JP2022089649A - Shaft seal part structure of oil-free screw compressor - Google Patents

Shaft seal part structure of oil-free screw compressor Download PDF

Info

Publication number
JP2022089649A
JP2022089649A JP2020202211A JP2020202211A JP2022089649A JP 2022089649 A JP2022089649 A JP 2022089649A JP 2020202211 A JP2020202211 A JP 2020202211A JP 2020202211 A JP2020202211 A JP 2020202211A JP 2022089649 A JP2022089649 A JP 2022089649A
Authority
JP
Japan
Prior art keywords
oil
bearing
shaft
proof partition
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020202211A
Other languages
Japanese (ja)
Other versions
JP7504010B2 (en
Inventor
功佑 棚橋
Kosuke Tanahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Industries Co Ltd
Original Assignee
Hokuetsu Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Industries Co Ltd filed Critical Hokuetsu Industries Co Ltd
Priority to JP2020202211A priority Critical patent/JP7504010B2/en
Priority claimed from JP2020202211A external-priority patent/JP7504010B2/en
Publication of JP2022089649A publication Critical patent/JP2022089649A/en
Application granted granted Critical
Publication of JP7504010B2 publication Critical patent/JP7504010B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Sealing Of Bearings (AREA)

Abstract

To provide a shaft seal part structure of an oil-free screw compressor that can prevent entry of lubricating oil into the side of a rotor chamber even when rotation speed of a screw rotor is decreased.SOLUTION: Between a bearing 8 supporting a rotor shaft 6 provided in a screw rotor 4 of an oil-free screw compressor 1 and a rotor chamber 3, a shaft seal device 10 combining an air seal 11 and an oil seal 12 is provided in a gap between an outer peripheral surface of the rotor shaft 6 and an inner peripheral surface of a shaft hole 9. An endless annular oilproof partition wall 30 to be rotated together with the shaft 6 is externally fitted to the rotor shaft 6 between the bearing 8 and the oil seal 12. The outside diameter of the partition wall 30 is larger than the inside diameter of the oil seal 12, and is preferably set in such a manner that an outer peripheral edge of the oilproof partition wall 30 is arranged closer to an outer peripheral side than a line L connecting an inner peripheral edge E1 of an outer ring 8b of the bearing 8 on the side of the shaft seal device 10 and an inner peripheral edge E2 of a bearing side end surface 12a of the oil seal 12. Thereby, a flow of the lubricating oil toward the side of the oil seal through the bearing 8 is blocked.SELECTED DRAWING: Figure 2

Description

本発明は、オイルフリースクリュ圧縮機の軸封部構造に関し,より詳細にはスクリュロータのロータ軸を支承する軸受と,スクリュロータを収容するロータ室間のロータ軸に設けた軸封装置のオイルシールのシール性を補完し得る,オイルフリースクリュ圧縮機の軸封部構造に関する。 The present invention relates to the shaft sealing structure of the oil-free screw compressor, and more specifically, the oil of the shaft sealing device provided on the rotor shaft between the bearing supporting the rotor shaft of the screw rotor and the rotor chamber accommodating the screw rotor. It relates to the shaft seal structure of the oil-free screw compressor, which can complement the sealing property of the seal.

図7に示すように,オイルフリースクリュ圧縮機100は,ケーシング102内に形成されたロータ室103内でオス・メス一対のスクリュロータ104,105を非接触の状態で回転させることにより被圧縮気体を圧縮するもので,ロータ室103の内壁とスクリュロータ104,105とで画成される圧縮作用空間内に冷却,潤滑及び密封のための潤滑油を導入することなく被圧縮気体の圧縮を行うことができるように構成されている。 As shown in FIG. 7, the oil-free screw compressor 100 rotates a pair of male and female screw rotors 104 and 105 in a rotor chamber 103 formed in the casing 102 in a non-contact state to obtain a gas to be compressed. The compressed gas is compressed without introducing lubricating oil for cooling, lubrication and sealing into the compression action space defined by the inner wall of the rotor chamber 103 and the screw rotors 104 and 105. It is configured to be able to.

そのため,オイルフリースクリュ圧縮機100では油分を含まない圧縮気体が得られることから,清浄な圧縮気体を必要とする医療分野や製紙,化学,食品製造等の分野において広く使用されている。 Therefore, since the oil-free screw compressor 100 can obtain a compressed gas containing no oil, it is widely used in the medical field, paper making, chemistry, food manufacturing, and the like, which require a clean compressed gas.

このオイルフリースクリュ圧縮機100のスクリュロータ104,105には,その吸入側と吐出側にそれぞれロータ軸106,106;107,107が突出形成されており、これらのロータ軸106,106;107,107をそれぞれ軸受108,108;108,108によって支承することにより,スクリュロータ104,105を回転可能にロータ室103内に収容している。 The screw rotors 104 and 105 of the oil-free screw compressor 100 have rotor shafts 106, 106; 107 and 107 protruding from the suction side and the discharge side, respectively, and these rotor shafts 106, 106; 107, respectively. By supporting 107 by bearings 108, 108; 108, 108, respectively, the screw rotors 104, 105 are rotatably housed in the rotor chamber 103.

そして,この軸受108とロータ室103間のロータ軸106,107にはそれぞれ軸封装置110が設けられ,この軸封装置110によってロータ軸106(107)の外周面と軸孔109の内周面間の隙間が封止されている。 A shaft sealing device 110 is provided on each of the rotor shafts 106 and 107 between the bearing 108 and the rotor chamber 103, respectively, and the shaft sealing device 110 provides an outer peripheral surface of the rotor shaft 106 (107) and an inner peripheral surface of the shaft hole 109. The gap between them is sealed.

この軸封装置110は,図8に示すように,いずれも非接触式のシールであるロータ室103側に配置されたエアシール111と,軸受108側に配置されたオイルシール112の組合せによって形成されており,エアシール111によって軸孔109を介した気体の通過を防止すると共に,オイルシール112によって軸受108からの潤滑油がロータ室103側に浸入することを防止して圧縮気体に油分が混入することを防止している。 As shown in FIG. 8, the shaft sealing device 110 is formed by a combination of an air seal 111 arranged on the rotor chamber 103 side, which is a non-contact type seal, and an oil seal 112 arranged on the bearing 108 side. The air seal 111 prevents the gas from passing through the shaft hole 109, and the oil seal 112 prevents the lubricating oil from the bearing 108 from entering the rotor chamber 103 side, so that oil is mixed in the compressed gas. It is preventing that.

なお,図8中,符号114はスナップリング(C字型止め輪)であり,このスナップリング114を軸孔109の内壁面に設けた環状溝121に取り付けることで,オイルシール112の軸受側の端面112aの位置を規制して,軸封装置110を軸孔109内に固定可能している。 In FIG. 8, reference numeral 114 is a snap ring (C-shaped retaining ring), and by attaching the snap ring 114 to the annular groove 121 provided on the inner wall surface of the shaft hole 109, it is possible to attach the snap ring 114 to the bearing side of the oil seal 112. The position of the end face 112a is restricted so that the shaft sealing device 110 can be fixed in the shaft hole 109.

このような軸封装置110に設けられるオイルシール112としては,ロータ軸106(107)の回転に伴い発生する流体動圧を利用して潤滑油の浸入を防止するものが使用され,後掲の特許文献1では,所謂「ネジシール」として知られるオイルシールが使用されている。 As the oil seal 112 provided in such a shaft sealing device 110, one that prevents the infiltration of lubricating oil by utilizing the fluid dynamic pressure generated by the rotation of the rotor shaft 106 (107) is used, which will be described later. In Patent Document 1, an oil seal known as a so-called "screw seal" is used.

このネジシールは,円筒状部材として構成されたオイルシール112の内周面に,ロータ軸106(107)の回転に伴ってポンプ作用を発揮する螺旋溝112bを形成したもので,この螺旋溝112bの形成によってロータ軸106(107)の回転時,ロータ軸106(107)の外周とオイルシール112の内周間の隙間Δに到達した潤滑油を軸受108側へ押し戻すことで,軸受108を潤滑した潤滑油がロータ室103側に浸入しないようにしている。 In this screw seal, a spiral groove 112b that exerts a pumping action as the rotor shaft 106 (107) rotates is formed on the inner peripheral surface of the oil seal 112 configured as a cylindrical member. When the rotor shaft 106 (107) was rotated due to the formation, the bearing 108 was lubricated by pushing the lubricating oil that reached the gap Δ between the outer circumference of the rotor shaft 106 (107) and the inner circumference of the oil seal 112 back to the bearing 108 side. The lubricating oil is prevented from entering the rotor chamber 103 side.

なお,このようなネジシールとして構成されたオイルシール112のシール性を向上させるために,後掲の特許文献2には,図9に示すようにオイルシール112の軸受側の端面112aに環状の遮蔽板118を取り付けることにより,オイルシール112の内周面に形成した螺旋溝112bの軸受側端部の開口面積を狭めることで,螺旋溝112bに対し潤滑油が導入され難くすることが提案されている。 In order to improve the sealing performance of the oil seal 112 configured as such a screw seal, in Patent Document 2 described later, as shown in FIG. 9, an annular shield is provided on the end face 112a of the oil seal 112 on the bearing side. It has been proposed that by attaching the plate 118, the opening area of the bearing side end of the spiral groove 112b formed on the inner peripheral surface of the oil seal 112 is narrowed, so that the lubricating oil is less likely to be introduced into the spiral groove 112b. There is.

特開2002-276574号公報Japanese Patent Application Laid-Open No. 2002-276574 実願昭60-61859号(実開昭61-179460号)のマイクロフィルムMicrofilm of Jitsugyo No. 60-61859 (Jitsukaisho No. 61-179460)

オイルフリースクリュ圧縮機100では,前述したように圧縮作用空間に潤滑,冷却,密封のための潤滑油を導入することなく被圧縮気体の圧縮を行うことから,オスとメスのスクリュロータ104,105同士,及びオス,メスの各スクリュロータ104,105とロータ室103の内壁間をいずれも非接触の状態に維持しつつスクリュロータ104,105を回転させる構成を採用する。 In the oil-free screw compressor 100, as described above, the compressed gas is compressed without introducing lubricating oil for lubrication, cooling, and sealing into the compression action space. Therefore, male and female screw rotors 104 and 105. A configuration is adopted in which the screw rotors 104 and 105 are rotated while maintaining a non-contact state between each other and between the male and female screw rotors 104 and 105 and the inner walls of the rotor chamber 103.

このようなオイルフリースクリュ圧縮機100の構造により,オイルフリースクリュ圧縮機100では,圧縮作用空間内に潤滑油を導入して圧縮を行う油冷式のスクリュ圧縮機に比較して,圧縮時に高圧側の圧縮作用空間から低圧側の圧縮作用空間に漏出する圧縮気体の量が多くなる。 Due to the structure of the oil-free screw compressor 100, the oil-free screw compressor 100 has a higher pressure during compression than the oil-cooled screw compressor that compresses by introducing lubricating oil into the compression action space. The amount of compressed gas leaking from the compression action space on the low pressure side to the compression action space on the low pressure side increases.

そのため,オイルフリースクリュ圧縮機100では,これを補うためにエンジンやモータなどの駆動源(図示せず)の回転駆動力を,例えば増速ギヤ(図示せず)によって増速した後に駆動軸に伝達して運転する等,油冷式のスクリュ圧縮機に比較してスクリュロータ104,105を高速で回転させている。 Therefore, in the oil-free screw compressor 100, in order to compensate for this, the rotational driving force of a drive source (not shown) such as an engine or a motor is accelerated by, for example, a speed increasing gear (not shown) and then applied to the drive shaft. The screw rotors 104 and 105 are rotated at a higher speed than the oil-cooled screw compressor, such as transmission and operation.

このようにスクリュロータ104,105を高速で回転させるオイルフリースクリュ圧縮機100では,ロータ軸104,105を支承する軸受108が熱を持ち焼き付くおそれがあることから,軸受108として内輪108aの両端部と外輪108bの両端部間の間隔を塞ぐシールドを備えてない,オープン型のベアリングを採用し,この軸受108の内輪108aと外輪108b間に給油ノズル120より噴射した潤滑油を給油する,「ジェット給油」と呼ばれる給油方式で給油を行うことで,軸受108の潤滑と冷却を同時に行っている。 In the oil-free screw compressor 100 that rotates the screw rotors 104 and 105 at high speed in this way, the bearing 108 that supports the rotor shafts 104 and 105 may have heat and seize. Therefore, both ends of the inner ring 108a as the bearing 108. An open type bearing that does not have a shield that closes the space between both ends of the outer ring 108b is used, and the lubricating oil injected from the lubrication nozzle 120 is supplied between the inner ring 108a and the outer ring 108b of this bearing 108. By refueling by a refueling method called "refueling", the bearing 108 is lubricated and cooled at the same time.

このジェット給油では,比較的多量の潤滑油を,比較的高い圧力で軸受108に向かって噴射することから,比較的多量の潤滑油が,軸受108を通過した後もある程度の勢いを保ったまま,軸封装置110のオイルシール112に向かって流れ込む。 In this jet lubrication, a relatively large amount of lubricating oil is injected toward the bearing 108 at a relatively high pressure, so that a relatively large amount of lubricating oil maintains a certain momentum even after passing through the bearing 108. , Flows toward the oil seal 112 of the shaft sealing device 110.

そして,オイルシール112は前述したように非接触式のシールであることから,オイルシール112の内周面とロータ軸106(107)の外周面間には隙間Δが存在すると共に,ロータ室103側に対する潤滑油の浸入の起点となるこの隙間Δの軸受側端部Δaは,図8中に拡大図で示すように軸受108に向かって開口しているため,オイルシール112の処理能力を超えて軸受108側より多量の潤滑油が勢い良く流れ込むと,オイルシール112内周面とロータ軸106(107)の外周面間の隙間Δに潤滑油が浸入するおそれがある。 Since the oil seal 112 is a non-contact type seal as described above, there is a gap Δ between the inner peripheral surface of the oil seal 112 and the outer peripheral surface of the rotor shaft 106 (107), and the rotor chamber 103. The bearing side end Δa of this gap Δ, which is the starting point of the infiltration of the lubricating oil to the side, is open toward the bearing 108 as shown in the enlarged view in FIG. 8, and therefore exceeds the processing capacity of the oil seal 112. If a large amount of lubricating oil flows vigorously from the bearing 108 side, the lubricating oil may infiltrate into the gap Δ between the inner peripheral surface of the oil seal 112 and the outer peripheral surface of the rotor shaft 106 (107).

このような潤滑油の浸入に対し,オイルシール112は潤滑油を軸受108側に押し戻す流体動圧を発生させてこれを防止するように構成されているものの,このような流体動圧はロータ軸106(107)の回転に伴い発生するものであることから,容量制御等に伴いスクリュロータ104,105の回転速度を変化させている場合,スクリュロータ104,105の回転速度の低下時にはオイルシール112の潤滑油を軸受108側に押し戻す能力は低下している。 Although the oil seal 112 is configured to generate a fluid dynamic pressure that pushes the lubricating oil back to the bearing 108 side to prevent such infiltration of lubricating oil, such fluid dynamic pressure is applied to the rotor shaft. Since it is generated with the rotation of 106 (107), when the rotation speed of the screw rotors 104 and 105 is changed due to capacity control or the like, the oil seal 112 when the rotation speed of the screw rotors 104 and 105 decreases. The ability to push the lubricating oil back to the bearing 108 side is reduced.

そのため,オイルシール112のシール能力が低下した,スクリュロータ104,105の低速回転時に,軸受108を通過した多量の潤滑油がオイルシール112側へ向かって勢いよく流れ込むと,潤滑油がロータ室103側へ浸入するリスクはより一層高まることとなる。 Therefore, when the screw rotors 104 and 105 rotate at low speed, the sealing capacity of the oil seal 112 is reduced, and when a large amount of lubricating oil that has passed through the bearing 108 flows vigorously toward the oil seal 112 side, the lubricating oil flows into the rotor chamber 103. The risk of invasion to the side will be further increased.

なお,前掲の特許文献2に記載のように,オイルシール112の軸受側の端面112aに環状の遮蔽板118を取り付けて螺旋溝112bの軸受側端部の開口面積を狭めた構成では,軸受108側よりオイルシール112側に流れ込んだ潤滑油は螺旋溝112bに入り込み難くなっている。 As described in Patent Document 2 described above, in a configuration in which an annular shielding plate 118 is attached to the end surface 112a on the bearing side of the oil seal 112 to narrow the opening area of the end on the bearing side of the spiral groove 112b, the bearing 108 The lubricating oil that has flowed from the side to the oil seal 112 side is difficult to enter into the spiral groove 112b.

しかし,螺旋溝112bの開口面積が狭まっているとは言え,遮蔽板118の内周面とロータ軸106(107)の外周面間には,オイルシール112の内周面とロータ軸106(107)外周面間の隙間Δに対応する隙間Δ’が形成されていると共に,この隙間Δ’は,軸受108に向かって開口しているために,軸受108側より流入した潤滑油は何ら遮られることなくこの隙間Δ’に到達し得るものとなっている。 However, although the opening area of the spiral groove 112b is narrowed, the inner peripheral surface of the oil seal 112 and the rotor shaft 106 (107) are between the inner peripheral surface of the shielding plate 118 and the outer peripheral surface of the rotor shaft 106 (107). ) A gap Δ'corresponding to the gap Δ between the outer peripheral surfaces is formed, and since this gap Δ'opens toward the bearing 108, any lubricating oil flowing in from the bearing 108 side is blocked. This gap Δ'can be reached without any problems.

そして,螺旋溝112bの軸受側端部の開口面積が狭められていると言え,特許文献2に記載のオイルシール112も,ロータ軸106(107)の回転に伴い発生する流体動圧を利用して潤滑油の浸入を防止するものである以上,スクリュロータ104,105の回転速度が低下した状態では軸受108側に潤滑油を押し戻す機能が低下することに変わりなく,スクリュロータ104,105の低速回転時に比較的多量の潤滑油が勢いを保ったままオイルシール112側に流れ込めれば,ロータ室103側に潤滑油が浸入するリスクは高まることになる。 It can be said that the opening area of the bearing side end of the spiral groove 112b is narrowed, and the oil seal 112 described in Patent Document 2 also utilizes the fluid dynamic pressure generated by the rotation of the rotor shaft 106 (107). As long as the lubricating oil is prevented from entering, when the rotation speed of the screw rotors 104 and 105 is reduced, the function of pushing the lubricating oil back to the bearing 108 side is still reduced, and the speed of the screw rotors 104 and 105 is low. If a relatively large amount of lubricating oil flows into the oil seal 112 side while maintaining the momentum during rotation, the risk of the lubricating oil infiltrating into the rotor chamber 103 side increases.

そこで本発明は,上記従来技術における欠点を解消するためになされたものであり,前述したジェット給油によって軸受に対し加圧された潤滑油を比較的多量に噴射して給油するオイルフリースクリュ圧縮機において,スクリュロータの回転速度の低下,従って,オイルシールのシール能力の低下時においても,軸受からの潤滑油がロータ室側に浸入することを防止し得る,オイルフリースクリュ圧縮機の軸封部構造を提供することを目的とする。 Therefore, the present invention has been made to eliminate the above-mentioned drawbacks in the prior art, and is an oil-free screw compressor that injects a relatively large amount of lubricating oil pressurized to the bearing by the above-mentioned jet lubrication to lubricate the bearing. Therefore, even when the rotation speed of the screw rotor is reduced, and therefore the sealing capacity of the oil seal is reduced, the lubricating oil from the bearing can be prevented from entering the rotor chamber side. The purpose is to provide the structure.

以下に,課題を解決するための手段を,発明を実施するための形態で使用する符号と共に記載する。この符号は,特許請求の範囲の記載と,発明を実施するための形態の記載との対応を明らかにするためのものであり,言うまでもなく,本発明の技術的範囲の解釈に制限的に用いられるものではない。 The means for solving the problem are described below together with the reference numerals used in the embodiment for carrying out the invention. This reference numeral is for clarifying the correspondence between the description of the scope of claims and the description of the form for carrying out the invention, and needless to say, it is used in a limited manner in the interpretation of the technical scope of the present invention. It is not something that can be done.

上記目的を達成するために,本発明のオイルフリースクリュ圧縮機1の軸封部構造は,
オス,メス一対のスクリュロータ4(5)にそれぞれ設けられたロータ軸6(7)を支承する軸受8と,前記スクリュロータ4(5)を収容するロータ室3間に設けられ,前記ロータ室3側に配置されるエアシール11と,前記軸受8側に配置されるオイルシール12から成る非接触式の軸封装置10によって,前記ロータ軸6の外周面と該ロータ軸6が挿入された軸孔9の内周面間の間隔を封止したオイルフリースクリュ圧縮機1の軸封部構造において,
前記軸受8と前記オイルシール12間の前記ロータ軸6に,ロータ軸6と共に回転する無端環状の防油隔壁30を外嵌し,
前記防油隔壁30の外径を,前記オイルシール12の内径よりも大きくしたことを特徴とする(請求項1,図2参照)。
In order to achieve the above object, the shaft seal structure of the oil-free screw compressor 1 of the present invention is:
A pair of male and female screw rotors 4 (5) are provided between a bearing 8 for supporting a rotor shaft 6 (7) and a rotor chamber 3 for accommodating the screw rotor 4 (5). The outer peripheral surface of the rotor shaft 6 and the shaft into which the rotor shaft 6 is inserted by a non-contact shaft sealing device 10 including an air seal 11 arranged on the 3 side and an oil seal 12 arranged on the bearing 8 side. In the shaft sealing structure of the oil-free screw compressor 1 in which the space between the inner peripheral surfaces of the holes 9 is sealed,
An endless annular oil-proof partition wall 30 that rotates together with the rotor shaft 6 is fitted onto the rotor shaft 6 between the bearing 8 and the oil seal 12.
The outer diameter of the oil-proof partition wall 30 is made larger than the inner diameter of the oil seal 12 (see claims 1 and 2).

好ましくは,前記防油隔壁30の外周縁が,前記軸受8の外輪8bの軸封装置側の内周縁E1と,前記オイルシール12の軸受側端面12aの内周縁E2を結ぶ線Lよりも外周側に配置されるよう,前記防油隔壁30の外径を設定する(請求項2)。 Preferably, the outer peripheral edge of the oil-proof partition wall 30 is outer peripheral than the line L connecting the inner peripheral edge E1 of the outer ring 8b of the bearing 8 on the shaft sealing device side and the inner peripheral edge E2 of the bearing-side end surface 12a of the oil seal 12. The outer diameter of the oil-proof partition wall 30 is set so as to be arranged on the side (claim 2).

より好ましくは,前記防油隔壁30の外周縁と,該防油隔壁30の取り付け位置における前記軸孔9の内周面間に回転許容間隔を確保し得る範囲で,前記防油隔壁30の外径を,前記軸孔9の内径に可及的に近づける(請求項3)。 More preferably, the outside of the oil-proof partition wall 30 is within a range in which a rotation allowable distance can be secured between the outer peripheral edge of the oil-proof partition wall 30 and the inner peripheral surface of the shaft hole 9 at the mounting position of the oil-proof partition wall 30. The diameter is made as close as possible to the inner diameter of the shaft hole 9 (claim 3).

更に,前記防油隔壁30の外径を,前記軸封装置10の前記オイルシール12の前記軸受側の端面12aを規制する環状の係止具(図示の例ではスナップリング)14の内径よりも大きく形成すると共に,
前記防油隔壁30の前記軸封装置側の側面32と,前記係止具14の前記軸受側の側面14a間に回転許容間隔を確保し得る範囲で,前記防油隔壁30の前記軸封装置側の側面32と前記係止具14の前記軸受側の側面14a間の隙間を可及的に狭めた構成とするものとしても良い(請求項4)。
Further, the outer diameter of the oil-proof partition 30 is larger than the inner diameter of the annular locking tool (snap ring in the illustrated example) 14 that regulates the end surface 12a of the oil seal 12 of the shaft sealing device 10 on the bearing side. As well as forming large
The shaft sealing device of the oil-proof partition 30 is within a range in which a rotation allowable distance can be secured between the side surface 32 of the oil-proof partition 30 on the shaft sealing device side and the side surface 14a of the locking tool 14 on the bearing side. The gap between the side surface 32 on the side and the side surface 14a on the bearing side of the locking tool 14 may be narrowed as much as possible (claim 4).

上記構成の軸封部構造において,更に,前記軸孔9の底部において開口する排油流路40を,前記防油隔壁30の下方位置に設けるものとしても良い(請求項5)。 In the shaft sealing portion structure having the above configuration, an oil drainage flow path 40 that opens at the bottom of the shaft hole 9 may be further provided at a position below the oil-proof partition wall 30 (claim 5).

前記防油隔壁30の軸受側の側面31は,これを,内周側に対し外周側が前記軸受8より遠ざかるように傾斜させた傾斜面とするものとしても良い(請求項6,図3参照)。 The side surface 31 on the bearing side of the oil-proof partition wall 30 may be an inclined surface that is inclined so that the outer peripheral side is away from the bearing 8 with respect to the inner peripheral side (see claims 6 and 3). ..

または,上記構成に代えて,前記防油隔壁30の軸受側の側面31は,内周側に対し外周側が前記軸受8に近付くように傾斜させた傾斜面とするものとしても良い(請求項7,図4参照)。 Alternatively, instead of the above configuration, the side surface 31 on the bearing side of the oil-proof partition wall 30 may be an inclined surface that is inclined so that the outer peripheral side approaches the bearing 8 with respect to the inner peripheral side (claim 7). , See Figure 4).

更に,前記防油隔壁30の軸受側の側面31には,周方向に所定間隔で,該防油隔壁30の半径方向に延びるリブ34を設けるものとしても良い(請求項8,図5参照)。 Further, ribs 34 extending in the radial direction of the oil-proof partition wall 30 may be provided on the side surface 31 of the oil-proof partition wall 30 on the bearing side at predetermined intervals in the circumferential direction (see claims 8 and 5). ..

前記防油隔壁30の軸受側の側面31の外周方向延長上における前記軸孔9の内周面に,前記軸封装置10側から前記軸受8側に向かって内径を徐々に広げる傾斜部97を設けるものとしても良い(請求項9,図6参照)。 An inclined portion 97 that gradually expands the inner diameter from the shaft sealing device 10 side toward the bearing 8 side is provided on the inner peripheral surface of the shaft hole 9 on the extension of the side surface 31 of the oil-proof partition wall 30 on the bearing side in the outer peripheral direction. It may be provided (see claim 9 and FIG. 6).

以上で説明した本発明の構成により,本発明の軸封部構造を備えたオイルフリースクリュ圧縮機1では,以下の顕著な効果を得ることができた。 With the configuration of the present invention described above, the oil-free screw compressor 1 provided with the shaft sealing portion structure of the present invention was able to obtain the following remarkable effects.

軸受8とオイルシール12間のロータ軸6に,ロータ軸6と共に回転する無端環状の防油隔壁30を外嵌すると共に,前記防油隔壁30の外径を,前記オイルシール12の内径よりも大きくしたことで,軸受8とオイルシール12間において軸孔9内の空間がこの防油隔壁30によって仕切られると共に,ロータ室3側に対する潤滑油の浸入起点となるオイルシール12の内周面とロータ軸6の外周面間の隙間Δの軸受側端部Δaを,軸受8側から見て防油隔壁30によって遮蔽することができ,この部分に向かう潤滑油の流れを防油隔壁30によって確実に遮蔽することができた。 An endless annular oil-proof partition wall 30 that rotates together with the rotor shaft 6 is fitted onto the rotor shaft 6 between the bearing 8 and the oil seal 12, and the outer diameter of the oil-proof partition wall 30 is larger than the inner diameter of the oil seal 12. By increasing the size, the space inside the shaft hole 9 is partitioned between the bearing 8 and the oil seal 12 by the oil-proof partition wall 30, and the inner peripheral surface of the oil seal 12 which is the starting point for the lubricating oil to enter the rotor chamber 3 side. The bearing side end portion Δa of the gap Δ between the outer peripheral surfaces of the rotor shaft 6 can be shielded by the oil-proof partition wall 30 when viewed from the bearing 8 side, and the flow of lubricating oil toward this portion is ensured by the oil-proof partition wall 30. I was able to shield it.

特に前記防油隔壁30の外周縁を,前記軸受8の外輪8bの軸封装置側の内周縁E1と,前記オイルシール12の軸受側端面12aの内周縁E2を結ぶ線Lよりも外周側に配置されるように,前記防油隔壁30の外径を設定した構成では,軸受8を通過してオイルシール12に向かって飛翔する潤滑油が,オイルシール12の内周面とロータ軸6の外周面間の隙間Δの軸受側端部Δaに直接到達することを確実に防止することができた。 In particular, the outer peripheral edge of the oil-proof partition wall 30 is located on the outer peripheral side of the line L connecting the inner peripheral edge E1 of the outer ring 8b of the bearing 8 on the shaft sealing device side and the inner peripheral edge E2 of the bearing side end surface 12a of the oil seal 12. In the configuration in which the outer diameter of the oil-proof partition 30 is set so as to be arranged, the lubricating oil that passes through the bearing 8 and flies toward the oil seal 12 is transferred to the inner peripheral surface of the oil seal 12 and the rotor shaft 6. It was possible to reliably prevent the gap Δ between the outer peripheral surfaces from directly reaching the end portion Δa on the bearing side.

従来の軸封部構造では,図8中に拡大図で示したように潤滑油の浸入起点となる,オイルシール112の内周面とロータ軸106の外周面間の隙間Δの軸受側端部Δaは,何ら遮られることなく軸受108に向かって開口しており,ジェット給油により軸受に供給された多量の潤滑油が勢いを保ったまま,この部分に到達し得るものとなっており,オイルシール112の内周面とロータ軸106の外周面間の隙間Δに対する潤滑油の浸入防止は,オイルシール112が発生する流体動圧のみに依存する構造となっていた。 In the conventional shaft sealing structure, as shown in the enlarged view in FIG. 8, the bearing side end portion of the gap Δ between the inner peripheral surface of the oil seal 112 and the outer peripheral surface of the rotor shaft 106, which is the infiltration starting point of the lubricating oil. Δa opens toward the bearing 108 without any obstruction, and a large amount of lubricating oil supplied to the bearing by jet lubrication can reach this part while maintaining the momentum. The prevention of the infiltration of lubricating oil into the gap Δ between the inner peripheral surface of the seal 112 and the outer peripheral surface of the rotor shaft 106 has a structure that depends only on the fluid dynamic pressure generated by the oil seal 112.

これに対し,本発明の構成では,オイルシール12側に向かう潤滑油の流れは,防油隔壁30に衝突してその勢いが減殺されるだけでなく,防油隔壁30は潤滑油の流れを外周方向に向けて誘導することで,オイルシール12に到達する潤滑油の量を大幅に減少させることができる。 On the other hand, in the configuration of the present invention, the flow of the lubricating oil toward the oil seal 12 side not only collides with the oil-proof partition wall 30 and its momentum is diminished, but also the oil-proof partition wall 30 causes the flow of the lubricating oil. By guiding toward the outer peripheral direction, the amount of lubricating oil reaching the oil seal 12 can be significantly reduced.

そして,仮に防油隔壁30を越えて潤滑油がオイルシール12側に到達したとしても,この潤滑油は防油隔壁30との衝突によって当初の勢いが減殺されていることから,ロータ軸6が低速回転している状態においても,潤滑油はオイルシール12が発生する流体動圧に打ち勝って,オイルシール12の内周面とロータ軸6の外周面間の隙間Δ内に浸入することができず,ロータ軸6が低速で回転している状態であってもオイルシール12によってロータ室3側に対する潤滑油の浸入を防止することができた。 Even if the lubricating oil reaches the oil seal 12 side beyond the oil-proof partition wall 30, the rotor shaft 6 has a rotor shaft 6 because the initial momentum of the lubricating oil is diminished by the collision with the oil-proof partition wall 30. Even in the state of low-speed rotation, the lubricating oil can overcome the fluid dynamic pressure generated by the oil seal 12 and infiltrate into the gap Δ between the inner peripheral surface of the oil seal 12 and the outer peripheral surface of the rotor shaft 6. However, even when the rotor shaft 6 is rotating at a low speed, the oil seal 12 can prevent the lubricating oil from entering the rotor chamber 3 side.

しかも,この防油隔壁30は,ロータ軸6に外嵌されてロータ軸6と共に回転することで,回転する防油隔壁30に衝突した潤滑油は,遠心力によって外周方向に飛ばされることにより,ロータ室3側に対する潤滑油の浸入起点となる,オイルシール12の内周面とロータ軸6の外周面間の隙間Δの軸受側端部Δaより遠ざける方向に誘導されることで,潤滑油は極めて隙間Δに到達し難い構造となっている。 Moreover, the oil-proof partition 30 is fitted onto the rotor shaft 6 and rotates together with the rotor shaft 6, so that the lubricating oil that collides with the rotating oil-proof partition 30 is blown in the outer peripheral direction by centrifugal force. The lubricating oil is guided in a direction away from the bearing side end Δa of the gap Δ between the inner peripheral surface of the oil seal 12 and the outer peripheral surface of the rotor shaft 6, which is the starting point for the lubricating oil to enter the rotor chamber 3 side. The structure is extremely difficult to reach the gap Δ.

前記防油隔壁30の外周縁と,該防油隔壁30の取り付け位置における前記軸孔9の内周面間に回転許容間隔を確保し得る範囲で,前記防油隔壁30の外径を,前記軸孔9の内径に可及的に近づけた構成では,軸孔9の内壁と防油隔壁30の外周縁間の隙間が微小となることで,軸受8側から流入してきた潤滑油はこの隙間を通過し難く,より一層,潤滑油が防油隔壁30を越えてオイルシール12側に到達し難い構造とすることができた。 The outer diameter of the oil-proof partition 30 is set to the extent that a rotation allowable interval can be secured between the outer peripheral edge of the oil-proof partition 30 and the inner peripheral surface of the shaft hole 9 at the mounting position of the oil-proof partition 30. In the configuration as close as possible to the inner diameter of the shaft hole 9, the gap between the inner wall of the shaft hole 9 and the outer peripheral edge of the oil-proof partition wall 30 becomes small, so that the lubricating oil flowing in from the bearing 8 side is in this gap. It was possible to make the structure more difficult for the lubricating oil to pass through the oil-proof partition wall 30 and reach the oil seal 12 side.

特に,防油隔壁30の外径を,オイルシール12の軸受側の端面12aを係止するスナップリング等の環状の係止具14の内径よりも大きく形成する共に,前記防油隔壁30の軸封装置側の側面32と,前記係止具14の軸受側の側面14a間の隙間を,回転許容間隔を確保し得る範囲で可及的に狭めた構成では,軸受8からの潤滑油は,この狭い隙間を通過しなければオイルシール12側に到達することができず,更にオイルシール12に対して潤滑油が到達し難い構造とすることができた。 In particular, the outer diameter of the oil-proof partition 30 is formed larger than the inner diameter of the annular locking tool 14 such as a snap ring that locks the end face 12a on the bearing side of the oil seal 12, and the shaft of the oil-proof partition 30 is formed. In a configuration in which the gap between the side surface 32 on the sealing device side and the side surface 14a on the bearing side of the locking tool 14 is narrowed as much as possible within a range in which the allowable rotation interval can be secured, the lubricating oil from the bearing 8 is used. It is not possible to reach the oil seal 12 side without passing through this narrow gap, and the structure is such that the lubricating oil is difficult to reach the oil seal 12.

更に,前記軸孔9の底部において開口する排油流路40を,前記防油隔壁30の下方位置に設けた構成では,防油隔壁30によって案内された潤滑油のうち下方に案内されたものはそのまま排油流路40内に導入され,また,回転する防油隔壁30の遠心力によって外周方向に飛散された潤滑油は,軸孔9の内壁を伝って下方に落下することで排油流路40内に導入され,軸受8を通過した潤滑油の殆どはオイルシール12に到達する前に排油流路40を介して軸孔9内に留まることなく円滑に排出されることで,潤滑油は更にオイルシール12側へ流入し難くなっている。 Further, in the configuration in which the oil drainage flow path 40 opened at the bottom of the shaft hole 9 is provided at a position below the oil barrier partition 30, the lubricating oil guided by the oil barrier 30 is guided downward. Is introduced into the oil drainage flow path 40 as it is, and the lubricating oil scattered in the outer peripheral direction due to the centrifugal force of the rotating oil-proof partition wall 30 is drained downward along the inner wall of the shaft hole 9. Most of the lubricating oil introduced into the flow path 40 and passing through the bearing 8 is smoothly discharged through the oil drainage flow path 40 without staying in the shaft hole 9 before reaching the oil seal 12. It is more difficult for the lubricating oil to flow into the oil seal 12 side.

更に,防油隔壁30の軸受側の側面31を,内周側に対し外周側が軸受8より遠ざかるように傾斜させた傾斜面とした構成(図2,図3参照)では,軸受8側より流入してきた潤滑油をこの傾斜面に沿って円滑に防油隔壁30の外周方向に誘導して,オイルシール12の内周面とロータ軸6の外周面間の隙間Δの軸受側端部Δaより離間する方向に誘導させることができる。 Further, in a configuration in which the side surface 31 of the oil-proof partition wall 30 on the bearing side is inclined so that the outer peripheral side is away from the bearing 8 with respect to the inner peripheral side (see FIGS. 2 and 3), the oil flows in from the bearing 8 side. The lubricating oil that has been used is smoothly guided along this inclined surface toward the outer peripheral surface of the oil-proof partition wall 30 from the bearing side end portion Δa of the gap Δ between the inner peripheral surface of the oil seal 12 and the outer peripheral surface of the rotor shaft 6. It can be guided in the direction of separation.

これとは逆に,防油隔壁30の軸受側の側面31を,内周側に対し外周側が前記軸受8に近付くように傾斜させた傾斜面とした構成(図4参照)では,防油隔壁30の軸受側の側面31に衝突して外周方向に誘導された潤滑油は,この傾斜面に案内されて軸受8側に戻されるように誘導されることで,オイルシール12側に対する潤滑油の浸入を更に生じさせ難いものとすることができた。 On the contrary, in the configuration in which the side surface 31 of the oil-proof partition wall 30 on the bearing side is inclined so that the outer peripheral side approaches the bearing 8 with respect to the inner peripheral side (see FIG. 4), the oil-proof partition wall is used. The lubricating oil that collides with the side surface 31 on the bearing side of 30 and is guided in the outer peripheral direction is guided by this inclined surface and guided back to the bearing 8 side, so that the lubricating oil for the oil seal 12 side is supplied. It was possible to make it less likely to cause further infiltration.

更に,前記防油隔壁30の軸受側の側面31に,周方向に所定間隔で,該防油隔壁30の半径方向に延びるリブ34を設けた構成では,防油隔壁30の軸受側の側面31に衝突した潤滑油を,このリブ34によって外周側に向けて案内することで,防油隔壁30の外周方向に潤滑油を更に効率的に誘導することができた。 Further, in a configuration in which ribs 34 extending in the radial direction of the oil-proof partition 30 are provided on the bearing-side side surface 31 of the oil-proof partition 30 at predetermined intervals in the circumferential direction, the bearing-side side surface 31 of the oil-proof partition 30 is provided. By guiding the lubricating oil that collided with the oil toward the outer peripheral side by the rib 34, the lubricating oil could be more efficiently guided in the outer peripheral direction of the oil-proof partition wall 30.

前記防油隔壁30の軸受側の側面31の延長上における前記軸孔9の内周面に,前記軸封装置10側から前記軸受8側に向かって内径を徐々に広げる傾斜部97を設けた構成では,防油隔壁30の回転に伴う遠心力によって外周方向に飛散された潤滑油は,この傾斜部97と衝突することで,この傾斜部97の傾斜に案内されて軸受8側に戻されるように誘導されることで,オイルシール12側に対する潤滑油の浸入をより効果的に防止することができた。 On the inner peripheral surface of the shaft hole 9 on the extension of the side surface 31 on the bearing side of the oil-proof partition wall 30, an inclined portion 97 that gradually expands the inner diameter from the shaft sealing device 10 side toward the bearing 8 side is provided. In the configuration, the lubricating oil scattered in the outer peripheral direction due to the centrifugal force accompanying the rotation of the oil-proof partition wall collides with the inclined portion 97, and is guided by the inclination of the inclined portion 97 and returned to the bearing 8 side. By being guided in this way, it was possible to more effectively prevent the infiltration of the lubricating oil into the oil seal 12 side.

本発明の軸封部構造を備えたオイルフリースクリュ圧縮機の側面断面説明図。FIG. 3 is a side sectional explanatory view of an oil-free screw compressor provided with the shaft sealing portion structure of the present invention. 図1の矢示II部分(破線で囲った部分)の拡大図。Enlarged view of the arrow II part (the part surrounded by the broken line) in FIG. 図1の防油隔壁の(A)は正面図,(B)は側面断面図。FIG. 1A is a front view and FIG. 1B is a side sectional view of the oil-proof partition wall. 変形例における防油隔壁の側面断面図。A side sectional view of an oil-proof partition wall in a modified example. 更に別の変形例における防油隔壁の(A)は正面図,(B)は側面断面図。In yet another modification, (A) is a front view and (B) is a side sectional view of the oil-proof partition wall. 図1の矢示II部分(破線で囲った部分)の変形例を示す拡大図。The enlarged view which shows the modification of the arrow II part (the part surrounded by a broken line) of FIG. 従来の軸封部構造を備えたオイルフリースクリュ圧縮機の平面断面図。Planar cross-sectional view of an oil-free screw compressor with a conventional shaft seal structure. 従来のオイルフリースクリュ圧縮機の軸封部構造の拡大説明図(特許文献1)。An enlarged explanatory view of a shaft sealing portion structure of a conventional oil-free screw compressor (Patent Document 1). 従来のオイルフリースクリュ圧縮機の軸封部構造の拡大説明図(特許文献2)。An enlarged explanatory view of a shaft sealing portion structure of a conventional oil-free screw compressor (Patent Document 2).

以下に,添付図面を参照しながら本発明の構成につき説明する。 Hereinafter, the configuration of the present invention will be described with reference to the accompanying drawings.

図1において,符号1は,本発明の軸封部構造を備えたオイルフリースクリュ圧縮機であり,このオイルフリースクリュ圧縮機1のケーシング2には,オス,メス一対のスクリュロータ4,5(図1においてメスのスクリュロータ5は,オスのスクリュロータ4の背面に隠れている)を収容するロータ室3が形成されており,このロータ室3内でオスのスクリュロータ4とメスのスクリュロータ5が非接触の状態で噛み合い回転することにより被圧縮気体を圧縮することができるように構成されている。 In FIG. 1, reference numeral 1 is an oil-free screw compressor provided with the shaft sealing portion structure of the present invention, and the casing 2 of the oil-free screw compressor 1 has a pair of male and female screw rotors 4 and 5 ( In FIG. 1, the female screw rotor 5 is hidden behind the male screw rotor 4), and a rotor chamber 3 is formed. In the rotor chamber 3, the male screw rotor 4 and the female screw rotor 4 are formed. 5 is configured to be able to compress the compressed gas by meshing and rotating in a non-contact state.

オス及びメスのスクリュロータ4,5の両端には,それぞれスクリュロータ4,5の回転軸であるロータ軸6,7(図1においてメスのスクリュロータ5のロータ軸7は,オスのスクリュロータ4のロータ軸6の背面に隠れている)がそれぞれ突出形成されていると共に,前述のロータ室3の長手方向両端には,オスのスクリュロータ4とメスのスクリュロータ5のロータ軸6,7がそれぞれ挿入される軸孔9が形成されていると共に,この軸孔9内に設けた軸受8によって,各ロータ軸6,7が回転可能に支承されている。 At both ends of the male and female screw rotors 4 and 5, the rotor shafts 6 and 7, which are the rotation shafts of the screw rotors 4 and 5, respectively (in FIG. 1, the rotor shaft 7 of the female screw rotor 5 is a male screw rotor 4). The rotor shafts 6 and 7 of the male screw rotor 4 and the female screw rotor 5 are located at both ends of the rotor chamber 3 in the longitudinal direction. Each of the shaft holes 9 to be inserted is formed, and the rotor shafts 6 and 7 are rotatably supported by the bearings 8 provided in the shaft holes 9.

この軸受8は,内輪8aの両端縁と外輪8bの両端縁間の間隔を塞ぐシールドを備えないオープン型のベアリングにより構成されたもので,この軸受8に対し機外側に設けられた給油ノズル20より軸受8の内輪8aと外輪8b間の間隔に向かって潤滑油を噴射することで,軸受8の潤滑と冷却を行うことができるように構成されている。 The bearing 8 is composed of an open type bearing having no shield that closes the space between both end edges of the inner ring 8a and the outer ring 8b, and the lubrication nozzle 20 provided on the outer side of the machine with respect to the bearing 8. By injecting lubricating oil toward the distance between the inner ring 8a and the outer ring 8b of the bearing 8, the bearing 8 can be lubricated and cooled.

この軸受8とロータ室3間におけるロータ軸6の外周面と軸孔9の内周面間の間隔には,該間隔を封止するための軸封装置10が取り付けられている。 A shaft sealing device 10 for sealing the gap is attached to the gap between the outer peripheral surface of the rotor shaft 6 and the inner peripheral surface of the shaft hole 9 between the bearing 8 and the rotor chamber 3.

この軸封装置10は,いずれも非接触式のシールである,ロータ室3側に配置されたエアシール11と,軸受8側に配置されたオイルシール12の組合せによって構成されており,本実施形態ではこのオイルシール12として,従来技術として説明した前掲の特許文献1及び2に記載のオイルシールと同様,円筒状部材の内周面に螺旋溝を備えたネジシールを使用している。 The shaft sealing device 10 is composed of a combination of an air seal 11 arranged on the rotor chamber 3 side and an oil seal 12 arranged on the bearing 8 side, both of which are non-contact type seals. As the oil seal 12, a screw seal having a spiral groove on the inner peripheral surface of the cylindrical member is used as in the oil seals described in Patent Documents 1 and 2 described above as the prior art.

前述の軸孔9には,ロータ室3側の端部においてロータ軸の外径に対応した内径に形成された小径部91が設けられていると共に,この小径部91に対し軸受8側の軸孔9には,前述の小径部91に対し内径が拡大された軸封装置収容部92が形成されており,この軸封装置収容部92内に軸封装置10を収容することができるように構成されている。 The shaft hole 9 is provided with a small diameter portion 91 formed at the end on the rotor chamber 3 side with an inner diameter corresponding to the outer diameter of the rotor shaft, and the shaft on the bearing 8 side with respect to the small diameter portion 91. The hole 9 is formed with a shaft sealing device accommodating portion 92 having an inner diameter expanded with respect to the small diameter portion 91 described above, so that the shaft sealing device 10 can be accommodated in the shaft sealing device accommodating portion 92. It is configured.

軸封装置収容部92に対する軸封装置10の収容は,ロータ室3側から軸孔9内にロータ軸6を挿入した状態で,機外側からロータ室3側に向けてロータ軸6に外嵌させた軸封装置10を軸封装置収容部92内に挿入すると共に,軸封装置10のエアシール11のロータ室側の端面を,軸封装置収容部92と小径部91の境界部分に形成された段差部の側面93に突合させると共に,軸封装置収容部92の軸受側の端部に設けられた環状溝21にスナップリング等の環状の係止具14を取り付けることで,係止具(スナップリング)14によって軸封装置10のオイルシール12の軸受側端面12aの位置を規制して,軸封装置収容部92内に軸封装置10が固定されている。 To accommodate the shaft sealing device 10 in the shaft sealing device accommodating portion 92, the rotor shaft 6 is fitted into the rotor shaft 6 from the outside of the machine toward the rotor chamber 3 side with the rotor shaft 6 inserted into the shaft hole 9 from the rotor chamber 3 side. The shaft sealing device 10 is inserted into the shaft sealing device accommodating portion 92, and the end surface of the air seal 11 of the shaft sealing device 10 on the rotor chamber side is formed at the boundary portion between the shaft sealing device accommodating portion 92 and the small diameter portion 91. The locking tool ( The shaft sealing device 10 is fixed in the shaft sealing device accommodating portion 92 by restricting the position of the bearing side end surface 12a of the oil seal 12 of the shaft sealing device 10 by the snap ring) 14.

なお,この係止具14は前述のスナップリングに限定されず,オイルシール12の軸受側端面12aの位置を規制し得る環状部分を有するものであれば,既知の各種の係止具14を採用可能である。 The locking tool 14 is not limited to the snap ring described above, and various known locking tools 14 are used as long as they have an annular portion that can regulate the position of the bearing side end surface 12a of the oil seal 12. It is possible.

この軸封装置10と軸受8間のロータ軸6には,ロータ軸6の外径に対応する開口35が中央に形成された,無端環状の円盤型を成す防油隔壁30が取り付けられており,この防油隔壁30をロータ軸6に外嵌することによって軸受8とオイルシール12間で軸孔9の内部が仕切られている。 The rotor shaft 6 between the shaft sealing device 10 and the bearing 8 is equipped with an endless annular disk-shaped oil-proof partition wall 30 having an opening 35 formed in the center corresponding to the outer diameter of the rotor shaft 6. By fitting the oil-proof partition wall 30 to the rotor shaft 6, the inside of the shaft hole 9 is partitioned between the bearing 8 and the oil seal 12.

この防油隔壁30は,その外径がオイルシール12の内径よりも大きく形成されており,図2中に拡大図で示すように,防油隔壁30の外周縁が,前記軸受8の外輪8bの軸封装置側の内周縁E1とオイルシール12の軸受側の内周縁E2を結ぶ線Lよりも外周側に配置される大きさに形成することが好ましい。 The outer diameter of the oil-proof partition wall 30 is formed to be larger than the inner diameter of the oil seal 12, and as shown in an enlarged view in FIG. 2, the outer peripheral edge of the oil-proof partition wall 30 is the outer ring 8b of the bearing 8. It is preferable to form the oil seal 12 so as to be arranged on the outer peripheral side of the line L connecting the inner peripheral edge E1 on the shaft sealing device side and the inner peripheral edge E2 on the bearing side of the oil seal 12.

好ましくは,前記防油隔壁30の外周縁と,該防油隔壁の取り付け位置における前記軸孔9の内周面間の隙間に回転許容間隔を確保し得る範囲で,前記防油隔壁30の外径を,前記軸孔9の内径に可及的に近づけた構成とする。 Preferably, the outside of the oil-proof partition wall 30 is within a range in which a rotation allowable interval can be secured in the gap between the outer peripheral edge of the oil-proof partition wall 30 and the inner peripheral surface of the shaft hole 9 at the mounting position of the oil-proof partition wall. The diameter shall be as close as possible to the inner diameter of the shaft hole 9.

より好ましくは,防油隔壁30の外径を,オイルシール12の軸受側端面12aを固定するスナップリング等の環状の係止具14の内径よりも大径に形成して防油隔壁30の軸封装置側の側面32の一部と,係止具14の軸受側の側面14aの一部が対向するように構成し,防油隔壁30の軸封装置側の側面32と,係止具14の軸受側の側面14a間の隙間を,回転許容間隔を確保し得る範囲で可及的に狭めて配置する。 More preferably, the outer diameter of the oil-proof partition 30 is formed to be larger than the inner diameter of the annular locking tool 14 such as a snap ring for fixing the bearing side end surface 12a of the oil seal 12, and the shaft of the oil-proof partition 30 is formed. A part of the side surface 32 on the sealing device side and a part of the side surface 14a on the bearing side of the locking tool 14 are configured to face each other, and the side surface 32 on the shaft sealing device side of the oil-proof partition wall 30 and the locking tool 14 The gap between the side surfaces 14a on the bearing side of the above is arranged as narrow as possible within the range where the allowable rotation interval can be secured.

このような防油隔壁30の配置を実現するために,図2に示す実施形態では,防油隔壁30の軸受側の側面31において中央の開口35の周縁より軸受側に突出するボス33を備えた形状に形成すると共に,ロータ軸6に設けた段部6aと,軸受8の内輪8a間でロータ軸6に外嵌した防油隔壁30の前記ボス33の部分を挟持することで,ボス33の突出長さ分,軸受8より離間した位置で,かつ,軸封装置側の側面32が係止具14の軸受側の側面14aと近接した位置に配置されるよう構成されている。 In order to realize such an arrangement of the oil-proof partition wall 30, in the embodiment shown in FIG. 2, a boss 33 is provided on the side surface 31 of the oil-proof partition wall 30 on the bearing side so as to project from the peripheral edge of the central opening 35 toward the bearing side. The boss 33 is formed by sandwiching the portion of the boss 33 of the oil-proof partition wall 30 externally fitted to the rotor shaft 6 between the step portion 6a provided on the rotor shaft 6 and the inner ring 8a of the bearing 8. The side surface 32 on the shaft sealing device side is arranged at a position separated from the bearing 8 by the protruding length of the locking tool 14, and is arranged at a position close to the side surface 14a on the bearing side of the locking tool 14.

この防油隔壁30の軸受側の側面31は,ロータ軸6の軸線に対し直交する方向の平面として形成するものとしても良いが,図2に示す実施形態では,防油隔壁30の軸受側の側面31を,内周側から外周側に向かうに従い徐々に軸受8から離間するように傾斜させている。 The side surface 31 on the bearing side of the oil-proof partition wall 30 may be formed as a plane in a direction orthogonal to the axis of the rotor shaft 6, but in the embodiment shown in FIG. 2, the side surface 31 on the bearing side of the oil-proof partition wall 30 may be formed. The side surface 31 is inclined so as to gradually separate from the bearing 8 from the inner peripheral side to the outer peripheral side.

なお,図2中の符号40は排油流路であり,この排油流路40は,防油隔壁30の取り付け位置の下方において,軸孔9の底部に開口するようにこのケーシング2内に形成されている。 Reference numeral 40 in FIG. 2 is an oil drainage flow path, and the oil drainage flow path 40 is inside the casing 2 so as to open to the bottom of the shaft hole 9 below the mounting position of the oil-proof partition wall 30. It is formed.

以上のように構成された軸封部構造を備えたオイルフリースクリュ圧縮機1を作動させて,スクリュロータ4,5の回転を開始すると,ロータ軸6,7が回転を開始すると共に,給油ノズル20が軸受8の内輪8aと外輪8b間の間隔に向けて軸受8に対し潤滑油の噴射を行う,「ジェット給油」を開始する。 When the oil-free screw compressor 1 having the shaft sealing structure configured as described above is operated to start the rotation of the screw rotors 4 and 5, the rotor shafts 6 and 7 start to rotate and the lubrication nozzle is provided. 20 starts "jet lubrication" in which lubricating oil is injected to the bearing 8 toward the distance between the inner ring 8a and the outer ring 8b of the bearing 8.

給油ノズル20は,比較的多量の潤滑油を比較的高い圧力で噴射して軸受8に対し給油することから,軸受8の潤滑と冷却を行った潤滑油は,軸受8を通過した後も噴射時の勢いをある程度保ったまま,大量にオイルシール12側に向かって流出する。 Since the lubrication nozzle 20 injects a relatively large amount of lubricating oil at a relatively high pressure to supply oil to the bearing 8, the lubricating oil that has lubricated and cooled the bearing 8 is injected even after passing through the bearing 8. A large amount of oil flows out toward the oil seal 12 side while maintaining the momentum of the time to some extent.

しかし,軸受8とオイルシール12間のロータ軸6には,前述したように防油隔壁30が外嵌されおり,軸受8とオイルシール12間の軸孔9内の空間がこの防油隔壁30によって仕切られている。 However, as described above, the oil-proof partition wall 30 is externally fitted to the rotor shaft 6 between the bearing 8 and the oil seal 12, and the space in the shaft hole 9 between the bearing 8 and the oil seal 12 is the oil-proof partition wall 30. It is partitioned by.

そして,この防油隔壁30は,その外径がオイルシール12の内径よりも大きく形成されており,好ましくは,その外周縁が,軸受8の外輪8bの軸封装置側の内周縁E1と,オイルシール12の軸受側端部の内周縁E2を結ぶ線Lよりも外周側に配置されるように,その外径が設定されていることで,軸受8側よりオイルシール12を見た際に,ロータ室3側へ潤滑油が浸入する際の起点となる,オイルシール12の内周面とロータ軸6の外周面間の隙間Δの軸受側端部Δaが,この防油隔壁30によって完全に遮蔽された位置に配置されることになる。 The outer diameter of the oil-proof partition wall 30 is formed to be larger than the inner diameter of the oil seal 12, and the outer peripheral edge thereof is preferably the inner peripheral edge E1 on the shaft sealing device side of the outer ring 8b of the bearing 8. When the oil seal 12 is viewed from the bearing 8 side, the outer diameter is set so that it is arranged on the outer peripheral side of the line L connecting the inner peripheral edge E2 of the bearing side end of the oil seal 12. The bearing-side end Δa of the gap Δ between the inner peripheral surface of the oil seal 12 and the outer peripheral surface of the rotor shaft 6, which is the starting point when the lubricating oil infiltrates into the rotor chamber 3, is completely removed by the oil-proof partition wall 30. It will be placed in a position shielded by.

その結果,軸受8を通過してオイルシール12の内周面とロータ軸6の外周面間の隙間Δの軸受側端部Δaに向かおうとする潤滑油の流れは,確実にこの防油隔壁30と衝突することとなり,軸受8を通過した潤滑油が,直接,オイルシール12の内周面とロータ軸6の外周面間の隙間Δの軸受側端部Δaに到達することが防止されている。 As a result, the flow of lubricating oil that passes through the bearing 8 and tends toward the bearing side end Δa of the gap Δ between the inner peripheral surface of the oil seal 12 and the outer peripheral surface of the rotor shaft 6 is surely this oil-proof partition wall. It will collide with 30 and prevent the lubricating oil that has passed through the bearing 8 from directly reaching the bearing side end portion Δa of the gap Δ between the inner peripheral surface of the oil seal 12 and the outer peripheral surface of the rotor shaft 6. There is.

このようにして,軸受8を通過し,防油隔壁30に衝突した潤滑油は,防油隔壁30がロータ軸と共に回転することにより生じる遠心力と,防油隔壁30の軸受側の側面31に形成された傾斜面による案内によって,外周方向にその流れが変更される。 In this way, the lubricating oil that has passed through the bearing 8 and collided with the oil-proof partition 30 is applied to the centrifugal force generated by the rotation of the oil-proof partition 30 together with the rotor shaft and the side surface 31 of the oil-proof partition 30 on the bearing side. The flow is changed in the outer peripheral direction by the guidance by the formed inclined surface.

その結果,軸受8を通過した潤滑油は,ロータ室3側に対する潤滑油の浸入起点となるオイルシール12の内周面とロータ軸6の外周面間の隙間Δの軸受側端部Δaから遠ざかる方向に誘導され,軸受8を通過した多量の潤滑油が勢いを保ったまま,前述の隙間Δの軸受側端部Δaに到達することができないようになっている。 As a result, the lubricating oil that has passed through the bearing 8 moves away from the bearing side end portion Δa of the gap Δ between the inner peripheral surface of the oil seal 12 and the outer peripheral surface of the rotor shaft 6, which is the starting point for the lubricating oil to enter the rotor chamber 3. A large amount of lubricating oil guided in the direction and passing through the bearing 8 cannot reach the bearing side end portion Δa of the above-mentioned gap Δ while maintaining the momentum.

そして,このように防油隔壁30と衝突して向きを変えた潤滑油のうち,外周方向下方に誘導されたものは,直接,軸孔9の底部において開口する排油流路40に導入され,また,他の一部は遠心力によって外周方向に飛ばされた後,軸孔9の内壁を伝って落下して排油流路40に導入されることで,軸孔9より円滑に排出されることで,オイルシール12に到達する潤滑油量を大幅に減少させている。 Then, among the lubricating oils that collide with the oil-proof partition 30 and change their directions in this way, those guided downward in the outer peripheral direction are directly introduced into the oil drainage flow path 40 that opens at the bottom of the shaft hole 9. In addition, the other part is blown in the outer peripheral direction by centrifugal force, then falls along the inner wall of the shaft hole 9 and is introduced into the oil drainage flow path 40, so that the other part is smoothly discharged from the shaft hole 9. As a result, the amount of lubricating oil reaching the oil seal 12 is significantly reduced.

また,このように構成された本発明の軸封部構造では,たとえ防油隔壁30を越えてオイルシール12の内周面とロータ軸6の外周面間の隙間Δの軸受側端部Δaに到達した潤滑油が存在したとしても,防油隔壁30が設けられていない場合に比較して到達し得る潤滑油量は僅かであるだけでなく,到達する潤滑油は,防油隔壁との衝突によってその勢いが大幅に減殺されている。 Further, in the shaft sealing portion structure of the present invention configured as described above, even if the oil-proof partition wall 30 is exceeded, the gap Δ between the inner peripheral surface of the oil seal 12 and the outer peripheral surface of the rotor shaft 6 is formed at the bearing side end portion Δa. Even if the lubricating oil that has reached is present, not only the amount of lubricating oil that can be reached is small as compared with the case where the oil-proof partition wall 30 is not provided, but also the reaching lubricating oil collides with the oil-proof partition wall. The momentum has been greatly diminished by.

その結果,ロータ軸6の回転速度の低下によってオイルシール12が発生する流体動圧が低下し,潤滑油を軸受8側に押し戻す機能が低下した状態にあったとしても,到達する潤滑油量は,オイルシール12の処理能力以下に減少されていると共に,到達した潤滑油は勢いを失っているため,オイルシール12が発生する流体動圧に抗してオイルシール12の内周面とロータ軸6の外周面間の隙間Δに浸入することができない。 As a result, even if the fluid dynamic pressure generated by the oil seal 12 is reduced due to the decrease in the rotation speed of the rotor shaft 6 and the function of pushing the lubricating oil back to the bearing 8 side is reduced, the amount of lubricating oil reached is reduced. Since the lubricating oil that has reached the oil seal 12 has lost its momentum as it has been reduced to less than the processing capacity of the oil seal 12, the inner peripheral surface of the oil seal 12 and the rotor shaft resist the fluid dynamic pressure generated by the oil seal 12. It cannot penetrate into the gap Δ between the outer peripheral surfaces of 6.

特に,防油隔壁30の外周縁と軸孔9の内周面間の隙間を,回転許容間隔を確保し得る範囲で可及的に狭めた構成,更には,防油隔壁30の外径を,オイルシール12の軸受側の端面12aを係止する環状の係止具14の内径よりも大径に形成して防油隔壁30の軸封装置側の側面32と係止具14の軸受側側面14a間の隙間を,回転許容間隔を確保し得る範囲で可及的に狭く形成した構成では,オイルシール12に到達するために潤滑油が通過しなければならない隙間が狭くなることで,オイルシール12の内周面とロータ軸6の外周面間の隙間Δの軸受側端部Δaに到達し得る潤滑油量を更に減少させることができると共に,潤滑油の勢いを低下させることができ,ロータ室3側に対する潤滑油の浸入をより生じさせ難くすることができる。 In particular, the gap between the outer peripheral edge of the oil-proof partition 30 and the inner peripheral surface of the shaft hole 9 is narrowed as much as possible within the range in which the allowable rotation interval can be secured, and the outer diameter of the oil-proof partition 30 is reduced. , The side surface 32 of the oil-proof partition wall 30 on the shaft sealing device side and the bearing side of the locking tool 14 are formed to have a diameter larger than the inner diameter of the annular locking tool 14 that locks the end surface 12a on the bearing side of the oil seal 12. In a configuration in which the gap between the side surfaces 14a is formed as narrow as possible within the range where the allowable rotation interval can be secured, the gap through which the lubricating oil must pass in order to reach the oil seal 12 becomes narrow, so that the oil The amount of lubricating oil that can reach the bearing side end Δa of the gap Δ between the inner peripheral surface of the seal 12 and the outer peripheral surface of the rotor shaft 6 can be further reduced, and the momentum of the lubricating oil can be reduced. It is possible to make it more difficult for the lubricating oil to infiltrate into the rotor chamber 3 side.

以上,図2及び図3を参照して説明したオイルフリースクリュ圧縮機1の軸封部構造に設けた防油隔壁30は,軸受側の側面31を,内周側から外周側に向かって軸受より離間する方向に傾斜させる傾斜面として形成したものであった。 The oil-proof partition wall 30 provided in the shaft sealing structure of the oil-free screw compressor 1 described above with reference to FIGS. 2 and 3 has a side surface 31 on the bearing side bearing from the inner peripheral side to the outer peripheral side. It was formed as an inclined surface that is inclined in a direction that is more distant from each other.

これに対し,図4に示す防油隔壁30は,軸受側の側面31を,内周側から外周側に向かって軸受8に近付くように傾斜する傾斜面として形成した。 On the other hand, the oil-proof partition wall 30 shown in FIG. 4 is formed with the side surface 31 on the bearing side as an inclined surface inclined so as to approach the bearing 8 from the inner peripheral side toward the outer peripheral side.

このように形成することで,防油隔壁30の軸受側の側面31に衝突した潤滑油は,この側面31に与えられた傾斜方向に誘導されて防油隔壁30の内周側から外周側に向かって移動することにより,潤滑油を,軸受8側へ戻すように誘導することができ,その結果,オイルシール12側に向かう潤滑油の量を更に減少させることができた。 By forming in this way, the lubricating oil that has collided with the side surface 31 of the oil-proof partition wall 30 on the bearing side is guided in the inclined direction given to the side surface 31 from the inner peripheral side to the outer peripheral side of the oil-proof partition wall 30. By moving toward, the lubricating oil could be guided to return to the bearing 8 side, and as a result, the amount of the lubricating oil toward the oil seal 12 side could be further reduced.

更に,図2~図4を参照して説明した防油隔壁30では,防油隔壁30の軸受側の側面31は,傾斜させているものの,その表面は平坦に形成されている。 Further, in the oil-proof partition wall 30 described with reference to FIGS. 2 to 4, the side surface 31 of the oil-proof partition wall 30 on the bearing side is inclined, but the surface thereof is formed flat.

これに対し,図5に示す実施形態では,防油隔壁30の軸受側の側面31に,周方向に所定間隔で,該防油隔壁30の半径方向を長さ方向とするリブ34(凸条)を設けている。 On the other hand, in the embodiment shown in FIG. 5, ribs 34 (convex stripes) on the side surface 31 of the oil-proof partition wall 30 on the bearing side at predetermined intervals in the circumferential direction with the radial direction of the oil-proof partition wall 30 as the length direction. ) Is provided.

このように防油隔壁30の軸受側の側面31にリブ34を設けたことで,防油隔壁30の軸受側の側面31に衝突した潤滑油を,このリブ34により案内して効率的に外周方向へ移動させることができ,オイルシール12側に潤滑油が流入することをより効果的に防止している。 By providing the rib 34 on the side surface 31 on the bearing side of the oil-proof partition wall 30 in this way, the lubricating oil that has collided with the side surface 31 on the bearing side of the oil-proof partition wall 30 is guided by the rib 34 and efficiently outer peripheral. It can be moved in the direction, and the lubricating oil is more effectively prevented from flowing into the oil seal 12 side.

更に,図2に示した実施形態では,軸孔9を,軸封装置収容部92から軸受8に至るまで,その内径を同一径とした構成例を示したが,オイルシール12と軸受8間の軸孔9の内径には,図6に示すように,少なくとも防油隔壁30の軸受側側面31の延長上における前記軸孔9の内周面に,軸封装置10側から軸受8側に向かって内径を徐々に広げる傾斜部97を設けるものとしても良い。 Further, in the embodiment shown in FIG. 2, a configuration example is shown in which the inner diameter of the shaft hole 9 from the shaft sealing device accommodating portion 92 to the bearing 8 is the same, but the space between the oil seal 12 and the bearing 8 is shown. As shown in FIG. 6, the inner diameter of the shaft hole 9 is at least on the inner peripheral surface of the shaft hole 9 on the extension of the bearing side side surface 31 of the oil-proof partition wall 30 from the shaft sealing device 10 side to the bearing 8 side. An inclined portion 97 that gradually widens the inner diameter may be provided.

このような傾斜部97を設けた構成では,図6中に矢印で示すように,防油隔壁30の回転に伴う遠心力によって防油隔壁30の軸受側の側面31を伝って外周方向に飛散した潤滑油は,軸孔9の内周面に形成された傾斜部97に衝突し,この傾斜部97の傾斜に案内されて軸受8側に戻されるように誘導されることで,オイルシール12側に対する潤滑油の浸入をより確実に防止することができる。 In the configuration in which the inclined portion 97 is provided, as shown by an arrow in FIG. 6, the centrifugal force accompanying the rotation of the oil-proof partition wall 30 is transmitted along the side surface 31 of the oil-proof partition wall 30 on the bearing side and is scattered in the outer peripheral direction. The lubricated oil collides with the inclined portion 97 formed on the inner peripheral surface of the shaft hole 9, and is guided by the inclination of the inclined portion 97 so as to be returned to the bearing 8 side, whereby the oil seal 12 is used. It is possible to more reliably prevent the intrusion of lubricating oil to the side.

1 オイルフリースクリュ圧縮機
2 ケーシング
3 ロータ室
4 オスのスクリュロータ
5 メスのスクリュロータ
6 ロータ軸(オスのスクリュロータの)
7 ロータ軸(メスのスクリュロータの)
8 軸受
8a 内輪
8b 外輪
9 軸孔
91 小径部
92 軸封装置収容部
93 段差部の側面
97 傾斜部
10 軸封装置
11 エアシール
12 オイルシール
12a 軸受側端面(オイルシールの)
12b 螺旋溝
14 係止具(スナップリング)
14a 軸受側の側面(係止具の)
20 給油ノズル
21 環状溝
30 防油隔壁
31 軸受側の側面(防油隔壁の)
32 軸封装置側の側面(防油隔壁の)
33 ボス
34 リブ
35 開口
40 排油流路
100 オイルフリースクリュ圧縮機
102 ケーシング
103 ロータ室
104 オスのスクリュロータ
105 メスのスクリュロータ
106 ロータ軸(オスのスクリュロータの)
107 ロータ軸(メスのスクリュロータの)
108 軸受
108a 内輪
108b 外輪
109 軸孔
110 軸封装置
111 エアシール
112 オイルシール
112a 軸受側端面(オイルシールの)
112b 螺旋溝
114 スナップリング
118 遮蔽板
120 給油ノズル
121 環状溝
140 排油流路
Δ オイルシールの内周面とロータ軸の外周面間の隙間
Δa オイルシールの内周面とロータ軸の外周面間の隙間の軸受側端部
Δ’ 遮蔽板の内周面とロータ軸の外周面間の隙間
E1 軸受外輪の軸封装置側の内周縁
E2 オイルシールの軸受側の内周縁

1 Oil-free screw compressor 2 Casing 3 Rotor chamber 4 Male screw rotor 5 Female screw rotor 6 Rotor shaft (male screw rotor)
7 Rotor shaft (of female screw rotor)
8 Bearing 8a Inner ring 8b Outer ring 9 Shaft hole 91 Small diameter part 92 Shaft sealing device accommodating part 93 Side of stepped part 97 Inclined part 10 Shaft sealing device 11 Air seal 12 Oil seal 12a Bearing side end face (of oil seal)
12b Spiral groove 14 Locking tool (snap ring)
14a Bearing side side surface (of locking tool)
20 Refueling nozzle 21 Circular groove 30 Oil-proof partition 31 Side surface on the bearing side (of oil-proof partition)
32 Side surface on the shaft sealing device side (of the oil-proof bulkhead)
33 Boss 34 Rib 35 Opening 40 Oil drainage channel 100 Oil-free screw compressor 102 Casing 103 Rotor chamber 104 Male screw rotor 105 Female screw rotor 106 Rotor shaft (of male screw rotor)
107 Rotor shaft (of female screw rotor)
108 Bearing 108a Inner ring 108b Outer ring 109 Shaft hole 110 Shaft sealing device 111 Air seal 112 Oil seal 112a Bearing side end face (of oil seal)
112b Spiral groove 114 Snap ring 118 Shielding plate 120 Refueling nozzle 121 Circular groove 140 Oil drainage flow path Δ Gap between the inner peripheral surface of the oil seal and the outer peripheral surface of the rotor shaft Δa Between the inner peripheral surface of the oil seal and the outer peripheral surface of the rotor shaft Bearing side end of the gap Δ'Gap between the inner peripheral surface of the shielding plate and the outer peripheral surface of the rotor shaft E1 Inner peripheral edge of the bearing outer ring on the shaft sealing device side E2 Inner peripheral edge of the oil seal on the bearing side

Claims (9)

オス,メス一対のスクリュロータにそれぞれ設けられたロータ軸を支承する軸受と,前記スクリュロータを収容するロータ室間に設けられ,前記ロータ室側に配置されるエアシールと,前記軸受側に配置されるオイルシールから成る非接触式の軸封装置によって,前記ロータ軸の外周面と該ロータ軸が挿入された軸孔の内周面間の間隔を封止したオイルフリースクリュ圧縮機の軸封部構造において,
前記軸受と前記オイルシール間の前記ロータ軸に,ロータ軸と共に回転する無端環状の防油隔壁を外嵌し,
前記防油隔壁の外径を,前記オイルシールの内径よりも大きくしたことを特徴とするオイルフリースクリュ圧縮機の軸封部構造。
A bearing that supports the rotor shaft provided in each pair of male and female screw rotors, an air seal that is provided between the rotor chambers that accommodate the screw rotor and is arranged on the rotor chamber side, and an air seal that is arranged on the bearing side. A shaft seal of an oil-free screw compressor that seals the gap between the outer peripheral surface of the rotor shaft and the inner peripheral surface of the shaft hole into which the rotor shaft is inserted by a non-contact shaft sealing device consisting of an oil seal. In the structure
An endless annular oil-proof partition wall that rotates with the rotor shaft is fitted onto the rotor shaft between the bearing and the oil seal.
A shaft sealing structure of an oil-free screw compressor, characterized in that the outer diameter of the oil-proof partition wall is made larger than the inner diameter of the oil seal.
前記防油隔壁の外周縁が,前記軸受の外輪の軸封装置側の内周縁と,前記オイルシールの軸受側端面の内周縁を結ぶ線よりも外周側に配置されるように,前記防油隔壁の外径を設定したことを特徴とする請求項1記載のオイルフリースクリュ圧縮機の軸封部構造。 The oil-proof partition is arranged on the outer peripheral side of the line connecting the inner peripheral edge of the outer ring of the bearing on the shaft sealing device side and the inner peripheral edge of the bearing-side end face of the oil seal. The shaft sealing portion structure of the oil-free screw compressor according to claim 1, wherein the outer diameter of the partition wall is set. 前記防油隔壁の外周縁と,該防油隔壁の取り付け位置における前記軸孔の内周面間に回転許容間隔を確保し得る範囲で,前記防油隔壁の外径を,前記軸孔の内径に可及的に近づけたことを特徴とする請求項1又は2記載のオイルフリースクリュ圧縮機の軸封部構造。 The outer diameter of the oil-proof partition is set to the inner diameter of the shaft hole within a range in which a rotation allowable interval can be secured between the outer peripheral edge of the oil-proof partition and the inner peripheral surface of the shaft hole at the mounting position of the oil-proof partition. The shaft sealing portion structure of the oil-free screw compressor according to claim 1 or 2, characterized in that the oil-free screw compressor is as close as possible to the above. 前記防油隔壁の外径を,前記オイルシールの前記軸受側の端面を規制する環状の係止具の内径よりも大きく形成すると共に,
前記防油隔壁の前記軸封装置側の側面と,前記係止具の前記軸受側の側面間に回転許容間隔を確保し得る範囲で,前記防油隔壁の前記軸封装置側の側面と前記係止具の前記軸受側の側面間の隙間を可及的に狭めたことを特徴とする請求項1~3いずれか1項記載のオイルフリースクリュ圧縮機の軸封部構造。
The outer diameter of the oil-proof partition wall is formed to be larger than the inner diameter of the annular locking tool that regulates the end face of the oil seal on the bearing side.
The side surface of the oil-proof partition wall on the shaft sealing device side and the side surface of the oil-proof partition wall on the shaft sealing device side to the extent that a rotation allowable distance can be secured between the side surface of the oil-proof partition wall on the shaft sealing device side and the side surface of the locking tool on the bearing side. The shaft sealing portion structure of the oil-free screw compressor according to any one of claims 1 to 3, wherein the gap between the side surfaces of the locking tool on the bearing side is narrowed as much as possible.
前記軸孔の底部において開口する排油流路を,前記防油隔壁の下方位置に設けたことを特徴とする請求項1~4いずれか1項記載のオイルフリースクリュ圧縮機の軸封部構造。 The shaft sealing portion structure of the oil-free screw compressor according to any one of claims 1 to 4, wherein an oil drainage flow path opened at the bottom of the shaft hole is provided at a position below the oil-proof partition wall. .. 前記防油隔壁の軸受側の側面を,内周側に対し外周側が前記軸受より遠ざかるように傾斜させた傾斜面としたことを特徴とする請求項1~5いずれか1項記載のオイルフリースクリュ圧縮機の軸封部構造。 The oil-free screw according to any one of claims 1 to 5, wherein the side surface of the oil-proof partition wall on the bearing side is inclined so that the outer peripheral side is inclined away from the bearing with respect to the inner peripheral side. The shaft seal structure of the compressor. 前記防油隔壁の軸受側の側面を,内周側に対し外周側が前記軸受に近付くように傾斜させた傾斜面としたことを特徴とする請求項1~5いずれか1項記載のオイルフリースクリュ圧縮機の軸封部構造。 The oil-free screw according to any one of claims 1 to 5, wherein the side surface of the oil-proof partition wall on the bearing side is inclined so that the outer peripheral side approaches the bearing with respect to the inner peripheral side. The shaft seal structure of the compressor. 前記防油隔壁の軸受側の側面に,周方向に所定間隔で,該防油側壁の半径方向に延びるリブを設けたことを特徴とする請求項1~7いずれか1項記載のオイルフリースクリュ圧縮機の軸封部構造。 The oil-free screw according to any one of claims 1 to 7, wherein ribs extending in the radial direction of the oil-proof partition wall are provided on the side surface of the oil-proof partition wall on the bearing side at predetermined intervals in the circumferential direction. The shaft seal structure of the compressor. 前記防油隔壁の軸受側の側面の外周方向延長上における前記軸孔の内周面に,前記軸封装置側から前記軸受側に向かって内径を徐々に広げる傾斜部を設けたことを特徴とする請求項1~8いずれか1項記載のオイルフリースクリュ圧縮機の軸封部構造。

The oil-proof partition is characterized in that an inclined portion that gradually expands the inner diameter from the shaft sealing device side toward the bearing side is provided on the inner peripheral surface of the shaft hole on the extension of the side surface of the bearing side of the oil-proof partition in the outer peripheral direction. The shaft sealing portion structure of the oil-free screw compressor according to any one of claims 1 to 8.

JP2020202211A 2020-12-04 Shaft seal structure of oil-free screw compressor Active JP7504010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020202211A JP7504010B2 (en) 2020-12-04 Shaft seal structure of oil-free screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020202211A JP7504010B2 (en) 2020-12-04 Shaft seal structure of oil-free screw compressor

Publications (2)

Publication Number Publication Date
JP2022089649A true JP2022089649A (en) 2022-06-16
JP7504010B2 JP7504010B2 (en) 2024-06-21

Family

ID=

Similar Documents

Publication Publication Date Title
EP2284396B1 (en) Refrigerant compressor
US7055827B2 (en) Non-contacting clearance seal for high misalignment applications
KR100372045B1 (en) Scroll compressors to effectively cool the motor
EP0815360B1 (en) A hermetically encapsulated refrigerant compressor
CN108474380B (en) Oil-free screw compressor
US6659227B2 (en) Oil leak prevention structure for vacuum pump
ZA200105586B (en) Improved bearing isolator.
JP2022089649A (en) Shaft seal part structure of oil-free screw compressor
JP7504010B2 (en) Shaft seal structure of oil-free screw compressor
JP2008303781A (en) Screw compressor
EP1256721A2 (en) Sealing for a rotary vacuum pump
US6663367B2 (en) Shaft seal structure of vacuum pumps
US6688863B2 (en) Oil leak prevention structure of vacuum pump
US6659746B2 (en) Shaft seal structure of vacuum pumps
EP1273801B2 (en) Sealing for vacuum pump
US20030072651A1 (en) Method and apparatus for controlling vacuum pump to stop
JPH09177802A (en) Sealing device and sealing method for rotary machine
JP7186055B2 (en) scroll compressor
EP3664259B1 (en) Integrated power module of electric scooter
JPS5996496A (en) Sliding vane compressor
KR100481758B1 (en) Oil leak prevention structure of vacuum pump
CN114542505A (en) Leaked oil recovery structure of shaft seal part of screw compressor
JP2004036516A (en) Gas compressor
KR20040032505A (en) Oil leak prevention structure for vacuum pump
WO2001031236A2 (en) Improved bearing isolator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240502

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240611