点にある。 FIG. 1 shows an apparatus configuration according to an embodiment, and the same parts as those in FIG. 4 are indicated by the same reference numerals. The difference from FIG. 4 in FIG. 1 is that the storage battery control device 10 eliminates the need for a detection point of the output current Ipv of the solar cell 30 (removes the current sensor 41) and determines MPPT control based on the solar output power Ppv. Instead, a storage battery control device 50 that determines MPPT control based on the storage battery output power Pbat is provided.

蓄電池制御装置50は、DCライン40と蓄電池20の間に接続され、太陽電池30の出力を蓄電池20へ充電させるか、又は蓄電池20の電力をDCライン40へ放電させるDC/DCコンバータ52(本発明の直流電力変換器)と、図示省略の電圧センサで検出したDC/DCコンバータ52のDCライン40側の直流電圧Vdc、電流センサ58で検出した蓄電池電流Ibat、図示省略の電圧センサで検出した蓄電池電圧Vbatに基づいてDC/DCコンバータ52を駆動し、DCライン40の直流電圧を制御する直流変換器制御部54(本発明の制御部)を備えている。 The storage battery control device 50 is connected between the DC line 40 and the storage battery 20, and is a DC / DC converter 52 (this) that charges the output of the solar battery 30 to the storage battery 20 or discharges the power of the storage battery 20 to the DC line 40. The DC power converter of the present invention), the DC voltage Vdc on the DC line 40 side of the DC / DC converter 52 detected by the voltage sensor (not shown), the storage battery current Ibat detected by the current sensor 58, and the voltage sensor (not shown). A DC converter control unit 54 (control unit of the present invention) that drives a DC / DC converter 52 based on the storage battery voltage Vbat and controls the DC voltage of the DC line 40 is provided.

蓄電池制御装置50は、直流電圧をΔVだけ変化させ、そのときに蓄電池出力電力Pbatが減少した場合は同符号のΔVで、増加した場合は反転した符号のΔVで直流電圧Vdcを変化させることを繰り返して最大電力点に追従させる本発明特有のMPPT制御(山登り法)を図2のフローチャートに沿って実行する。 The storage battery control device 50 changes the DC voltage by ΔV, and changes the DC voltage Vdc by ΔV having the same sign when the storage battery output power Pbat decreases and by ΔV having the inverted sign when the DC voltage increases. The MPPT control (mountain climbing method) peculiar to the present invention for repeatedly following the maximum power point is executed according to the flowchart of FIG.

図2において、ステップS11~S15の処理を一制御周期として繰り返し制御が実行される。まずステップS11では蓄電池出力電力Pbat=Vbat*Ibatを検出する。 In FIG. 2, the repetitive control is executed with the processes of steps S11 to S15 as one control cycle. First, in step S11, the storage battery output power Pbat = Vbat * Ibat is detected.

次にステップS12において、前回制御周期時の蓄電池出力電力Pbat_zと今回検出した蓄電池出力電力Pbatを比較する。比較結果がPbat<Pbat_zの場合はそのままステップS14へ進み、Pbat≧Pbat_zの場合はステップS13においてΔVの符号を反転した後ステップS14へ進む。 Next, in step S12, the storage battery output power Pbat_z at the previous control cycle and the storage battery output power Pbat detected this time are compared. If the comparison result is Pbat <Pbat_z, the process proceeds to step S14 as it is, and if Pbat ≧ Pbat_z, the sign of ΔV is inverted in step S13 and then the process proceeds to step S14.

ステップS14では、直流電圧VdcをΔV変化させ(Vdc=Vdc+ΔV)、その後ステップS15において電力値を保存する(Pbat_z=Pbat)。 In step S14, the DC voltage Vdc is changed by ΔV (Vdc = Vdc + ΔV), and then the power value is stored in step S15 (Pbat_z = Pbat).

図2の処理を繰り返し実行することで蓄電池出力電力Pbat=Vbat*Ibatが最小になるようなMPPT制御がなされ、その結果最大電力点に追従することができる。 By repeatedly executing the process of FIG. 2, MPPT control is performed so that the storage battery output power Pbat = Vbat * Ibat is minimized, and as a result, the maximum power point can be followed.

自立運転の負荷34、太陽電池30の太陽光パネルへの日射量が安定している場合は、上記MPPT制御によって最大電力点に追従することができる。自立運転の負荷変動あるいは太陽光パネルへの日射変動が発生した場合は、一時的に最大電力点からずれた点に直流電圧が移動するが、継続して上記MPPT制御を行うことによって、上記変動が安定した後に再び最大電力点に追従することができる。 When the load 34 of the self-sustaining operation and the amount of solar radiation to the solar panel of the solar cell 30 are stable, the maximum power point can be followed by the above MPPT control. When the load fluctuation of the self-sustaining operation or the solar radiation fluctuation to the solar panel occurs, the DC voltage moves to the point temporarily deviated from the maximum power point, but the above fluctuation is performed by continuously performing the above MPPT control. Can follow the maximum power point again after it stabilizes.

以上のように、蓄電池出力電力によってMPPT制御を実施できるため、太陽電池の出力電流検出点を削減でき、装置構成を簡易化できる。 As described above, since MPPT control can be performed by the output power of the storage battery, the output current detection points of the solar cell can be reduced and the device configuration can be simplified.

20…蓄電池
30…太陽電池
32…太陽光パワーコンディショナー
34…負荷
36…電力系統
40…DCライン
50…蓄電池制御装置
52…DC/DCコンバータ
54…直流変換器制御部
58…電流センサ
20 ... Storage battery 30 ... Solar battery 32 ... Solar power conditioner 34 ... Load 36 ... Power system 40 ... DC line 50 ... Storage battery control device 52 ... DC / DC converter 54 ... DC converter control unit 58 ... Current sensor

Claims (1)

太陽光パネルを有した太陽電池および自立運転を行う太陽光パワーコンディショナーの共通接続点と蓄電池の間に接続された直流電力変換器と、前記直流電力変換器を制御する制御部とを備えた蓄電池制御装置であって、
前記制御部は、
一制御周期毎に、前回制御周期時に前記直流電力変換器の前記共通接続点側直流電圧VdcをΔV変化させたときの蓄電池電力検出値Pbat_zと、今回制御周期時の蓄電池電力検出値Pbatを比較し、前記PbatがPbat_zよりも小さいときは同一符号のΔVで前記Vdcを変化させ、前記PbatがPbat_z以上のときは反転した符号のΔVで前記Vdcを変化させることによって、最大電力点追従制御を行うことを特徴とする蓄電池制御装置。
A storage battery equipped with a DC power converter connected between a common connection point of a solar cell having a solar panel and a solar power conditioner that operates independently and a storage battery, and a control unit that controls the DC power converter. It ’s a control device,
The control unit
For each control cycle, the storage battery power detection value Pbat_z when the DC voltage Vdc on the common connection point side of the DC power converter is changed by ΔV during the previous control cycle is compared with the storage battery power detection value Pbat during the current control cycle. When the Pbat is smaller than Pbat_z, the Vdc is changed by ΔV of the same code, and when the Pbat is Pbat_z or more, the Vdc is changed by ΔV of the inverted code to control the maximum power point tracking. A storage battery control device characterized by doing.
JP2020210021A 2020-12-18 2020-12-18 Storage battery control device Pending JP2022096820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020210021A JP2022096820A (en) 2020-12-18 2020-12-18 Storage battery control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020210021A JP2022096820A (en) 2020-12-18 2020-12-18 Storage battery control device

Publications (1)

Publication Number Publication Date
JP2022096820A true JP2022096820A (en) 2022-06-30

Family

ID=82165085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020210021A Pending JP2022096820A (en) 2020-12-18 2020-12-18 Storage battery control device

Country Status (1)

Country Link
JP (1) JP2022096820A (en)

Similar Documents

Publication Publication Date Title
US8450883B2 (en) Maximum power point tracking control apparatus for solar battery
EP3361631A1 (en) Current-voltage curve scan method for photovoltaic module, and optimizer
EP0653692A2 (en) Method and apparatus for controlling the power of a battery power source
US8531855B2 (en) Power conversion apparatus
JP2005235082A (en) Method for tracking and controlling maximum power, and power converting device
US9748866B2 (en) Power conversion apparatus and control method for power conversion apparatus when an instantaneous voltage drop has occurred in a power system
WO2022087955A1 (en) Bus voltage control method and apparatus for photovoltaic system
CN116670958A (en) Photovoltaic power generation system, power control device and energy storage system
WO2017175393A1 (en) Solar power generation system
JP4896044B2 (en) Power converter
JPWO2003065560A1 (en) Power supply device and method for creating switching signal for on / off control of switching element of converter section constituting power supply device
JP6400238B2 (en) Grid-connected inverter device
US8436574B2 (en) Solar power supply system and driving method of same
JPH0973328A (en) Solar light power generation controller
JP2015082198A (en) Photovoltaic power system and photovoltaic power system control method
JP2017059094A (en) Power generation operation point control circuit device with step-up function of solar battery
JP2001309560A (en) System interconnection inverter device
JP2022096820A (en) Storage battery control device
JP6045814B2 (en) Photovoltaic power generation system and operating point correction device used therefor
JP6029540B2 (en) Solar cell control device and solar cell control method
JP2018088073A (en) Photovoltaic power generation controller
JP3484506B2 (en) Power control device and power generation system using the same
JP2021078236A (en) Solar charging system
JP2013206352A (en) Maximum power point detection method and maximum power point detector
KR101966344B1 (en) Method and apparatus for interleaved controlling of solar cells to reduce current ripple of a DC link in an inverter system