JP2022083672A - SiC wafer processing method - Google Patents

SiC wafer processing method Download PDF

Info

Publication number
JP2022083672A
JP2022083672A JP2020195131A JP2020195131A JP2022083672A JP 2022083672 A JP2022083672 A JP 2022083672A JP 2020195131 A JP2020195131 A JP 2020195131A JP 2020195131 A JP2020195131 A JP 2020195131A JP 2022083672 A JP2022083672 A JP 2022083672A
Authority
JP
Japan
Prior art keywords
sic wafer
region
outer peripheral
sic
chuck table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020195131A
Other languages
Japanese (ja)
Inventor
隆志 灰本
Takashi Haimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2020195131A priority Critical patent/JP2022083672A/en
Priority to KR1020210150877A priority patent/KR20220072739A/en
Priority to CN202111367151.7A priority patent/CN114603727A/en
Priority to TW110143366A priority patent/TW202221787A/en
Publication of JP2022083672A publication Critical patent/JP2022083672A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/02Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by rotary tools, e.g. drills
    • B28D5/022Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by rotary tools, e.g. drills by cutting with discs or wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0005Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
    • B28D5/0011Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing with preliminary treatment, e.g. weakening by scoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Dicing (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Laser Beam Processing (AREA)

Abstract

To provide a SiC wafer processing method that can avoid the risk of damage or breakage to a SiC wafer.SOLUTION: A method includes a step of arranging a protective member T1 on the surface of an SiC wafer 10, a step of holding the protective member side of the SiC wafer on a first chuck table 22, leaving a region corresponding to the outer peripheral surplus region of the SiC wafer to position and grind a grinding wheel 26 in a region corresponding to a device region, and leaving a ring-shaped reinforcing portion 16 in the outer peripheral surplus region to thin the SiC wafer, a step of coating the back surface 10b of the SiC wafer with a metal film, a step of removing the ring-shaped reinforcing portion with a cutting blade or a laser, and a division step of breaking a planned division line of the SiC wafer from the back surface of the SiC wafer with the cutting blade or laser to divide the device region into individual device chips.SELECTED DRAWING: Figure 2

Description

本発明は、SiCウエーハを個々のデバイスチップに分割するSiCウエーハの加工方法に関する。 The present invention relates to a method for processing a SiC wafer, which divides the SiC wafer into individual device chips.

パワーデバイス、LED等の複数のデバイスが分割予定ラインによって区画されたデバイス領域と、該デバイス領域を囲繞する外周余剰領域とがSiC基板の表面に形成されたSiCウエーハは、ダイシング装置、レーザー加工装置によって個々のデバイスチップに分割されて自動車の制御装置、パソコン等の電気機器に利用される。 A SiC wafer in which a device area in which a plurality of devices such as power devices and LEDs are partitioned by a planned division line and an outer peripheral surplus area surrounding the device area are formed on the surface of a SiC substrate is a dicing device and a laser processing device. It is divided into individual device chips and used for electric devices such as automobile control devices and personal computers.

SiCウエーハは、個々のデバイスチップに分割される前に裏面が研削されて薄化され(例えば特許文献1を参照)、その後、裏面に金属膜が被覆される場合がある。 The back surface of the SiC wafer may be ground and thinned (see, for example, Patent Document 1) before being divided into individual device chips, and then the back surface may be coated with a metal film.

特開2013-021017号公報Japanese Unexamined Patent Publication No. 2013-021017

しかし、SiCウエーハを薄化した後、金属膜を被覆する工程に搬送し、さらにその次の工程に搬送する等、工程が増加することで、薄化された高額なSiCウエーハが破損、又は損傷する危険が増大するという問題がある。 However, as the number of processes increases, such as by thinning the SiC wafer, transporting it to the process of coating the metal film, and then transporting it to the next step, the thinned and expensive SiC wafer is damaged or damaged. There is a problem that the risk of doing so increases.

本発明は、上記事実に鑑みなされたものであり、その主たる技術課題は、SiCウエーハの加工方法において、SiCウエーハを薄化して金属膜を被覆する工程を実施する場合であっても、SiCウエーハが破損、又は損傷する危険を回避することができるSiCウエーハの加工方法を提供することにある。 The present invention has been made in view of the above facts, and the main technical problem thereof is in the method of processing a SiC wafer, even when the step of thinning the SiC wafer and coating the metal film is carried out. It is an object of the present invention to provide a method for processing a SiC wafer, which can avoid damage or a risk of damage.

上記主たる技術課題を解決するため、本発明によれば、複数のデバイスが分割予定ラインによって区画されたデバイス領域と、該デバイス領域を囲繞する外周余剰領域とが表面に形成されたSiCウエーハを個々のデバイスチップに分割するSiCウエーハの加工方法であって、SiCウエーハの表面に保護部材を配設する保護部材配設工程と、SiCウエーハの保護部材側を第1のチャックテーブルに保持しSiCウエーハの外周余剰領域に対応する領域を残してデバイス領域に対応する領域に研削砥石を位置付けて研削し、該外周余剰領域にリング状補強部を残してSiCウエーハを薄化する研削工程と、SiCウエーハの少なくともデバイス領域に対応する裏面に金属膜を被覆する金属膜被覆工程と、SiCウエーハの表面から保護部材を剥離する剥離工程と、SiCウエーハの表面にダイシングテープを配設すると共にSiCウエーハを収容する開口部を有したフレームの該開口部にSiCウエーハを収容するように該ダイシングテープを該フレームに貼着してSiCウエーハとフレームとを一体化する一体化工程と、透明な第2のチャックテーブルにSiCウエーハの表面に貼着されたダイシングテープ側を保持し切削ブレード又はレーザーによって該デバイス領域と該外周余剰領域との境界を破断し該リング状補強部を除去するリング状補強部除去工程と、該第2のチャックテーブル側から撮像手段によってSiCウエーハの分割予定ラインを検出する分割予定ライン検出工程と、SiCウエーハの裏面から切削ブレード又はレーザーによってSiCウエーハの分割予定ラインを破断してデバイス領域を個々のデバイスチップに分割する分割工程と、を含み構成されるSiCウエーハの加工方法が提供される。 In order to solve the above-mentioned main technical problem, according to the present invention, a device region in which a plurality of devices are partitioned by a planned division line and an outer peripheral surplus region surrounding the device region are individually formed on the surface of a SiC wafer. It is a method of processing a SiC waher that is divided into device chips of A grinding process in which a grinding wheel is positioned and ground in a region corresponding to a device region while leaving a region corresponding to the outer peripheral surplus region, and a ring-shaped reinforcing portion is left in the outer peripheral surplus region to thin the SiC wafer, and a SiC wafer. A metal film coating step of coating a metal film on the back surface corresponding to at least the device region, a peeling step of peeling a protective member from the surface of the SiC wafer, and a dicing tape placed on the surface of the SiC wafer to accommodate the SiC wafer. An integration step of attaching the dicing tape to the frame so as to accommodate the SiC wafer in the opening of the frame having the opening to integrate the SiC wafer and the frame, and a transparent second chuck. A ring-shaped reinforcing portion removing step in which the dicing tape side attached to the surface of the SiC wafer is held on a table, the boundary between the device region and the outer peripheral excess region is broken by a cutting blade or a laser, and the ring-shaped reinforcing portion is removed. A device that detects the planned division line of the SiC wafer by the imaging means from the second chuck table side and breaks the planned division line of the SiC wafer from the back surface of the SiC wafer with a cutting blade or a laser. A method for processing a SiC wafer including a division step for dividing a region into individual device chips and a method for processing the SiC wafer is provided.

本発明のSiCウエーハの加工方法は、複数のデバイスが分割予定ラインによって区画されたデバイス領域と、該デバイス領域を囲繞する外周余剰領域とが表面に形成されたSiCウエーハを個々のデバイスチップに分割するSiCウエーハの加工方法であって、SiCウエーハの表面に保護部材を配設する保護部材配設工程と、SiCウエーハの保護部材側を第1のチャックテーブルに保持しSiCウエーハの外周余剰領域に対応する領域を残してデバイス領域に対応する領域に研削砥石を位置付けて研削し、該外周余剰領域にリング状補強部を残してSiCウエーハを薄化する研削工程と、SiCウエーハの少なくともデバイス領域に対応する裏面に金属膜を被覆する金属膜被覆工程と、SiCウエーハの表面から保護部材を剥離する剥離工程と、SiCウエーハの表面にダイシングテープを配設すると共にSiCウエーハを収容する開口部を有したフレームの該開口部にSiCウエーハを収容するように該ダイシングテープを該フレームに貼着してSiCウエーハとフレームとを一体化する一体化工程と、透明な第2のチャックテーブルにSiCウエーハの表面に貼着されたダイシングテープ側を保持し切削ブレード又はレーザーによって該デバイス領域と該外周余剰領域との境界を破断し該リング状補強部を除去するリング状補強部除去工程と、該第2のチャックテーブル側から撮像手段によってSiCウエーハの分割予定ラインを検出する分割予定ライン検出工程と、SiCウエーハの裏面から切削ブレード又はレーザーによってSiCウエーハの分割予定ラインを破断してデバイス領域を個々のデバイスチップに分割する分割工程と、を含み構成されることから、SiCウエーハの裏面が研削されて薄化されても、SiCウエーハの外周にリング状補強部が形成されているので、次工程への搬送の際に高額なSiCウエーハが破損し、又は破損したりする危険が回避される。 In the method for processing a SiC wafer of the present invention, a device region in which a plurality of devices are partitioned by a planned division line and an outer peripheral surplus region surrounding the device region are divided into individual device chips. In the processing method of the SiC wafer, the protective member arrangement step of arranging the protective member on the surface of the SiC wafer and the protective member side of the SiC wafer are held on the first chuck table in the outer peripheral excess region of the SiC wafer. A grinding process in which a grinding wheel is positioned and ground in a region corresponding to the device region while leaving a corresponding region, and a ring-shaped reinforcing portion is left in the outer peripheral surplus region to thin the SiC wafer, and at least in the device region of the SiC wafer. It has a metal film coating step of coating a metal film on the corresponding back surface, a peeling step of peeling a protective member from the surface of the SiC wafer, and an opening for arranging a dicing tape on the surface of the SiC wafer and accommodating the SiC wafer. An integration process in which the dicing tape is attached to the frame so as to accommodate the SiC wafer in the opening of the frame to integrate the SiC wafer and the frame, and the SiC wafer is placed on a transparent second chuck table. A ring-shaped reinforcing portion removing step of holding the dicing tape side attached to the surface and breaking the boundary between the device region and the outer peripheral excess region with a cutting blade or a laser to remove the ring-shaped reinforcing portion, and the second step. The scheduled division line detection step of detecting the planned division line of the SiC wafer by the imaging means from the chuck table side of the, and the planned division line of the SiC wafer being cut from the back surface of the SiC wafer by a cutting blade or a laser to divide the device area into individual devices. Since the configuration includes a division step of dividing into chips, even if the back surface of the SiC wafer is ground and thinned, a ring-shaped reinforcing portion is formed on the outer periphery of the SiC wafer, so that the next step can be performed. The risk of the expensive SiC wafer being damaged or damaged during transportation is avoided.

保護部材配設工程の実施態様を示す斜視図である。It is a perspective view which shows the embodiment of the protection member arrangement process. (a)SiCウエーハを第1のチャックテーブルに保持する態様を示す斜視図、(b)外周余剰領域にリング状補強部を残してSiCウエーハを薄化する研削工程の実施態様を示す斜視図、(c)研削工程が施されたSiCウエーハの断面図である。(A) A perspective view showing an embodiment of holding the SiC wafer on the first chuck table, (b) a perspective view showing an embodiment of a grinding process for thinning the SiC wafer by leaving a ring-shaped reinforcing portion in the outer peripheral excess region. (C) It is sectional drawing of the SiC wafer subjected to the grinding process. 金属膜被覆工程の実施態様を示す概念図である。It is a conceptual diagram which shows the embodiment of the metal film coating process. 剥離工程の実施態様を示す斜視図である。It is a perspective view which shows the embodiment of the peeling process. 一体化工程の実施態様を示す斜視図である。It is a perspective view which shows the embodiment of the integration process. 本実施形態で使用されるダイシング装置の全体斜視図である。It is an overall perspective view of the dicing apparatus used in this embodiment. (a)切削ブレードによってデバイス領域10Aと外周余剰領域10Bとの境界を破断する態様を示す斜視図、(b)SiCウエーハからリング状補強部を除去する態様を示す斜視図である。(a) It is a perspective view which shows the mode which breaks the boundary between the device area 10A and the outer peripheral surplus area 10B by a cutting blade, and (b) is the perspective view which shows the mode which removes a ring-shaped reinforcing part from a SiC wafer. (a)SiCウエーハの分割予定ラインを破断する態様を示す斜視図、(b)SiCウエーハのデバイス領域が個々のデバイスチップに分割された状態を示す斜視図である。(A) It is a perspective view which shows the mode of breaking the division schedule line of a SiC wafer, and (b) is the perspective view which shows the state which the device area of a SiC wafer is divided into individual device chips.

以下、本発明に基づいて構成されるSiCウエーハの加工方法に係る実施形態について、添付図面を参照しながら、詳細に説明する。 Hereinafter, embodiments relating to a processing method for a SiC wafer configured based on the present invention will be described in detail with reference to the accompanying drawings.

本実施形態のSiCウエーハの加工方法を実施するに際し、図1に示すSiCウエーハ10を用意する。SiCウエーハ10は、複数のデバイス12が分割予定ライン14によって区画されたデバイス領域10Aと、デバイス領域10Aを囲繞する外周余剰領域10BとがSiC基板の表面10aに形成されたウエーハであり、例えば厚みが700μmで形成されている。図1では、デバイス領域10Aと外周余剰領域10Bとの境界Lが破線で示されているが、該境界Lは、説明の都合上記載した仮想の線であり、実際のウエーハ10上に形成されているものではない。デバイス12は、例えば、パワーデバイス、又はLED素子である。 When carrying out the method of processing the SiC wafer of the present embodiment, the SiC wafer 10 shown in FIG. 1 is prepared. The SiC wafer 10 is a wafer in which a device region 10A in which a plurality of devices 12 are partitioned by a planned division line 14 and an outer peripheral surplus region 10B surrounding the device region 10A are formed on the surface 10a of the SiC substrate, for example, a thickness. Is formed at 700 μm. In FIG. 1, the boundary L between the device area 10A and the outer peripheral surplus area 10B is shown by a broken line, but the boundary L is a virtual line described for convenience of explanation and is formed on an actual wafer 10. Not what you are doing. The device 12 is, for example, a power device or an LED element.

上記のSiCウエーハ10を用意したならば、SiCウエーハ10の表面10aに保護部材T1を配設する保護部材配設工程を実施する。保護部材T1としては、例えば、SiCウエーハ10と同一の寸法形状で形成されたEVA(エチレン酢酸ビニル)製の粘着テープが選択される。SiCウエーハ10の表面10aに保護部材T1を貼着して一体とし、その後反転させて、SiCウエーハ10の裏面10b側を上方に向ける。なお、保護部材T1は、上記したEVAに限定されず、例えば、PET(ポリエチレンテレフタレート)であってもよい。 After preparing the above-mentioned SiC wafer 10, a protective member arranging step of arranging the protective member T1 on the surface 10a of the SiC wafer 10 is carried out. As the protective member T1, for example, an EVA (ethylene vinyl acetate) adhesive tape formed in the same dimensions and shape as the SiC wafer 10 is selected. The protective member T1 is attached to the front surface 10a of the SiC wafer 10 to be integrated, and then inverted so that the back surface 10b side of the SiC wafer 10 faces upward. The protective member T1 is not limited to the EVA described above, and may be, for example, PET (polyethylene terephthalate).

保護部材配設工程を実施して、SiCウエーハ10と保護部材T1とを一体としたならば、SiCウエーハ10を、図2に示す研削装置20(一部のみを示している)に搬送する。研削装置20は、図2(a)に示すように、第1のチャックテーブル22を備えている。第1のチャックテーブル22は、図示を省略する回転駆動源を備えて回転可能に構成されており、通気性を有する部材で構成された吸着チャック22aと、吸着チャック22aを囲繞する枠体22bからなる。吸着チャック22aは、枠体22bの内部の通路を介して図示を省略する吸引源に接続されている。さらに、研削装置20は、図2(b)に示すように、第1のチャックテーブル22に保持された被加工物を研削する研削手段23を備えている。研削手段23は、鉛直方向の軸心を有し回転可能な回転軸24と、回転軸24の下端に装着された研削ホイール25と、研削ホイール25の下面に環状に配設された複数の研削砥石26と、回転軸24を回転駆動する駆動部27とを備えており、図示を省略する研削送り機構により、全体として昇降可能に構成されている。環状に配設された研削砥石26は、その最外周の直径が、SiCウエーハ10のデバイス領域10Aの半径より大きくデバイス領域10Aの直径より小さくなるように形成されている。 After the protective member arrangement step is carried out and the SiC wafer 10 and the protective member T1 are integrated, the SiC wafer 10 is conveyed to the grinding device 20 (only a part thereof is shown) shown in FIG. As shown in FIG. 2A, the grinding device 20 includes a first chuck table 22. The first chuck table 22 is rotatably configured to include a rotation drive source (not shown), and is composed of a suction chuck 22a made of a breathable member and a frame body 22b surrounding the suction chuck 22a. Become. The suction chuck 22a is connected to a suction source (not shown) via an internal passage of the frame body 22b. Further, as shown in FIG. 2B, the grinding device 20 includes a grinding means 23 for grinding the workpiece held on the first chuck table 22. The grinding means 23 includes a rotating shaft 24 that has a vertical axis and is rotatable, a grinding wheel 25 mounted on the lower end of the rotating shaft 24, and a plurality of grinding rings arranged on the lower surface of the grinding wheel 25 in an annular shape. It includes a grindstone 26 and a drive unit 27 that rotationally drives the rotary shaft 24, and is configured to be able to move up and down as a whole by a grinding feed mechanism (not shown). The annularly arranged grinding wheel 26 is formed so that the diameter of the outermost periphery thereof is larger than the radius of the device region 10A of the SiC wafer 10 and smaller than the diameter of the device region 10A.

SiCウエーハ10を研削装置20に搬送した後、SiCウエーハ10の保護部材T1側を第1のチャックテーブル22に保持し、SiCウエーハ10の外周余剰領域10Bに対応する領域を残してデバイス領域10Aに対応する領域に上記した研削手段23の研削砥石26を位置付けて研削しSiCウエーハ10を薄化する。 After the SiC wafer 10 is conveyed to the grinding device 20, the protective member T1 side of the SiC wafer 10 is held on the first chuck table 22, and the region corresponding to the outer peripheral surplus region 10B of the SiC wafer 10 is left in the device region 10A. The grinding wheel 26 of the above-mentioned grinding means 23 is positioned in the corresponding region and ground to thin the SiC wafer 10.

より具体的には、図2(a)に示すように、SiCウエーハ10を、SiCウエーハ10の中心が第1のチャックテーブル22の中心と一致するように載置し、裏面10bが上方に露出した状態で第1のチャックテーブル22に保持する。次いで、図2(b)に示すように、第1のチャックテーブル22を矢印R1で示す方向に回転させ、駆動部27を作動して回転軸24を矢印R2で示す方向に回転させると共に、上記した研削送り機構を作動させて矢印R3で示す方向に研削手段23を下降させ、環状に配設された研削砥石26を、SiCウエーハ10の裏面10bに当接させる。研削砥石26は、少なくともSiCウエーハ10の裏面10bの回転中心を通ると共に、裏面10bにおいて、SiCウエーハ10の表面10a側に形成されたデバイス領域10Aに対応する部分に接触させられ、例えば、1μm/秒の速度で研削送りさせられる。この結果、図2(b)、(c)に示すように、SiCウエーハ10の裏面10bにおいて外周余剰領域10Bに対応する領域にリング状補強部16を残してSiCウエーハ10が薄化され、デバイス領域10Aに対応する領域に、例えば、底部の厚さが30μmとなる凹部15が形成される。リング状補強部16の厚さは当初のSiCウエーハ10の厚さのままの700μmである。以上により、研削工程が完了する。 More specifically, as shown in FIG. 2A, the SiC wafer 10 is placed so that the center of the SiC wafer 10 coincides with the center of the first chuck table 22, and the back surface 10b is exposed upward. It is held in the first chuck table 22 in the state of being held. Next, as shown in FIG. 2B, the first chuck table 22 is rotated in the direction indicated by the arrow R1, the drive unit 27 is operated to rotate the rotating shaft 24 in the direction indicated by the arrow R2, and the above. The grinding feed mechanism is operated to lower the grinding means 23 in the direction indicated by the arrow R3, and the grinding grind 26 arranged in an annular shape is brought into contact with the back surface 10b of the SiC wafer 10. The grinding wheel 26 passes through at least the rotation center of the back surface 10b of the SiC wafer 10 and is brought into contact with the portion of the back surface 10b corresponding to the device region 10A formed on the front surface 10a side of the SiC wafer 10, for example, 1 μm /. It is fed by grinding at a speed of seconds. As a result, as shown in FIGS. 2 (b) and 2 (c), the SiC wafer 10 is thinned by leaving the ring-shaped reinforcing portion 16 in the region corresponding to the outer peripheral surplus region 10B on the back surface 10b of the SiC wafer 10. In the region corresponding to the region 10A, for example, a recess 15 having a bottom thickness of 30 μm is formed. The thickness of the ring-shaped reinforcing portion 16 is 700 μm, which is the same as the original thickness of the SiC wafer 10. With the above, the grinding process is completed.

上記研削工程完了後、SiCウエーハ10の少なくともデバイス領域10Aに対応する裏面10bに対して金属膜を被覆する金属膜被覆工程を実施する。金属膜の被覆には、例えば、図3に示す周知のスパッタ装置30(詳細については省略している)を用いることができる。このスパッタ装置30は、密閉されたチャンバー34内に静電式にてSiCウエーハ10を保持する保持部32を備えており、その上方の対向する位置には、所定の金属からなり高周波電源に連結された図示を省略するスパッタ源が励磁部材に支持された状態で配設される。該チャンバー34は、図示を省略する減圧口を備え、該減圧口から外部に空気が排出されると共に、スパッタガス(例えばアルゴンガスである)を導入する導入口が配設されている。チャンバー34の内部を減圧して減圧環境にすると共に、該スパッタ源に該高周波電源から高周波電力を印加し、アルゴンガスを導入してプラズマを発生させると、プラズマ中のアルゴンイオンが該スパッタ源に衝突し、スパッタ源を構成する金属の粒子18が放出されて、SiCウエーハ10の裏面10b側、すなわち、凹部15及びリング状補強部16の表面上に堆積して、図4に示すように、金属膜18Aが被覆される。金属膜18Aとしては、例えば金、銀、チタン等があり、その厚さは、例えば、30~60nm程度である。なお、該金属膜被覆工程では、必ずしもSiCウエーハ10の凹部15及びリング状補強部16の双方を金属膜18Aで完全に被覆する必要はなく、少なくとも凹部15を被覆すればよい。また、上記した実施形態では、スパッタによってSiCウエーハ10に金属膜18Aを形成したが、本発明はこれに限定されず、蒸着、CVD等の周知の他の方法に基づいて形成するようにしてもよい。 After the completion of the grinding process, a metal film coating step of coating the metal film on the back surface 10b corresponding to at least the device region 10A of the SiC wafer 10 is performed. For the coating of the metal film, for example, a well-known sputtering apparatus 30 (details are omitted) shown in FIG. 3 can be used. The sputtering device 30 is provided with a holding portion 32 that electrostatically holds the SiC wafer 10 in a sealed chamber 34, and is connected to a high-frequency power source made of a predetermined metal at an opposite position above the holding portion 32. The sputter source (not shown) is arranged in a state of being supported by the exciting member. The chamber 34 is provided with a decompression port (not shown), and is provided with an introduction port for discharging air to the outside from the decompression port and introducing a sputter gas (for example, argon gas). When the inside of the chamber 34 is depressurized to create a depressurized environment, high-frequency power is applied to the sputtering source from the high-frequency power source, and argon gas is introduced to generate plasma, argon ions in the plasma become the sputtering source. Upon collision, the metal particles 18 constituting the sputtering source are released and deposited on the back surface 10b side of the SiC wafer 10, that is, on the surface of the recess 15 and the ring-shaped reinforcing portion 16, and as shown in FIG. The metal film 18A is coated. Examples of the metal film 18A include gold, silver, titanium, and the like, and the thickness thereof is, for example, about 30 to 60 nm. In the metal film coating step, it is not always necessary to completely cover both the recess 15 and the ring-shaped reinforcing portion 16 of the SiC wafer 10 with the metal film 18A, and at least the recess 15 may be covered. Further, in the above-described embodiment, the metal film 18A is formed on the SiC wafer 10 by sputtering, but the present invention is not limited to this, and the metal film 18A may be formed based on other well-known methods such as thin film deposition and CVD. good.

上記したように金属膜18Aを形成したならば、図4に示すように、SiCウエーハ10の表面10aから保護部材T1を剥離する(剥離工程)。 After the metal film 18A is formed as described above, the protective member T1 is peeled off from the surface 10a of the SiC wafer 10 as shown in FIG. 4 (peeling step).

次いで、図5に示すように、SiCウエーハ10の表面10aにダイシングテープT2を配設すると共にSiCウエーハ10を収容する開口部Faを有したフレームFの該開口部FaにSiCウエーハ10を収容するように位置付け、ダイシングテープT2をフレームFに貼着して、SiCウエーハ10とフレームFとを一体化する一体化工程を実施する。 Next, as shown in FIG. 5, the dicing tape T2 is arranged on the surface 10a of the SiC wafer 10 and the SiC wafer 10 is housed in the opening Fa of the frame F having the opening Fa for accommodating the SiC wafer 10. The dicing tape T2 is attached to the frame F, and an integration step of integrating the SiC wafer 10 and the frame F is performed.

なお、上記した一体化工程で使用するダイシングテープT2は、上記した保護部材T1と同様に、EVA、PVAを採用することもできるが、ダイシングテープT2としては、表面に糊剤を備えず、加熱することで粘着力を発揮する熱圧着シートを、加熱、押圧することで一体化することが好ましい。熱圧着シートとしては、例えば、ポリオレフィン系シート、又はポリエステル系シートから選択することができる。ポリオレフィン系シートを選択する場合は、ポリエチレンシート、ポリプロピレンシート、ポリスチレンシートのいずれかを採用することができ、該ポリエステル系シートを選択する場合は、ポリエチレンテレフタレートシート、ポリエチレンナフタレートシート、のいずれかを採用することができる。 As the dicing tape T2 used in the above-mentioned integration step, EVA and PVA can be adopted as in the above-mentioned protective member T1, but the dicing tape T2 does not have an adhesive on the surface and is heated. It is preferable to integrate the thermocompression bonding sheet, which exerts adhesive strength by heating and pressing, by heating and pressing. The thermocompression bonding sheet can be selected from, for example, a polyolefin-based sheet or a polyester-based sheet. When selecting a polyolefin-based sheet, either a polyethylene sheet, a polypropylene sheet, or a polystyrene sheet can be adopted, and when selecting the polyester-based sheet, any one of a polyethylene terephthalate sheet and a polyethylene naphthalate sheet can be used. Can be adopted.

上記した一体化工程を実施したならば、デバイス領域10Aと外周余剰領域10Bとの境界を破断しリング状補強部10Bを除去するリング状補強部除去工程を実施する。図6に、本実施形態のリング状補強部除去工程を実施するのに好適なダイシング装置1を示す。 After the above-mentioned integration step is carried out, the ring-shaped reinforcing portion removing step of breaking the boundary between the device region 10A and the outer peripheral surplus region 10B and removing the ring-shaped reinforcing portion 10B is carried out. FIG. 6 shows a dicing device 1 suitable for carrying out the ring-shaped reinforcing portion removing step of the present embodiment.

ダイシング装置1は、フレームを固定するクランプ42と、SiCウエーハ10を支持する透明な部材で形成された第2のチャックテーブル44とにより少なくとも構成された支持手段40と、第2のチャックテーブル44に対して反対側(下面側)に位置付け可能に配設された撮像手段50と、を備えている。本実施形態の第2のチャックテーブル44は、図示を省略する回転駆動源によって回転可能に支持されており、透明な支持面44aと、該支持面44aを囲繞する環状の吸引溝44bとを備えている。該吸引溝44bには図示を省略する吸引源が接続され、該吸引源を作動することで、第2のチャックテーブル44に載置された被加工物を吸引保持することができる。 The dicing device 1 is provided on a support means 40 composed of at least a clamp 42 for fixing the frame, a second chuck table 44 formed of a transparent member for supporting the SiC wafer 10, and a second chuck table 44. On the other hand, the image pickup means 50 is provided so as to be positioned on the opposite side (lower surface side). The second chuck table 44 of the present embodiment is rotatably supported by a rotational drive source (not shown), and includes a transparent support surface 44a and an annular suction groove 44b surrounding the support surface 44a. ing. A suction source (not shown) is connected to the suction groove 44b, and by operating the suction source, the workpiece placed on the second chuck table 44 can be sucked and held.

さらにダイシング装置1は、支持手段40を図中矢印Xで示すX軸方向に加工送りするX軸移動手段60と、第2のチャックテーブル44上に保持されるSiCウエーハ10を切削する切削手段70と、切削手段70を該X軸方向と直交する図中矢印Yで示すY軸方向に割り出し送りするY軸移動手段80と、を備えている。 Further, the dicing device 1 includes an X-axis moving means 60 that processes and feeds the supporting means 40 in the X-axis direction indicated by the arrow X in the drawing, and a cutting means 70 that cuts the SiC wafer 10 held on the second chuck table 44. And the Y-axis moving means 80 for indexing and feeding the cutting means 70 in the Y-axis direction indicated by the arrow Y in the figure orthogonal to the X-axis direction.

支持手段40は、図6に示すように、X軸方向において移動自在に基台2に搭載された矩形状のX軸方向可動板41と、X軸方向可動板41の上面に固定された断面コ字状の支持台43と、支持台43上に配設され、上部に第2のチャックテーブル44が載置される円筒状の回転支柱45とを含む。上記したクランプ42は、回転支柱45と第2のチャックテーブル44との間に配設され、周方向において等間隔で複数配設される。 As shown in FIG. 6, the support means 40 has a rectangular X-axis direction movable plate 41 mounted on the base 2 so as to be movable in the X-axis direction, and a cross section fixed to the upper surface of the X-axis direction movable plate 41. It includes a U-shaped support base 43 and a cylindrical rotary support 45 arranged on the support base 43 and on which a second chuck table 44 is placed. The above-mentioned clamps 42 are arranged between the rotary column 45 and the second chuck table 44, and a plurality of the clamps 42 are arranged at equal intervals in the circumferential direction.

X軸移動手段60は、モータ61の回転運動を、ボールねじ62を介して直線運動に変換してX軸方向可動板41に伝達し、基台2上のX軸案内レール2A、2Aに沿ってX軸方向可動板41をX軸方向において進退させる。 The X-axis moving means 60 converts the rotational motion of the motor 61 into a linear motion via the ball screw 62 and transmits it to the X-axis direction movable plate 41 along the X-axis guide rails 2A and 2A on the base 2. The movable plate 41 in the X-axis direction is moved forward and backward in the X-axis direction.

切削手段70は、支持手段40がX軸方向において移動する領域のY軸方向に隣接した後方位置に配設されている。切削手段70はスピンドルユニット71を備えている。スピンドルユニット71は、回転スピンドル72の先端部に固定され外周に切り刃を有する切削ブレード73と、切削ブレード73を保護するブレードカバー74とを備えている。ブレードカバー74には、切削ブレード73に隣接する位置に切削水供給手段75が配設されており、ブレードカバー74を介して導入される切削水を切削位置に向けて供給する。スピンドルユニット71の他端側には図示しないモータ等の回転駆動源が収容されており、該モータは回転スピンドル72を回転させることで切削ブレード73を回転させる。 The cutting means 70 is arranged at a rear position adjacent to the Y-axis direction in the region where the support means 40 moves in the X-axis direction. The cutting means 70 includes a spindle unit 71. The spindle unit 71 includes a cutting blade 73 fixed to the tip of the rotary spindle 72 and having a cutting edge on the outer periphery thereof, and a blade cover 74 for protecting the cutting blade 73. The blade cover 74 is provided with cutting water supply means 75 at a position adjacent to the cutting blade 73, and supplies cutting water introduced through the blade cover 74 toward the cutting position. A rotary drive source such as a motor (not shown) is housed on the other end side of the spindle unit 71, and the motor rotates the cutting blade 73 by rotating the rotary spindle 72.

上記した切削手段70は、切削手段支持部77によって支持されている。基台2上には、Y軸方向に平行な一対のY軸案内レール2B、2Bが配設されており、Y軸案内レール2B、2Bには切削手段支持部77がスライド可能に取り付けられている。切削手段支持部77は、Y軸移動手段80によってY軸方向に沿って移動可能に構成されている。Y軸移動手段80は、モータ81の回転運動を、ボールねじ82を介して直線運動に変換して、切削手段支持部77に伝達し、基台2上のY軸案内レール2B、2Bに沿って切削手段支持部77をY軸方向において進退させる。 The cutting means 70 described above is supported by the cutting means support portion 77. A pair of Y-axis guide rails 2B and 2B parallel to the Y-axis direction are arranged on the base 2, and a cutting means support portion 77 is slidably attached to the Y-axis guide rails 2B and 2B. There is. The cutting means support portion 77 is configured to be movable along the Y-axis direction by the Y-axis moving means 80. The Y-axis moving means 80 converts the rotational motion of the motor 81 into a linear motion via the ball screw 82 and transmits it to the cutting means support portion 77, along the Y-axis guide rails 2B and 2B on the base 2. The cutting means support portion 77 is moved forward and backward in the Y-axis direction.

切削手段支持部77の上部側面には、矢印Zで示すZ軸方向(上下方向)に平行な一対のZ軸案内レール78が設けられている(一部を破線で示す)。Z軸案内レール78には、スピンドルユニット71を支持するZ軸移動基台76がスライド可能に取り付けられている。切削手段支持部77には、モータ79が配設されており、モータ79の回転を図示しないボールねじを介して直線運動に変換し、Z軸移動基台76に伝達する。モータ79を回転させることにより、Z軸移動基台76を介してスピンドルユニット71をZ軸方向において進退させる。 A pair of Z-axis guide rails 78 parallel to the Z-axis direction (vertical direction) indicated by the arrow Z are provided on the upper side surface of the cutting means support portion 77 (a part thereof is shown by a broken line). A Z-axis moving base 76 that supports the spindle unit 71 is slidably attached to the Z-axis guide rail 78. A motor 79 is arranged in the cutting means support portion 77, and the rotation of the motor 79 is converted into a linear motion via a ball screw (not shown) and transmitted to the Z-axis moving base 76. By rotating the motor 79, the spindle unit 71 is moved forward and backward in the Z-axis direction via the Z-axis moving base 76.

撮像手段50は、切削手段支持部77に設置されY軸方向に延びるカメラ延長部材51と、カメラ延長部材51の先端部に配設された撮像カメラ52を備えている。撮像カメラ52は、支持台43がX軸方向で移動されて切削ブレード74の直下に位置付けられた際に、コ字状に形成された支持台43の内部に位置付けられて、第2のチャックテーブル44の支持面24aに対して反対側に位置付けられる。この結果、第2のチャックテーブル44に支持されたSiCウエーハ10の表面10a側を撮像カメラ52によって、下方側からダイシングテープT2を介して撮像することが可能になっている。撮像手段50は、SiCウエーハ10を切削加工する際に、SiCウエーハ10の表面10a側を下方から撮像して画像を取得してアライメントを実施し、切削すべき位置を検出することができ、検出された位置情報は、図示を省略する制御手段に送られて記憶される。 The image pickup means 50 includes a camera extension member 51 installed on the cutting means support portion 77 and extending in the Y-axis direction, and an image pickup camera 52 arranged at the tip of the camera extension member 51. The image pickup camera 52 is positioned inside the U-shaped support base 43 when the support base 43 is moved in the X-axis direction and is positioned directly under the cutting blade 74, and the second chuck table is provided. It is positioned on the opposite side of the support surface 24a of 44. As a result, the surface 10a side of the SiC wafer 10 supported by the second chuck table 44 can be imaged by the image pickup camera 52 from the lower side via the dicing tape T2. When the SiC wafer 10 is machined, the image pickup means 50 can capture an image of the surface 10a side of the SiC wafer 10 from below, acquire an image, perform alignment, and detect a position to be cut. The generated position information is sent to a control means (not shown) and stored.

ダイシング装置1は概ね上記したとおりの構成を備えており、上記した一体化工程を実施した後に実行される、リング状補強部除去工程、分割予定ライン検出工程、分割工程について、以下に説明する。 The dicing apparatus 1 has substantially the same configuration as described above, and the ring-shaped reinforcing portion removing step, the scheduled split line detection step, and the splitting step, which are executed after the above-mentioned integration step is performed, will be described below.

まず、SiCウエーハ10が貼着されたダイシングテープT2側を図6に示す第2のチャックテーブル44上に載置すると共に、図示しない吸引源を作動して、上記した第2のチャックテーブル44の吸引溝44bに負圧を作用させ、SiCウエーハ10の外周に沿ってダイシングテープT2を吸引し、さらに、フレームFを、クランプ42によって固定する。 First, the dicing tape T2 side to which the SiC wafer 10 is attached is placed on the second chuck table 44 shown in FIG. 6, and a suction source (not shown) is operated to operate the second chuck table 44 described above. A negative pressure is applied to the suction groove 44b to suck the dicing tape T2 along the outer periphery of the SiC wafer 10, and the frame F is further fixed by the clamp 42.

SiCウエーハ10を固定したならば、上記したX軸移動手段60を作動して、SiCウエーハ10を支持する支持台43をX軸方向に移動し、図7(a)に示すように、制御手段に記憶された位置情報に基づいて、切削ブレード73をデバイス領域10Aと外周余剰領域10Bとの境界Lに対応する位置に位置付ける。次いで、切削ブレード73を、矢印R4で示す方向に回転させながら矢印R5で示す方向に下降させて切込み送りすると共に、第2のチャックテーブル44が配設された回転支柱45を矢印R6で示す方向に回転させて、デバイス領域10Aと外周余剰領域10Bとの境界Lに対応する位置に環状の切削溝100を形成する。これにより、デバイス領域10Aと外周余剰領域10Bとの境界Lに沿って破断し、図7(b)に示すように、リング状補強部16をSiCウエーハ10から除去することができる(リング状補強部除去工程)。なお、切削溝100を形成する位置は、予め制御手段に記憶させておくこともできるが、上記した撮像手段50を使用し、第2のチャックテーブル44の下方から撮像してその位置を検出するようにしてもよい。 After the SiC wafer 10 is fixed, the X-axis moving means 60 described above is operated to move the support base 43 supporting the SiC wafer 10 in the X-axis direction, and as shown in FIG. 7A, the control means The cutting blade 73 is positioned at a position corresponding to the boundary L between the device region 10A and the outer peripheral surplus region 10B based on the position information stored in. Next, the cutting blade 73 is rotated in the direction indicated by the arrow R4, lowered in the direction indicated by the arrow R5, and cut and fed, and the rotary column 45 on which the second chuck table 44 is arranged is directed by the arrow R6. An annular cutting groove 100 is formed at a position corresponding to the boundary L between the device region 10A and the outer peripheral surplus region 10B. As a result, the ring-shaped reinforcing portion 16 can be removed from the SiC wafer 10 by breaking along the boundary L between the device region 10A and the outer peripheral surplus region 10B and as shown in FIG. 7 (b). Part removal process). The position where the cutting groove 100 is formed can be stored in the control means in advance, but the above-mentioned imaging means 50 is used to take an image from below the second chuck table 44 to detect the position. You may do so.

次いで、上記したX軸移動手段60を作動して支持台43をX軸方向において移動して、第2のチャックテーブル44の中心を、撮像手段50の撮像カメラ52の直上に移動させる。上記したように、第2のチャックテーブル44は透明な部材で形成されていることから、SiCウエーハ10の表面10aを下方側から撮像カメラ52により撮像し、切削すべき所定の分割予定ライン14の位置を検出することができる(分割予定ライン検出工程)。なお、検出された分割予定ライン14の位置情報は、制御手段に送られて記憶される。 Next, the X-axis moving means 60 described above is operated to move the support base 43 in the X-axis direction, and the center of the second chuck table 44 is moved directly above the image pickup camera 52 of the image pickup means 50. As described above, since the second chuck table 44 is made of a transparent member, the surface 10a of the SiC wafer 10 is imaged from below by the image pickup camera 52, and the predetermined division scheduled line 14 to be cut is taken. The position can be detected (scheduled division line detection process). The detected position information of the scheduled division line 14 is sent to the control means and stored.

分割予定ライン検出工程を実施したならば、所定の方向に形成された分割予定ライン14をX軸方向に整合させると共に、図8(a)に示すように、切削ブレード73を矢印R4で示す方向に回転させながら切込み送りし、SiCウエーハ10の裏面10bから切削ブレード73よってSiCウエーハ10の分割予定ライン14を破断すべく切削して切削溝110を形成する。そして、X軸移動手段60、Y軸移動手段80、図示を省略する回転駆動源を作動して、第2のチャックテーブル44をX軸方向、Y軸方向、回転方向に移動させると共に、切削ブレード73によって切込み送りすることで、図8(b)に示すように、分割予定ライン14に沿って切削溝110を形成して破断し、デバイス領域10Aを個々のデバイスチップ12’に分割する(分割工程)。分割工程が完了したならば、適宜のカセットに収容するか、ピックアップ等を実施する後工程に搬送する。 When the planned division line detection step is performed, the planned division line 14 formed in a predetermined direction is aligned in the X-axis direction, and the cutting blade 73 is oriented by the arrow R4 as shown in FIG. 8A. The cutting groove 110 is formed by cutting and feeding from the back surface 10b of the SiC woofer 10 so as to break the scheduled division line 14 of the SiC woofer 10 by the cutting blade 73. Then, the X-axis moving means 60, the Y-axis moving means 80, and the rotation drive source (not shown) are operated to move the second chuck table 44 in the X-axis direction, the Y-axis direction, and the rotation direction, and the cutting blade. By cutting and feeding by 73, as shown in FIG. 8 (b), a cutting groove 110 is formed and broken along the scheduled division line 14, and the device region 10A is divided into individual device chips 12'(division). Process). When the division process is completed, it is stored in an appropriate cassette or transported to a post-process for picking up or the like.

本実施形態によれば、SiCウエーハ10の裏面10bが研削されて薄化されても、SiCウエーハ10の外周にリング状補強部16が形成されているので、次工程への搬送の際に高額なSiCウエーハ10が破損し、又は破損したりする危険が回避される。 According to the present embodiment, even if the back surface 10b of the SiC wafer 10 is ground and thinned, the ring-shaped reinforcing portion 16 is formed on the outer periphery of the SiC wafer 10, so that the cost is high when transporting to the next process. The risk of the SiC wafer 10 being damaged or being damaged is avoided.

なお、上記した実施形態では、分割工程を実施するに際し、ダイシング装置1を使用し、切削手段70の切削ブレード73によって、リング状補強部除去工程と、分割工程とを実施したが、本発明はこれに限定されず、リング状補強部除去工程、分割工程のいずれか、又は両方を、レーザー加工装置を使用しレーザー光線を照射して実施するようにしてもよい。 In the above-described embodiment, when the division step is carried out, the dicing device 1 is used and the ring-shaped reinforcing portion removing step and the division step are carried out by the cutting blade 73 of the cutting means 70. The present invention is not limited to this, and either or both of the ring-shaped reinforcing portion removing step and the dividing step may be carried out by irradiating a laser beam with a laser processing apparatus.

1:ダイシング装置
2:基台
2A:X軸案内レール
2B:Y軸案内レール
10:SiCウエーハ
10A:デバイス領域
10B:外周余剰領域
10a:表面
10b:裏面
12:デバイス
14:分割予定ライン
18:粒子
18A:金属膜
20:研削装置
22:第1のチャックテーブル
22a:吸着チャック
22b:枠体
23:研削手段
24:回転軸
25:研削ホイール
26:研削砥石
27:駆動部
40:支持手段
41:X軸方向可動板
42:クランプ
43:支持台
44:第2のチャックテーブル
44a:支持面
44b:吸引溝
45:回転支柱
50:撮像手段
52:撮像カメラ
60:X軸移動手段
70:切削手段
71:スピンドルユニット
72:回転スピンドル
73:切削ブレード
74:ブレードカバー
77:切削手段支持部
78:Z軸案内レール
80:Y軸移動手段
L:境界
T1:保護部材
T2:ダイシングテープ
1: Dicing device 2: Base 2A: X-axis guide rail 2B: Y-axis guide rail 10: SiC wafer 10A: Device area 10B: Outer peripheral surplus area 10a: Front surface 10b: Back surface 12: Device 14: Scheduled division line 18: Particles 18A: Metal film 20: Grinding device 22: First chuck table 22a: Suction chuck 22b: Frame body 23: Grinding means 24: Rotating shaft 25: Grinding wheel 26: Grinding grindstone 27: Drive unit 40: Support means 41: X Axial movable plate 42: Clamp 43: Support base 44: Second chuck table 44a: Support surface 44b: Suction groove 45: Rotating column 50: Imaging means 52: Imaging camera 60: X-axis moving means 70: Cutting means 71: Spindle unit 72: Rotating spindle 73: Cutting blade 74: Blade cover 77: Cutting means support 78: Z-axis guide rail 80: Y-axis moving means L: Boundary T1: Protective member T2: Dying tape

Claims (1)

複数のデバイスが分割予定ラインによって区画されたデバイス領域と、該デバイス領域を囲繞する外周余剰領域とが表面に形成されたSiCウエーハを個々のデバイスチップに分割するSiCウエーハの加工方法であって、
SiCウエーハの表面に保護部材を配設する保護部材配設工程と、
SiCウエーハの保護部材側を第1のチャックテーブルに保持しSiCウエーハの外周余剰領域に対応する領域を残してデバイス領域に対応する領域に研削砥石を位置付けて研削し、該外周余剰領域にリング状補強部を残してSiCウエーハを薄化する研削工程と、
SiCウエーハの少なくともデバイス領域に対応する裏面に金属膜を被覆する金属膜被覆工程と、
SiCウエーハの表面から保護部材を剥離する剥離工程と、
SiCウエーハの表面にダイシングテープを配設すると共にSiCウエーハを収容する開口部を有したフレームの該開口部にSiCウエーハを収容するように該ダイシングテープを該フレームに貼着してSiCウエーハとフレームとを一体化する一体化工程と、
透明な第2のチャックテーブルにSiCウエーハの表面に貼着されたダイシングテープ側を保持し切削ブレード又はレーザーによって該デバイス領域と該外周余剰領域との境界を破断し該リング状補強部を除去するリング状補強部除去工程と、
該第2のチャックテーブル側から撮像手段によってSiCウエーハの分割予定ラインを検出する分割予定ライン検出工程と、
SiCウエーハの裏面から切削ブレード又はレーザーによってSiCウエーハの分割予定ラインを破断してデバイス領域を個々のデバイスチップに分割する分割工程と、
を含み構成されるSiCウエーハの加工方法。
A method for processing a SiC wafer, which divides a SiC wafer having a device region in which a plurality of devices are divided by a planned division line and an outer peripheral surplus region surrounding the device region on the surface into individual device chips.
The protective member placement process for arranging the protective member on the surface of the SiC wafer, and
The protective member side of the SiC wafer is held on the first chuck table, and the grinding wheel is positioned and ground in the region corresponding to the device region, leaving the region corresponding to the outer peripheral surplus region of the SiC wafer, and the ring shape is formed in the outer peripheral surplus region. The grinding process to thin the SiC wafer, leaving the reinforcing part,
A metal film coating step of coating a metal film on the back surface corresponding to at least the device region of the SiC wafer,
A peeling process that peels off the protective member from the surface of the SiC wafer,
A dicing tape is arranged on the surface of the SiC wafer, and the dicing tape is attached to the frame so as to accommodate the SiC wafer in the opening of the frame having an opening for accommodating the SiC wafer, and the SiC wafer and the frame are attached. And the integration process that integrates with
The dicing tape side attached to the surface of the SiC wafer is held on a transparent second chuck table, and the boundary between the device region and the outer peripheral excess region is broken by a cutting blade or a laser to remove the ring-shaped reinforcing portion. Ring-shaped reinforcement removal process and
A process of detecting a scheduled division line for detecting a scheduled division line of a SiC wafer from the second chuck table side by an imaging means, and a step of detecting the scheduled division line.
A division process in which a cutting blade or a laser is used to break the planned division line of the SiC wafer from the back surface of the SiC wafer to divide the device area into individual device chips.
A method for processing a SiC wafer including.
JP2020195131A 2020-11-25 2020-11-25 SiC wafer processing method Pending JP2022083672A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020195131A JP2022083672A (en) 2020-11-25 2020-11-25 SiC wafer processing method
KR1020210150877A KR20220072739A (en) 2020-11-25 2021-11-04 PROCESSING METHOD OF SiC WAFER
CN202111367151.7A CN114603727A (en) 2020-11-25 2021-11-18 Method for processing SiC wafer
TW110143366A TW202221787A (en) 2020-11-25 2021-11-22 SiC wafer processing method for preventing breakage or damage of thinned SiC wafers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020195131A JP2022083672A (en) 2020-11-25 2020-11-25 SiC wafer processing method

Publications (1)

Publication Number Publication Date
JP2022083672A true JP2022083672A (en) 2022-06-06

Family

ID=81855405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020195131A Pending JP2022083672A (en) 2020-11-25 2020-11-25 SiC wafer processing method

Country Status (4)

Country Link
JP (1) JP2022083672A (en)
KR (1) KR20220072739A (en)
CN (1) CN114603727A (en)
TW (1) TW202221787A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5877663B2 (en) 2011-07-07 2016-03-08 株式会社ディスコ Wafer grinding method

Also Published As

Publication number Publication date
KR20220072739A (en) 2022-06-02
CN114603727A (en) 2022-06-10
TW202221787A (en) 2022-06-01

Similar Documents

Publication Publication Date Title
JP5613793B2 (en) Wafer processing method
JP5390740B2 (en) Wafer processing method
KR20160146537A (en) Processing method of wafer
JP2017103406A (en) Wafer processing method
JP2023001571A (en) Processing method
JP5886538B2 (en) Wafer processing method
JP7154860B2 (en) Wafer processing method
JP2022083672A (en) SiC wafer processing method
JP6741529B2 (en) Tip spacing maintenance method
JP7374657B2 (en) Wafer processing method
JP2020098827A (en) Wafer processing method
US20230282486A1 (en) Wafer processing method
CN111477583A (en) Workpiece unit
JP6422804B2 (en) Wafer processing method
JP7473414B2 (en) Wafer processing method
JP2020136445A (en) Wafer processing method
JP7413032B2 (en) Wafer processing method
JP7436187B2 (en) Wafer processing method
KR20240040628A (en) Method for processing wafer
KR20240002696A (en) Method of forming mask
JP2023080511A (en) Wafer processing method
KR20210130099A (en) Wafer processing method
JP5458460B2 (en) Cutting apparatus and cutting method
JP2017011119A (en) Processing method for wafer
KR20230043722A (en) Method of processing sheet-shaped workpiece

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230925