JP2022083876A - Compressor and freezer - Google Patents

Compressor and freezer Download PDF

Info

Publication number
JP2022083876A
JP2022083876A JP2020195464A JP2020195464A JP2022083876A JP 2022083876 A JP2022083876 A JP 2022083876A JP 2020195464 A JP2020195464 A JP 2020195464A JP 2020195464 A JP2020195464 A JP 2020195464A JP 2022083876 A JP2022083876 A JP 2022083876A
Authority
JP
Japan
Prior art keywords
cylinder
compressor
cylinder chamber
blade
press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020195464A
Other languages
Japanese (ja)
Other versions
JP7393666B2 (en
Inventor
洪一 入川
Koichi Irikawa
ちひろ 遠藤
Chihiro Endo
幸博 稲田
Sachihiro Inada
遼介 和田
Ryosuke Wada
裕也 砂原
Yuya Sunahara
絵夢 加藤
Emu Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2020195464A priority Critical patent/JP7393666B2/en
Priority to EP21209445.2A priority patent/EP4006346B1/en
Priority to ES21209445T priority patent/ES2953284T3/en
Publication of JP2022083876A publication Critical patent/JP2022083876A/en
Application granted granted Critical
Publication of JP7393666B2 publication Critical patent/JP7393666B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • F04C18/322Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the outer member and reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/806Pipes for fluids; Fittings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

To provide a compressor capable of suppressing deformation of a blade hole.SOLUTION: A compressor is equipped with a cylinder (101), a cylinder chamber (103), a piston (102a) swiveling along an inner peripheral surface (101a) of the cylinder (101), a blade (102b) that partitions the cylinder chamber (103) into a high-pressure sire area (103b) and a low-pressure area (103a) with the piston (102a), a blade hole (104) in which the blade (102b) moves forward/backward, a suction passage (120) that extends from an outer peripheral surface of the cylinder (101) to the inner peripheral surface (101a) of the cylinder (101) and guides a refrigerant to the cylinder chamber (103), and a piping connection member (200) that has a press-in portion (201b) pressed in the suction passage (120) from a diametrical outer side of the cylinder (101). A distance (R2) from a center point (O1) of the cylinder chamber (103) to the press-in portion (201b) is a distance (R1) to an end on the diametrical outer side of the blade hole (104) or more.SELECTED DRAWING: Figure 3

Description

本開示は、圧縮機および冷凍装置に関する。 The present disclosure relates to compressors and refrigeration equipment.

従来、圧縮機としては、シリンダに設けられた吸入通路に接続部材を介して吸入管を取り付けるものがある(例えば、特開平6-213183号公報(特許文献1)参照)。 Conventionally, as a compressor, there is a compressor in which a suction pipe is attached to a suction passage provided in a cylinder via a connecting member (see, for example, Japanese Patent Application Laid-Open No. 6-213183 (Patent Document 1)).

上記圧縮機では、圧縮機のシリンダに形成された吸入通路に接続部材の一端が圧入固定されている。 In the compressor, one end of the connecting member is press-fitted and fixed to the suction passage formed in the cylinder of the compressor.

特開平6-213183号公報Japanese Unexamined Patent Publication No. 6-21183

上記圧縮機では、シリンダの吸入通路に圧入される接続部材の圧入部分が押し広げられて、シリンダのブレード穴が変形するという問題がある。このため、上記圧縮機は、ブレードの異常摩耗や焼き付きが生じる。 The compressor has a problem that the press-fitted portion of the connecting member to be press-fitted into the suction passage of the cylinder is expanded and the blade hole of the cylinder is deformed. Therefore, the compressor causes abnormal wear and seizure of the blade.

本開示では、ブレード穴の変形を抑制できる圧縮機およびその圧縮機を備えた冷凍装置を提案する。 The present disclosure proposes a compressor capable of suppressing deformation of a blade hole and a refrigerating apparatus provided with the compressor.

本開示の圧縮機は、
シリンダと、
上記シリンダの内周面で確定されるシリンダ室と、
上記シリンダ室に収容され、上記シリンダの内周面に沿って旋回運動するピストンと、
上記ピストンと共に、上記シリンダ室を高圧側領域と低圧側領域とに区画するブレードと、
上記シリンダに設けられると共に、上記シリンダ室に連通し、上記ブレードが進退するブレード穴と、
上記シリンダの外周面から上記シリンダの内周面まで延び、冷媒を上記シリンダ室へ案内する吸入通路と、
上記シリンダの径方向外側から上記吸入通路に圧入にされる圧入部を有する配管接続部材と
を備え、
上記シリンダ室の中心点から上記圧入部までの距離は、上記ブレード穴の径方向外側の端までの距離以上である。
The compressor of the present disclosure is
Cylinder and
The cylinder chamber determined by the inner peripheral surface of the cylinder and
A piston housed in the cylinder chamber and swiveling along the inner peripheral surface of the cylinder,
Along with the piston, a blade that divides the cylinder chamber into a high-pressure side region and a low-pressure side region,
A blade hole provided in the cylinder, communicating with the cylinder chamber, and advancing and retreating the blade,
A suction passage that extends from the outer peripheral surface of the cylinder to the inner peripheral surface of the cylinder and guides the refrigerant to the cylinder chamber.
A pipe connecting member having a press-fitting portion to be press-fitted into the suction passage from the radial outside of the cylinder is provided.
The distance from the center point of the cylinder chamber to the press-fitting portion is equal to or greater than the distance to the radial outer end of the blade hole.

本開示によれば、シリンダ室の中心点から圧入部までの距離を、ブレード穴の径方向外側の端までの距離以上にすることによって、配管接続部材の圧入部をシリンダの吸入通路に圧入するときのシリンダにおけるブレード穴の変形を抑制できる。 According to the present disclosure, the press-fitting portion of the pipe connecting member is press-fitted into the suction passage of the cylinder by setting the distance from the center point of the cylinder chamber to the press-fitting portion to be equal to or greater than the distance to the radial outer end of the blade hole. Deformation of the blade hole in the cylinder at that time can be suppressed.

また、本開示の1つの態様に係る圧縮機では、
上記吸入通路は上記シリンダ室の上記高圧側領域に連通し、上記配管接続部材からの冷媒が上記吸入通路を介して上記シリンダ室の上記高圧側領域に供給される。
Further, in the compressor according to one aspect of the present disclosure,
The suction passage communicates with the high pressure side region of the cylinder chamber, and the refrigerant from the pipe connecting member is supplied to the high pressure side region of the cylinder chamber via the suction passage.

本開示によれば、例えば、中間圧の冷媒を、吸入通路を介してシリンダ室の高圧側領域に導入することにより、冷凍能力を向上できる。 According to the present disclosure, for example, the refrigerating capacity can be improved by introducing an intermediate pressure refrigerant into the high pressure side region of the cylinder chamber via the suction passage.

また、本開示の1つの態様に係る圧縮機では、
上記吸入通路内に設置され、上記シリンダ室の上記高圧側領域から上記配管接続部材へ向かう冷媒の流れを規制する弁構造を備える。
Further, in the compressor according to one aspect of the present disclosure,
It is installed in the suction passage and includes a valve structure that regulates the flow of the refrigerant from the high pressure side region of the cylinder chamber to the pipe connecting member.

本開示によれば、吸入通路内に設置された弁構造によって、配管接続部材とシリンダ室との間で、シリンダ室の高圧側領域から配管接続部材へ向かう冷媒の流れを規制するので、圧縮機側から吸入通路を介して冷媒が逆流するのを抑制できる。 According to the present disclosure, the valve structure installed in the suction passage regulates the flow of the refrigerant from the high pressure side region of the cylinder chamber to the pipe connecting member between the pipe connecting member and the cylinder chamber, and thus the compressor. It is possible to suppress the backflow of the refrigerant from the side through the suction passage.

また、本開示の1つの態様に係る圧縮機では、
上記シリンダ室の中心点から上記圧入部までの距離と、上記ブレード穴の径方向外側の端までの距離との比R2/R1が1.02以上である。
Further, in the compressor according to one aspect of the present disclosure,
The ratio R2 / R1 of the distance from the center point of the cylinder chamber to the press-fitting portion and the distance to the radial outer end of the blade hole is 1.02 or more.

本開示によれば、配管接続部材の圧入部をシリンダの吸入通路に圧入するとき、シリンダにおけるブレード穴の変形を抑制できる。 According to the present disclosure, when the press-fitting portion of the pipe connecting member is press-fitted into the suction passage of the cylinder, deformation of the blade hole in the cylinder can be suppressed.

また、本開示の1つの態様に係る圧縮機では、
平面視において、上記シリンダ室の内周面の上記ブレード穴に連なる2つの端の中心点と上記シリンダ室の中心点とを通る直線と、上記吸入通路の中心軸とが、鋭角で交差する。
Further, in the compressor according to one aspect of the present disclosure,
In a plan view, the straight line passing through the center points of the two ends of the inner peripheral surface of the cylinder chamber connected to the blade holes and the center point of the cylinder chamber and the central axis of the suction passage intersect at an acute angle.

本開示によれば、配管接続部材の圧入部をシリンダの吸入通路に圧入するときの変形量が多い圧縮機の場合でも、シリンダにおけるブレード穴の変形を抑制できる。 According to the present disclosure, even in the case of a compressor having a large amount of deformation when the press-fitting portion of the pipe connecting member is press-fitted into the suction passage of the cylinder, the deformation of the blade hole in the cylinder can be suppressed.

また、本開示の冷凍装置は、
上記のいずれか1つの圧縮機を備える。
In addition, the refrigeration equipment of the present disclosure is
It is equipped with any one of the above compressors.

本開示によれば、シリンダにおけるブレード穴の変形を抑制してブレードの異常摩耗や焼き付きの発生を抑えることができる圧縮機を用いることによって、信頼性の高い冷凍装置を実現できる。 According to the present disclosure, a highly reliable freezing device can be realized by using a compressor capable of suppressing deformation of a blade hole in a cylinder and suppressing abnormal wear and seizure of the blade.

本開示の第1実施形態の圧縮機を用いた空気調和機の冷媒回路の構成図である。It is a block diagram of the refrigerant circuit of the air conditioner using the compressor of 1st Embodiment of this disclosure. 第1実施形態の圧縮機のシリンダとピストンを含む要部の上面図である。It is a top view of the main part including the cylinder and the piston of the compressor of 1st Embodiment. 第1実施形態のシリンダの断面図である。It is sectional drawing of the cylinder of 1st Embodiment. 第1実施形態の比R2/R1と変位量との関係を示すグラフである。It is a graph which shows the relationship between the ratio R2 / R1 of 1st Embodiment, and the displacement amount. 第1実施形態の比R2/R1と変位量との関係を示す図である。It is a figure which shows the relationship between the ratio R2 / R1 of 1st Embodiment, and the displacement amount. 比較例の比R2/R1と変位量との関係を示す図である。It is a figure which shows the relationship between the ratio R2 / R1 of a comparative example, and the displacement amount.

以下、実施形態を説明する。なお、図面において、同一の参照番号は、同一部分または相当部分を表わすものである。また、長さ、幅、厚さ、深さ等の図面上の寸法は、図面の明瞭化と簡略化のために実際の尺度から適宜変更されており、実際の相対寸法を表してはいない。 Hereinafter, embodiments will be described. In the drawings, the same reference number represents the same part or the corresponding part. In addition, the dimensions on the drawing such as length, width, thickness, and depth are appropriately changed from the actual scale for the purpose of clarifying and simplifying the drawing, and do not represent the actual relative dimensions.

〔第1実施形態〕
図1は本開示の第1実施形態の圧縮機21を備えた空気調和機の冷媒回路の構成図である。この空気調和機は冷凍装置の一例である。なお、図1において、13は、室内空気を室内熱交換器12へ流す室内ファンであり、28は、外気を室外熱交換器23に流す室外ファンである。
[First Embodiment]
FIG. 1 is a block diagram of a refrigerant circuit of an air conditioner including the compressor 21 of the first embodiment of the present disclosure. This air conditioner is an example of a refrigerating device. In FIG. 1, 13 is an indoor fan for flowing indoor air to the indoor heat exchanger 12, and 28 is an outdoor fan for flowing outside air to the outdoor heat exchanger 23.

空気調和機は、図1示すように、室内ユニット1と、冷媒回路RCの一部を介して接続された室外ユニット2とを備えている。室内ユニット1は、室内熱交換器12、室内ファン13などを有する。一方、室外ユニット2は、室外熱交換器23、室外ファン28などを有する。また、冷媒回路RCでは、充填された冷媒が循環することで冷凍サイクルが行われる。冷媒回路RCには、圧縮機21、四路切換弁22、室外熱交換器23、室外膨張弁24、気液分離器25、室内膨張弁11、および室内熱交換器12が環状に接続されている。四路切換弁22の第1ポートP1は、吐出管L1を介して圧縮機21の吐出側に接続されている。四路切換弁22の第2ポートP2は、吸入管L4を介して圧縮機21の第1吸入ポート110(図2,図3に示す)に接続されている。四路切換弁22の第3ポートP3は、室外熱交換器23の一端に接続されている。四路切換弁22の第4ポートP4は、室内熱交換器12の一端に接続されている。 As shown in FIG. 1, the air conditioner includes an indoor unit 1 and an outdoor unit 2 connected via a part of a refrigerant circuit RC. The indoor unit 1 has an indoor heat exchanger 12, an indoor fan 13, and the like. On the other hand, the outdoor unit 2 has an outdoor heat exchanger 23, an outdoor fan 28, and the like. Further, in the refrigerant circuit RC, the refrigeration cycle is performed by circulating the filled refrigerant. A compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an outdoor expansion valve 24, a gas-liquid separator 25, an indoor expansion valve 11, and an indoor heat exchanger 12 are connected to the refrigerant circuit RC in an annular shape. There is. The first port P1 of the four-way switching valve 22 is connected to the discharge side of the compressor 21 via the discharge pipe L1. The second port P2 of the four-way switching valve 22 is connected to the first suction port 110 (shown in FIGS. 2 and 3) of the compressor 21 via the suction pipe L4. The third port P3 of the four-way switching valve 22 is connected to one end of the outdoor heat exchanger 23. The fourth port P4 of the four-way switching valve 22 is connected to one end of the indoor heat exchanger 12.

気液分離器25の内部と中間インジェクション配管L2の一端とが接続され、中間インジェクション配管L2の他端と中間電磁弁26の一端とが接続されている。中間電磁弁26の他端と中間配管L3の一端とが接続され、中間配管L3の他端と圧縮機21の第2吸入ポート120(図2,図3に示す)とが接続されている。 The inside of the gas-liquid separator 25 and one end of the intermediate injection pipe L2 are connected, and the other end of the intermediate injection pipe L2 and one end of the intermediate solenoid valve 26 are connected. The other end of the intermediate solenoid valve 26 and one end of the intermediate pipe L3 are connected, and the other end of the intermediate pipe L3 and the second suction port 120 (shown in FIGS. 2 and 3) of the compressor 21 are connected.

中間配管L3と吸入連通管L5の一端とが接続され、吸入連通管L5の他端と圧縮機21の吸入管L4とが接続されている。吸入連通管L5に、開閉弁である吸入電磁弁27が配設されている。 The intermediate pipe L3 and one end of the suction communication pipe L5 are connected, and the other end of the suction communication pipe L5 and the suction pipe L4 of the compressor 21 are connected. A suction solenoid valve 27, which is an on-off valve, is arranged in the suction communication pipe L5.

冷房運転では、四路切換弁22が第1状態(図1の破線で示す状態)となり、第1ポートP1と第3ポートP3とが連通すると同時に第2ポートP2と第4ポートP4とが連通する。圧縮機21で圧縮された冷媒は、室外熱交換器23で凝縮し、室内膨張弁11で減圧され、室内熱交換器12で蒸発する。 In the cooling operation, the four-way switching valve 22 is in the first state (the state shown by the broken line in FIG. 1), and the first port P1 and the third port P3 communicate with each other, and at the same time, the second port P2 and the fourth port P4 communicate with each other. do. The refrigerant compressed by the compressor 21 is condensed by the outdoor heat exchanger 23, depressurized by the indoor expansion valve 11, and evaporated by the indoor heat exchanger 12.

暖房運転では、四路切換弁22が第2状態(図1の実線で示す状態)となり、第1ポートP1と第4ポートP4とが連通すると同時に第2ポートP2と第3ポートP3とが連通する。圧縮機21で圧縮された冷媒は、室内熱交換器12で凝縮し、室外膨張弁24で減圧され、室外熱交換器23で蒸発する。 In the heating operation, the four-way switching valve 22 is in the second state (the state shown by the solid line in FIG. 1), and the first port P1 and the fourth port P4 communicate with each other, and at the same time, the second port P2 and the third port P3 communicate with each other. do. The refrigerant compressed by the compressor 21 is condensed by the indoor heat exchanger 12, decompressed by the outdoor expansion valve 24, and evaporated by the outdoor heat exchanger 23.

冷媒回路RCでは、中間圧の冷媒を圧縮機21内の高圧側領域へ導入するインジェクション動作が行われる。インジェクション動作が実行されるときには、中間電磁弁26が開放されかつ吸入電磁弁27が閉鎖される。これにより、気液分離器25内の中間圧の冷媒は、中間インジェクション配管L2を通じて圧縮機21の中間配管L3へ導入される。インジェクション動作が停止されるときには、中間電磁弁26が閉鎖されかつ吸入電磁弁27が開放される。 In the refrigerant circuit RC, an injection operation is performed in which an intermediate pressure refrigerant is introduced into the high pressure side region in the compressor 21. When the injection operation is performed, the intermediate solenoid valve 26 is opened and the suction solenoid valve 27 is closed. As a result, the intermediate pressure refrigerant in the gas-liquid separator 25 is introduced into the intermediate pipe L3 of the compressor 21 through the intermediate injection pipe L2. When the injection operation is stopped, the intermediate solenoid valve 26 is closed and the suction solenoid valve 27 is opened.

図2は圧縮機21のシリンダ101と揺動体102の上面図である。図2において、シリンダ101内に内周面101aによって確定されるシリンダ室103が形成されている。 FIG. 2 is a top view of the cylinder 101 and the rocking body 102 of the compressor 21. In FIG. 2, a cylinder chamber 103 determined by an inner peripheral surface 101a is formed in the cylinder 101.

この圧縮機21は、図2に示すように、シリンダ室103に収容されるピストン102aと、ブレード102bとが一体に形成された揺動体102を備え、シリンダ101内において揺動体102が揺動する。揺動体102のブレード102bによってシリンダ室103内を仕切っている。ブレード102bの右側に吸入室103a(低圧側領域)を形成し、ブレード102bの左側に圧縮室103b(高圧側領域)を形成している。ピストン102aとブレード102bによってシリンダ室103を高圧側領域と低圧側領域とに夫々区画している。 As shown in FIG. 2, the compressor 21 includes a rocking body 102 in which a piston 102a housed in a cylinder chamber 103 and a blade 102b are integrally formed, and the rocking body 102 swings in the cylinder 101. .. The inside of the cylinder chamber 103 is partitioned by the blade 102b of the rocking body 102. A suction chamber 103a (low pressure side region) is formed on the right side of the blade 102b, and a compression chamber 103b (high pressure side region) is formed on the left side of the blade 102b. The cylinder chamber 103 is divided into a high pressure side region and a low pressure side region by the piston 102a and the blade 102b, respectively.

また、シリンダ101においてブレード102bの右側(吸入室103a側)に、径方向に貫通する第1吸入ポート110が形成されている。第1吸入ポート110は、ブレード102bの右側の吸入室103aに開口している。第1吸入ポート110に外側から吸入管L4(図1に示す)が接続される。 Further, in the cylinder 101, a first suction port 110 penetrating in the radial direction is formed on the right side (suction chamber 103a side) of the blade 102b. The first suction port 110 is open to the suction chamber 103a on the right side of the blade 102b. A suction pipe L4 (shown in FIG. 1) is connected to the first suction port 110 from the outside.

また、シリンダ101においてブレード102bの左側(圧縮室103b側)に、径方向に貫通する第2吸入ポート120が形成されている。第2吸入ポート120は、ブレード102bの左側の圧縮室103bに開口している。第2吸入ポート120に外側から配管接続部材200が接続されている。第2吸入ポート120は吸入通路の一例である。シリンダ101の径方向外側から第2吸入ポート120(吸入通路)に配管接続部材200の圧入部201bが圧入されている。配管接続部材200に外側から中間配管L3(図1に示す)が接続される。配管接続部材200に外側から中間配管L3(図1に示す)が溶接で接続される。 Further, in the cylinder 101, a second suction port 120 penetrating in the radial direction is formed on the left side (compression chamber 103b side) of the blade 102b. The second suction port 120 is open to the compression chamber 103b on the left side of the blade 102b. The pipe connecting member 200 is connected to the second suction port 120 from the outside. The second suction port 120 is an example of a suction passage. The press-fitting portion 201b of the pipe connecting member 200 is press-fitted into the second suction port 120 (suction passage) from the radial outside of the cylinder 101. An intermediate pipe L3 (shown in FIG. 1) is connected to the pipe connecting member 200 from the outside. An intermediate pipe L3 (shown in FIG. 1) is connected to the pipe connecting member 200 from the outside by welding.

また、シリンダ101のブレード穴104は、シリンダ室103と連なってシリンダ101に設けられたブッシュ穴である。ブレード穴104内に一対の揺動ブッシュ105,105が配置されている。 Further, the blade hole 104 of the cylinder 101 is a bush hole provided in the cylinder 101 in connection with the cylinder chamber 103. A pair of swing bushes 105, 105 are arranged in the blade hole 104.

ブレード102bと揺動ブッシュ105,105との間は、潤滑油で潤滑される。揺動ブッシュ105,105によりブレード102bを両側から挟んで進退可能に支持している。このブレード102bは、シリンダ101に設けられた背面空間106に出没する。 The space between the blade 102b and the swing bushes 105 and 105 is lubricated with lubricating oil. The swing bushes 105 and 105 sandwich the blade 102b from both sides and support it so that it can move forward and backward. The blade 102b appears and disappears in the back space 106 provided in the cylinder 101.

そして、回転軸140は、シリンダ室103内に配置される偏心部150を有する。この偏心部150は、回転軸140の中心軸に対して偏心するように設けられている。回転軸140の時計回りの回転に伴って偏心部150が偏心回転して、偏心部150に嵌合したピストン102aが、シリンダ室103の内周面101aに沿って旋回運動する。ピストン102aがシリンダ室103内で公転するのに伴って、第1吸入ポート110から低圧の冷媒ガスを吸入室103aに吸入して、圧縮室103bで圧縮して高圧にした後、吐出ポート130から高圧の冷媒ガスを吐出する。なお、インジェクション動作時は、中間圧の冷媒が第2吸入ポート120から圧縮室103bに導入される。その後、吐出ポート130から吐出された冷媒ガスは、圧縮機21の吐出管L1から排出される。 The rotating shaft 140 has an eccentric portion 150 arranged in the cylinder chamber 103. The eccentric portion 150 is provided so as to be eccentric with respect to the central axis of the rotating shaft 140. The eccentric portion 150 rotates eccentrically with the clockwise rotation of the rotation shaft 140, and the piston 102a fitted to the eccentric portion 150 swivels along the inner peripheral surface 101a of the cylinder chamber 103. As the piston 102a revolves in the cylinder chamber 103, low-pressure refrigerant gas is sucked into the suction chamber 103a from the first suction port 110, compressed in the compression chamber 103b to a high pressure, and then from the discharge port 130. Discharges high-pressure refrigerant gas. During the injection operation, the intermediate pressure refrigerant is introduced from the second suction port 120 into the compression chamber 103b. After that, the refrigerant gas discharged from the discharge port 130 is discharged from the discharge pipe L1 of the compressor 21.

図3は、シリンダ101を回転軸140(図2に示す)に直交する平面で切った断面図である。図3において、130は、シリンダ101においてブレード102bの左側(圧縮室103b側)に形成された吐出ポートである。 FIG. 3 is a cross-sectional view of the cylinder 101 cut along a plane orthogonal to the axis of rotation 140 (shown in FIG. 2). In FIG. 3, reference numeral 130 denotes a discharge port formed on the left side (compression chamber 103b side) of the blade 102b in the cylinder 101.

第2吸入ポート120の流入端(シリンダ101の径方向外側)に中間配管L3(図1に示す)を接続している。第2吸入ポート120の流出端(シリンダ101の径方向内側)はシリンダ室103の圧縮室103bに開口している。これにより、中間配管L3と圧縮室103bとが第2吸入ポート120を介して連通する。シリンダ101の外周面からシリンダ101の内周面101aまで延びた第2吸入ポート120により、冷媒をシリンダ室103へ案内する。 An intermediate pipe L3 (shown in FIG. 1) is connected to the inflow end of the second suction port 120 (outward in the radial direction of the cylinder 101). The outflow end of the second suction port 120 (inward in the radial direction of the cylinder 101) is open to the compression chamber 103b of the cylinder chamber 103. As a result, the intermediate pipe L3 and the compression chamber 103b communicate with each other via the second suction port 120. The refrigerant is guided to the cylinder chamber 103 by the second suction port 120 extending from the outer peripheral surface of the cylinder 101 to the inner peripheral surface 101a of the cylinder 101.

ここで、平面視において、シリンダ室103の内周面のブレード穴104に連なる2つの端の中心点O2とシリンダ室103の中心点O1とを通る直線xと、第2吸入ポート120(吸入通路)の中心軸yとが角度θ(例えば25deg)で交差する。 Here, in a plan view, a straight line x passing through the center point O2 of the two ends connected to the blade hole 104 on the inner peripheral surface of the cylinder chamber 103 and the center point O1 of the cylinder chamber 103, and the second suction port 120 (suction passage). ) And the central axis y intersect at an angle θ (for example, 25 deg).

シリンダ101の径方向外側から第2吸入ポート120(吸入通路)に圧入されている配管接続部材200は、円筒状の本体201と、環状の弁体202と、環状の弁座203とを有する。 The pipe connecting member 200 press-fitted into the second suction port 120 (suction passage) from the radial outside of the cylinder 101 has a cylindrical main body 201, an annular valve body 202, and an annular valve seat 203.

円筒状の本体201は、シリンダ101の径方向外側から順に、フランジ部201aと、圧入部201bと、弁押さえ部201cとを有する。弁押さえ部201cは、軸方向に貫通する複数の貫通穴201dを有する。複数の貫通穴201dは、第2吸入ポート120の中心軸yを中心に環状に配置されている。 The cylindrical main body 201 has a flange portion 201a, a press-fitting portion 201b, and a valve holding portion 201c in this order from the radial outer side of the cylinder 101. The valve holding portion 201c has a plurality of through holes 201d penetrating in the axial direction. The plurality of through holes 201d are arranged in an annular shape about the central axis y of the second suction port 120.

シリンダ室103の圧縮室103bの冷媒圧力が、配管接続部材200に接続された中間配管L3内の冷媒圧力よりも低いとき、環状の弁体202が弁座203に押し付けられる。これにより、中間配管L3からの冷媒が、弁押さえ部201cの複数の貫通穴201dから弁体202の中央穴202aと弁座203の中央穴203aを介してシリンダ室103の圧縮室103bに流入する。 When the refrigerant pressure in the compression chamber 103b of the cylinder chamber 103 is lower than the refrigerant pressure in the intermediate pipe L3 connected to the pipe connecting member 200, the annular valve body 202 is pressed against the valve seat 203. As a result, the refrigerant from the intermediate pipe L3 flows into the compression chamber 103b of the cylinder chamber 103 from the plurality of through holes 201d of the valve holding portion 201c through the central hole 202a of the valve body 202 and the central hole 203a of the valve seat 203. ..

一方、シリンダ室103の圧縮室103bの冷媒圧力が、配管接続部材200に接続された中間配管L3内の冷媒圧力よりも高いとき、環状の弁体202が弁押さえ部201cに押し付けられる。これにより、弁押さえ部201cの複数の貫通穴201dが弁体202により閉鎖されて、シリンダ室103の圧縮室103b(高圧側領域)から配管接続部材200を介して外部に向かう冷媒の流れを規制する。 On the other hand, when the refrigerant pressure in the compression chamber 103b of the cylinder chamber 103 is higher than the refrigerant pressure in the intermediate pipe L3 connected to the pipe connecting member 200, the annular valve body 202 is pressed against the valve holding portion 201c. As a result, the plurality of through holes 201d of the valve holding portion 201c are closed by the valve body 202, and the flow of the refrigerant from the compression chamber 103b (high pressure side region) of the cylinder chamber 103 to the outside via the pipe connecting member 200 is restricted. do.

この円筒状の本体201の弁押さえ部201cと弁体202と弁座203とで第2吸入ポート120を開閉するための弁構造210を構成している。上記弁構造210は、配管接続部材200とシリンダ室103との間に位置する。なお、この実施形態では、本体201の弁押さえ部201cと弁体202と弁座203とで構成された弁構造210を用いたが、弁構造はこれに限らず、他の構成の弁構造を用いてもよい。 The valve holding portion 201c of the cylindrical main body 201, the valve body 202, and the valve seat 203 form a valve structure 210 for opening and closing the second suction port 120. The valve structure 210 is located between the pipe connecting member 200 and the cylinder chamber 103. In this embodiment, a valve structure 210 composed of a valve holding portion 201c of the main body 201, a valve body 202, and a valve seat 203 is used, but the valve structure is not limited to this, and a valve structure having another configuration can be used. You may use it.

図3に示すように、シリンダ室103の中心点O1から配管接続部材200の圧入部201bまでの距離R2は、ブレード穴104の径方向外側の端までの距離R1以上としている。 As shown in FIG. 3, the distance R2 from the center point O1 of the cylinder chamber 103 to the press-fitting portion 201b of the pipe connecting member 200 is set to be equal to or greater than the distance R1 to the radial outer end of the blade hole 104.

図4は、FEM(有限要素法)解析を用いたシミュレーシヨンにより求めた距離R2と距離R1との差(R2-R1)と、ブレード穴104の変位との関係を示す。図4において、横軸は差(R2-R1)を表し、縦軸は、差(R2-R1)が-1.2mmのときのブレード穴104の変位を100としたときの変位の割合を表す。なお、図4におけるブレード穴104の変位とは、ブレード穴104の半径方向の歪の(最大値-最小値)を表す。 FIG. 4 shows the relationship between the difference (R2-R1) between the distance R2 and the distance R1 obtained by simulation using FEM (finite element method) analysis and the displacement of the blade hole 104. In FIG. 4, the horizontal axis represents the difference (R2-R1), and the vertical axis represents the displacement ratio when the displacement of the blade hole 104 when the difference (R2-R1) is −1.2 mm is 100. .. The displacement of the blade hole 104 in FIG. 4 represents the radial strain (maximum value-minimum value) of the blade hole 104.

図4に示すように、比R2/R1が1.0286のとき、0.9755のときに比べて変位量は約68となっている。また、比R2/R1が1.0837のとき、0.9755のときに比べて変位量は約52となっている。 As shown in FIG. 4, when the ratio R2 / R1 is 1.0286, the displacement amount is about 68 as compared with the case of 0.9755. Further, when the ratio R2 / R1 is 1.0837, the displacement amount is about 52 as compared with the case of 0.9755.

図5は、FEM(有限要素法)解析を用いたシミュレーシヨンにより求めた第1実施形態のシリンダ101の比R2/R1と変位量との関係を示し、図6は、比較例のシリンダの比R2/R1と変位量との関係を示す。図5では、比R2/R1が1.0286であり、図6では、比R2/R1が0.9755である。なお、図5,図6におけるブレード穴104の変位量とは、圧入前後のブレード穴104の半径方向の変位量を示す。 FIG. 5 shows the relationship between the ratio R2 / R1 of the cylinder 101 of the first embodiment and the displacement amount obtained by simulation using FEM (finite element method) analysis, and FIG. 6 shows the ratio of the cylinders of the comparative example. The relationship between R2 / R1 and the amount of displacement is shown. In FIG. 5, the ratio R2 / R1 is 1.0286, and in FIG. 6, the ratio R2 / R1 is 0.9755. The displacement amount of the blade hole 104 in FIGS. 5 and 6 indicates the displacement amount of the blade hole 104 in the radial direction before and after press fitting.

図5,図6において、×印は、配管接続部材200が第2吸入ポート120(吸入通路)に圧入される前の元形状であり、◇印は、配管接続部材200が第2吸入ポート120(吸入通路)に圧入された後の変形形状である。なお、◇印の変形形状は、変位量を500倍にして元形状に加算している。 In FIGS. 5 and 6, the x mark is the original shape before the pipe connection member 200 is press-fitted into the second suction port 120 (suction passage), and the ◇ mark is the pipe connection member 200 in the second suction port 120. It is a deformed shape after being press-fitted into (suction passage). The deformed shape marked with ◇ is added to the original shape by multiplying the displacement amount by 500.

上記構成の圧縮機21によれば、シリンダ室103の中心点O1から配管接続部材200の圧入部201bまでの距離R2を、ブレード穴104の径方向外側の端までの距離R1以上にすることで、配管接続部材200の圧入部201bをシリンダ101の第2吸入ポート120(吸入通路)に圧入するときのシリンダ101におけるブレード穴104の変形を抑制でき、ブレード102bの異常摩耗や焼き付きの発生を抑えることができる。 According to the compressor 21 having the above configuration, the distance R2 from the center point O1 of the cylinder chamber 103 to the press-fitting portion 201b of the pipe connecting member 200 is set to be equal to or greater than the distance R1 to the radial outer end of the blade hole 104. , Deformation of the blade hole 104 in the cylinder 101 when the press-fitting portion 201b of the pipe connecting member 200 is press-fitted into the second suction port 120 (suction passage) of the cylinder 101 can be suppressed, and abnormal wear and seizure of the blade 102b can be suppressed. be able to.

また、上記第2吸入ポート120(吸入通路)はシリンダ室103の圧縮室103b(高圧側領域)に連通し、配管接続部材200からの冷媒が第2吸入ポート120を介してシリンダ室103の圧縮室103bに供給されることによって、中間圧の冷媒を、第2吸入ポート120を介してシリンダ室103の圧縮室103bに導入することにより、冷凍能力を向上できる。 Further, the second suction port 120 (suction passage) communicates with the compression chamber 103b (high pressure side region) of the cylinder chamber 103, and the refrigerant from the pipe connecting member 200 compresses the cylinder chamber 103 via the second suction port 120. By being supplied to the chamber 103b, the refrigerating capacity can be improved by introducing the intermediate pressure refrigerant into the compression chamber 103b of the cylinder chamber 103 via the second suction port 120.

また、第2吸入ポート120(吸入通路)内に設置された弁構造210によって、配管接続部材200とシリンダ室103との間で、シリンダ室103の高圧側領域から配管接続部材200へ向かう冷媒の流れを規制するので、圧縮機21側から第2吸入ポート120を介して冷媒が逆流するのを抑制できる。 Further, the valve structure 210 installed in the second suction port 120 (suction passage) allows the refrigerant to flow from the high pressure side region of the cylinder chamber 103 to the pipe connection member 200 between the pipe connection member 200 and the cylinder chamber 103. Since the flow is regulated, it is possible to suppress the backflow of the refrigerant from the compressor 21 side through the second suction port 120.

なお、上記第1実施形態では、比R2/R1が1.0286としたが、シリンダ室103の中心点O1から配管接続部材200の圧入部201bまでの距離R2と、ブレード穴104の径方向外側の端までの距離R1との比R2/R1が1.02以上であるのが好ましい。これにより、配管接続部材200の圧入部201bをシリンダ101の第2吸入ポート120(吸入通路)に圧入するとき、シリンダ101におけるブレード穴104の変形を抑制できる。 In the first embodiment, the ratio R2 / R1 is 1.0286, but the distance R2 from the center point O1 of the cylinder chamber 103 to the press-fitting portion 201b of the pipe connecting member 200 and the radial outside of the blade hole 104. It is preferable that the ratio R2 / R1 to the distance R1 to the end is 1.02 or more. As a result, when the press-fitting portion 201b of the pipe connecting member 200 is press-fitted into the second suction port 120 (suction passage) of the cylinder 101, deformation of the blade hole 104 in the cylinder 101 can be suppressed.

また、平面視において、シリンダ室103の内周面のブレード穴104に連なる2つの端の中心点O2とシリンダ室103の中心点O1とを通る直線xと、第2吸入ポート120(吸入通路)の中心軸yとが、鋭角で交差するのが好ましい。これにより、配管接続部材200の圧入部201bをシリンダ101の第2吸入ポート120に圧入するときの変形量が多い圧縮機の場合でも、シリンダ101におけるブレード穴104の変形を抑制できる。 Further, in a plan view, a straight line x passing through the center point O2 of the two ends connected to the blade hole 104 on the inner peripheral surface of the cylinder chamber 103 and the center point O1 of the cylinder chamber 103, and the second suction port 120 (suction passage). It is preferable that the central axis y of the above crosses at an acute angle. As a result, even in the case of a compressor having a large amount of deformation when the press-fitting portion 201b of the pipe connecting member 200 is press-fitted into the second suction port 120 of the cylinder 101, the deformation of the blade hole 104 in the cylinder 101 can be suppressed.

また、シリンダ101におけるブレード穴104の変形を抑制してブレード102bの異常摩耗や焼き付きの発生を抑えることができる圧縮機21を用いることによって、信頼性の高い空気調和機を実現できる。 Further, by using the compressor 21 capable of suppressing the deformation of the blade hole 104 in the cylinder 101 and suppressing the occurrence of abnormal wear and seizure of the blade 102b, a highly reliable air conditioner can be realized.

〔第2実施形態〕
本開示の第2実施形態の圧縮機は、弁構造を除いて第1実施形態の圧縮機21と同一の構成をしている。この第2実施形態の圧縮機は、シリンダ室の高圧側領域から配管接続部材を介して外部に向かう冷媒の流れを規制する弁構造を圧縮機の外部に設置している。
[Second Embodiment]
The compressor of the second embodiment of the present disclosure has the same configuration as the compressor 21 of the first embodiment except for the valve structure. In the compressor of the second embodiment, a valve structure that regulates the flow of the refrigerant from the high-pressure side region of the cylinder chamber to the outside via the pipe connecting member is installed outside the compressor.

上記第2実施形態の圧縮機は、第1実施形態の圧縮機21と同様の効果を有する。 The compressor of the second embodiment has the same effect as the compressor 21 of the first embodiment.

上記第1,第2実施形態では、1シリンダの圧縮機について説明したが、2シリンダの圧縮機に本開示を適用してもよいし、他の構成の圧縮機に本開示を適用してもよい。 In the first and second embodiments, the one-cylinder compressor has been described, but the present disclosure may be applied to a two-cylinder compressor, or the present disclosure may be applied to a compressor having another configuration. good.

上記第1,第2実施形態では、冷凍装置としての空気調和機について説明したが、空気調和機に限らず、他の構成の冷凍装置でもよい。 In the first and second embodiments, the air conditioner as a refrigerating device has been described, but the air conditioner is not limited to the air conditioner, and a refrigerating device having another configuration may be used.

本開示の具体的な実施の形態について説明したが、本開示は上記第1,第2実施形態に限定されるものではなく、本開示の範囲内で種々変更して実施することができる。例えば、ピストン102aとブレード102bとが一体に形成された揺動体102を用いていたが、ピストンとブレードとが別体に形成された揺動体を用いてもよい。 Although the specific embodiments of the present disclosure have been described, the present disclosure is not limited to the first and second embodiments described above, and various modifications can be made within the scope of the present disclosure. For example, although the rocking body 102 in which the piston 102a and the blade 102b are integrally formed is used, a rocking body in which the piston and the blade are formed separately may be used.

1…室内ユニット
2…室外ユニット
11…室内膨張弁
12…室内熱交換器
21…圧縮機
22…四路切換弁
23…室外熱交換器
24…室外膨張弁
25…気液分離器
101…シリンダ
101a…内周面
102…揺動体
102a…ピストン
102b…ブレード
103…シリンダ室
103a…吸入室(低圧側領域)
103b…圧縮室(高圧側領域)
110…第1吸入ポート
120…第2吸入ポート(吸入通路)
130…吐出ポート
140…回転軸
150…偏心部
200…配管接続部材
201…円筒状の本体
201a…フランジ部
201b…圧入部
201c…弁押さえ部
201d…貫通穴
202…環状の弁体
203…環状の弁座
203a…中央穴
210…弁構造
L1…吐出管
L2…中間インジェクション配管
L3…中間配管
L4…吸入管
L5…吸入連通管
P1…第1ポート
P2…第2ポート
P3…第3ポート
P4…第4ポート
RC…冷媒回路
1 ... Indoor unit 2 ... Outdoor unit 11 ... Indoor expansion valve 12 ... Indoor heat exchanger 21 ... Compressor 22 ... Four-way switching valve 23 ... Outdoor heat exchanger 24 ... Outdoor expansion valve 25 ... Gas-liquid separator 101 ... Cylinder 101a ... Inner peripheral surface 102 ... Swinging body 102a ... Piston 102b ... Blade 103 ... Cylinder chamber 103a ... Suction chamber (low pressure side region)
103b ... Compression chamber (high pressure side region)
110 ... 1st suction port 120 ... 2nd suction port (suction passage)
130 ... Discharge port 140 ... Rotating shaft 150 ... Eccentric part 200 ... Piping connection member 201 ... Cylindrical body 201a ... Flange part 201b ... Press-fitting part 201c ... Valve holding part 201d ... Through hole 202 ... Circular valve body 203 ... Circular Valve seat 203a ... Central hole 210 ... Valve structure L1 ... Discharge pipe L2 ... Intermediate injection pipe L3 ... Intermediate pipe L4 ... Suction pipe L5 ... Suction communication pipe P1 ... 1st port P2 ... 2nd port P3 ... 3rd port P4 ... 4-port RC ... Refrigerator circuit

Claims (6)

シリンダ(101)と、
上記シリンダ(101)の内周面(101a)で確定されるシリンダ室(103)と、
上記シリンダ室(103)に収容され、上記シリンダ(101)の内周面(101a)に沿って旋回運動するピストン(102a)と、
上記ピストン(102a)と共に、上記シリンダ室(103)を高圧側領域(103b)と低圧側領域(103a)とに区画するブレード(102b)と、
上記シリンダ(101)に設けられると共に、上記シリンダ室(103)に連通し、上記ブレード(102b)が進退するブレード穴(104)と、
上記シリンダ(101)の外周面から上記シリンダ(101)の内周面(101a)まで延び、冷媒を上記シリンダ室(103)へ案内する吸入通路(120)と、
上記シリンダ(101)の径方向外側から上記吸入通路(120)に圧入にされる圧入部(201b)を有する配管接続部材(200)と
を備え、
上記シリンダ室(103)の中心点(O1)から上記圧入部(201b)までの距離(R2)は、上記ブレード穴(104)の径方向外側の端までの距離(R1)以上である、圧縮機(21)。
Cylinder (101) and
The cylinder chamber (103) determined by the inner peripheral surface (101a) of the cylinder (101) and
A piston (102a) housed in the cylinder chamber (103) and swiveling along the inner peripheral surface (101a) of the cylinder (101).
A blade (102b) that divides the cylinder chamber (103) into a high pressure side region (103b) and a low pressure side region (103a) together with the piston (102a).
A blade hole (104) provided in the cylinder (101) and communicating with the cylinder chamber (103) to allow the blade (102b) to advance and retreat.
A suction passage (120) extending from the outer peripheral surface of the cylinder (101) to the inner peripheral surface (101a) of the cylinder (101) and guiding the refrigerant to the cylinder chamber (103).
A pipe connecting member (200) having a press-fitting portion (201b) to be press-fitted into the suction passage (120) from the radial outside of the cylinder (101) is provided.
The distance (R2) from the center point (O1) of the cylinder chamber (103) to the press-fitting portion (201b) is equal to or greater than the distance (R1) to the radial outer end of the blade hole (104). Machine (21).
請求項1に記載の圧縮機(21)において、
上記吸入通路(120)は上記シリンダ室(103)の上記高圧側領域(103b)に連通し、上記配管接続部材(200)からの冷媒が上記吸入通路(120)を介して上記シリンダ室(103)の上記高圧側領域(103b)に供給される、圧縮機(21)。
In the compressor (21) according to claim 1,
The suction passage (120) communicates with the high pressure side region (103b) of the cylinder chamber (103), and the refrigerant from the pipe connecting member (200) passes through the suction passage (120) to the cylinder chamber (103). ), The compressor (21) supplied to the high pressure side region (103b).
請求項2に記載の圧縮機(21)において、
上記吸入通路(120)内に設置され、上記シリンダ室(103)の上記高圧側領域(103b)から上記配管接続部材(200)へ向かう冷媒の流れを規制する弁構造(210)を備える、圧縮機(21)。
In the compressor (21) according to claim 2,
A compression that is installed in the suction passage (120) and includes a valve structure (210) that regulates the flow of refrigerant from the high pressure side region (103b) of the cylinder chamber (103) to the pipe connecting member (200). Machine (21).
請求項1から3までのいずれか一項に記載の圧縮機(21)において、
上記シリンダ室(103)の中心点(O1)から上記圧入部(201b)までの距離(R2)と、上記ブレード穴(104)の径方向外側の端までの距離(R1)との比(R2/R1)が1.02以上である、圧縮機(21)。
In the compressor (21) according to any one of claims 1 to 3, the compressor (21)
The ratio (R2) of the distance (R2) from the center point (O1) of the cylinder chamber (103) to the press-fitting portion (201b) and the distance (R1) to the radial outer end of the blade hole (104). / R1) is 1.02 or more, the compressor (21).
請求項2または3に記載の圧縮機(21)において、
平面視において、上記シリンダ室(103)の内周面(101a)の上記ブレード穴(104)に連なる2つの端の中心点(O2)と上記シリンダ室(103)の中心点(O1)とを通る直線(x)と、上記吸入通路(120)の中心軸(y)とが、鋭角で交差する、圧縮機(21)。
In the compressor (21) according to claim 2 or 3.
In a plan view, the center point (O2) of two ends connected to the blade hole (104) of the inner peripheral surface (101a) of the cylinder chamber (103) and the center point (O1) of the cylinder chamber (103) are set. A compressor (21) in which a straight line (x) passing through and a central axis (y) of the suction passage (120) intersect at an acute angle.
請求項1から5までのいずれか一項に記載の圧縮機(21)を備える、冷凍装置。 A refrigerating apparatus comprising the compressor (21) according to any one of claims 1 to 5.
JP2020195464A 2020-11-25 2020-11-25 Compressor and refrigeration equipment Active JP7393666B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020195464A JP7393666B2 (en) 2020-11-25 2020-11-25 Compressor and refrigeration equipment
EP21209445.2A EP4006346B1 (en) 2020-11-25 2021-11-22 Rotary compressor and refrigeration apparatus
ES21209445T ES2953284T3 (en) 2020-11-25 2021-11-22 Rotary compressor and refrigeration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020195464A JP7393666B2 (en) 2020-11-25 2020-11-25 Compressor and refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2022083876A true JP2022083876A (en) 2022-06-06
JP7393666B2 JP7393666B2 (en) 2023-12-07

Family

ID=78725257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020195464A Active JP7393666B2 (en) 2020-11-25 2020-11-25 Compressor and refrigeration equipment

Country Status (3)

Country Link
EP (1) EP4006346B1 (en)
JP (1) JP7393666B2 (en)
ES (1) ES2953284T3 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388809U (en) * 1976-12-23 1978-07-21
JPS58109591U (en) * 1982-01-20 1983-07-26 三菱電機株式会社 rotary compressor
JPH0988856A (en) * 1995-09-20 1997-03-31 Daikin Ind Ltd Rotary compressor
JP2006152931A (en) * 2004-11-30 2006-06-15 Hitachi Home & Life Solutions Inc Rotary two-stage compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06213183A (en) 1993-01-21 1994-08-02 Matsushita Refrig Co Ltd Intake device for rotary compressor
JP2003262192A (en) * 2002-03-07 2003-09-19 Daikin Ind Ltd Sealed compressor
JP5685939B2 (en) * 2010-12-29 2015-03-18 ダイキン工業株式会社 Compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388809U (en) * 1976-12-23 1978-07-21
JPS58109591U (en) * 1982-01-20 1983-07-26 三菱電機株式会社 rotary compressor
JPH0988856A (en) * 1995-09-20 1997-03-31 Daikin Ind Ltd Rotary compressor
JP2006152931A (en) * 2004-11-30 2006-06-15 Hitachi Home & Life Solutions Inc Rotary two-stage compressor

Also Published As

Publication number Publication date
ES2953284T3 (en) 2023-11-10
EP4006346A2 (en) 2022-06-01
EP4006346A3 (en) 2022-06-08
JP7393666B2 (en) 2023-12-07
EP4006346B1 (en) 2023-06-07

Similar Documents

Publication Publication Date Title
JP4561326B2 (en) Fluid machinery
US7618245B2 (en) Fluid machine
US9284958B2 (en) Rotary compressor
US11906060B2 (en) Rotary compressor with backflow suppresion mechanism for an introduction path
US11428225B2 (en) Multistage compression system
CN118202151A (en) Compressor and refrigeration cycle device
KR100620044B1 (en) Modulation apparatus for rotary compressor
JP4617964B2 (en) Fluid machinery
AU2005314950B2 (en) Rotary compressor with reduced refrigeration gas leak during compression while preventing seizure
JP2017203451A (en) Rotary compressor
JP2022083876A (en) Compressor and freezer
JP4830565B2 (en) Fluid machinery
JP6016924B2 (en) Vane type compressor
US10968911B2 (en) Oscillating piston-type compressor
JP2015028313A (en) Axial vane type compressor
JP7170887B2 (en) scroll compressor
WO2022269752A1 (en) Rotary compressor and refrigeration cycle device
JP2006132332A (en) Fluid machine
KR101713322B1 (en) Swash plate type compressor
JP2007092639A (en) Hermetically sealed reciprocating compressor and refrigerating cycle device
JP5818767B2 (en) Vane type compressor
JP2024025669A (en) Compressor and freezer
JP5239884B2 (en) Expansion machine
JP2007291886A (en) Fluid machine and refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231106

R151 Written notification of patent or utility model registration

Ref document number: 7393666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151