JP2022096735A - Steel pipe pile, construction method of the steel pipe pile, design method of the steel pipe pile, and manufacturing method of the steel pipe pile - Google Patents

Steel pipe pile, construction method of the steel pipe pile, design method of the steel pipe pile, and manufacturing method of the steel pipe pile Download PDF

Info

Publication number
JP2022096735A
JP2022096735A JP2020209868A JP2020209868A JP2022096735A JP 2022096735 A JP2022096735 A JP 2022096735A JP 2020209868 A JP2020209868 A JP 2020209868A JP 2020209868 A JP2020209868 A JP 2020209868A JP 2022096735 A JP2022096735 A JP 2022096735A
Authority
JP
Japan
Prior art keywords
steel pipe
fluid
pipe pile
holding member
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020209868A
Other languages
Japanese (ja)
Other versions
JP7302585B2 (en
Inventor
邦彦 恩田
Kunihiko Onda
進吾 粟津
Shingo Awazu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2020209868A priority Critical patent/JP7302585B2/en
Publication of JP2022096735A publication Critical patent/JP2022096735A/en
Application granted granted Critical
Publication of JP7302585B2 publication Critical patent/JP7302585B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Abstract

To obtain a steel pipe pile capable of easily arranging liquid supply pipes, preventing liquid supply pipes from receiving strong reaction force from a ground in rotationally pressing-in, and suppressing clogging inside a steel pipe, a construction method of the steel pipe pile, a design method of the steel pipe pile, and a manufacturing method of the steel pipe pile .SOLUTION: A steel pipe pile 1 rotationally pressed into a ground comprises: a spiral holding member 5 protruding to a tip inner face side of a steel pipe 3 constituting the steel pipe pile 1 and provided in a continuous or intermittent spiral shape; one or more liquid supply pipes 7 downwardly arranged downwardly along an inner wall of the steel pipe 3 from an upper end of the steel pipe 3 to supply liquid; and a liquid discharge pipe 9 connected to a lower end portion of the liquid supply pipe 7, arranged along an upper face of the spiral holding member 5, and formed with a liquid discharge port 9a discharging liquid to a peripheral surface.SELECTED DRAWING: Figure 1

Description

本発明は、地盤に回転圧入する鋼管杭及び該鋼管杭の施工方法、該鋼管杭の設計方法、該鋼管杭の製造方法に関する。 The present invention relates to a steel pipe pile that is rotationally press-fitted into the ground, a method for constructing the steel pipe pile, a method for designing the steel pipe pile, and a method for manufacturing the steel pipe pile.

鋼管杭を地盤に回転圧入させる際、鋼管内が土砂で閉塞すると貫入抵抗が増大し、それに起因して施工トラブルが生じる場合がある。この土砂による閉塞を防止するための方法が、例えば特許文献1に開示されている。 When the steel pipe pile is rotationally press-fitted into the ground, if the inside of the steel pipe is blocked by earth and sand, the penetration resistance increases, which may cause construction troubles. For example, Patent Document 1 discloses a method for preventing this blockage due to earth and sand.

特許文献1の「回転圧入用の開端鋼管杭」では、「鋼管杭の上端から途中まで該鋼管杭の内壁に沿って流体供給用パイプが配管され、該パイプの下端には該鋼管杭の内壁に沿って周方向に環状のパイプが配置されており、該環状のパイプの下端から下向きに該鋼管杭の内壁に沿って2箇所以上8箇所以下の第2の流体供給用パイプが配管され」ている。
そして、第2の流体供給用パイプのそれぞれに設けられた流体吐出用のノズルから鋼管の内壁に沿って周方向に流体を吐出することで、鋼管の内壁と土砂との間に流体を介在させ、鋼管内での閉塞が発生するのを防止している。
In Patent Document 1, "open-ended steel pipe pile for rotary press-fitting", a fluid supply pipe is piped along the inner wall of the steel pipe pile from the upper end to the middle of the steel pipe pile, and the inner wall of the steel pipe pile is connected to the lower end of the pipe. An annular pipe is arranged in the circumferential direction along the above, and a second fluid supply pipe of 2 or more and 8 or less is piped downward from the lower end of the annular pipe along the inner wall of the steel pipe pile. " ing.
Then, by discharging the fluid in the circumferential direction along the inner wall of the steel pipe from the nozzles for discharging the fluid provided in each of the second fluid supply pipes, the fluid is interposed between the inner wall of the steel pipe and the earth and sand. , Prevents blockage in the steel pipe.

特許第4242251号Patent No. 4242251

上述した方法では、環状のパイプの他、該環状のパイプに複数の流体供給用パイプを配管する必要があり、非常に手間がかかる。さらに、鋼管杭を回転圧入する際に環状パイプや第2の流体供給用パイプが地盤から強い反作用力を受けるので、これによる破壊を防止するために強固に補強する必要ある。 In the method described above, in addition to the annular pipe, it is necessary to pipe a plurality of fluid supply pipes to the annular pipe, which is very troublesome. Further, since the annular pipe and the second fluid supply pipe receive a strong reaction force from the ground when the steel pipe pile is rotationally press-fitted, it is necessary to reinforce it firmly in order to prevent the destruction due to this.

また、従来は流体を噴射する方向が鋼管杭の内壁に沿った周方向であるため一定の高さのみにしか流体を噴射できない。よって、高さ方向により広い領域に流体を噴射する場合には、高さ方向に複数の流体吐出用ノズルを配置する必要があり、これを鋼管内に設置、固定するのは難しい。 Further, conventionally, since the direction of injecting the fluid is the circumferential direction along the inner wall of the steel pipe pile, the fluid can be injected only at a certain height. Therefore, when injecting a fluid into a wider area in the height direction, it is necessary to arrange a plurality of fluid discharge nozzles in the height direction, and it is difficult to install and fix the nozzles in the steel pipe.

本発明はかかる課題を解決するためになされたものであり、流体供給用のパイプを容易に配設でき、かつ、回転圧入時において流体供給用のパイプが地盤から強い反作用力を受けることを防ぐとともに鋼管内の閉塞を抑制することができる鋼管杭及び該鋼管杭の施工方法、該鋼管杭の設計方法、該鋼管杭の製造方法を得ることを目的としている。 The present invention has been made to solve such a problem, the pipe for fluid supply can be easily arranged, and the pipe for fluid supply is prevented from receiving a strong reaction force from the ground at the time of rotational press-fitting. It is an object of the present invention to obtain a steel pipe pile and a method for constructing the steel pipe pile, a method for designing the steel pipe pile, and a method for manufacturing the steel pipe pile, which can suppress blockage in the steel pipe.

(1)本発明に係る鋼管杭は、地盤に回転圧入するものであって、前記鋼管杭を構成する鋼管の先端内面側に突出すると共に連続的又は断続的な螺旋状に設けられた螺旋状保持部材と、前記鋼管の上端から、該鋼管の内壁に沿って下方に向かって配設されて流体を供給する1本又は複数本の流体供給用パイプと、該流体供給用パイプの下端部から供給される流体を通流可能に設けられ、前記螺旋状保持部材の上面に沿って配設されるとともに周面に前記流体を吐出する流体吐出口が形成された流体吐出用パイプと、を備えたことを特徴とするものである。 (1) The steel pipe pile according to the present invention is to be rotationally press-fitted into the ground, and has a spiral shape that protrudes toward the inner surface side of the tip of the steel pipe constituting the steel pipe pile and is continuously or intermittently provided. From the holding member, one or more fluid supply pipes arranged downward along the inner wall of the steel pipe to supply the fluid from the upper end of the steel pipe, and the lower end of the fluid supply pipe. A fluid discharge pipe is provided so as to allow the supplied fluid to flow, and is arranged along the upper surface of the spiral holding member and has a fluid discharge port formed on the peripheral surface to discharge the fluid. It is characterized by that.

(2)また、上記(1)に記載のものにおいて、前記鋼管は、その先端に螺旋状に切り欠かれた切欠き部を有し、前記螺旋状保持部材は前記切欠き部に沿って設けられると共にその先端部に地盤を掘削する掘削部が形成されていることを特徴とするものである。 (2) Further, in the one described in (1) above, the steel pipe has a notch portion spirally cut out at the tip thereof, and the spiral holding member is provided along the notch portion. It is characterized in that an excavation part for excavating the ground is formed at the tip portion thereof.

(3)また、上記(1)又は(2)に記載のものにおいて、流体を吐出する流体吐出口を有する吐出ノズルを前記流体吐出用パイプの先端に設けたことを特徴とするものである。 (3) Further, in the above-mentioned (1) or (2), a discharge nozzle having a fluid discharge port for discharging a fluid is provided at the tip of the fluid discharge pipe.

(4)また、上記(1)又は(2)に記載のものにおいて、流体を吐出する流体吐出口を有する吐出ノズルを前記螺旋状保持部材の先端近傍に有し、該吐出ノズルに流体を供給する流体供給用パイプを前記流体吐出用パイプに流体を供給するものとは別に設けたことを特徴とするものである。 (4) Further, in the above (1) or (2), a discharge nozzle having a fluid discharge port for discharging a fluid is provided near the tip of the spiral holding member, and the fluid is supplied to the discharge nozzle. The fluid supply pipe is provided separately from the one that supplies the fluid to the fluid discharge pipe.

(5)また、本発明に係る鋼管杭の施工方法は、上記(1)乃至(4)のいずれかに記載の鋼管杭を地盤に回転圧入するものであって、鋼管杭を回転圧入する際に、前記流体供給用パイプに流体を供給し、前記流体吐出口から前記流体を吐出することを特徴とするものである。 (5) Further, the method for constructing a steel pipe pile according to the present invention is to rotationally press-fit the steel pipe pile according to any one of (1) to (4) above into the ground, and when the steel pipe pile is rotationally press-fitted. It is characterized in that a fluid is supplied to the fluid supply pipe and the fluid is discharged from the fluid discharge port.

(6)また、本発明に係る鋼管杭の設計方法は、地盤に回転圧入する鋼管杭を設計するものであって、前記鋼管杭を構成する鋼管の先端に、該鋼管の内面側に突出すると共に連続的又は断続的な螺旋状の螺旋状保持部材を設定し、流体を供給する1本又は複数本の流体供給用パイプを、前記鋼管の上端から該鋼管の内壁に沿って下方に向かうよう設定し、周面に前記流体を吐出する流体吐出口が設定された流体吐出用パイプを、前記流体供給用パイプの下端部から供給される流体を通流可能かつ前記螺旋状保持部材の上面に沿うように設定する、ことを特徴とするものである。 (6) Further, the method for designing a steel pipe pile according to the present invention is to design a steel pipe pile that is rotationally press-fitted into the ground, and protrudes toward the inner surface side of the steel pipe at the tip of the steel pipe constituting the steel pipe pile. Together with, a continuous or intermittent spiral holding member is set so that one or more fluid supply pipes for supplying fluid are directed downward along the inner wall of the steel pipe from the upper end of the steel pipe. A fluid discharge pipe, which is set and has a fluid discharge port for discharging the fluid on the peripheral surface, is placed on the upper surface of the spiral holding member so that the fluid supplied from the lower end of the fluid supply pipe can flow through the pipe. It is characterized by being set to follow.

(7)また、本発明に係る鋼管杭の製造方法は、地盤に回転圧入する鋼管杭を製造するものであって、前記鋼管杭を構成する鋼管の先端に、該鋼管の内面側に突出すると共に連続的又は断続的な螺旋状の螺旋状保持部材を形成し、流体を供給する1本又は複数本の流体供給用パイプを、前記鋼管の上端から該鋼管の内壁に沿って下方に向かうように取り付け、周面に前記流体を吐出する流体吐出口を形成した流体吐出用パイプを、前記流体供給用パイプの下端部から供給される流体を通流可能かつ前記螺旋状保持部材の上面に沿うように取り付ける、ことを特徴とするものである。 (7) Further, the method for manufacturing a steel pipe pile according to the present invention is to manufacture a steel pipe pile that is rotationally press-fitted into the ground, and protrudes toward the inner surface side of the steel pipe at the tip of the steel pipe constituting the steel pipe pile. Together with, a continuous or intermittent spiral holding member is formed so that one or more fluid supply pipes for supplying fluid are directed downward along the inner wall of the steel pipe from the upper end of the steel pipe. A fluid discharge pipe having a fluid discharge port formed on the peripheral surface thereof so as to allow the fluid supplied from the lower end of the fluid supply pipe to flow through and along the upper surface of the spiral holding member. It is characterized by being attached in such a way.

本発明においては、鋼管の先端内面側に突出する螺旋状保持部材と、前記螺旋状保持部材の上面に沿って配設される流体吐出用パイプとを備え、該流体吐出用パイプに設けられた流体吐出口から流体を吐出することにより、高さ方向にも広く流体を吐出することができ、効果的に鋼管内部の土砂詰りを防止する。また、流体吐出用パイプは分岐することなく螺旋状保持部材の上面に配設されているので、設置が簡易であるとともに、回転圧入中にも地盤から直接反作用力を受けることはなく、破壊の危険性も少ない。 In the present invention, a spiral holding member protruding toward the inner surface side of the tip of the steel pipe and a fluid discharge pipe arranged along the upper surface of the spiral holding member are provided in the fluid discharge pipe. By discharging the fluid from the fluid discharge port, the fluid can be widely discharged in the height direction, and the clogging of the inside of the steel pipe is effectively prevented. In addition, since the fluid discharge pipe is arranged on the upper surface of the spiral holding member without branching, it is easy to install, and it does not receive a direct reaction force from the ground even during rotational press-fitting, so it breaks. There is little danger.

本発明の一実施の形態に係る鋼管杭の説明図である。It is explanatory drawing of the steel pipe pile which concerns on one Embodiment of this invention. 図2(a)は図1に示した鋼管杭の底面図、図2(b)は図2(a)のA-A断面図、図2(c)は図2(a)のB-B断面図である。2 (a) is a bottom view of the steel pipe pile shown in FIG. 1, FIG. 2 (b) is a sectional view taken along the line AA of FIG. 2 (a), and FIG. 2 (c) is a view of BB of FIG. 2 (a). It is a cross-sectional view. 本発明の一実施の形態に係る鋼管杭の他の態様の説明図である(その1)。It is explanatory drawing of another aspect of the steel pipe pile which concerns on one Embodiment of this invention (the 1). 本発明の一実施の形態に係る鋼管杭の他の態様の説明図である(その2)。It is explanatory drawing of another aspect of the steel pipe pile which concerns on one Embodiment of this invention (the 2). 本発明の一実施の形態に係る鋼管杭の他の態様の説明図である(その3)。It is explanatory drawing of another aspect of the steel pipe pile which concerns on one Embodiment of this invention (the 3).

本発明の一実施の形態に係る鋼管杭1は、地盤に回転圧入するものであって、図1、図2に示すように、鋼管3と、鋼管3の先端に設けられた螺旋状保持部材5と、流体を供給する流体供給用パイプ7と、流体供給用パイプ7の下端部から供給される流体を通流可能に設けられた流体吐出用パイプ9とを備えている。
各構成について、以下に詳しく説明する。
The steel pipe pile 1 according to the embodiment of the present invention is to be rotationally press-fitted into the ground, and as shown in FIGS. 1 and 2, the steel pipe 3 and the spiral holding member provided at the tip of the steel pipe 3 are provided. 5. The fluid supply pipe 7 for supplying the fluid and the fluid discharge pipe 9 provided so as to allow the fluid supplied from the lower end of the fluid supply pipe 7 to flow are provided.
Each configuration will be described in detail below.

<鋼管>
鋼管3は、鋼管杭1を構成するものであり、その先端に螺旋状に切り欠かれた切欠き部3aを有している。本実施の形態において鋼管3に切欠き部3aを設けた理由は後述する。
<Steel pipe>
The steel pipe 3 constitutes the steel pipe pile 1, and has a notch portion 3a notched in a spiral shape at the tip thereof. The reason why the cutout portion 3a is provided in the steel pipe 3 in the present embodiment will be described later.

<螺旋状保持部材>
螺旋状保持部材5は、流体吐出用パイプ9を保持するための部材であり、鋼管3の先端内面側に突出すると共に切欠き部3aに沿って螺旋状に設けられている。
<Spiral holding member>
The spiral holding member 5 is a member for holding the fluid discharge pipe 9, and is provided in a spiral shape along the notch 3a while projecting toward the inner surface side of the tip of the steel pipe 3.

上記のように螺旋状保持部材5が鋼管3の先端内面側に突出し、その上面に流体吐出用パイプ9を配設しているので、鋼管杭1を図1に黒矢印で示す方向に回転しながら圧入する際、螺旋状保持部材5が地盤からの反作用力を受けながら掘り進むので、流体吐出用パイプ9が地盤から直接反作用力を受けることがない。
螺旋状保持部材5が通った部分は、図2(c)の二点鎖線で示すように、鋼管3の内径よりも内径が小さいドーナツ状に地盤がほぐされる。
As described above, the spiral holding member 5 projects toward the inner surface side of the tip of the steel pipe 3, and the fluid discharge pipe 9 is arranged on the upper surface thereof. Therefore, the steel pipe pile 1 is rotated in the direction indicated by the black arrow in FIG. While press-fitting, the spiral holding member 5 digs while receiving the reaction force from the ground, so that the fluid discharge pipe 9 does not receive the reaction force directly from the ground.
As shown by the alternate long and short dash line in FIG. 2C, the ground through which the spiral holding member 5 passes is loosened into a donut shape having an inner diameter smaller than the inner diameter of the steel pipe 3.

螺旋状保持部材5によって流体吐出用パイプ9が保持されて回転圧入時に流体吐出用パイプ9が地盤からの反作用力を受けないようにするためには、螺旋状保持部材5における鋼管3の先端内面側に突出する幅a(図2(b)参照)は、流体吐出用パイプ9の外径と同等、もしくは、それよりも若干大きくするのが好ましい。 In order to prevent the fluid discharge pipe 9 from receiving the reaction force from the ground during rotational press fitting by holding the fluid discharge pipe 9 by the spiral holding member 5, the inner surface of the tip of the steel pipe 3 in the spiral holding member 5 The width a protruding to the side (see FIG. 2B) is preferably equal to or slightly larger than the outer diameter of the fluid discharge pipe 9.

また、本実施の形態の螺旋状保持部材5の先端部には、地盤を掘削する掘削部5aが形成されている。掘削部5aは、図1に示すように水平に対して上方に傾斜する傾斜面を有しており、このような掘削部5aを設けることで地盤の掘削効率を向上させることができる。
掘削部5aによって掘削効率を向上させることで、流体の吐出圧力を低減することができる(例えば0.02MPa~1MPa程度)。
Further, an excavation portion 5a for excavating the ground is formed at the tip end portion of the spiral holding member 5 of the present embodiment. As shown in FIG. 1, the excavation portion 5a has an inclined surface that inclines upward with respect to the horizontal, and by providing such an excavation portion 5a, the excavation efficiency of the ground can be improved.
By improving the excavation efficiency by the excavation portion 5a, the discharge pressure of the fluid can be reduced (for example, about 0.02MPa to 1MPa).

螺旋状保持部材5の先端部に掘削部5aを設ける場合には、本実施の形態のように鋼管3に螺旋状の切欠き部3aを設けるのが好ましい。その理由は以下のとおりである。
上述したように、掘削部5aは水平に対して上方に傾斜する傾斜面を有しているので、回転圧入時において掘削部5aによって掘削された土は掘削部5aの傾斜面によってすくいあげられ、鋼管内部の上方に移動する。一方、鋼管杭1の内側の土は、鋼管内壁との摩擦によって鋼管杭1と共に下方に移動する。そのため、鋼管杭1の内側先端部では、掘削部5aによってすくいあげられて上方に移動する土と鋼管杭1と共に下方に移動する土が衝突することで土の締め固まりが発生し、当該部位で土による閉塞が生ずる。
When the excavated portion 5a is provided at the tip of the spiral holding member 5, it is preferable to provide the spiral notch 3a in the steel pipe 3 as in the present embodiment. The reason is as follows.
As described above, since the excavated portion 5a has an inclined surface that inclines upward with respect to the horizontal, the soil excavated by the excavated portion 5a at the time of rotational press-fitting is scooped up by the inclined surface of the excavated portion 5a, and the steel pipe is used. Move upwards inside. On the other hand, the soil inside the steel pipe pile 1 moves downward together with the steel pipe pile 1 due to friction with the inner wall of the steel pipe. Therefore, at the inner tip of the steel pipe pile 1, the soil that is scooped up by the excavation portion 5a and moves upward collides with the soil that moves downward together with the steel pipe pile 1, resulting in soil compaction at that portion. Occlusion due to.

この点、本実施の形態のように鋼管3に切欠き部3aを設けることで、図2(b)、図2(c)に示すように側面視で斜めの開口部10があるため、掘削部5aによってすくいあげられて上方に移動する土と鋼管杭1と共に下方に移動する土が衝突したとしても、開口部10が土の逃げ場となり、締め固まりが生じたとしても閉塞に至ることはない。そのため、土の閉塞による弊害を抑制することができる。 In this respect, by providing the notch 3a in the steel pipe 3 as in the present embodiment, as shown in FIGS. 2 (b) and 2 (c), there is an oblique opening 10 in the side view, so that excavation is performed. Even if the soil scooped up by the portion 5a and moves upward and the soil moving downward together with the steel pipe pile 1 collide, the opening 10 becomes a refuge for the soil, and even if compaction occurs, the blockage does not occur. Therefore, it is possible to suppress the harmful effects of soil blockage.

<流体供給用パイプ>
流体供給用パイプ7は、流体吐出用パイプ9に流体を供給するものであり鋼管3の上端から、鋼管3の内壁に沿って下方に向かって配設される。
前述したように、鋼管3の内面側に突出した螺旋状保持部材5によって鋼管3の内壁近傍の地盤がほぐされているので(図2(c)の二点鎖線参照)、鋼管3の内壁に沿って配設された流体供給用パイプ7は地盤から強い反作用力を受けることがない。従って、従来例と比べて流体供給用パイプ7やその取り付け部(配管バンドや溶接部等)の補強を低減することができる。
<Fluid supply pipe>
The fluid supply pipe 7 supplies a fluid to the fluid discharge pipe 9, and is arranged downward from the upper end of the steel pipe 3 along the inner wall of the steel pipe 3.
As described above, since the ground near the inner wall of the steel pipe 3 is loosened by the spiral holding member 5 protruding toward the inner surface side of the steel pipe 3 (see the two-point chain line in FIG. 2C), the inner wall of the steel pipe 3 is covered. The fluid supply pipe 7 arranged along the line does not receive a strong reaction force from the ground. Therefore, it is possible to reduce the reinforcement of the fluid supply pipe 7 and its attachment portion (piping band, welded portion, etc.) as compared with the conventional example.

なお、流体供給用パイプ7に供給する流体の例としては水または空気などが挙げられる。水または空気を用いれば所定の効果は得られるが、必要に応じてベントナイト溶水などの掘削液を用いてもよい。また、水と空気の混合物、掘削液と空気の混合物などを用いてもよい。 Examples of the fluid supplied to the fluid supply pipe 7 include water and air. Although the predetermined effect can be obtained by using water or air, an excavation liquid such as bentonite melt may be used if necessary. Further, a mixture of water and air, a mixture of excavation liquid and air, and the like may be used.

<流体吐出用パイプ>
流体吐出用パイプ9は、螺旋状保持部材5の上面に沿って配設されて流体供給用パイプ7から供給される流体を鋼管3の内側に吐出するものである。流体吐出用パイプ9の周面には流体を吐出するための流体吐出口9aが形成され、先端には流体を吐出する流体吐出口を有する吐出ノズル11が設けられている。
流体吐出口9aは、例えば2mm程度の穴を流体吐出用パイプ9に設けたものであり、流体吐出用パイプ9に通流する流体の一部が流体吐出口9aから吐出する。
また、流体吐出用パイプ9の先端に設けられた吐出ノズル11の流体吐出口からは、螺旋状保持部材5の先端部に設けられた掘削部5aの近傍に向けて流体が吐出される。
<Fluid discharge pipe>
The fluid discharge pipe 9 is arranged along the upper surface of the spiral holding member 5 and discharges the fluid supplied from the fluid supply pipe 7 to the inside of the steel pipe 3. A fluid discharge port 9a for discharging the fluid is formed on the peripheral surface of the fluid discharge pipe 9, and a discharge nozzle 11 having a fluid discharge port for discharging the fluid is provided at the tip thereof.
The fluid discharge port 9a is provided with a hole of, for example, about 2 mm in the fluid discharge pipe 9, and a part of the fluid flowing through the fluid discharge pipe 9 is discharged from the fluid discharge port 9a.
Further, the fluid is discharged from the fluid discharge port of the discharge nozzle 11 provided at the tip of the fluid discharge pipe 9 toward the vicinity of the excavation portion 5a provided at the tip of the spiral holding member 5.

上記のように構成された鋼管杭1を施工する際には、流体供給用パイプ7に流体である水、掘削液、空気、またはこれらの混合流体等を供給し、流体吐出口9a及び吐出ノズル11の流体吐出口から流体を吐出しながら鋼管杭1を回転圧入する。
その際、図1の白抜き矢印に示すように、流体吐出用パイプ9の上面に設けられた流体吐出口9aからは上方に向かって流体が吐出されるので、鋼管杭1の端部より上方の土砂と流体を混合することができ、従来例に比べて鋼管内奥の土砂詰まりを解消することができる。
When constructing the steel pipe pile 1 configured as described above, a fluid such as water, excavation liquid, air, or a mixed fluid thereof is supplied to the fluid supply pipe 7, and the fluid discharge port 9a and the discharge nozzle are supplied. The steel pipe pile 1 is rotationally press-fitted while discharging the fluid from the fluid discharge port of 11.
At that time, as shown by the white arrow in FIG. 1, since the fluid is discharged upward from the fluid discharge port 9a provided on the upper surface of the fluid discharge pipe 9, the fluid is discharged upward from the end of the steel pipe pile 1. It is possible to mix the earth and sand of the above and the fluid, and it is possible to eliminate the earth and sand clogging in the inner part of the steel pipe as compared with the conventional example.

また、流体吐出用パイプ9の下面に設けられた流体吐出口9aからは螺旋状保持部材5に向けて流体が吐出される。この場合にも流体吐出口9aの近傍の土砂と流体を混合することで土砂詰まりを解消することができる。また、螺旋状保持部材5に向けて流体を吐出することで螺旋状保持部材5を冷却することができるので、回転圧入時に生じる螺旋状保持部材5の損傷を防止することができる。 Further, the fluid is discharged toward the spiral holding member 5 from the fluid discharge port 9a provided on the lower surface of the fluid discharge pipe 9. In this case as well, the sediment clogging can be eliminated by mixing the sediment and the fluid in the vicinity of the fluid discharge port 9a. Further, since the spiral holding member 5 can be cooled by discharging the fluid toward the spiral holding member 5, it is possible to prevent damage to the spiral holding member 5 that occurs during rotational press fitting.

さらに、流体吐出用パイプ9の先端に設けられた吐出ノズル11からは螺旋状保持部材5の掘削部5a近傍に流体が吐出される。掘削部5aは鋼管杭1が回転圧入する際の掘削最前部となる部分であり、掘削部5aの近傍は未掘削の固い地盤(原地盤)であるから、この部分に流体を吐出することで、より地盤を軟らかくすることができて貫入抵抗の低減や土砂詰まり防止に効果的である。 Further, the fluid is discharged from the discharge nozzle 11 provided at the tip of the fluid discharge pipe 9 in the vicinity of the excavated portion 5a of the spiral holding member 5. The excavated portion 5a is a portion that becomes the foremost part of excavation when the steel pipe pile 1 is rotationally press-fitted, and the vicinity of the excavated portion 5a is unexcavated hard ground (original ground). The ground can be made softer, which is effective in reducing penetration resistance and preventing sediment clogging.

なお、本発明において、流体吐出口9aは流体吐出用パイプ9の周面に設けられればよく、その位置を限定するものではないが、流体吐出用パイプ9の側面に設けるよりも上述のように上面または下面に設ける方が土砂詰まり防止の効果が高くて好ましい。その理由は以下の通りである。
前述したように鋼管内壁との摩擦によって下方に移動した土と掘削されて鋼管内部に移動した土が衝突することで生じる土の締め固まりによって土閉塞が生じる。この点、流体吐出口9aを流体吐出用パイプ9の上面または下面に設けて流体を吐出することで、流体が鋼管内壁と土との境界面に浸入して鋼管内壁と土の摩擦力を低減し、鋼管内部の土の移動をし易くでき、鋼管内部での土の締め固まりが生じにくくなる。
これに対して、例えば鋼管径の中心側に流体吐出口9aを設けた場合には、鋼管径の中心側の土砂に向かって流体を吐出することになるので上記鋼管内壁と土の摩擦を低減する作用を十分に発揮できず、土の閉塞防止の効果が低い。
したがって、流体吐出用パイプ9の上面または下面、またはその両方に流体吐出口9aを設けると図1で説明したように土砂詰まり防止の効果が高く得られるので好ましい。
In the present invention, the fluid discharge port 9a may be provided on the peripheral surface of the fluid discharge pipe 9, and the position thereof is not limited, but as described above, rather than being provided on the side surface of the fluid discharge pipe 9. It is preferable to provide it on the upper surface or the lower surface because it is more effective in preventing sediment clogging. The reason is as follows.
As described above, soil blockage occurs due to the compaction of soil caused by the collision between the soil that has moved downward due to friction with the inner wall of the steel pipe and the soil that has been excavated and moved to the inside of the steel pipe. In this regard, by providing the fluid discharge port 9a on the upper surface or the lower surface of the fluid discharge pipe 9 to discharge the fluid, the fluid infiltrates into the interface between the inner wall of the steel pipe and the soil, and the frictional force between the inner wall of the steel pipe and the soil is reduced. However, the movement of the soil inside the steel pipe can be facilitated, and the compaction of the soil inside the steel pipe is less likely to occur.
On the other hand, for example, when the fluid discharge port 9a is provided on the center side of the steel pipe diameter, the fluid is discharged toward the earth and sand on the center side of the steel pipe diameter, so that the friction between the inner wall of the steel pipe and the soil is reduced. The effect of preventing soil blockage is low because it cannot fully exert its action.
Therefore, it is preferable to provide the fluid discharge port 9a on the upper surface, the lower surface, or both of the fluid discharge pipe 9 because the effect of preventing sediment clogging can be highly obtained as described with reference to FIG.

また、本発明において、流体吐出用パイプ9は流体供給用パイプ7の下端部から供給される流体を通流可能に設けられれば良く、その接続位置を限定するものではないが、図1に示すように流体吐出用パイプ9の上端に流体供給用パイプ7の下端部が接続されているのが好ましい。
上記のようにすることで、全ての流体吐出口9aよりも上方の位置から流体が供給されるので、流体を供給するための圧力に加えて重力も作用し、効率的に流体吐出口9aに流体を供給することができる。
Further, in the present invention, the fluid discharge pipe 9 may be provided so as to allow the fluid supplied from the lower end of the fluid supply pipe 7 to flow through, and the connection position thereof is not limited, but is shown in FIG. As described above, it is preferable that the lower end of the fluid supply pipe 7 is connected to the upper end of the fluid discharge pipe 9.
By doing the above, since the fluid is supplied from a position above all the fluid discharge ports 9a, gravity acts in addition to the pressure for supplying the fluid, and the fluid discharge port 9a is efficiently supplied. A fluid can be supplied.

また、前述のように回転圧入時には螺旋状保持部材5が流体吐出用パイプ9の保護部材としての役割を果たすので、従来例と比べて流体吐出用パイプ9やその取り付け部(配管バンドや溶接部等)の補強を低減することができる。 Further, as described above, since the spiral holding member 5 serves as a protective member for the fluid discharge pipe 9 at the time of rotational press fitting, the fluid discharge pipe 9 and its attachment portion (piping band and welded portion) are compared with the conventional example. Etc.) can be reduced.

以上のように本実施の形態においては、螺旋状保持部材5の上面に螺旋状に配設された流体吐出用パイプ9から流体を吐出しながら鋼管杭1を回転圧入するので、高さ方向に広く流体を吐出することができ、鋼管3の内部の土閉塞を効率的に防止して、貫入抵抗を抑えることができる。
さらに、従来例よりも設置が簡易であり、流体吐出用パイプ9が回転圧入中にも地盤から直接反作用力を受けることはないので、破壊の危険性も少ない。
As described above, in the present embodiment, the steel pipe pile 1 is rotationally press-fitted while discharging the fluid from the fluid discharge pipe 9 spirally arranged on the upper surface of the spiral holding member 5, so that the steel pipe pile 1 is rotationally press-fitted in the height direction. A wide range of fluid can be discharged, soil blockage inside the steel pipe 3 can be efficiently prevented, and penetration resistance can be suppressed.
Further, the installation is simpler than in the conventional example, and the fluid discharge pipe 9 does not receive a direct reaction force from the ground even during rotational press-fitting, so that there is less risk of destruction.

上記の説明では、流体吐出用パイプ9の先端に吐出ノズル11を設けた例を用いたが、本発明はこれに限られるものではなく、例えば図3に示すように流体供給用パイプ7を2本設けて、一方の先端に流体吐出用パイプ9を接続し、他方の先端に吐出ノズル11を設けるようにしてもよい。このように、吐出ノズル11に流体を供給する流体供給用パイプ7を流体吐出用パイプ9に流体を供給するものとは別に設けることで、吐出ノズル11から高い圧力で流体を吐出することができる。このとき、吐出ノズル11の位置は図1と同様に螺旋状保持部材5の先端近傍に設けるようにするのが好ましい。吐出ノズル11を螺旋状保持部材5の先端近傍に設けることで、前述したように回転圧入の最前部の地盤に流体を混合することができるので、貫入抵抗の低減や土砂詰まり防止に効果的である。また、図3の場合は、流体吐出用パイプ9の先端は、閉塞させて流体を吐出しない例を示している。もちろん、それに限らず、開口させて流体が吐出されるようにしてもよい。
なお、図3は流体供給用パイプ7を2本設けているが、例えば1本の流体供給用パイプ7を途中で分岐させて、分岐した一方を流体吐出用パイプ9、他方を吐出ノズル11に接続するようにしても良い。
In the above description, an example in which the discharge nozzle 11 is provided at the tip of the fluid discharge pipe 9 is used, but the present invention is not limited to this, and for example, as shown in FIG. 3, the fluid supply pipe 7 is 2 This may be provided so that the fluid discharge pipe 9 is connected to one tip and the discharge nozzle 11 is provided at the other tip. As described above, by providing the fluid supply pipe 7 for supplying the fluid to the discharge nozzle 11 separately from the pipe for supplying the fluid to the fluid discharge pipe 9, the fluid can be discharged from the discharge nozzle 11 at a high pressure. .. At this time, it is preferable that the position of the discharge nozzle 11 is provided near the tip of the spiral holding member 5 as in FIG. By providing the discharge nozzle 11 near the tip of the spiral holding member 5, the fluid can be mixed with the ground at the front of the rotary press-fitting as described above, which is effective in reducing the penetration resistance and preventing the clogging of sediment. be. Further, in the case of FIG. 3, the tip of the fluid discharge pipe 9 is closed to show an example in which the fluid is not discharged. Of course, the present invention is not limited to this, and the fluid may be opened to discharge the fluid.
Although two fluid supply pipes 7 are provided in FIG. 3, for example, one fluid supply pipe 7 is branched in the middle, one of which is branched to the fluid discharge pipe 9 and the other to the discharge nozzle 11. You may try to connect.

また、本発明に係る螺旋状保持部材5は、螺旋方向に必ずしも連続的である必要はなく、図4に示すように、単尺材5bが螺旋方向に所定の間隔を離して複数配置され、全体として螺旋状保持部材5を構成するものであってもよい。このように、螺旋状保持部材5が連続していない場合であっても、螺旋状保持部材5が図2(c)の二点鎖線に示したように鋼管3の内径よりも内径が小さいドーナツ状に地盤をほぐしながら掘り進むので、流体吐出用パイプ9が直接地盤の反作用力を受けることがなく、図1と同様の効果を得ることができる。 Further, the spiral holding member 5 according to the present invention does not necessarily have to be continuous in the spiral direction, and as shown in FIG. 4, a plurality of single length members 5b are arranged in the spiral direction at predetermined intervals. It may constitute the spiral holding member 5 as a whole. As described above, even when the spiral holding member 5 is not continuous, the spiral holding member 5 has an inner diameter smaller than the inner diameter of the steel pipe 3 as shown by the alternate long and short dash line in FIG. 2 (c). Since the digging is carried out while loosening the ground in a shape, the fluid discharge pipe 9 is not directly subjected to the reaction force of the ground, and the same effect as in FIG. 1 can be obtained.

土の取込み時の推進力(回転によって螺旋状保持部材5の張り出し部上を土が移動することで、鋼管に下向きの力がかかる)による圧入補助を期待するのであれば、螺旋状保持部材5の長さは、鋼管杭1全周のうち少なくとも50%以上であることが望ましい。これは、50%を下回ると、螺旋状保持部材5の張り出し部上に乗った土が、推進力を発揮する前に螺旋状保持部材5から落ちてしまうためである。 If you expect press-fitting assistance by the propulsive force at the time of taking in soil (a downward force is applied to the steel pipe by moving the soil on the overhanging portion of the spiral holding member 5 by rotation), the spiral holding member 5 It is desirable that the length of the steel pipe pile is at least 50% or more of the entire circumference of the steel pipe pile 1. This is because, when it is less than 50%, the soil on the overhanging portion of the spiral holding member 5 falls from the spiral holding member 5 before exerting the propulsive force.

なお、図1に示した例は、鋼管杭1の先端に一つの切欠き部3aを設け、これに沿うように略1周設けた螺旋状保持部材5の上面に流体吐出用パイプ9を配設したものであったが、本発明はこれに限られるものではない。例えば図5に示すように、鋼管杭1に切欠き部3aを二つ設け、各切欠き部3aに沿って設けられた2本の螺旋状保持部材5の上面にそれぞれ流体吐出用パイプ9を配設したものでもよい。
この場合、各螺旋状保持部材5の下側先端は鉛直方向の高さが揃っているのが好ましい。これによって、掘削時に螺旋状保持部材5の先端に作用する荷重が分散され、螺旋状保持部材5に対する負荷が小さくなり、螺旋状保持部材5の板厚等を薄くできるからである。
In the example shown in FIG. 1, one notch 3a is provided at the tip of the steel pipe pile 1, and the fluid discharge pipe 9 is arranged on the upper surface of the spiral holding member 5 provided substantially once along the notch 3a. Although it was provided, the present invention is not limited to this. For example, as shown in FIG. 5, two notches 3a are provided in the steel pipe pile 1, and a fluid discharge pipe 9 is provided on the upper surfaces of the two spiral holding members 5 provided along each notch 3a. It may be arranged.
In this case, it is preferable that the lower tips of the spiral holding members 5 have the same height in the vertical direction. This is because the load acting on the tip of the spiral holding member 5 during excavation is dispersed, the load on the spiral holding member 5 is reduced, and the plate thickness of the spiral holding member 5 can be reduced.

なお、図5は流体供給用パイプ7を2本設けてそれぞれに流体吐出用パイプ9を接続した例であるが、図3で説明したのと同様に、1本の流体供給用パイプ7を途中で分岐させて、分岐した流体供給用パイプ7をそれぞれ流体吐出用パイプ9に接続するようにしても良い。 Note that FIG. 5 is an example in which two fluid supply pipes 7 are provided and the fluid discharge pipes 9 are connected to each of them. However, as in the case of FIG. 3, one fluid supply pipe 7 is inserted in the middle. The branched fluid supply pipe 7 may be connected to each of the fluid discharge pipes 9.

なお、螺旋状保持部材5の取付態様として、図1~5では切欠き部3aを有する鋼管3の先端面に、螺旋状保持部材5の上面を当接させて取り付ける場合を例示したが、本発明はこれに限定されない。例えば、鋼管3の最も先端の内周壁に螺旋状保持部材5の側面を当接させるようにして取り付けても良い。この場合、図1~5の場合と比較すると、鋼管3の板厚分だけ螺旋状保持部材5が内側に移動した状態となる。この場合でも、鋼管周方向に螺旋状に延出していることで、同様に流体吐出用パイプ9を保護する効果を得ることができる。 As an example of mounting the spiral holding member 5, in FIGS. 1 to 5, a case where the upper surface of the spiral holding member 5 is brought into contact with the tip surface of the steel pipe 3 having the notch 3a is illustrated. The invention is not limited to this. For example, the side surface of the spiral holding member 5 may be attached so as to be in contact with the inner peripheral wall at the tip of the steel pipe 3. In this case, as compared with the cases of FIGS. 1 to 5, the spiral holding member 5 is in a state of being moved inward by the plate thickness of the steel pipe 3. Even in this case, the effect of protecting the fluid discharge pipe 9 can be similarly obtained by extending spirally in the circumferential direction of the steel pipe.

また、図1~図5に示した例は、鋼管3が切欠き部3aを1つ以上有する例であったが、本発明は先端に切欠き等のない通常の鋼管杭にも適用できる。 Further, the examples shown in FIGS. 1 to 5 are examples in which the steel pipe 3 has one or more notched portions 3a, but the present invention can also be applied to ordinary steel pipe piles having no notch at the tip.

なお、流体吐出用パイプ及び流体供給用パイプの名称は機能的な観点からつけたものであり、物理的に別部材を接続したものでもよいし、同一パイプを曲げて加工した一体物であってもよい。そして、流体吐出用パイプは、流体供給用パイプの下端部から供給される流体を通流可能に設けられておればよく、流体供給用パイプの下端部から供給される流体を通流可能に配される、または備えられる、または配設されるといういずれの表現にも含まれるものである。 The names of the fluid discharge pipe and the fluid supply pipe are given from a functional point of view, and may be physically connected to different members, or may be an integral product obtained by bending the same pipe. May be good. The fluid discharge pipe may be provided so that the fluid supplied from the lower end of the fluid supply pipe can flow through, and the fluid supplied from the lower end of the fluid supply pipe can flow through. It is included in any of the expressions being, provided, or arranged.

さらに、回転圧入される地盤の固さに応じて、上述した鋼管杭1の下端にバンド状の外側フリクションカッターや先端掘削刃等を設置してもよく、その場合には、鋼管杭1の施工能率がさらに高まることが期待される。 Further, a band-shaped outer friction cutter, a tip excavation blade, or the like may be installed at the lower end of the steel pipe pile 1 described above depending on the hardness of the ground to be rotationally press-fitted. It is expected that efficiency will be further improved.

また、上記の説明では、物の発明として鋼管杭1を説明したが、本実施の形態に係る鋼管杭1は以下のような設計方法によって設計される。
地盤に回転圧入する鋼管杭を設計する設計方法であって、
前記鋼管杭を構成する鋼管の先端に、該鋼管の内面側に突出すると共に連続的又は断続的な螺旋状の螺旋状保持部材を設定し、
流体を供給する1本又は複数本の流体供給用パイプを、前記鋼管の上端から該鋼管の内壁に沿って下方に向かうよう設定し、
周面に前記流体を吐出する流体吐出口が設定された流体吐出用パイプを、前記流体供給用パイプの下端部から供給される流体を通流可能かつ前記螺旋状保持部材の上面に沿うように設定する。
なお、本発明における鋼管杭の設計方法の各構成要件の順序は、上記の記載の順序に限定されるものではない。
Further, in the above description, the steel pipe pile 1 has been described as an invention of the product, but the steel pipe pile 1 according to the present embodiment is designed by the following design method.
It is a design method for designing steel pipe piles that are rotationally press-fitted into the ground.
At the tip of the steel pipe constituting the steel pipe pile, a continuous or intermittent spiral holding member is set so as to project toward the inner surface side of the steel pipe.
One or more fluid supply pipes for supplying fluid are set so as to go downward along the inner wall of the steel pipe from the upper end of the steel pipe.
A fluid discharge pipe having a fluid discharge port for discharging the fluid on the peripheral surface is allowed to flow through the fluid supplied from the lower end of the fluid supply pipe so as to be along the upper surface of the spiral holding member. Set.
The order of the constituent requirements of the steel pipe pile design method in the present invention is not limited to the order described above.

さらに、上記の説明では、物の発明として鋼管杭1を説明したが、本実施の形態に係る鋼管杭1は以下のような製造方法によって製造される。
地盤に回転圧入する鋼管杭を製造する製造方法であって、
前記鋼管杭を構成する鋼管の先端に、該鋼管の内面側に突出すると共に連続的又は断続的な螺旋状の螺旋状保持部材を形成し、
流体を供給する1本又は複数本の流体供給用パイプを、前記鋼管の上端から該鋼管の内壁に沿って下方に向かうように取り付け、
周面に前記流体を吐出する流体吐出口を形成した流体吐出用パイプを、前記流体供給用パイプの下端部から供給される流体を通流可能かつ前記螺旋状保持部材の上面に沿うように取り付ける。
なお、本発明における鋼管杭の製造方法の各構成要件の順序は、上記の記載の順序に限定されるものではない。
Further, in the above description, the steel pipe pile 1 has been described as an invention of the product, but the steel pipe pile 1 according to the present embodiment is manufactured by the following manufacturing method.
It is a manufacturing method for manufacturing steel pipe piles that are rotationally press-fitted into the ground.
At the tip of the steel pipe constituting the steel pipe pile, a continuous or intermittent spiral holding member is formed so as to project toward the inner surface side of the steel pipe.
One or more fluid supply pipes for supplying fluid are attached so as to go downward along the inner wall of the steel pipe from the upper end of the steel pipe.
A fluid discharge pipe having a fluid discharge port for discharging the fluid on the peripheral surface is attached so as to allow the fluid supplied from the lower end of the fluid supply pipe to flow and to be along the upper surface of the spiral holding member. ..
The order of the constituent requirements of the method for manufacturing a steel pipe pile in the present invention is not limited to the order described above.

1 鋼管杭
3 鋼管
3a 切欠き部
5 螺旋状保持部材
5a 掘削部
5b 単尺材
7 流体供給用パイプ
9 流体吐出用パイプ
9a 流体吐出口
10 開口部
11 吐出ノズル
1 Steel pipe pile 3 Steel pipe 3a Notch 5 Spiral holding member 5a Excavation part 5b Single scale material 7 Fluid supply pipe 9 Fluid discharge pipe 9a Fluid discharge port 10 Opening 11 Discharge nozzle

Claims (7)

地盤に回転圧入する鋼管杭であって、
前記鋼管杭を構成する鋼管の先端内面側に突出すると共に連続的又は断続的な螺旋状に設けられた螺旋状保持部材と、
前記鋼管の上端から、該鋼管の内壁に沿って下方に向かって配設されて流体を供給する1本又は複数本の流体供給用パイプと、
該流体供給用パイプの下端部から供給される流体を通流可能に設けられ、前記螺旋状保持部材の上面に沿って配設されるとともに周面に前記流体を吐出する流体吐出口が形成された流体吐出用パイプと、を備えたことを特徴とする鋼管杭。
It is a steel pipe pile that is rotationally press-fitted into the ground.
A spiral holding member that protrudes toward the inner surface of the tip of the steel pipe that constitutes the steel pipe pile and is provided in a continuous or intermittent spiral shape.
One or more fluid supply pipes arranged downward along the inner wall of the steel pipe to supply the fluid from the upper end of the steel pipe.
A fluid is provided so as to be able to flow through the fluid supplied from the lower end of the fluid supply pipe, and is arranged along the upper surface of the spiral holding member, and a fluid discharge port for discharging the fluid is formed on the peripheral surface. A steel pipe pile characterized by being equipped with a fluid discharge pipe.
前記鋼管は、その先端に螺旋状に切り欠かれた切欠き部を有し、
前記螺旋状保持部材は前記切欠き部に沿って設けられると共にその先端部に地盤を掘削する掘削部が形成されていることを特徴とする請求項1に記載の鋼管杭。
The steel pipe has a notch portion spirally cut out at its tip, and has a notch portion.
The steel pipe pile according to claim 1, wherein the spiral holding member is provided along the notch and an excavation portion for excavating the ground is formed at the tip thereof.
流体を吐出する流体吐出口を有する吐出ノズルを前記流体吐出用パイプの先端に設けたことを特徴とする請求項1又は2に記載の鋼管杭。 The steel pipe pile according to claim 1 or 2, wherein a discharge nozzle having a fluid discharge port for discharging the fluid is provided at the tip of the fluid discharge pipe. 流体を吐出する流体吐出口を有する吐出ノズルを前記螺旋状保持部材の先端近傍に有し、該吐出ノズルに流体を供給する流体供給用パイプを前記流体吐出用パイプに流体を供給するものとは別に設けたことを特徴とする請求項1又は2に記載の鋼管杭。 A discharge nozzle having a fluid discharge port for discharging a fluid is provided in the vicinity of the tip of the spiral holding member, and a fluid supply pipe for supplying the fluid to the discharge nozzle is used to supply the fluid to the fluid discharge pipe. The steel pipe pile according to claim 1 or 2, characterized in that it is provided separately. 請求項1乃至4のいずれかに記載の鋼管杭を地盤に回転圧入する鋼管杭の施工方法であって、
鋼管杭を回転圧入する際に、前記流体供給用パイプに流体を供給し、前記流体吐出口から前記流体を吐出することを特徴とする鋼管杭の施工方法。
A method for constructing a steel pipe pile in which the steel pipe pile according to any one of claims 1 to 4 is rotationally press-fitted into the ground.
A method for constructing a steel pipe pile, which comprises supplying a fluid to the fluid supply pipe and discharging the fluid from the fluid discharge port when the steel pipe pile is rotationally press-fitted.
地盤に回転圧入する鋼管杭を設計する設計方法であって、
前記鋼管杭を構成する鋼管の先端に、該鋼管の内面側に突出すると共に連続的又は断続的な螺旋状の螺旋状保持部材を設定し、
流体を供給する1本又は複数本の流体供給用パイプを、前記鋼管の上端から該鋼管の内壁に沿って下方に向かうよう設定し、
周面に前記流体を吐出する流体吐出口が設定された流体吐出用パイプを、前記流体供給用パイプの下端部から供給される流体を通流可能かつ前記螺旋状保持部材の上面に沿うように設定する、ことを特徴とする鋼管杭の設計方法。
It is a design method for designing steel pipe piles that are rotationally press-fitted into the ground.
At the tip of the steel pipe constituting the steel pipe pile, a continuous or intermittent spiral holding member is set so as to project toward the inner surface side of the steel pipe.
One or more fluid supply pipes for supplying fluid are set so as to go downward along the inner wall of the steel pipe from the upper end of the steel pipe.
A fluid discharge pipe having a fluid discharge port for discharging the fluid on the peripheral surface is allowed to flow through the fluid supplied from the lower end of the fluid supply pipe and is along the upper surface of the spiral holding member. A method of designing a steel pipe pile, which is characterized by being set.
地盤に回転圧入する鋼管杭を製造する製造方法であって、
前記鋼管杭を構成する鋼管の先端に、該鋼管の内面側に突出すると共に連続的又は断続的な螺旋状の螺旋状保持部材を形成し、
流体を供給する1本又は複数本の流体供給用パイプを、前記鋼管の上端から該鋼管の内壁に沿って下方に向かうように取り付け、
周面に前記流体を吐出する流体吐出口を形成した流体吐出用パイプを、前記流体供給用パイプの下端部から供給される流体を通流可能かつ前記螺旋状保持部材の上面に沿うように取り付ける、ことを特徴とする鋼管杭の製造方法。
It is a manufacturing method for manufacturing steel pipe piles that are rotationally press-fitted into the ground.
At the tip of the steel pipe constituting the steel pipe pile, a continuous or intermittent spiral holding member is formed so as to project toward the inner surface side of the steel pipe.
One or more fluid supply pipes for supplying fluid are attached so as to go downward along the inner wall of the steel pipe from the upper end of the steel pipe.
A fluid discharge pipe having a fluid discharge port for discharging the fluid on the peripheral surface is attached so as to allow the fluid supplied from the lower end of the fluid supply pipe to flow and to be along the upper surface of the spiral holding member. , A method of manufacturing a steel pipe pile.
JP2020209868A 2020-12-18 2020-12-18 Steel pipe pile, construction method of the steel pipe pile, design method of the steel pipe pile, manufacturing method of the steel pipe pile Active JP7302585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020209868A JP7302585B2 (en) 2020-12-18 2020-12-18 Steel pipe pile, construction method of the steel pipe pile, design method of the steel pipe pile, manufacturing method of the steel pipe pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020209868A JP7302585B2 (en) 2020-12-18 2020-12-18 Steel pipe pile, construction method of the steel pipe pile, design method of the steel pipe pile, manufacturing method of the steel pipe pile

Publications (2)

Publication Number Publication Date
JP2022096735A true JP2022096735A (en) 2022-06-30
JP7302585B2 JP7302585B2 (en) 2023-07-04

Family

ID=82165368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020209868A Active JP7302585B2 (en) 2020-12-18 2020-12-18 Steel pipe pile, construction method of the steel pipe pile, design method of the steel pipe pile, manufacturing method of the steel pipe pile

Country Status (1)

Country Link
JP (1) JP7302585B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933410A (en) * 1972-07-28 1974-03-27
JPS54145903U (en) * 1978-03-28 1979-10-11
JPS56100927A (en) * 1980-01-10 1981-08-13 Kubota Ltd Driving method of pile
JPS60173218A (en) * 1984-02-14 1985-09-06 Kajima Corp Method and apparatus for settling object into ground
JP2001342624A (en) * 2000-03-29 2001-12-14 Nippon Steel Corp Rotary jacked pile, method for burying rotary jacked pile, and foot protection method for for the rotary jacked pile
JP2015137472A (en) * 2014-01-21 2015-07-30 株式会社技研製作所 Steel pipe pile and press-in method for the same
JP2017025653A (en) * 2015-07-27 2017-02-02 株式会社技研製作所 Steel pipe pile, press-fitting method of the same, and steel pipe pile continuous wall
JP2018123670A (en) * 2017-02-01 2018-08-09 株式会社技研製作所 Fluid injection device of steel pipe pile for rotation press fit and rotation press fit construction method of steel pipe pile
EP3561181A1 (en) * 2018-04-23 2019-10-30 Ørsted Wind Power A/S Foundation for a structure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933410A (en) * 1972-07-28 1974-03-27
JPS54145903U (en) * 1978-03-28 1979-10-11
JPS56100927A (en) * 1980-01-10 1981-08-13 Kubota Ltd Driving method of pile
JPS60173218A (en) * 1984-02-14 1985-09-06 Kajima Corp Method and apparatus for settling object into ground
JP2001342624A (en) * 2000-03-29 2001-12-14 Nippon Steel Corp Rotary jacked pile, method for burying rotary jacked pile, and foot protection method for for the rotary jacked pile
JP2015137472A (en) * 2014-01-21 2015-07-30 株式会社技研製作所 Steel pipe pile and press-in method for the same
JP2017025653A (en) * 2015-07-27 2017-02-02 株式会社技研製作所 Steel pipe pile, press-fitting method of the same, and steel pipe pile continuous wall
JP2018123670A (en) * 2017-02-01 2018-08-09 株式会社技研製作所 Fluid injection device of steel pipe pile for rotation press fit and rotation press fit construction method of steel pipe pile
EP3561181A1 (en) * 2018-04-23 2019-10-30 Ørsted Wind Power A/S Foundation for a structure

Also Published As

Publication number Publication date
JP7302585B2 (en) 2023-07-04

Similar Documents

Publication Publication Date Title
JP4796477B2 (en) Steel pipe soil cement pile construction method and composite pile construction method
JP6764691B2 (en) Caisson skeleton subsidence device
JP2023184610A (en) Agitator
JP4988061B1 (en) Ground improvement device and ground improvement method
JP2022096735A (en) Steel pipe pile, construction method of the steel pipe pile, design method of the steel pipe pile, and manufacturing method of the steel pipe pile
JP5693520B2 (en) Method for discharging earth and sand inside the joint of steel pipe sheet piles
JP4242251B2 (en) Open-ended steel pipe pile for rotary press-in and rotary press-in method for open-ended steel pipe pile
KR102103556B1 (en) Steel pipe for propulsion used in S.P.M method
JP3735225B2 (en) Method of driving steel pipe piles into bedrock
JP2009091807A (en) Rotary penetration pile
JP2013213365A (en) Cutting bit and shield machine using the cutting bit
KR102021544B1 (en) Coupler for Drill Stirrer
JP5208624B2 (en) Excavator capable of ground improvement and ground improvement method using the same
JP6560105B2 (en) Method for forming pressure-resistant supporting ground body in pipe roof
JP2008267123A (en) Tip-closed pile and excavation head for composing tip-closed pile
JP2022040470A (en) Steel pipe, steel pipe structure and construction method thereof
JPH0782744A (en) Pile-drawing method and casing pipe used therefor
JP5573235B2 (en) Jet agitator and ground improvement method
JP2004190313A (en) Winged steel pipe pile
JP6216526B2 (en) Steel pipe head attachment
JPS5939039B2 (en) Shield excavation method and device
JP5156404B2 (en) Excavator
JP7224216B2 (en) Attitude control method when caisson frame is submerged
JP2018080513A (en) Superhigh pressure injection nozzle, boring machine, cutting obstacle system and method of using superhigh pressure injection nozzle
CN107956232A (en) Lithosphere ground is crushed with multibuchet hook-type bucket device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230605

R150 Certificate of patent or registration of utility model

Ref document number: 7302585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150