JP2022095547A - Endoscope - Google Patents

Endoscope Download PDF

Info

Publication number
JP2022095547A
JP2022095547A JP2021189825A JP2021189825A JP2022095547A JP 2022095547 A JP2022095547 A JP 2022095547A JP 2021189825 A JP2021189825 A JP 2021189825A JP 2021189825 A JP2021189825 A JP 2021189825A JP 2022095547 A JP2022095547 A JP 2022095547A
Authority
JP
Japan
Prior art keywords
optical fiber
transmission cable
endoscope
cable
tubular body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021189825A
Other languages
Japanese (ja)
Other versions
JP7033364B1 (en
Inventor
長武 宮本
Nagatake Miyamoto
広一郎 原山
Koichiro Harayama
正樹 小平
Masaki Kodaira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spi Engineering Co Ltd
Original Assignee
Spi Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spi Engineering Co Ltd filed Critical Spi Engineering Co Ltd
Application granted granted Critical
Publication of JP7033364B1 publication Critical patent/JP7033364B1/en
Publication of JP2022095547A publication Critical patent/JP2022095547A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

To provide a small-sized endoscope cable having a structure that can increase an amount of light and increase the length of a cable compared with those in a conventional structure.SOLUTION: An endoscope cable 1 is configured so that an imaging part 2, a transmission cable 3, and a connector part 4 are arranged sequentially in a row. The transmission cable 3 includes a plurality of insulation electric wires 6 for connecting an image sensor 5 integrated into the imaging part 2 to external equipment M1, and a plurality of optical fibers 7 for illuminating an object. An LED 9 is integrated in the connector part 4 as a light source for the optical fibers 7. Emission sides of the optical fibers 7 are disposed at a plurality of places outside the image sensor 5 on one end side of the transmission cable 3. The central part of the transmission cable 3 is covered with a jacket 8 in a state where the optical fibers 7 are wound spirally in a longitudinal direction outside the insulation electric wires 6 aggregating around an axis line, and are covered with a heat shrinkable tube 16.SELECTED DRAWING: Figure 1

Description

本発明は、内視鏡ケーブル、及び内視鏡に関する。 The present invention relates to an endoscope cable and an endoscope.

内視鏡のうち、観察対象に光を照射し反射光をイメージセンサにて受光し電気信号に変換してモニタ等に画像表示する構成は、短時間で効率的に観察対象を観察できるとともに観察画像のデータ保存が容易であることから、工業用途や医療用途で広く利用されている。 Of the endoscopes, the configuration that irradiates the observation target with light, receives the reflected light with an image sensor, converts it into an electrical signal, and displays the image on a monitor, etc., allows the observation target to be observed efficiently in a short time and is observed. Since it is easy to store image data, it is widely used in industrial and medical applications.

従来、固体撮像素子の周縁部に連通路を設けて光ファイバ束を挿通、配設した内視鏡が提案されている(特許文献1:特開昭60-088923号公報)。また、CMOSカメラの外周に光ファイバ束を配して当該光ファイバ束の外周に円形保護管を配した撮像装置が提案されている(特許文献2:特開2017-099485号公報)。また、カテーテル用のガイドワイヤを通す孔を設けたホルダに撮像素子を配するとともに当該撮像素子の両側に光ファイバ配した内視鏡が提案されている(特許文献3:特開2020-010744号公報)。市販の内視鏡としては、超極細外径のケーブルを備えたものがある(非特許文献1:「超極細工業用内視鏡カタログ」インターネット<URL:https://www.spieng.com/product/pdf/catalog#0.95#1.8.pdf>)。 Conventionally, there has been proposed an endoscope in which a communication path is provided at the peripheral edge of a solid-state image pickup device and an optical fiber bundle is inserted and arranged (Patent Document 1: Japanese Patent Application Laid-Open No. 60-088923). Further, there has been proposed an image pickup apparatus in which an optical fiber bundle is arranged on the outer periphery of a CMOS camera and a circular protective tube is arranged on the outer periphery of the optical fiber bundle (Patent Document 2: Japanese Patent Application Laid-Open No. 2017-099485). Further, there has been proposed an endoscope in which an image pickup element is arranged in a holder provided with a hole for passing a guide wire for a catheter and optical fibers are arranged on both sides of the image pickup element (Patent Document 3: Japanese Patent Application Laid-Open No. 2020-01744). Gazette). Some commercially available endoscopes are equipped with an ultrafine outer diameter cable (Non-Patent Document 1: "Ultrafine Industrial Endoscope Catalog" Internet <URL: https://www.spieng.com/ product / pdf / catalog # 0.95 # 1.8.pdf>).

特開昭60-088923号公報Japanese Unexamined Patent Publication No. 60-08923 特開2017-099485号公報Japanese Unexamined Patent Publication No. 2017-099485 特開2020-010744号公報Japanese Unexamined Patent Publication No. 2020-01744

「超極細工業用内視鏡カタログ」インターネット<URL:https://www.spieng.com/product/pdf/catalog#0.95#1.8.pdf>"Catalog for ultra-fine industrial endoscopes" Internet <URL: https://www.spieng.com/product/pdf/catalog#0.95#1.8.pdf>

近年、内視鏡の需要はより高まっており、小型サイズであるとともに、細部を観察するための光量アップや観察位置などの観察条件に応じてケーブルを長くしたいとの市場からの要求がある。しかし、現行の内視鏡ケーブルは構造上、小型サイズと、光量アップおよびケーブルを長くすることの両立が困難であった。 In recent years, the demand for endoscopes has been increasing, and there is a demand from the market that the size of the endoscope is small and the cable is lengthened according to the observation conditions such as the increase in the amount of light for observing the details and the observation position. However, due to the structure of the current endoscope cable, it is difficult to achieve both a small size, an increased amount of light, and a long cable.

本発明は、上記事情に鑑みてなされ、小型サイズであるとともに、従来構造よりも光量アップおよびケーブルを長くすることが可能な構造の内視鏡ケーブルを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an endoscope cable having a small size and a structure capable of increasing the amount of light and lengthening the cable as compared with the conventional structure.

一実施形態として、以下に開示する解決策により、前記課題を解決する。 As an embodiment, the above-mentioned problem is solved by the solution disclosed below.

本発明に係る内視鏡ケーブルは、撮像部と伝送ケーブルとコネクタ部とが順に連なって構成され、前記伝送ケーブルは前記撮像部に内蔵されたイメージセンサを外部機器に接続するための複数の絶縁電線と対象物への照明のための複数の光ファイバとを有し、前記光ファイバの光源としてLEDが前記コネクタ部に内蔵されており、前記伝送ケーブルの一端側は前記イメージセンサの外側における複数個所に前記光ファイバの出射側が配されており、前記伝送ケーブルの中央部は軸線周りに集合した前記絶縁電線の外側に前記光ファイバが長手方向に螺旋状に巻かれて熱収縮チューブに覆われた状態で外被に覆われている構成であることを特徴とする。 The endoscope cable according to the present invention is configured by connecting an image pickup unit, a transmission cable, and a connector portion in order, and the transmission cable has a plurality of insulations for connecting an image sensor built in the image pickup unit to an external device. It has an electric wire and a plurality of optical fibers for illuminating an object, an LED is built in the connector portion as a light source of the optical fiber, and one end side of the transmission cable is a plurality of outside the image sensor. The emission side of the optical fiber is arranged at a location, and the central portion of the transmission cable is covered with a heat-shrinkable tube by winding the optical fiber spirally in the longitudinal direction on the outside of the insulated wire gathered around the axis. It is characterized in that it is covered with an outer cover in a state of being covered.

この構成によれば、複数の光ファイバを設けたことで光量アップが図れる。螺旋状に巻かれた光ファイバは熱収縮チューブに覆われているので、ほつれが防止できるとともに、伝送ケーブルの組立が容易にできる。そして、熱収縮チューブにて引き締められて外被に覆われた二重構造にしたことで細くて丈夫な構造にできる。また、光ファイバの光源としてLEDがコネクタ部に内蔵されているので、小型サイズであるとともに、伝送ケーブルを長くした構成においても高い柔軟性を有する構成にできる。したがって、入り組んだ狭い場所の対象物に対して撮像部を近づけることができる。 According to this configuration, the amount of light can be increased by providing a plurality of optical fibers. Since the spirally wound optical fiber is covered with a heat-shrinkable tube, fraying can be prevented and the transmission cable can be easily assembled. Then, by making it a double structure that is tightened with a heat-shrinkable tube and covered with an outer cover, a thin and durable structure can be obtained. Further, since the LED is built in the connector portion as the light source of the optical fiber, the size can be small and the configuration can have high flexibility even in the configuration where the transmission cable is long. Therefore, the image pickup unit can be brought closer to an object in a complicated and narrow space.

前記絶縁電線の外周はテープが巻回された状態で前記光ファイバの入射側と分岐している構成であり、前記熱収縮チューブはエラストマー製であり、前記外被はシリコーン製であることが好ましい。この構成によれば、伝送ケーブルの他端側を光ファイバの入射側の束とテープ巻きされた絶縁電線とに分岐したことで、コネクタ部の組立が容易にできる。そして、エラストマー製の熱収縮チューブとシリコーン製の外被との二重構造にしたことで伝送ケーブルに必要な伸びや曲げ性やキンク性が得られるとともに、滅菌処理も容易にできる。 It is preferable that the outer periphery of the insulated wire is branched from the incident side of the optical fiber in a state where the tape is wound, the heat-shrinkable tube is made of an elastomer, and the jacket is made of silicone. .. According to this configuration, the other end side of the transmission cable is branched into a bundle on the incident side of the optical fiber and an insulated wire wound with tape, so that the connector portion can be easily assembled. The double structure of the heat-shrinkable tube made of elastomer and the outer cover made of silicone provides the stretchability, bendability, and kinkability required for the transmission cable, and can be easily sterilized.

前記撮像部は前記イメージセンサを囲んで開口部が多角形状の第1筒状体が配されており、前記第1筒状体の外側に前記光ファイバの出射側が配されており、前記光ファイバの出射側を囲んで第2筒状体が配されており、前記コネクタ部は前記光ファイバの入射側の束を囲んで第3筒状体が配されている構成であることが好ましい。この構成によれば、第1筒状体と第2筒状体とによってイメージセンサおよび光ファイバを保護するとともに位置決めすることが容易にできる。尚且つ、光ファイバの入射側の束を囲んで第3筒状体が配された状態で効率的にLEDからの光を入射させることが容易にできる。そして、一つのLEDにすることで、合理的かつ小型にできる。前記第1筒状体は、開口部をイメージセンサの外形に対応させた形状にしており、一例として、開口部は四角形状である。前記第2筒状体は、開口部を入り組んだ狭い場所に近づけやすい形状にしており、一例として、開口部は円形状である。前記第3筒状体は、開口部をLEDの出射面に対応させた形状にしており、一例として、開口部は円形状である。 In the image pickup unit, a first tubular body having a polygonal opening is arranged so as to surround the image sensor, and an emission side of the optical fiber is arranged outside the first tubular body, and the optical fiber is arranged. It is preferable that the second tubular body is arranged so as to surround the emission side of the optical fiber, and the connector portion is arranged so that the third tubular body is arranged so as to surround the bundle on the incident side of the optical fiber. According to this configuration, the image sensor and the optical fiber can be easily protected and positioned by the first cylindrical body and the second tubular body. Moreover, it is possible to efficiently inject the light from the LED in a state where the third tubular body is arranged so as to surround the bundle on the incident side of the optical fiber. And, by using one LED, it can be made rational and compact. The first cylindrical body has an opening having a shape corresponding to the outer shape of the image sensor, and as an example, the opening has a quadrangular shape. The second cylindrical body has a shape that makes it easy to approach a narrow place where the opening is complicated, and as an example, the opening has a circular shape. The third cylindrical body has an opening corresponding to the emission surface of the LED, and as an example, the opening has a circular shape.

一例として、前記伝送ケーブルは軸線上に前記絶縁電線の導体よりもヤング率の大きな材質からなる芯線が配されている。この構成によれば、伝送ケーブルを長くした場合においても当該伝送ケーブルに求められる柔軟性を活かして入り組んだ狭い場所の対象物に撮像部を近づけるとともに当該伝送ケーブルの復元性を高めることが容易にできるので伝送ケーブルの外径を小さくするとともに長さを長くすることが容易にできる。一例として前記芯線はピアノ線である。ここで、前記中央部の軸線上は空洞または樹脂若しくは前記絶縁電線の導体よりもヤング率の小さな材質からなる芯材にする場合がある。 As an example, in the transmission cable, a core wire made of a material having a Young's modulus larger than that of the conductor of the insulated wire is arranged on the axis. According to this configuration, even when the transmission cable is lengthened, it is easy to take advantage of the flexibility required for the transmission cable to bring the image pickup unit closer to an object in a complicated narrow space and to improve the resilience of the transmission cable. Therefore, it is possible to easily reduce the outer diameter of the transmission cable and increase the length. As an example, the core wire is a piano wire. Here, the central axis may be a hollow or a core material made of resin or a material having a Young's modulus smaller than that of the conductor of the insulated wire.

本発明によれば、複数の光ファイバを設けたことで光量アップが図れる。螺旋状に巻かれた光ファイバは熱収縮チューブに覆われているので、ほつれが防止できるとともに、伝送ケーブルの組立が容易にできる。そして、熱収縮チューブにて引き締められて外被に覆われた二重構造にしたことで細くて丈夫な構造にできる。また、光ファイバの光源としてLEDがコネクタ部に内蔵されているので、小型サイズであるとともに、伝送ケーブルを長くした構成においても高い柔軟性を有する構成にできる。したがって、入り組んだ狭い場所の対象物に対して撮像部を近づけることができ、従来品よりも使い勝手がよくて細部を観察することが可能な内視鏡が実現できる。 According to the present invention, the amount of light can be increased by providing a plurality of optical fibers. Since the spirally wound optical fiber is covered with a heat-shrinkable tube, fraying can be prevented and the transmission cable can be easily assembled. Then, by making it a double structure that is tightened with a heat-shrinkable tube and covered with an outer cover, a thin and durable structure can be obtained. Further, since the LED is built in the connector portion as the light source of the optical fiber, the size can be small and the configuration can have high flexibility even in the configuration where the transmission cable is long. Therefore, it is possible to bring the image pickup unit closer to an object in a complicated and narrow space, and it is possible to realize an endoscope that is easier to use than the conventional product and can observe details.

図1は本発明の実施形態に係る内視鏡ケーブルの例を示す概略の正面図である。FIG. 1 is a schematic front view showing an example of an endoscope cable according to an embodiment of the present invention. 図2Aは図1を撮像部の先端側から視た概略の平面図であり、図2Bは図1における撮像部の先端側の概略の縦断面図である。2A is a schematic plan view of FIG. 1 as viewed from the tip end side of the imaging unit, and FIG. 2B is a schematic vertical cross-sectional view of the tip end side of the imaging unit in FIG. 図3Aは図1における伝送ケーブルの第1例を示す概略のIIIA-IIIA断面図であり、図3Bは図1におけるコネクタ部の概略の内部構造図である。3A is a schematic cross-sectional view taken along the line IIIA-IIIA showing the first example of the transmission cable in FIG. 1, and FIG. 3B is a schematic internal structural view of the connector portion in FIG. 図4Aは伝送ケーブルの第2例を示す横断面図であり、図4Bは伝送ケーブルの第3例を示す横断面図である。4A is a cross-sectional view showing a second example of the transmission cable, and FIG. 4B is a cross-sectional view showing the third example of the transmission cable. 図5は本発明の実施形態に係る内視鏡ケーブルを適用した内視鏡の例を示す図である。FIG. 5 is a diagram showing an example of an endoscope to which the endoscope cable according to the embodiment of the present invention is applied.

本発明の実施形態について図面を参照して以下に詳しく説明する。本実施形態は、工場等の製造ラインや製品の不具合解析室、または医療現場などで用いられる内視鏡に適用可能な内視鏡ケーブル1である。図1に示すように、内視鏡ケーブル1は、撮像部2と伝送ケーブル3とコネクタ部4とが順に連なって構成されている。伝送ケーブル3は撮像部2に内蔵されたイメージセンサ5を外部機器M1に接続するための複数の絶縁電線6と対象物への照明のための複数の光ファイバ7とを有している。イメージセンサ5は一例としてCMOSセンサである。外部機器M1は一例としてイメージセンサ5からの出力信号を映像信号に変換する処理回路と当該映像信号に基づいて画像表示するディスプレイモニタを備える。 Embodiments of the present invention will be described in detail below with reference to the drawings. This embodiment is an endoscope cable 1 applicable to an endoscope used in a manufacturing line such as a factory, a defect analysis room for products, or a medical site. As shown in FIG. 1, the endoscope cable 1 is configured by connecting an image pickup unit 2, a transmission cable 3, and a connector unit 4 in order. The transmission cable 3 has a plurality of insulated wires 6 for connecting the image sensor 5 built in the image pickup unit 2 to the external device M1 and a plurality of optical fibers 7 for illuminating the object. The image sensor 5 is, for example, a CMOS sensor. As an example, the external device M1 includes a processing circuit that converts an output signal from the image sensor 5 into a video signal, and a display monitor that displays an image based on the video signal.

図2Aは図1を撮像部2の先端側から視た概略の平面図であり、図2Bは図1における撮像部2の先端側の概略の縦断面図である。撮像部2の先端側において、伝送ケーブル3の一端側はイメージセンサ5の外側における複数個所に光ファイバ7の出射側7bが配されている。図2Aの例では、撮像部2はイメージセンサ5を囲んで開口部が四角形状の第1筒状体11が配されており、第1筒状体11の外側の4つの側面にそれぞれ光ファイバ7の出射側7bが配されている。そして、光ファイバ7の出射側7bを囲んで開口部が円形状の第2筒状体12が配されており、伝送ケーブル3の外被8と第2筒状体12の外側面との両方を囲んで開口部が円形状の第4筒状体14が配されている。外被8と第4筒状体14とは、一例として接着剤によって接着固定される。なお、上記構成に限定されず、第1筒状体11の外側の側面のうちの対向する2つの側面にそれぞれ光ファイバ7の出射側7bが配されている場合がある。したがって、光ファイバ7の出射側7bは撮像部2の外側側面に沿って2箇所ないしは4箇所で配設されている。なお、第1筒状体11の開口部は四角形状に限られず、六角形状や八角形状など既知の多角形状にする場合がある。 2A is a schematic plan view of FIG. 1 as viewed from the tip end side of the image pickup unit 2, and FIG. 2B is a schematic vertical sectional view of the tip end side of the image pickup unit 2 in FIG. On the tip end side of the image pickup unit 2, the emission side 7b of the optical fiber 7 is arranged at a plurality of places on the outside of the image sensor 5 on one end side of the transmission cable 3. In the example of FIG. 2A, the image pickup unit 2 surrounds the image sensor 5 and has a first cylindrical body 11 having a rectangular opening, and optical fibers are provided on four outer side surfaces of the first cylindrical body 11. The emission side 7b of 7 is arranged. A second cylindrical body 12 having a circular opening is arranged so as to surround the emission side 7b of the optical fiber 7, and both the outer cover 8 of the transmission cable 3 and the outer surface of the second tubular body 12 are arranged. A fourth cylindrical body 14 having a circular opening is arranged so as to surround the above. The outer cover 8 and the fourth tubular body 14 are adhesively fixed by an adhesive as an example. The configuration is not limited to the above, and the emission side 7b of the optical fiber 7 may be arranged on each of the two opposing side surfaces of the outer side surface of the first tubular body 11. Therefore, the emission side 7b of the optical fiber 7 is arranged at two or four locations along the outer side surface of the image pickup unit 2. The opening of the first cylindrical body 11 is not limited to a quadrangular shape, and may be a known polygonal shape such as a hexagonal shape or an octagonal shape.

図2Aの例では、第1筒状体11の側面の一部は、光ファイバ7の出射側7bが配されている場所と光ファイバ7の出射側7bが配されている場所とに光ファイバ7が配されていない箇所があり、イメージセンサ5と絶縁電線6との接続部分が視認可能な隙間が形成されている。これにより、前記隙間を利用してイメージセンサ5と絶縁電線6との半田付けなどの電気接続が容易にできる。図2Bに示すように、軸線P1に対して第1筒状体11、第2筒状体12及び第4筒状体14は回転対称配置になっている。第1筒状体11と第2筒状体12は、それぞれニッケル、銅、アルミニウム、チタン、ステンレス、鉄、またはこれらの合金からなる。また、必要に応じて、高い導電率や高い摺動性を確保するための金属めっきが施される。第1筒状体11はイメージセンサ5と光ファイバ7とを区画しており、第1筒状体11と第2筒状体12とを組み合わせたことで、光ファイバ7を位置決めしつつ熱伝導作用によって撮像部2の温度上昇が防止できる。第4筒状体14はニッケル、銅、アルミニウム、チタン、ステンレス、鉄、またはこれらの合金、若しくはプラスチックなどからなる。なお、第2筒状体12を延設して光ファイバ7を位置決めしつつ外被8を接着固定することで、第4筒状体14を省いた構成にすることも可能である。 In the example of FIG. 2A, a part of the side surface of the first tubular body 11 is an optical fiber at a place where the emission side 7b of the optical fiber 7 is arranged and a place where the emission side 7b of the optical fiber 7 is arranged. There is a place where the 7 is not arranged, and a gap is formed in which the connection portion between the image sensor 5 and the insulated wire 6 can be visually recognized. As a result, electrical connection such as soldering between the image sensor 5 and the insulated wire 6 can be easily performed by utilizing the gap. As shown in FIG. 2B, the first cylindrical body 11, the second tubular body 12, and the fourth tubular body 14 are arranged in rotational symmetry with respect to the axis P1. The first tubular body 11 and the second tubular body 12 are made of nickel, copper, aluminum, titanium, stainless steel, iron, or an alloy thereof, respectively. Further, if necessary, metal plating is applied to ensure high conductivity and high slidability. The first tubular body 11 partitions the image sensor 5 and the optical fiber 7, and by combining the first tubular body 11 and the second tubular body 12, heat conduction while positioning the optical fiber 7. The action can prevent the temperature of the imaging unit 2 from rising. The fourth tubular body 14 is made of nickel, copper, aluminum, titanium, stainless steel, iron, an alloy thereof, plastic, or the like. It is also possible to omit the fourth tubular body 14 by extending the second tubular body 12 to position the optical fiber 7 and adhesively fixing the outer cover 8.

図3Aは伝送ケーブル3の第1例を示す概略のIIIA-IIIA断面図であり、図3Bはコネクタ部4の概略の内部構造図である。図3Aおよび図3Bに示すように、複数の絶縁電線6は、3本の同軸ケーブルから構成されており、軸線P1周りに集合した絶縁電線6の外側に光ファイバ7が囲んで配されるとともに長手方向に螺旋状に巻かれて熱収縮チューブ16に覆われた状態で外被8に覆われている構成である。熱収縮チューブ16はエラストマー製であり、一例として、ポリオレフィン製、またはナイロン製である。外被8はシリコーン製のチューブからなる場合があり、または外被8は共重合ポリエステル樹脂などの熱可塑性樹脂若しくは熱硬化性樹脂からなる場合がある。 FIG. 3A is a schematic sectional view taken along line IIIA-IIIA showing a first example of the transmission cable 3, and FIG. 3B is a schematic internal structural view of the connector portion 4. As shown in FIGS. 3A and 3B, the plurality of insulated wires 6 are composed of three coaxial cables, and the optical fiber 7 is arranged around the insulated wires 6 gathered around the axis P1. It is configured to be wound in a spiral shape in the longitudinal direction and covered with a heat-shrinkable tube 16 and then covered with an outer cover 8. The heat shrink tubing 16 is made of an elastomer and, for example, a polyolefin or nylon. The outer cover 8 may be made of a silicone tube, or the outer cover 8 may be made of a thermoplastic resin such as a copolymerized polyester resin or a thermosetting resin.

図3Bに示すように、コネクタ部4の内部は、光ファイバ7の光源としてLED9が内蔵されており、伝送ケーブル3における絶縁電線6の外周は長手方向に沿ってテープ同士が一部重なるようにテープ21が巻回された状態で光ファイバ7の入射側7aと分岐している構成である。コネクタ部4の内部は、ホルダ17の後端側にLED9が位置決めされており、ホルダ17の先端側に位置決めされた第3筒状体13の貫通穴に光ファイバ7の入射側7aの束が貫通した状態で、LED9から出射された光が光ファイバ7の入射側7aの束に入射される構成である。そして、コネクタ部4の後端側に配された接続端子部18に絶縁電線6の内部導体が半田付けなどによって電気接続されている。テープ21は一例として片面接着層付きの樹脂フィルムまたは片面粘着剤層付きの紙テープから構成される。第3筒状体13は一例としてフランジを有する円筒形状を呈しており、一例としてニッケル、銅、アルミニウム、チタン、ステンレス、鉄、またはこれらの合金から構成される。LED9は、一例としてチップ形状であり、可視光を出射する構成である。伝送ケーブル3は、外周にテープ巻きされた状態の絶縁電線6の外側に光ファイバ7が長手方向に螺旋状に巻かれて熱収縮チューブ16に覆われた状態で外被8に覆われている構成である。 As shown in FIG. 3B, the LED 9 is built in the connector portion 4 as a light source of the optical fiber 7, and the outer periphery of the insulated wire 6 in the transmission cable 3 is such that the tapes partially overlap each other along the longitudinal direction. The tape 21 is wound and branched from the incident side 7a of the optical fiber 7. Inside the connector portion 4, the LED 9 is positioned on the rear end side of the holder 17, and the bundle of the incident side 7a of the optical fiber 7 is placed in the through hole of the third tubular body 13 positioned on the tip end side of the holder 17. The light emitted from the LED 9 is incident on the bundle of the incident side 7a of the optical fiber 7 in the penetrating state. Then, the internal conductor of the insulated wire 6 is electrically connected to the connection terminal portion 18 arranged on the rear end side of the connector portion 4 by soldering or the like. As an example, the tape 21 is composed of a resin film with a single-sided adhesive layer or a paper tape with a single-sided adhesive layer. The third tubular body 13 has a cylindrical shape having a flange as an example, and is composed of nickel, copper, aluminum, titanium, stainless steel, iron, or an alloy thereof as an example. The LED 9 has a chip shape as an example, and has a configuration that emits visible light. The transmission cable 3 is covered with an outer cover 8 in a state where an optical fiber 7 is spirally wound in the longitudinal direction on the outside of an insulated wire 6 in a state of being tape-wound on the outer circumference and is covered with a heat-shrinkable tube 16. It is a composition.

絶縁電線6は、銅線や銅合金線などからなる導体線が、ポリエステル樹脂やポリウレタン樹脂などからなる絶縁被覆で覆われた構成であり、イメージセンサ5への給電、及びイメージセンサ5からの出力信号の信号伝達を行っている。光ファイバ7は、石英ガラスやプラスチックで形成される細い繊維状であって、中心部のコアと当該コアの周囲を覆うクラッドを有し、可視光を入射し伝搬して出射する構成である。 The insulated wire 6 has a configuration in which a conductor wire made of a copper wire, a copper alloy wire, or the like is covered with an insulating coating made of a polyester resin, a polyurethane resin, or the like, and supplies power to the image sensor 5 and outputs from the image sensor 5. The signal is transmitted. The optical fiber 7 is a fine fibrous material made of quartz glass or plastic, has a core in the center and a clad that covers the periphery of the core, and has a configuration in which visible light is incident and propagated and emitted.

図4Aは伝送ケーブル3の第2例を示す横断面図である。図4Aに示すように、伝送ケーブル3は軸線上に絶縁電線6の導体よりもヤング率の大きな材質からなる芯線15が配されている。一例として伝送ケーブル3の中央部は芯線15としてピアノ線が配されている。この構成によれば、伝送ケーブル3を長くした場合においても当該伝送ケーブル3に求められる柔軟性を活かして入り組んだ狭い場所の対象物に撮像部2を近づけるとともに当該伝送ケーブル3の復元性を高めることが容易にできるので伝送ケーブル3の外径を小さくするとともに長さを長くすることが容易にできる。図4Bは伝送ケーブル3の第3例を示す横断面図である。一例として、絶縁電線6は複数の導体線が撚り合わさって構成される。これにより、単線からなる構成と比較して絶縁電線6の柔軟性をより高めることができる。なお、絶縁電線6、光ファイバ7、熱収縮チューブ16、並びに外被8は既知の材料を適用してもよい。また、上記以外の構成として、テープ巻きに代えて、自己融着性の絶縁電線6を互いに融着させた構成にすることも可能である。 FIG. 4A is a cross-sectional view showing a second example of the transmission cable 3. As shown in FIG. 4A, in the transmission cable 3, a core wire 15 made of a material having a Young's modulus larger than that of the conductor of the insulated wire 6 is arranged on the axis. As an example, a piano wire is arranged as a core wire 15 in the central portion of the transmission cable 3. According to this configuration, even when the transmission cable 3 is lengthened, the image pickup unit 2 is brought closer to an object in a complicated narrow place by utilizing the flexibility required for the transmission cable 3, and the restoreability of the transmission cable 3 is enhanced. Therefore, the outer diameter of the transmission cable 3 can be easily reduced and the length can be easily increased. FIG. 4B is a cross-sectional view showing a third example of the transmission cable 3. As an example, the insulated wire 6 is composed of a plurality of conductor wires twisted together. This makes it possible to further increase the flexibility of the insulated wire 6 as compared with the configuration made of a single wire. A known material may be applied to the insulated wire 6, the optical fiber 7, the heat-shrinkable tube 16, and the outer cover 8. Further, as a configuration other than the above, it is also possible to have a configuration in which the self-bonding insulated wires 6 are fused to each other instead of the tape winding.

図5は本実施形態に係る内視鏡ケーブル1を適用した内視鏡10の例を示す図である。一例として、内視鏡10は、内視鏡ケーブル1のコネクタ部4をインターフェース部19に接続し、インターフェース部19のUSB端子19aを外部機器M1としてのパーソナルコンピュータに接続した構成である。この構成によれば、市販の外部機器M1に接続することで、対象物の観察が容易にできるので汎用性が高い。上記の構成に加えて、インターフェース部19の機能を備えたコネクタ部4にする場合がある。または、上述のとおり、イメージセンサ5からの出力信号を映像信号に変換する処理回路と当該映像信号に基づいて画像表示するディスプレイモニタを備えた専用の外部機器M1に接続する構成とする場合がある。この構成によれば、ハンディタイプの外部機器M1によって、対象物の観察場所を選ばずに観察できる。 FIG. 5 is a diagram showing an example of an endoscope 10 to which the endoscope cable 1 according to the present embodiment is applied. As an example, the endoscope 10 has a configuration in which the connector portion 4 of the endoscope cable 1 is connected to the interface portion 19, and the USB terminal 19a of the interface portion 19 is connected to a personal computer as an external device M1. According to this configuration, by connecting to a commercially available external device M1, it is possible to easily observe an object, which is highly versatile. In addition to the above configuration, the connector unit 4 having the function of the interface unit 19 may be used. Alternatively, as described above, the configuration may be such that it is connected to a dedicated external device M1 equipped with a processing circuit that converts an output signal from the image sensor 5 into a video signal and a display monitor that displays an image based on the video signal. .. According to this configuration, the handy type external device M1 enables observation of an object regardless of the observation location.

[実施例]
一例として、伝送ケーブル3の中央部は、軸線周りに集合した絶縁電線6の外側に光ファイバ7を長手方向に螺旋状に巻いてエラストマー製の熱収縮チューブ16にて覆い、熱収縮チューブ16に覆われた状態でシリコーン製のチューブからなる外被8に覆われている構成にした。そして、一辺の幅が0.65[mm]で先端側から視て略四角形状のCMOSセンサにニッケル製の四角パイプを取り付けて伝送ケーブル3における同軸線の導体の一端をCMOSセンサに接続し、かつ、伝送ケーブル3における直径が50[μm]の光ファイバ7の出射側を20本ずつの束にして四角パイプの4箇所の側面に沿って各々配した後、光ファイバ7の出射側を囲んでステンレス製の丸パイプを取り付けて、当該丸パイプと伝送ケーブル3の外被8とのそれぞれの外周に保護パイプを取り付けた。そして、同軸線の導体の他端を接続端子部における外部接続端子に接続し、かつ、光ファイバ7の入射側の80本の束をコネクタ部4に内蔵した筒状体に通して一つのLED9からの出射光を入射する位置に配設した。
[Example]
As an example, the central portion of the transmission cable 3 is covered with a heat-shrinkable tube 16 made of an elastomer by winding an optical fiber 7 spirally in the longitudinal direction on the outside of an insulated wire 6 gathered around an axis to form a heat-shrinkable tube 16. It was configured to be covered with an outer cover 8 made of a silicone tube in a covered state. Then, a nickel square pipe is attached to a CMOS sensor having a side width of 0.65 [mm] and a substantially square shape when viewed from the tip side, and one end of the coaxial wire conductor in the transmission cable 3 is connected to the CMOS sensor. In addition, the emission side of the optical fiber 7 having a diameter of 50 [μm] in the transmission cable 3 is bundled in groups of 20 and arranged along the four side surfaces of the square pipe, and then the emission side of the optical fiber 7 is surrounded. A round pipe made of stainless steel was attached, and a protective pipe was attached to the outer periphery of each of the round pipe and the outer cover 8 of the transmission cable 3. Then, the other end of the conductor of the coaxial wire is connected to the external connection terminal in the connection terminal portion, and a bundle of 80 pieces on the incident side of the optical fiber 7 is passed through a cylindrical body built in the connector portion 4 to form one LED 9. The light emitted from the light beam is arranged at the position where it is incident.

そして、外径が1.2[mm]、全長が1200[mm]の内視鏡ケーブル1を作製した。内視鏡ケーブル1は、用途に応じて全長50[mm]以上に設定することができ、また、5000[mm]以上に設定することができる。また、伝送ケーブル3の芯線として直径0.2~0.5[mm]のピアノ線を用いることで、伝送ケーブル3に求められる柔軟性を活かして入り組んだ狭い場所の対象物に撮像部2を近づけるとともに当該伝送ケーブル3の復元性を高めることが容易にできる。この構成によって、伝送ケーブル3の外径を小さくするとともに長さを長くしても対象物への照明に必要な十分な光量を確保することができた。 Then, an endoscope cable 1 having an outer diameter of 1.2 [mm] and a total length of 1200 [mm] was produced. The endoscope cable 1 can be set to have a total length of 50 [mm] or more, and can be set to 5000 [mm] or more, depending on the intended use. Further, by using a piano wire having a diameter of 0.2 to 0.5 [mm] as the core wire of the transmission cable 3, the image pickup unit 2 can be placed on a complicated object in a narrow place by taking advantage of the flexibility required for the transmission cable 3. It is possible to easily improve the resilience of the transmission cable 3 as it is brought closer. With this configuration, it was possible to secure a sufficient amount of light required for illuminating the object even if the outer diameter of the transmission cable 3 was reduced and the length was increased.

本発明は、以上説明した実施例に限定されることなく、本発明を逸脱しない範囲において種々変更が可能である。 The present invention is not limited to the examples described above, and various modifications can be made without departing from the present invention.

1 内視鏡ケーブル
2 撮像部
3 伝送ケーブル
4 コネクタ部
5 イメージセンサ
6 絶縁電線
7 光ファイバ
8 外被
9 LED
10 内視鏡
11 第1筒状体
12 第2筒状体
13 第3筒状体
14 第4筒状体
15 芯線
16 熱収縮チューブ
17 ホルダ
18 接続端子部
19 インターフェース部
21 テープ
M1 外部機器
P1 軸線
1 Endoscope cable 2 Imaging unit 3 Transmission cable 4 Connector unit 5 Image sensor 6 Insulated wire 7 Optical fiber 8 Outer cover 9 LED
10 Endoscope 11 1st cylinder 12 2nd cylinder 13 3rd cylinder 14 4th cylinder 15 Core wire 16 Heat shrink tube 17 Holder 18 Connection terminal 19 Interface 21 Tape M1 External device P1 Axis

本発明は、視鏡に関する。 The present invention relates to an endoscope .

本発明は、上記事情に鑑みてなされ、小型サイズであるとともに、従来構造よりも光量アップおよびケーブルを長くすることが可能な構造の内視を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an endoscope having a small size and a structure capable of increasing the amount of light and lengthening a cable as compared with the conventional structure.

本発明に係る内視は、撮像部と伝送ケーブルとコネクタ部とが順に連なって構成された内視鏡ケーブルを有する内視鏡であって、前記伝送ケーブルは前記撮像部に内蔵されたイメージセンサを外部機器に接続するための複数の絶縁電線と対象物への照明のための複数の光ファイバとを有し、前記光ファイバの光源としてチップ形状のLEDが前記コネクタ部に内蔵されており、前記伝送ケーブルの一端側は前記イメージセンサの外側における複数個所に前記光ファイバの出射側が配されており、前記伝送ケーブルの中央部は軸線周りに集合した前記絶縁電線の外側に前記光ファイバが長手方向に螺旋状に巻かれて熱収縮チューブに覆われた状態で外被に覆われており、前記コネクタ部の内部において前記絶縁電線は外周にテープが巻回された状態で前記光ファイバの入射側と分岐しているとともに前記光ファイバの入射側の束を囲んで第3筒状体が配されている構成であって、前記撮像部は前記イメージセンサを囲んで開口部が多角形状の第1筒状体が配されており、前記第1筒状体の外側に前記光ファイバの出射側が配されており、前記光ファイバの出射側を囲んで第2筒状体が配されており、前記外被と前記第2筒状体の外側面との両方を囲んで円形状開口部を有する第4筒状体が接着固定されている構成であることを特徴とする。 The endoscope according to the present invention is an endoscope having an endoscope cable in which an image pickup unit, a transmission cable, and a connector portion are connected in order, and the transmission cable is an image built in the image pickup unit. It has a plurality of insulated wires for connecting a sensor to an external device and a plurality of optical fibers for illuminating an object, and a chip-shaped LED is built in the connector portion as a light source of the optical fiber. The emission side of the optical fiber is arranged at a plurality of places on the one end side of the transmission cable on the outside of the image sensor, and the optical fiber is arranged on the outside of the insulated wire gathered around the axis at the center of the transmission cable. The insulated wire is wound in a spiral shape in the longitudinal direction and covered with a heat-shrinkable tube, and the insulated wire is covered with a tape around the outer periphery of the optical fiber inside the connector portion. A third tubular body is arranged so as to be branched from the incident side and to surround the bundle on the incident side of the optical fiber, and the image pickup unit surrounds the image sensor and has a polygonal opening. A first tubular body is arranged, an emission side of the optical fiber is arranged outside the first tubular body, and a second tubular body is arranged surrounding the emission side of the optical fiber. The fourth tubular body having a circular opening surrounding both the outer cover and the outer surface of the second tubular body is bonded and fixed .

Claims (5)

撮像部と伝送ケーブルとコネクタ部とが順に連なって構成され、前記伝送ケーブルは前記撮像部に内蔵されたイメージセンサを外部機器に接続するための複数の絶縁電線と対象物への照明のための複数の光ファイバとを有し、前記光ファイバの光源としてLEDが前記コネクタ部に内蔵されており、前記伝送ケーブルの一端側は前記イメージセンサの外側における複数個所に前記光ファイバの出射側が配されており、前記伝送ケーブルの中央部は軸線周りに集合した前記絶縁電線の外側に前記光ファイバが長手方向に螺旋状に巻かれて熱収縮チューブに覆われた状態で外被に覆われている構成であること
を特徴とする内視鏡ケーブル。
The image pickup unit, the transmission cable, and the connector section are connected in order, and the transmission cable is composed of a plurality of insulated wires for connecting an image sensor built in the image pickup section to an external device and for illuminating an object. It has a plurality of optical fibers, an LED is built in the connector portion as a light source of the optical fiber, and one end side of the transmission cable is arranged at a plurality of places outside the image sensor on the exit side of the optical fiber. The central portion of the transmission cable is covered with an outer cover in a state where the optical fiber is spirally wound in the longitudinal direction and covered with a heat-shrinkable tube on the outside of the insulated electric wire gathered around the axis. An endoscope cable characterized by being configured.
前記絶縁電線の外周はテープが巻回された状態で前記光ファイバの入射側と分岐している構成であり、前記熱収縮チューブはエラストマー製であり、前記外被はシリコーン製であること
を特徴とする請求項1に記載の内視鏡ケーブル。
The outer periphery of the insulated wire has a configuration in which the tape is wound and branched from the incident side of the optical fiber, the heat-shrinkable tube is made of an elastomer, and the outer cover is made of silicone. The endoscope cable according to claim 1.
前記撮像部は前記イメージセンサを囲んで開口部が多角形状の第1筒状体が配されており、前記第1筒状体の外側に前記光ファイバの出射側が配されており、前記光ファイバの出射側を囲んで第2筒状体が配されており、前記コネクタ部は前記光ファイバの入射側の束を囲んで第3筒状体が配されている構成であること
を特徴とする請求項1または2に記載の内視鏡ケーブル。
In the image pickup unit, a first tubular body having a polygonal opening is arranged so as to surround the image sensor, and an emission side of the optical fiber is arranged outside the first tubular body, and the optical fiber is arranged. The second tubular body is arranged so as to surround the emission side of the optical fiber, and the connector portion is characterized in that the third tubular body is arranged so as to surround the bundle on the incident side of the optical fiber. The endoscope cable according to claim 1 or 2.
前記伝送ケーブルは軸線上に前記絶縁電線の導体よりもヤング率の大きな材質からなる芯線が配されていること
を特徴とする請求項1~3のいずれか一項に記載の内視鏡ケーブル。
The endoscope cable according to any one of claims 1 to 3, wherein the transmission cable has a core wire made of a material having a Young's modulus larger than that of the conductor of the insulated wire arranged on the axis.
請求項1~4のいずれか一項に記載の内視鏡ケーブルを備えた内視鏡。 An endoscope provided with the endoscope cable according to any one of claims 1 to 4.
JP2021189825A 2020-12-16 2021-11-24 Endoscope Active JP7033364B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020208245 2020-12-16
JP2020208245 2020-12-16

Publications (2)

Publication Number Publication Date
JP7033364B1 JP7033364B1 (en) 2022-03-10
JP2022095547A true JP2022095547A (en) 2022-06-28

Family

ID=81213062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021189825A Active JP7033364B1 (en) 2020-12-16 2021-11-24 Endoscope

Country Status (1)

Country Link
JP (1) JP7033364B1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527120A (en) * 1991-07-19 1993-02-05 Asahi Chem Ind Co Ltd Light guide structural body
JPH08538A (en) * 1994-06-17 1996-01-09 Fuji Photo Optical Co Ltd Protective structure of wire-shaped member in endoscope
JPH09203833A (en) * 1996-01-26 1997-08-05 Sumitomo Electric Ind Ltd Method for fixing coating fiber of optical fiber cable
JP2005118429A (en) * 2003-10-20 2005-05-12 Pentax Corp Very small diameter endoscope
JP2007296141A (en) * 2006-04-28 2007-11-15 Olympus Corp Method of manufacturing flexible tube for endoscope and flexible tube for endoscope
JP2009201684A (en) * 2008-02-27 2009-09-10 Olympus Medical Systems Corp Endoscope and medical system
WO2017169254A1 (en) * 2016-03-30 2017-10-05 タツタ電線株式会社 Cable
WO2020138091A1 (en) * 2018-12-28 2020-07-02 Hoya株式会社 Endoscope and endoscope system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527120A (en) * 1991-07-19 1993-02-05 Asahi Chem Ind Co Ltd Light guide structural body
JPH08538A (en) * 1994-06-17 1996-01-09 Fuji Photo Optical Co Ltd Protective structure of wire-shaped member in endoscope
JPH09203833A (en) * 1996-01-26 1997-08-05 Sumitomo Electric Ind Ltd Method for fixing coating fiber of optical fiber cable
JP2005118429A (en) * 2003-10-20 2005-05-12 Pentax Corp Very small diameter endoscope
JP2007296141A (en) * 2006-04-28 2007-11-15 Olympus Corp Method of manufacturing flexible tube for endoscope and flexible tube for endoscope
JP2009201684A (en) * 2008-02-27 2009-09-10 Olympus Medical Systems Corp Endoscope and medical system
WO2017169254A1 (en) * 2016-03-30 2017-10-05 タツタ電線株式会社 Cable
WO2020138091A1 (en) * 2018-12-28 2020-07-02 Hoya株式会社 Endoscope and endoscope system

Also Published As

Publication number Publication date
JP7033364B1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
US6614969B2 (en) High speed electronic remote medical imaging system and method
US8654184B2 (en) Electric endoscope and endoscope system
JP5404981B1 (en) Ultrasound endoscope
US20120292079A1 (en) Signal cable for endoscope
EP3155957A1 (en) Endoscope
US10158188B2 (en) Cable connection structure, ultrasonic probe, and ultrasonic endoscope system
WO2013039059A1 (en) Endoscope position detecting probe
JP4343890B2 (en) Electronic endoscope
US7289705B2 (en) Cable having signal conductors surrounding optically transmissive core remote imaging system
US20030020164A1 (en) Spherical semiconductor device and method for fabricating the same
JP7033364B1 (en) Endoscope
JP2010005148A (en) Endoscope and method of signal transmission of endoscope
JP4805345B2 (en) Catheter with compactly terminated electrical components
JP2016073489A (en) Cable module for endoscope
JP2005526263A (en) Cable with signal conductors surrounding a light transmissive core for a remote imaging system
JP2007007179A (en) Imaging device for electronic endoscope
WO2019187629A1 (en) Endoscope
JP6230771B1 (en) Endoscope device
JP3791764B2 (en) Endoscope device
JP2000107124A (en) Endoscope
JPS6069620A (en) Endoscope
JP2022178902A (en) Endoscope
WO2020217351A1 (en) Endoscope imaging device and endoscope
JP2024047776A (en) Cable-attached imaging device and endoscope
JP5148428B2 (en) Endoscope and its built-in

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211124

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220218

R150 Certificate of patent or registration of utility model

Ref document number: 7033364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150