JP2022078037A - 裸眼光学立体スクリーン - Google Patents

裸眼光学立体スクリーン Download PDF

Info

Publication number
JP2022078037A
JP2022078037A JP2022016178A JP2022016178A JP2022078037A JP 2022078037 A JP2022078037 A JP 2022078037A JP 2022016178 A JP2022016178 A JP 2022016178A JP 2022016178 A JP2022016178 A JP 2022016178A JP 2022078037 A JP2022078037 A JP 2022078037A
Authority
JP
Japan
Prior art keywords
display screen
image
optical
stereoscopic
screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022016178A
Other languages
English (en)
Inventor
ソン,ジェイ
Jay Song
ジョウ,リーシャン
Lishang Zhou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2017/018544 external-priority patent/WO2017147023A1/en
Application filed by Individual filed Critical Individual
Publication of JP2022078037A publication Critical patent/JP2022078037A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/06Simple or compound lenses with non-spherical faces with cylindrical or toric faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/29Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays characterised by the geometry of the lenticular array, e.g. slanted arrays, irregular arrays or arrays of varying shape or size
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/40Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images giving the observer of a single two-dimensional [2D] image a perception of depth

Abstract

【課題】光学要素アセンブリを含むグラスフリーの光学3D立体表示スクリーンを提供する。【解決手段】光学要素アセンブリは、屈折効果を使用して下記正視差ハイパーステレオ視聴モード、正視差ハイポステレオ視聴モード、負視差ハイパーステレオ視聴モード、および負視差ハイポステレオ視聴モードのうちの1つの視聴モードを提供し、視聴者に対して、映画、テレビ、コンピュータ、タブレットPC、ゲーム機、電子看板、携帯デバイスといった従来の表示スクリーン上に表示される2Dイメージの3D立体視を感知させている。【選択図】なし

Description

本発明は光学立体用スクリーン分野に属する。より具体的には、本発明は裸眼により通常用スクリーンにおける2次元(2D)コンテンツを視聴する場合に、(3D)立体視覚を感知することができる光学立体視スクリーンに関する。
「拡張現実」と「没入型」でスクリーンをみることの追求は、色の鮮明さ、高解像度表示、かつ立体表示を意味している。現在の表示技術は、立体表示を除き、ますます色の鮮明化および高解像度化を完全なものとしている。既存の裸眼(3D)立体表示スクリーンは、非ホログラフィック裸眼表示およびホログラフィック裸眼表示の二種の技術手段に代表される。非ホログラフィック裸眼表示は、パララックスバリア法、レンチキュラーレンズ法、体積型マトリックス法、マイクロレンズプロジェクション法などの技術的ソリューションを意味する空間パターン、およびミクロ相差分法(Micro Retarded Plate Method)、指向性方法(Pointing Source Method)などの技術的ソリューションを意味する時間的パターンに分離される。技術的手段のために、輝度と解像度とを引き換えに犠牲とする他、現在の非ホログラフィック表示の欠点は、(a)視野角を制限すること、(b)輝度および画面の解像度が低下すること、(c)目と、スクリーンとを同一の高さに保持しなければならないこと、(d)画面の連続性がないこと、(e)クロストーク現象、(f)高コスト、(g)成熟したコンテンツがないこと、および(h)視聴者のめまいおよび吐き気にある。ホログラフィック表示とは、レンズホログラフィック法、反射ホログラム法、合成ホログラフィー法、ボリュームホログラフィ法などによる技術的ソリューションを意味し、現在のところ、ホログラフィック表示は用途の広い範囲にわたって技術的な困難性を経験している。
人の目は、自然空間において物体の3D立体視を備える。両眼が近接して横並びに位置することは、それぞれの目がわずかに異なった角度から物体の同一の領域を見ることを可能とし、それによって両眼視差として知られる2つのオフセットイメージを生成する。人間の自然の3D立体視は、2つのオフセットイメージを脳が融合することにより与えられ、脳は2つのオフセットイメージの同一性をマッチングしかつわずかな差を加え合わせる。2つのオフセットイメージの間のあるわずかな差は、脳に対して3D立体感知を経験させることを可能とする。一般に、実空間の物体を見る場合、視聴者の両眼は物体に対して同時に焦点を同時に合わせ、かつ集中し;両眼視差はこれによって脳に物体の深度と位置との感知を通知する。映画、テレビ、タブレットPC、携帯ゲーム機、ビルボード、携帯電子機器、携帯電話などの従来の表示スクリーン上で3Dコンテントを視聴する場合、視聴者の両眼は、自然に行うとは異なって挙動し、それらは表示スクリーンに焦点を合わせるが、視野内に現れる物体へと集中して視差を形成する。基本的に視差は、2つの異なる視線に沿った物体の見かけの位置における差のずれである。視差は、視聴者の脳に2D表示スクリーン上で見た物体が立体であることを通知する。加えて、視聴空間において、見た景物は視聴者と通常用スクリーン間に現像ができることをマイナス視差と称する。見た物体のイメージが視聴者と表示スクリーンとの間に存在するように現れる場合、この効果は負視差として知られ;見た物体のイメージが従来のスクリーンの後方に存在するように現れる場合、この効果は正視差として知られる。従来のスクリーンで2Dコンテンツを視聴する場合、視聴者の両眼は、また自然の振る舞いとは異なって振る舞い、視聴者の両眼は表示スクリーン上に焦点を合わせかつ集中し、非視差またはゼロ視差は、視聴者の脳に表示スクリーン上にみえる物体は、2Dイメージであることを通知する。ゼロ視差は、空間感知、相対位置および相対運動の存在といった空間的メッセージにもかかわらず空間感知の間隔を全体として弱めるだけ効果的に強力であり、これがゼロ視差による3D立体感知に対する負の効果として知られる。したがって、従来の表示スクリーン上で2Dコンテントを視聴する場合に空間感知を再現するための技術的アプローチは、ゼロ視差による負の影響を排除することである。
人の目は、両眼の適応化、両眼離反運動および視差を特徴づける。撮影されたシーンについて、適応化が、視聴者の網膜にマップし;両眼離反運動が左目網膜上の左目オフセットイメージおよび右目網膜上の右目オフセットイメージをゴースト効果なしに1つのイメージへと結び付け処理し;視差は、さらにシーンの空間的位置および空間的深さの視聴者感知を誘導する。左目イメージおよび右目イメージは、空間的な変位の一定の違いまたは経験を出現させるので、視差は、視聴者の3D立体感知の視聴者感覚を誘発する。
図1は、従来の表示スクリーン4上で物体イメージを視聴する場合の3D立体視のイメージ化原理並びに従来の表示スクリーン4のイメージプランジインまたはポップアウトの効果を示す。瞳孔間距離(両眼間距離)を1と仮定する場合、従来の表示スクリーン4は、両眼と平行であり、左目「L」と、右目「R」が空間物体30を見る場合、スクリーン平面4上での左目のオフセットイメージと、右目のオフセットイメージは、対応する位置31および32に位置する。両眼の中間点2と、空間物体30とを結ぶスクリーン平面4上での交差が3である。3D立体視のため、ひとつのシナリオでは両眼が調節して、目をスクリーン平面4に合焦させ、両眼の両眼離反運動が左目イメージ31と、右目イメージ32とをイメージ3マージする。脳は、両眼離反運動の効果に慣れているので、左目オフセットイメージ31と、右目オフセットイメージ32とを自動的に空間イメージ30に結合する。スクリーン平面4上のイメージ3に比較して、空間イメージ30は、空間的奥行きを有し、3D立体視が得られる。空間イメージ30がスクリーン4の後方に位置し、これはイメージ3がスクリーン平面4にプランジインして現れる(正視差)。もう一つのシナリオは、イメージ41が左目網膜(41=32)上にあり、イメージ42が右目網膜(42=31)上にある場合、脳は2つのイメージを自動的に空間イメージ40へと合成する。スクリーン平面4上でのイメージ3に比較して、空間イメージ40は、スクリーン4の前に落ち、スクリーン平面4からのポップアウトしたイメージ3を現わす(負視差)。言い換えると、空間物体40を視聴する場合、スクリーン平面4上の左目オフセットイメージおよび右目オフセットイメージは、対応する位置41、42に配置され、これらはデフォーカス(ボケた)イメージである。3D立体コンテンツの従来制作は、デフォーカシング問題を考慮していないため、左目イメージ41および右目イメージ42を合焦されたイメージ31、32を使用してスクリーン平面4上に形成する場合、視聴者の脳に対し、適合性を究極的に欠落し、そして視聴者にめまいや吐き気を生じさせる結果であった。したがって、3D立体表示のため、負視差表示モードはほとんど使用されない。
従来の3D立体コンテンツの制作は、通常、前制作と後制作フェーズに分割される。前制作フェーズでは、2台の指定された立体カメラが使用され、コンテントが撮影される。後制作フェーズでは、撮影したコンテントはその後、空間視差にしたがってデジタル的に処理される。通常、この処理は、3D効果を強調するために物体を視野深さの複数のレイヤに変える(通常4-8レイヤ)。この後制作フェーズは、また2Dコンテントと3D立体コンテントに変換するためにも使用される。
通常のグラスを使用しない立体表示は、技術的困難性、円熟した3Dコンテンツが少ないこと、クロストーク現象に加え輝度および解像度を著しく低下させるという問題を経験し、しばしば視聴者に対して過度の視差、過剰の輻輳、および/または分離による眼精疲労、頭痛、めまいおよび吐き気を生じさせる。さらに、分離と輻輳との間を頻繁に切り替えることは、また視聴するコンテントの変形、歪み、およびゴーストの近くを引き起こすこともある。
本発明は、特許「調節可能な光学立体グラス」、US14637439およびWO2016140655の技術原理を拡張するものである。
本発明は、前記の問題を解決し、裸眼で従来の表示スクリーン上の2Dコンテントを視聴した場合に、3D立体感知の感覚を確立する光学立体表示スクリーンを提供するものである。本発明は、光学プリズム、球面とシリンドリカルレンズ、他の対称レンズ、特殊光学要素(光学要素)から構成される光学的アセンブリを含む。発明された光学的アセンブリの機能は、光屈折手段による視差を導入するものであり、(a)光学アセンブリを通して従来の表示スクリーン上に表示された2Dイメージが視聴される場合、光学アセンブリは、表示スクリーン上に表示される2Dコンテンツの実際の位置とは異なる空間位置に位置するように見え、左目に対しては左目オフセットイメージの感知および右目に対しては右目オフセットイメージの感知を誘起し;(b)左目による左目オフセットイメージの感知位置と、右目による右目オフセットイメージの感知位置との間に空間変位のわずかな違いが存在し;(c)アセンブリによって生成される生成される左目オフセットイメージおよび右目オフセットイメージが、以下の視聴モード:正視差ハイパーステレオ視聴モード、正視差ハイポステレオモード、負視差ハイパーステレオ視聴モード、および負視差ハイポステレオ視聴モードの少なくとも1つとなるものであり、かつ視聴者に対して前記表示スクリーン上に表示された前記2Dイメージを3D立体イメージとして感知させる本発明の基本的な原理は、光屈折の働きにより視差を誘発することである。
本発明は、空間視差を使用して従来の表示スクリーン上で2Dコンテントを視聴する場合に、視聴者に対して3D立体視を誘起するものである。本発明の光学立体表示スクリーンは、視差を生成するために降格アセンブリを使用する。2Dコンテントは、否かる従来のイメージとすることができ、従来の3D立体コンテント処理を受ける必要がない。従来の表示スクリーン上で2Dコンテントを視聴する場合、光学アセンブリは、ゼロ視差による3D立体感知に対する悪影響を排除する。視聴者の両眼焦点および輻輳を、輻輳を表示スクリーンから離すように移動させることにより分離する。技術的手段は、スクリーンプレーンを分離し、そのイメージプレーンを焦点から両眼輻輳を離すように移動させることを達成し、それによって実際のスクリーン上への合焦がイメージスクリーン上へと輻輳する。彼の左目網膜および右目網膜上の2つのオフセットイメージは、視差のため正確に生成される。晴れの脳は、さらに2つのオフセットイメージを1つのイメージに組み合わせて処理し、3D立体感知の感覚を誘発する。
本発明の光学3D立体表示スクリーンは、広く(a)従来の表示スクリーン上の2Dコンテンツを視聴する場合、3D立体視覚を誘発すること(b)屈折度合いがないこと;(c)顕著な発散がないこと;(d)輝度、明るさ、明良性を向上すること;(e)解像度の損失が無いこと;(f)連続して延びる空間の奥行き;(g)連続的なイメージ;(h)歪みとゴースト現象の無いことを達成する。商業的用途を鑑みれば、高透明度、高屈折率のある固体光学材料の光学要素を選択するべきである。
本発明の特徴および発明的側面は、下記の例示的実施例、詳細な説明、請求項および以下の簡単に説明する図面を考慮してより明らかになるであろう。
図1は、裸眼LおよびRで従来の表示スクリーンを見た場合、従来の表示スクリーン上での3D立体視のイメージング原理を示す。3 図2は、多数の光学要素を含む本発明の光学立体スクリーンの光学アッセンブリを示す。 図3は、本発明の光学立体表示アセンブリにおける1つの実施例である上部断面図および裸眼LおよびRで従来の表示スクリーンを見た場合の、3D立体感知の効果を示す。 図4(a)は、正視差ハイパーステレオ視聴モードを示す。 図4(b)は、負視差ハイパーステレオ視聴モードを示す。 図4(c)は、正視差ハイポステレオ視聴モードである。 図4(d)は、負視差ハイポステレオ視聴モードである。 図5は、同じ頂点を備え、フレネルプリズムとして知られる連続して繰り返す三角プリズムで置換された三角プリズムを示す。 図6(a)は、等しい曲率の同心円平凹レンズが平凹レンズを置換することができ、または、等しい曲率の同心円平凹シリンドリカルレンズは平凹シリンドリカルレンズを置換することができることを示す。 図6(b)は、フレネルプリズムという等しい曲率の同心円平凸レンズが平凸レンズを置換することができ、またはフレネルシリンドリカルレンズで等しい曲率のある同心円平凸シリンドリカルレンズが平凸シリンドリカルレンズを置換することができることを示す。 図6(c)は、垂直軸線に対し、所定の角度で傾斜した一対の長方形プリズムが平凹シリンドリカルレンズに置換され、一定の規則により当該角度と曲率とが関連付けられることを示す。 図6(d)は、垂直軸線に対し、一定の角度で傾斜した一対の長方形プリズムがフラットレンズに置換され、一定の規則により当該角度と曲率とが関連付けられることを示す。 図7(a)は、中心頂点の三角プリズムが等しい頂角を備える中心頂点のフレネルプリズムで置換され、次いで、平凹シリンドリカルレンズで置換され、一定の規則により頂角と曲率とが関連付けされており、さらに、等しい曲率を備えるフレネル平凹シリンドリカルレンズで置換されることを示す。 図7(b)は、中心底辺の対称三角プリズムが同一の頂点を有する中心底辺のフレネルプリズムで置換され、次いで平凸シリンドリカルレンズで置換され、一定の規則により頂角と、曲率とが関連付けられ、等しい曲率を備えるフレネル平凸シリンドリカルレンズで置換されることを示す。 図8は、三角プリズムを通して表示スクリーン上に捕捉されたシーンを視聴する場合の視聴モードを示す。 図9は、2個の三角プリズムの間の分離空間の大きさに応じて水平変位が異なることを示す。 図10(a)は、水平軸に対して反時計周りに傾けられた長方形プリズムを通して物体を見た場合に、右側にシフトした水平変位および後ろ側にシフト下垂直方向変位を示す。 図10(b)は、水平軸に対して時計周りに傾けられた長方形プリズムを通して物体を見た場合に、左側にシフトした水平変位および後ろ側にシフト下垂直方向変位を示す。 図11は、一対の長方形プリズムを通して従来の表示スクリーンを見る場合、正視差ハイパーしてレオ視聴モードを示す。 図12は、もう1つの一対の長方形プリズムを通して従来の表示スクリーンを見る場合、正視差ハイポステレオ視聴モードを示す。 図13は、本発明における一つの実施例の光学立体表示アセンブリを通して従来の表示スクリーンを見る場合、正視差ハイパーステレオ視聴モードを示しており、光学立体表示アッセンブリは、凹面が視聴者に向き、光学要素として曲面レンズまたはシリンドリカルレンズを含んでいる。 図14は、本発明における一つの実施例である光学立体表示アセンブリを通して従来の表示スクリーンを見る場合、正視差ハイポステレオ視聴モードを示しており、光学立体表示アッセンブリは、凸面が視聴者に向き、光学要素として曲面レンズ又はシリンドリカルレンズを含んでいる。 図15は、図8、図11に記載されたプリズムを組み合わせる光学アセンブリを通して従来の表示スクリーンを見る場合、強調された効果を有する正視差ハイパーステレオ視聴モードを示す。 図16は、本発明における一つの実施例である光学立体表示アセンブリを通して従来の表示スクリーンを見る場合、正視差ハイパーステレオ視聴モードを示し、光学立体表示アセンブリは、中心頂角の三角プリズムと、図6(c)、図15から進化した曲面レンズを組合わせている。 図17は、本発明における一つの実施例である光学立体表示組立アセンブリを通して従来の表示スクリーンを見る場合、正視差ハイパーステレオ視聴モードを示し、光学立体表示アセンブリは、中心頂角のフレネルプリズムと、図7(a)、図16から進化した曲面レンズを組合わせている。 図18は、本発明における一つの実施例である光学立体表示組立アセンブリを通して従来の表示スクリーンを見る場合、正視差ハイパーステレオ視聴モードを示し、光学立体表示アセンブリは、平凹シリンドリカルレンズと、図7(a)、図17から進化したシリンドリカルレンズを組合わせている。 図19は、本発明における一つの実施例である光学立体表示アセンブリを通して従来の表示スクリーンを見る場合、視差ハイパーステレオ視聴モードを示し、光学立体表示アセンブリは、同心シリンドリカル状の平凹レンズと、曲面レンズまたは同心の平凹シリンドリカルレンズおよび図7(a)、図18から進化したシリンドリカルレンズを組合わせている。 図20は、本発明における一つの実施例である光学立体表示アセンブリを通して従来の表示スクリーンを見る場合、正視差ハイポステレオ視聴モードを示し、光学立体表示アセンブリは、図8、図12の構造化したプリズムを組み合わせている。 図21は、本発明における一つの実施例である光学立体表示アセンブリを通して従来の表示スクリーンを見る場合、正視差ハイポステレオ視聴モードを示し、光学立体表示アセンブリは、中心底辺の三角プリズムと、図6(d)、図20から進化した曲面レンズを組み合わせている。 図22は、本発明における一つの実施例である光学立体表示アセンブリを通して従来の表示スクリーンを見る場合、正視差ハイポステレオ視聴モードを示し、光学立体表示アセンブリは、中心底辺のフレネルプリズムと、図7(b)、図21から進化した曲面レンズを組み合わせている。 図23は、本発明における一つの実施例である光学立体表示アセンブリを通して従来の表示スクリーンを見る場合、正視差ハイポステレオ視聴モードを示し、光学立体表示アセンブリは、平凸レンズまたは平凸シリンドリカルレンズと、図7(b)、図22から進化したシリンドリカルレンズを組み合わせている。 図24は、本発明における一つの実施例である光学立体表示アセンブリを通して従来の表示スクリーンを見る場合、正視差ハイポステレオ視聴モードを示し、光学立体表示アセンブリは、平フレネルレンズおよび曲面レンズまたは平フレネルレンズおよび図7(b)、23から進化したシリンドリカルレンズを組み合わせている。 図25は、同心円平凹レンズの三次元図示である。 図26は、同心円平凸レンズの三次元図示である。 図27は、同心円平凹シリンドリカルレンズの三次元図示である。 図28は、同心円平凸シリンドリカルレンズ、平面フレネルシリンドリカルレンズともいう三次元図示である。 図29は、本発明における大規模光学立体表示アセンブリを示し、2次元方向に沿って多数の小さい光学立体表示アセンブリを繰り返して構成される。
図2は、本発明における光学立体表示アセンブリ5の光学アセンブリの概略図である。アセンブリにおける光学要素ごとに、それぞれ100,200,300…などで表示する。商業用途およびニーズに基づき、光学アセンブリにおける光学要素数は、1~100の範囲とすることができる。
図3は、本発明における一つの実施例である光学立体表示アセンブリ5の上面断面図であり、左目Lと右目Rにより従来の表示スクリーン4におけるシーンスポット3を見る場合の、3D立体視のイメージング原理を説明している。仮に瞳孔間距離を1とし、スクリーン4は、両眼と平行とし、図19のように、表示スクリーン4におけるシーンスポット3を見る場合、光学要素の屈折のため、イメージスクリーン6が表示スクリーン4の後方へと変位し、イメージスクリーン6における右目オフセットイメージと、左目オフセットイメージとが対応的に位置31、32に位置する。立体視については、両眼は調節が目をスクリーン4に焦点を合わさせ、脳は両眼の両眼離反運動に慣れているので、左目オフセットイメージ31と、右目オフセットイメージ32とを空間イメージ30へと自動的に組合わせる。よって、視聴空間において、視聴者の両眼は、物体30上に輻輳され、3D立体感知となる、イメージスクリーン6は、スクリーン4の後方に落ち、スクリーン4にプランジインするイメージ3が表示される、これが正視差視聴モードを例示する。
図4(a)-4(d)は、本発明における光学立体表示スクリーンの四つの立体視聴モードを示す。本発明における光学立体表示アセンブリ5により従来の表示スクリーン4における2Dコンテントを視聴する場合、表示スクリーン4の左側の対象点10、11、および右側の対象点12、13は、それぞれイメージスクリーン6における左側イメージングポイント20、21および右側イメージングポイント22、23に落ち込む。このことは、視聴方向の前方に沿って表記スクリーン4~離れるにつれ両眼輻輳を移動させることで両眼焦点および輻輳を分離する空間的変位を与える。両眼の瞳孔間距離のため、左目網膜上のイメージと、右目網膜上のイメージの間には、微小な差異を示し、これが脳にとって左目網膜と右目網膜における2つの視差イメージを組合せて融合する要求を満足し、脳が空間の奥行きを回復することを誘発し、立体視感知を生じさせる。さらに、3Dイメージングの特徴により、図4(a)は、イメージスクリーン6が表示スクリーン4の後方(または後方に向けて)に位置し、イメージサイズが縮小される正視差ハイパーステレオ視聴モードを表している;図4(b)は、イメージスクリーン6が表示スクリーン4の後方(または後向に向けて)に位置し、イメージサイズが縮小される負視差ハイパーステレオ視聴モードを表し;図4(c)は、イメージスクリーン6が表示スクリーン4の後方(または後方に向けて)に位置するイメージサイズが拡大される正視差ハイポステレオ視聴モードを表し;図4(d)は、イメージスクリーン6が表示スクリーン4の前方(または前に向けて)に位置し、イメージサイズ拡大される負視差ハイポステレオ視聴モードを表す。
図4(a)は、水平視差と垂直視差を含む本発明の正視差ハイパーステレオ視聴モードを示す。当該モードにおいて、イメージスクリーン6が表示スクリーン4の後方(または後向に向けて)に位置する。さらに、スクリーン4の中心を底辺とし、本発明における光学立体表示アセンブリ5を通してスクリーン4の左側対象ポイント10、11を見る場合、イメージスクリーン6におけるイメージポイント20、21のように右への水平変位が生じ、本発明における光学立体表示アセンブリ5を通してスクリーン4の右側対象ポイント12、13を見る場合、イメージスクリーン6におけるイメージポイント22、23のように、左方向への水平変位を生じ、垂直変位が後方に向いて縮小イメージを形成する正視差ハイパーステレオ視聴モードとなる。特に記載がない限り,垂直方向は以下の記載において視線方向を意味する。
図4(b)は、水平視差と垂直視差とを含む本発明の負視差ハイパーステレオ視聴モードを示す。当該モードにおいて、イメージスクリーン6は、表示スクリーン4の前方(または前に)に位置する。さらに、スクリーン4の中心を底辺とし、本発明における光学立体表示アセンブリ5により、スクリーン4の左側対象ポイント10、11を見る場合、イメージスクリーン6におけるイメージポイント20、21のように、右方向への水平変位が生じ、本発明における光学立体表示アセンブリ5により、スクリーン4における右側対象ポイント12、13を見る場合、イメージスクリーン6におけるイメージポイント22、23のように、左方向への水平変位を生じ、垂直変位が手前側で、縮小されたイメージを生成する、負視差ハイパーステレオ視聴モードとなる。
図4(c)は、水平視差と垂直視差とを含む本発明の正視差ハイポステレオ視聴モードを示す。当該モードにおいて、イメージスクリーン6は、表示スクリーン4の後方(または後の方向)に位置する。さらに、スクリーン4の中心を底辺とし、本発明における光学立体表示アセンブリ5により、スクリーン4の左側対象ポイント10、11を見る場合、イメージスクリーン6におけるイメージポイント20、21のように、左方向への水平変位を生じ、本発明における光学立体表示アセンブリ5により、スクリーン4の右側対象ポイント12、13を見る場合、イメージスクリーン6におけるイメージポイント22、23のように、右方向への水平変位を生じ、垂直変位が後向きの拡大されたイメージが生成され、正視差ハイポステレオ視聴モードとなる。
図4(d)は、水平視差と垂直視差とを含む本発明の負視差ハイポステレオ視聴モードを示す。当該モードにおいて、イメージスクリーン6が表示スクリーン4の前方(または手前側)に位置する。さらに、スクリーン4の中心を底辺とし,本発明の光学立体表示アセンブリ5により、スクリーン4の左側対象ポイント10、11を見る場合、イメージスクリーン6におけるイメージポイント20、21のように、左方向への水平変位を生じ、本発明の光学立体表示アセンブリ5により、スクリーン4の右側の対象ポイント12、13を見る場合、イメージスクリーン6におけるイメージポイント22、23のように、右方向への水平変位を生じ、垂直変位が前向きで、拡大されたイメージが生成される、負視差ハイポステレオ視聴モードとなる。
図5は、同じ頂角でフレネルプリズムという連続で繰り返す三角プリズム101により光学三角プリズム100を置換することができ、屈折の基本的な原理に基づき、三角プリズムが同じ頂角を保持すれば、入射する平行光線が2の主光学平面を介して屈折すると、射出する光線が同じ方向を保持することを説明している。
図6(a)は、同心の環状平凹レンズ101で平凹レンズ100を置換することができ、屈折の基本的な原理に基づき、対応する表面位置で一致する曲率を保持すれば、屈折して射出する光線が同じ方向を保持することを説明する。また、同心環状平凹シリンドリカルレンズ101で平凹シリンドリカルレンズ100を置換することができ、前述したと同様の効果を生じることができることを説明している。
図6(b)は、フレネルプリズムとして知られている同心環状平凸レンズ101で光学的平凸レンズ100を置換することができ、屈折の基本的な原理に基づき、対応する表面位置で一致する曲率を保持すれば、屈折して射出する光線が同じ方向を保持することを説明する。また、フレネルシリンドリカルレンズとして知られている平凸円柱レンズ101で平凸シリンドリカルレンズ100を置換することができ、前述したと同様の効果を生じることができることを説明する。
図6(c)は、シリンドリカル凹レンズ100で垂直方向と事前に設定角とされた一対の長方形プリズム101を置換することができることを説明する。仮に、光学要素101が無限に連続する小長方形プリズムペアが組合わされるとすれば、頂角と曲率が一定の規則、例えば、頂角と曲率角の違いが近似的に等しいかまたは相対的に小さいとか、長さが相対的に長いとか、...というように関連づけられ、入射する平行光線が光学面AとBとを通過しながら、屈折光線が同一の方向を維持する。
図6(d)は、シリンドリカル凸レンズ100で垂直方向と事前に設定角とされた一対の長方形プリズム100を置換することができると説明さる。仮に、光学要素101が無限に連続する小長方形プリズムペアが組合わされるものとすれば、頂角と曲率が一定の規則、例えば、頂角と曲率角の違いが近似的に等しいかまたは相対的に小さいとか、長さが相対的に長いとか、...というように関連づけられ、入射する平行光線が光学面AとBとを通過しながら、屈折光線が同一の方向を維持する。
図7(a)は、中心底辺フレネルプリズム101で中心底辺対称三角プリズム100を置換することができ、次いでシリンドリカルレンズ102で置換することができ、さらに同心環状平凹レンズ103で置換できることを説明する。屈折の基本的な原理に基づき、対応する表面位置における曲率と頂角が同じであって、且つ、頂角と曲率が一定の規則、例えば、頂角と曲率角の違いが近似的に等しいかまたは相対的に小さいとか、長さが相対的に長いとか、...というように関連づけられ、入射する平行光線が光学面AとBとを通過しながら、屈折光線が同一の方向を維持する。
図7(b)は、中心頂点フレネルプリズム101で中心頂点対象三角プリズム100を置換することができ、次いでシリンドリカルレンズ102で置換することができ、さらに同心環状平凸シリンドリカルレンズ103で置換することができる置ことを説明する。屈折の基本的な原理に基づき、対応する表面位置における曲率と頂角が同じであって、且つ、頂角と曲率が一定の規則、例えば、頂角と曲率角の違いが近似的に等しいかまたは相対的に小さいとか、長さが相対的に長いとか、...というように関連づけられ、入射する平行光線が光学面AとBとを通過しながら、屈折光線が同一の方向を維持する。
両眼の違いおよび空間視差は、3D立体視を感知するための最も重要な因子である。本発明は、光学アセンブリより構成された光学立体スクリーンを提供し、従来の表示スクリーンにおける2Dコンテントを視聴する場合に、3D立体視を感知させる。光学アセンブリを使用する場合、視聴者の脳に奥行き感を生じさせ、連続的に延伸する空間を回復させ、3D立体視を生成させ、連続的な深度フィールドを生じさせる。本発明の光学立体スクリーンは、空間のマルチ-レイヤ深度の技術問題を解決するのみならず、3D立体視聴のための3D立体コンテントの制作を必要としない。
商業用立体スクリーンは、過度の輻輳および分離の生成を防ぎ、広汎な適用のための商業的用途上の必要性に適合するために、全員の視差の調節および輻輳を調整する能力の差異を考慮するべきであり;快適性、便利性と調節可能性を最大限に向上させるべきである。適切に設計される光学立体スクリーンは、正視差、輻輳イメージング、適切な空間奥行きおよび強い3D感知という特徴を備得るべきである。図4(a)、4(b)、4(c)、4(d)において、図4(a)は、適切な空間奥行き感と強い立体視感知を有する、正視差ハイパーステレオ視聴モードを示し、これは、3D立体表示についての基本的要求に適合し、選択に当たり好ましい立体表示スクリーンである;図4(b)は、負視差ハイパーステレオ視聴モードを示し、これは不適切に近範囲の物体を制限し、極度の視覚輻輳を生じさせて、過度の内斜視となり、視覚疲労と疾病を引き起こす。なお、視聴者の脳は、特に焦点の合っていないまたは散乱したイメージに対して縮小されてはいるが近接した物体を心地よく像化しない。したがって、これは適切な商業的製品ではない;図4(c)は、正視差ハイポステレオ視聴モードを示し、遠範囲の物体を不適切に制限し、極度の視覚分離を生じさせて、過度の外斜視を生じさせる。さらに、当該視聴モードは、3D視の適切な感覚を有するものの、空間の奥行きに乏しい。制作の際に屈折をコントロールし、近範囲の感覚を制限する場合、これは、選択するべき次善の商用立体表示スクリーンである;図4(d)は、負視差ハイポステレオ視聴モードを示し、近接および遠範囲の物体を不適切に制限して、極度の視覚輻輳または分離を生じさせ、過剰な内外斜視を与え、視覚疲労および視覚疾病を生じさせる可能性がある。さらに視聴者の脳は、拡大されてはいるものの遠くの物体、特に焦点の合っていない散乱した画像を像化することが心地よくない。したがって、これは商業的製品として適切ではない。正視差のみが適切な3D立体視を感知させるために採用され、加えて、ハイパーステレオ視聴モードがハイポステレオ視聴モードよりもより好ましいことが結論される。
本発明の光学立体表示アセンブリ5は、光学要素より構成される。図2に示すように、各々の要素は、光学プリズム、球面およびシリンドリカルレンズ、他の対称レンズ、空特殊光学要素等示す。光学立体表示アセンブリ5を通して、従来の表示スクリーン4上の2Dコンテントを視聴した場合、イメージスクリーン6は、屈折のため空間変位を有していて、視線の進む方向に沿って表示スクリーン4から離れて両眼輻輳を移動させることにより両眼焦点および輻輳の分離を生じさせる、このため、ゼロ視差による3D立体視感の負の影響が排除され、立体感知が誘起され、図4(a)-4(d)に概説した3D視聴モードが達成される。商業用途については、光学立体表示アセンブリ5の厚みをできる限り薄くすることが好ましく、これは高屈折率の光学材料を選択することにより実現することができる。したがって、光学要素を設計する場合、図5のようなフレネルプリズム構造は、三角プリズムより優れ;図6(a)に示す同心環状平凹レンズおよび同心環状平凹シリンドリカルレンズは、平凹レンズおよび平凹シリンドリカルレンズよりもより好ましい;図6(b)に示す同心環状平凸レンズおよび同心環状平凸レンズは、平凸レンズおよび係凸シリンドリカルレンズよりもより好ましい。さらに、本発明における光学立体表示アセンブリにより、従来の表示スクリーンにおける2D番組を視聴する場合、立体視を感知することに加え、また、直接に肉眼で視聴する場合よりさらに鮮やかな色でより明るく、より明瞭なイメージが得られる。これは背景光および迷光が目に及ぼす直接影響が光学要素によるフィルタを経てからよりもより大きいからである。本発明における光学立体表示アセンブリは、背景光および迷光を分離およびフィルタする機能を特徴とする複数の光学要素より構成される。
図8のように、光学要素100は、水平軸線に沿って頂角70を配置する三角プリズムである。光学要素100を通して従来の表示スクリーン4における3つの対象ポイント10、11、12を見る場合、屈折のため視線の経路は、それぞれイメージスクリーン6におけるイメージポイント20、21、22で示されるように、空間的な偏向を経験する。水平変位は、左向きであり、垂直変位は、後向であった。三角プリズム100により達成された空間変位は、三角プリズムが図4(a)-4(d)のような視聴モードの機能要求を満足するために立体表示アセンブリ5のための光学要素として使用することができることを示す。別に記載がない限り、三角プリズムは、以後、2つの主光学面または頂角を横断して延びるものとして定義する。
図9に示すように、図9の左側部分に示されるように、頂角70を有する三角プリズム100および頂角71を有する三角プリズム101は、分離空間96で分離され、または図9の右側部分に示されるように、頂角70を有する三角プリズム100および頂角71を有する三角プリズム101は、分離空間97分離される。図9の左側部分と右側部分との差は、分離空間97のサイズが、分離空間96のサイズよりも大きいことだけである。光学要素100および101を通して、対象ポイント10、11および12、13を見る場合、屈折のため、視線経路は、対応するイメージポイント20、21および22、23により示される空間偏向を経験する。この空間変位は、左、かつ垂直変位がゼロにシフトした水平変位(720、721)および(722、723)を含む。図9の左側部分および右側部分を比較すると、分離空間97に対する96がより大きくければなるほど、水平変位(722、723)が(720、721)より大きくなる。したって、分離空間を調整することにより、水平変位(即ち、水平視差)を規制することができる。
図10(a)、10(b)を参照し、長方形プリズム100は、水平軸に対して反時計回りまたは時計回りのいずれかの所定の角度で角度がつけられている。対象ポイント10、11、12を、光学要素100を通して見る場合、視線経路は、光学要素100による屈折のためその視線経路が偏向され、これが対応するイケージポイント20、21、および22により示される空間変位を与える。空間変位は、水平変位720と垂直変位820とを含む。事前に設定する反時計回り角度60長方形プリズムの水平変位が右向け、垂直変位が後向け、所定の時計回りの角度61の長方形プリズムは、左へと水平に、垂直に後ろ側へと範囲される。角度をつけた長方形プリズム100により引き起こされる空間変位は、これが図48a)-4(d)に示した視聴モードによる機能的要求を満たす光学要素として機能するすることができる。別の記載がないことに限り、以下、長方形プリズムを、2つの主光学平面が互いに並行することにより定義する。
図11を参照し、一対の長方形プリズム100および110は、水平軸に対して1つが反時計回りに、もう1つが時計回りに所定の角度がつけられている。基本的な光学理論により、従来の表示スクリーン4上の2Dコンテントを視聴する場合、以下のシナリオが発生する。光学要素無しで表示スクリーン4上の2Dコンテンツを視聴する場合、視聴者は、表示スクリーン4に直接合焦して輻輳し、視聴される対象および対応するイメージは、表示スクリーン4上と同一に保持され、空間変位はなく、ゼロ視差であり、立体感知はない。長方形プリズムを通して表示スクリーン4上の2Dコンテントを視聴する場合、表示スクリーン4における左側対象ポイント10、11の右方向への水平変位(720、721)が発生し、イメージスクリーン6におけるイメージポイント20、21のように、表示スクリーン4における右側対象ポイント12、13の左方向への水平変位(722、723)が発生して、イメージスクリーン6におけるイメージングポイント22および23のように、当該長方形プリズムは、縮小イメージを生成する。イメージスクリーン6は、表示スクリーン4の後方(または後の方向)に位置し、後方の垂直変位820が得られる。垂直変位が発生する結果、両眼輻輳が、視線方向に沿って表示スクリーン4から離れる。両眼の瞳孔間距離のため、左右の2つのイメージの間にわずかな差が存在し、これが脳に対して空間視差を結合し融合させて3D立体視感知を有機するための要求に適合する。
図12を参照し、一対の長方形プリズム100および110は、水平軸に対して一方が反時計回り、他方は時計回りで所定の角度で角度をつけられている。図11と比較すると、この光学要素構造は、水平変位(720、721)および(722、723)で示すように拡大イメージを生成する。当該長方形プリズム構成は、拡大イメージを生成する。イメージスクリーン6が表示スクリーン4の後方(または後ろ側)に位置するので、後方への垂直変位820となる。垂直変位が発生する結果、両眼を輻輳とし、視線方向に沿って、表示スクリーン4を離れて両眼の合焦と両眼の輻輳とを分離する。両眼の瞳孔間距離のため、左右の2つのイメージの間にわずかな差が存在し、これが脳に対して空間視差を結合し融合させて3D立体視感知を有機するための要求に適合する。
図13を参照し、本実施例において、本発明における光学立体表示アセンブリ5の光学要素は、凹レンズ100または凹シリンドリカルレンズ100を含み、これは、図11に示すように、小さな長方形プリズム100および110の無限、かつ連続した組合せから進化したものと考えることができる。光学立体表示アセンブリ5と、表示スクリーン4との間の分離空間90および91は、光学要素の縁部からスクリーン4までで測られる。一般的には、分離空間は、右側分離空間に等しい(90=91)。本発明における表示アセンブリ5を通して、表示スクリーン4上の2Dコンテントを視聴する場合、表示スクリーン4の左側対象ポイント10、11、12は、イメージスクリーン6上のイメージポイント20、21、22により示されるように、右向きに水平変位する(720、721、722);表示スクリーン4上の右側対象ポイント13、14、15は、イメージスクリーン6における現像点22、23、24により示されるように、左向きに水平変位する(723、724、725)。イメージスクリーン6は、表示スクリーン4の後方(または後ろ側)に位置し、後向きの垂直変位820を与える。イメージスクリーン6の垂直変位の結果、ゼロ視差の3D立体感知に対する負の影響を排除し、両眼焦点および輻輳を、両眼輻輳を視線方向に沿って表示スクリーン4から離すことにより分離させ、かつスクリーン4の後方(または後ろ側)となる縮小イメージを生成させる。
図14を参照して、本実施例において、本発明における光学立体表示アセンブリ5の光学要素は、凸レンズ100または凸シリンドリカルレンズ100を含む。図13と比べると、この光学要素構成は、水平変位(720、721、722が723、724、725に相当する)で示されるような拡大イメージを生成する。イメージスクリーン6は、表示スクリーン4の前方(または前側)に位置し、前向きの垂直変位820が得られる。イメージスクリーン6の垂直変位の結果、ゼロ視差の3D立体感知に対する負の影響を排除し、両眼焦点および輻輳を、両眼輻輳を視線方向に沿って表示スクリーン4から離すことにより分離させ、かつスクリーン4の後方(または後ろ側)となる拡大イメージを生成させる。
図15を参照し、上部の光学要素が一対の三角プリズム(102、112)、下部の光学要素が一対の長方形プリズム(100、110)である光学要素(100、101、102、103)を通して、従来の表示スクリーン4上の2Dコンテンツを視聴する正視差ハイパーステレオ視聴モードを示す。右向き(720、721)、左向き(722、723)の水平変位および後方への垂直変位820は、イメージスクリーン6上のイメージポイント20、21および22、23を反映し、表示スクリーン4上の対象ポイント10、11、および12、13から屈折される。イメージスクリーン6は、スクリーン4の後方(または後ろ側)に位置し、後向きの垂直変位820が得られる。光学立体表示アセンブリ5と、表示スクリーン4との間の分離空間90および91、上部と下部光学要素との間の92、93が存在する。当該光学要素(100、110、102、112)構成は、図8および図11のようなプリズムの組合わせから発展したものと考えることができる。重ね合わせ効果のため、縮小イメージで、向上された正視差ハイパーステレオ視聴体験がもたらされる。
図16を参照して、本実施例において、本発明の光学立体表示アセンブリ5は、上部光学要素、中心頂点対象三角プリズム100および下部要素、凸面が視聴者に向いた凸シリンドリカルレンズ200を含む。本発明の光学立体表示アセンブリ5を通して従来の表示スクリーン4上の2Dコンテントを視聴する場合、表示スクリーン4の左側の対象ポイント10、11、および12は、イメージスクリーン6上のイメージポイント20、21、22により示されるように、右向きの水平変位(720、721、722)を生成し、表示スクリーン4の右側の対象ポイント13、14、および15は、イメージスクリーン6上のイメージポイント22、23、24により示されるように、左向きへの垂直変位(723、724、725)を生成する。イメージスクリーン6は、表示スクリーン4の後方(または後ろ側)に位置し、後向きの垂直変位820が得られる。光学立体表示アセンブリ5と、表示スクリーン4との間の分離空間90および91、上部と下部光学要素との間の92、93が存在する。本発明の立体表示アセンブリ5の構成は、光学要素(102、112)の連結を延長し、かつ光学要素(100、110)を図6(c)に示すような凹シリンドリカルレンズ200で置き換えることによって図15のようなプリズムの組合わせから発展したものと考えることができる。イメージスクリーン6の垂直変位の結果、両眼焦点および輻輳を、両眼輻輳を視線方向に沿って表示スクリーン4から離すことにより分離させ、かつスクリーン4の後方(または後ろ側)となる縮小イメージを生成させる。
図17を参照し、本実施例において、本発明の光学立体表示アセンブリ5は、上部の光学要素、中心頂点フレネルレンズプリズム100、および下部光学要素、凹面が視聴者に向いた凹シリンドリカルレンズ200を含む。本発明の立体表示アセンブリ5の構成は、中心頂点対象三角プリズム100を図5に示した中心頂点フレネルプリズム100で置換することにより図16から発展したものと考えることができる。図16と比較すると、この光学要素の構成は、水平変位720、721、722、に対する723、724、725の水平変位により誘起される縮小イメージをまた生成する。イメージスクリーン6の垂直変位の結果、両眼焦点および輻輳を、両眼輻輳を視線方向に沿って表示スクリーン4から離すことにより分離させ、かつスクリーン4の後方(または後ろ側)となる縮小イメージを生成させる。
図18を参照し、本実施例において、本発明の光学立体表示アセンブリ5は、上部の光学要素、平凹レンズまたは平凹シリンドリカルレンズ、および下部光学要素、凹面が視聴者に向いた凹レンズ200または凹シリンドリカルレンズ200を含む。本発明の立体表示アセンブリ5の構成は、中心頂点フレネルレンズ100を、図7(a)に示した平凹シリンドリカルレンズ102で置換することにより図17から発展したものと考えることができる。図17と比較すると、この光学要素の構成は、水平変位(720、721、722)に対する(723、724、725)の水平変位により誘起される縮小イメージをまた生成する。イメージスクリーン6の垂直変位の結果、両眼焦点および輻輳を、両眼輻輳を視線方向に沿って表示スクリーン4から離すことにより分離させ、かつスクリーン4の後方(または後ろ側)となる縮小イメージを生成させる。
図19を参照し、本実施例において、本発明の光学立体表示アセンブリ5は、上部の光学要素、環状平凹レンズまたは同心環状平凹レンズ、および下部光学要素、凹面が視聴者に向いた凹レンズ200または凹シリンドリカルレンズ200を含む。本発明の立体表示アセンブリ5の構成は、中心頂点レンズ100または中心頂点平凹レンズ100を、図7(a)に示した同心環状平凹レンズまたは平凹シリンドリカルレンズ100で置換することにより図18から発展したものと考えることができる。図17と比較すると、この光学要素の構成は、水平変位(720、721、722)に対する(723、724、725)の水平変位により誘起される縮小イメージをまた生成する。イメージスクリーン6の垂直変位の結果、両眼焦点および輻輳を、両眼輻輳を視線方向に沿って表示スクリーン4から離すことにより分離させ、かつスクリーン4の後方(または後ろ側)となる縮小イメージを生成させる。
図13、16、17、18、19の様な実施例に対し、本発明の光学立体表示アセンブリ5を通して、従来の表示スクリーン4上の2Dコンテントを視聴する場合、表示スクリーン4上の左側対象ポイント10、11、12がイメージスクリーン6におけるイメージポイント20、21、22で示すように右へと水平変位(720、721、722)し、表示スクリーン4上の左側対象ポイント13、14、15がイメージスクリーン6におけるイメージポイント22、23、24で示すように左へと水平変位(723、724、725)する。イメージスクリーン6は、スクリーン4の後方(または後ろ側)に位置し、後向きの垂直変位820が得られる。光学立体表示アセンブリ5と、表示スクリーン4との間の分離空間90および91、上部と下部光学要素との間の92、93が存在する。イメージスクリーン6の垂直変位の結果、ゼロ視差の負の影響を排除して3D立体感知を誘発し、両眼焦点および輻輳を、両眼輻輳を視線方向に沿って表示スクリーン4から離すことにより分離させ、かつスクリーン4の後方(または後ろ側)となる拡大イメージを生成させる。したがって、これらの実施形態は、図4(a)で示したような正視差ハイパーステレオ視聴モードを与える。
図20を参照すると、上部が一対の三角プリズム(102、112)および下部が一対の長方形プリズム(100、110)である光学要素(100、101、102、103)を通して従来の表示スクリーン4上で2Dコンテントを視聴する場合の正視差ハイポステレオ視聴モードを示す。左向き(720、721)、右向き(722、723)の水平変位および後方への垂直変位820は、イメージスクリーン6上のイメージポイント20、21および22、23を反映し、表示スクリーン4上の対象ポイント10、11、および12、13から屈折される。光学立体表示アセンブリ5と、表示スクリーン4との間の分離空間90および91、上部と下部光学要素との間の92、93が存在する。当該光学要素(100、110、102、112)構成は、図8および図11のようなプリズムの組合わせから発展したものと考えることができる。重ね合わせ効果のため、拡大イメージで、向上された正視差ハイポステレオ視聴体験がもたらされる。
図21を参照し、本実施例において、本発明の光学立体表示アセンブリ5は、上部光学要素、中心底辺対称三角プリズム100、下部光学要素および凸面が視聴者向けの凸シリンドリカルレンズ200、下部光学要素を含む。本発明の立体表示アセンブリ5を通して、従来の表示スクリーン4上の2Dコンテントを視聴する場合、左への水平変位(720、721、722)、右への水平変位(723、724、725)および垂直変位820は、本発明の光学立体アセンブリ5を通して視聴した場合、対象ポイント10、11、12、および13、14、15から屈折され、イメージスクリーン6におけるイメージポイント20、21、22、23、24、25を後ろ側に屈折する。光学立体表示アセンブリ5と、表示スクリーン4との間の分離空間90および91、上部と下部光学要素との間の92、93が存在する。本発明の立体表示アセンブリ5の構成は、一対の三角プリズム102および112を延長して連結し、図6(d)に示した一対の長方形プリズム100および110を置き換えることにより図20から発展したものと考えることができる。イメージスクリーン6への垂直変位820の結果、両眼焦点および輻輳を、両眼輻輳を視線方向に沿って表示スクリーン4から離すことにより分離させ、かつスクリーン4の後方(または後ろ側)となる拡大イメージを生成させる。
図22を参照し、本実施例において、本発明の光学立体表示アセンブリ5は、上部光学要素、中心底辺フレネルプリズム100、下部光学要素および凸面が視聴者向けの凸シリンドリカルレンズ200、下部光学要素を含む。本発明の立体表示アセンブリ5の構成は、中心底辺対称三角プリズム100を図7(b)に示す中心底辺フレネルプリズム101で置換することにより図21から発展したものと考えることができる。図21と比較すると、この光学要素の構成は、水平変位(720、721、722)に対する(723、724、725)の水平変位により誘起される拡大イメージをまた生成する。イメージスクリーン6の垂直変位820の結果、両眼焦点および輻輳を、両眼輻輳を視線方向に沿って表示スクリーン4から離すことにより分離させ、かつスクリーン4の後方(または後ろ側)となる拡大イメージを生成させる。
図23を参照して、本実施例において、本発明の光学立体表示アセンブリ5は、上部光学要素、平凸レンズ100または平凸シリンドリカルレンズ100、下部光学要素および凸面が視聴者向けの凸レンズ200または凸シリンドリカルレンズ200、下部光学要素を含む。本発明の立体表示アセンブリ5の構成は、中心底辺フレネルプリズム101を図7(b)に示す平凸レンズ102または平凸シリンドリカルレンズ102で置換することにより図22から発展したものと考えることができる。図22と比較すると、この光学要素の構成は、水平変位(720、721、722)に対する(723、724、725)の水平変位により誘起される拡大イメージをまた生成する。イメージスクリーン6の垂直変位820の結果、両眼焦点および輻輳を、両眼輻輳を視線方向に沿って表示スクリーン4から離すことにより分離させ、かつスクリーン4の後方(または後ろ側)となる拡大イメージを生成させる。
図24を参照して、本実施例において、本発明の光学立体表示アセンブリ5は、上部光学要素、同心環状平凸レンズ100(また、平フレネルレンズ)または同心環状平凸シリンドリカルレンズ100(また平フレネルシリンドリカルレンズ)、下部光学要素および凸面が視聴者向けの凸レンズ200または凸シリンドリカルレンズ200、下部光学要素を含む。本発明の立体表示アセンブリ5の構成は、平凸レンズ102または平凸シリンドリカルレンズ102を図7(b)に示す平凸レンズ102または平凸シリンドリカルレンズ102で置換することにより図23から発展したものと考えることができる。図23と比較すると、この光学要素の構成は、水平変位(720、721、722)に対する(723、724、725)の水平変位により誘起される拡大イメージをまた生成する。イメージスクリーン6の垂直変位820の結果、両眼焦点および輻輳を、両眼輻輳を視線方向に沿って表示スクリーン4から離すことにより分離させ、かつスクリーン4の後方(または後ろ側)となる拡大イメージを生成させる。
図14、20、21、22、および23の様な実施例に対し、本発明の立体表示アセンブリ5を通して、従来の表示スクリーン4上の2Dコンテントを視聴する場合、左への水平変位(720、721、722)、右への水平変位(723、724、725)および垂直変位820は、本発明の光学立体アセンブリ5を通して視聴した場合、対象ポイント10、11、12、および13、14、15から屈折され、イメージスクリーン6におけるイメージポイント20、21、22、23、24、25を垂直に後ろ側に屈折する。光学立体表示アセンブリ5と、表示スクリーン4との間の分離空間90および91、上部と下部光学要素との間の92、93が存在する。イメージスクリーン6の垂直変位の結果、ゼロ視差の負の影響を排除して3D立体感知を誘発し、両眼焦点および輻輳を、両眼輻輳を視線方向に沿って表示スクリーン4から離すことにより分離させ、かつスクリーン4の後方(または後ろ側)となる拡大イメージを生成させる。したがって、これらの実施形態は、図4(c)で示したような正視差ハイパーステレオ視聴モードを与える。
図25は、前記の同心環状平凹レンズの三次元略図であり;図26は、前述したフレネルレンズとして知られる同心環状平凸レンズの三次元略図であり;図27は、前述した同心環状平凸レンズの三次元略図であり;図28は、フレネルシリンドリカルレンズとして知られる同心環状平凸シリンドリカルレンズの三次元略図である。
図29は、大規模な本発明の光学立体表示アセンブリを示し、多数の小さな光学立体表示アセンブリをアレイとして2次元方向に繰り返すことにより構成される。
図2に示すように、本発明の裸眼光学立体表示アセンブリ5は、光学プリズム、球面、非球面とシリンドリカルレンズ、その他対称レンズ、特殊光学要素のような光学要素より構成される。裸眼で表示スクリーン4での2Dコンテンツを視聴する場合、両眼が表示スクリーン4に合焦して輻輳し、左右目網膜に形成する2の2Dコンテントのイメージが同じで、脳がゼロ視差の2D視覚を生成する。本発明の光学立体表示アセンブリ5を介して表示スクリーン4での2Dコンテントを視聴する場合、光学要素の屈折がイメージスクリーン6に空間変位を発生させ、両眼の焦点および輻輳を分離させ、両館輻輳を視線方向に沿ってスクリーン4から遠ざけるように移動させる。表示スクリーン4に合焦する場合、左右目網膜に形成する2の2Dコンテントのイメージに微小な差異が存在するので、脳が2のイメージを組合せて融合させることで、図4(a)、4(b)、4(c)、4(d)に記載した様な特徴的な視聴モードで3D立体視を感知させる。商業用途から言うと、光学立体表示アセンブリは、できる限り薄くすべき、即ち、高屈折率の光学材料を選択すべきである。しかしながら、高屈折率の光学要素は、波長分散を形成しやすく、波長分散効果を最小限にするための技術手段として、異なる屈折率の光学要素を組み合わせて混用することができる。なお、本発明の光学3D立体表示アセンブリにより従来の表示スクリーンにおける2Dコンテントを視聴する場合、その輝度、色の明るさおよびスクリーン明瞭さが増加する。これは、背景光と迷光が表示スクリーンに及ぼす直接的な影響が、光学表示アセンブリが表示スクリーンに及ぼす影響より遥かに大きく、また、光学要素が背景光と迷光とを分離してフィルタする機能を有するという特徴があるためである。
前記の実施例において、表示スクリーン4に近接する光学要素を反転して、空間の奥行き感と立体感に影響を及ぼし、分離空間(90、91)を調節して、空間の奥行き感と立体感にも影響をおよぼすが、分離空間(92、93)を調節すれば、空間の奥行き感と立体感にやや影響を及ぼす。概ね、一定的な調節範囲において、分離空間(90、91)を縮小することにより、一定な程度で空間の奥行き感を増強させるが、立体感が弱くなり、分離空間(90、91)を増加することにより、一定な程度で空間の奥行き感を弱くさせるが、立体感が増強される。なお、固定で置く通常用スクリーン、例えば、映画、テレビ、コンピュータ、ゲーム機、電子看板のようなスクリーンにおける2Dコンテントを見る場合、本発明の光学立体表示アセンブリの光学要素がプリズム、球面、非球面及びシリンドリカルレンズまたはそのた対称性レンズを選択することができ、固定せずに置く通常用スクリーン、例えば、タブレットPC、携帯式ゲーム機、携帯式デバイス、携帯電話のようなスクリーンにおける2Dコンテントを視聴する場合、本発明の光学立体表示アセンブリの光学要素が球面レンズ、非球面またはそのた対称性のあるレンズを選択することが好ましいが、これは視聴者がスクリーンの長辺と短辺を任意に選択して下部の底辺とすることが可能であるが、シリンドリカルレンズも、プリズムも特定の方向性があるからである。なお、視差は、左右(水平)方向にしか発生せず、上下(垂直)方向で発生しない。このため、固定せずに設置するスクリーンに対する光学要素の選択には、特定の制限および規則がある。
前記の実施例を範例として、本発明の裸眼光学立体表示アセンブリ5は光学要素の組み合わせであり、これらの組み合わせのみが2Dコンテントを視聴する場合期待する3D立体視を感知することができる。本発明は、製作方法およびこの光学立体表示アセンブリ5により従来の表示スクリーン上で2Dコンテンツを視聴することにより、3D立体視を感知する使用方法を含むがそれらに限定されるものではない。
本発明はまた、従来の表示スクリーン上で2Dコンテントを視聴する場合に3D立体視を提供するための光学アセンブリの製造方法および使用方法を含むがこれらに限定されるものではなく、当該光学アセンブリは、図4(a)に示す正視差ハイパーステレオ視聴モードを優先的に提供し、次いで図4(c)に示す正視差ハイポステレオ視聴モードを提供する。
前述した詳細な説明は、本発明を説明して検討することに用い、本発明の原理と概念に対し、最も有用で理解しやすい記述を提供するための実施例のためのみのものである。本件地において、本発明を基本的に理解すること以外に、より詳しい発明の構成の詳細について、記述する試みをしていない。発明の説明書と添附する図面の記述は、当業者に対し、本発明のいくつかの形態が実際にどのように実施されるのかを明らかにするものである。本文が記載するものと保護と請求する特許発明は多くの追加的な目的のために用いることができることが理解され、よって、本発明は、他の分野おおよび用途も範囲内とするものであり、限定されるものではない。本開示が提供する説明および図面は、当該領域の技術者が本発明、その原理および実用的な用途を知悉することを意図するものである。当該領域の技術者は、特定の使用の必要性の最適に適合するように、本発明を採用し、多くの形態で適用することができる。したがって、前述した具体的な実施例は、本発明を排他または制限することを意図するものではない。本発明の範囲は、上記の説明を参照して決定されるものではなく、添附する請求項およびこれらの請求項が請求する完全な均等範囲に沿って決定されるべきである。

Claims (13)

  1. 光学アセンブリを含む光学立体スクリーンであって、
    (a)前記光学アセンブリは、多くの光学要素を含み、
    a)前記光学要素が固定配置される前記表示スクリーンのためのプリズム、球面およびシリンドリカルレンズ、他の対称レンズから選択され;
    b)前記光学要素が非固定的に配置される前記表示スクリーンのための球面レンズおよび他の対称レンズから選択され;
    c)前記光学要素の組み合わせが視線経路を屈折させて前記イメージを空間変位させ空間的な視差を生じさせ
    (b)従来の表示スクリーンに表示された2Dイメージが前記光学アセンブリを通して視聴者に視聴された場合に前記イメージスクリーンは前記表示スクリーンの後方または前方にシフトされ、
    (c)前記イメージスクリーンの前記表示スクリーンに対する空間的な変位が視線方向の方向に沿って前記表示スクリーンから前記両眼輻輳を離すように前記表示スクリーンから移動させることにより、前記両眼焦点および輻輳を分離させ、
    (d)前記光学アセンブリを通して視聴者の左目により従来の表示スクリーン上に表示された2Dイメージが視聴される場合、前記光学アセンブリは、前記左目に対して前記表示スクリーン上に表示される前記2Dコンテンツの実際の位置とは異なる空間位置に位置するように見える前記2Dコンテントの左目オフセットイメージを誘導し;
    (e)前記光学アセンブリを通して視聴者の右目により従来の表示スクリーン上に表示された2Dイメージが視聴される場合、前記光学アセンブリは、前記右目に対して前記表示スクリーン上に表示される前記2Dコンテンツの実際の位置とは異なる空間位置に位置するように見える前記2Dコンテントの右目オフセットイメージを誘導し;
    (f)前記左目による前記左目オフセットイメージの感知位置と、前記右目による前記右目オフセットイメージの感知位置との間に空間変位のわずかな違いが存在し;
    (g)前記表示スクリーンによって生成される前記左目オフセットイメージおよび前記右目オフセットイメージが、(i)以下の視聴モード:正視差ハイパーステレオ視聴モード、正視差ハイポステレオモード、負視差ハイパーステレオ視聴モード、および負視差ハイポステレオ視聴モードの少なくとも1つとなるものであり、かつ(ii)前記視聴者に対して前記表示スクリーン上に表示された前記2Dイメージを3D立体イメージとして感知させる
    光学立体スクリーン。
  2. 前記表示スクリーンにより生成される前記左目オフセットイメージおよび前記右目オフセットイメージは、前記正視差ハイパーステレオ視聴モードとなる、請求項1に記載の表示スクリーン。
  3. 前記表示スクリーンにより生成される前記左目オフセットイメージおよび前記右目オフセットイメージは、前記正視差ハイポステレオ視聴モードとなる、請求項1に記載の表示スクリーン。
  4. 前記光学アセンブリは、少なくとも1つの光学要素を含む、請求項1に記載の表示スクリーン。
  5. 前記少なくとも1つの光学要素は、光学プリズム、球面レンズ、シリンドリカルレンズ、他の対称レンズおよびこれらの組合せからなる群から選択される、請求項4に記載の表示スクリーン。
  6. 前記少なくとも1つの光学要素は、分離空間により互いに分離された1つまたはそれ以上のレンズである、請求項4に記載の表示スクリーン。
  7. 光学アセンブリを含む光学立体ディスプレイであって、前記光学アセンブリは、少なくとも1つの光学要素を含み;前記少なくとも1つの光学要素の屈折が前記表示スクリーンのゼロ視差による立体感知に対する負の影響を軽減し、かつ視聴者に対して従来の表示スクリーンに表示される2Dイメージを立体イメージとして感知させる、光学立体表示スクリーン。
  8. 前記表示スクリーンは、前記視聴者に対して正視差ハイパーステレオ視聴モードを提供する、請求項7に記載の表示スクリーン。
  9. 前記表示スクリーンは、前記視聴者に対して正視差ハイポステレオ視聴モードを提供する、請求項7に記載の表示スクリーン。
  10. 十分なレベルの輻輳を提供して、前記視聴者に対して前記表示スクリーン上に表示される2Dイメージを、目に対する緊張無しに3D立体イメージとして感知させる、請求項7に記載の表示スクリーン。
  11. 光学アセンブリを含む光学立体表示スクリーンであって:
    (a)前記光学アセンブリが分離空間により互いに分離された2またはそれ以上の対象レンズを含み;
    (b)前記光学アセンブリが、分離空間により前記表示スクリーンから分離され;
    (c)従来の表示スクリーンに生じされる2Dイメージを、前記表示アセンブリを通して視聴する場合に、前記対称レンズが正視差ハイパーステレオ視聴モードまたは正視差ハイポステレオ視聴モードのいずれかを視聴者に提供し、前記視聴者が3D立体イメージを感知する、
    光学立体表示スクリーン。
  12. 前記視聴モードは、正視差ハイパーステレオ視聴モードである、請求項11に記載の光学立体表示スクリーン。
  13. 前記視聴モードは、正視差ハイポステレオ視聴モードである、請求項11に記載の光学立体表示スクリーン。

JP2022016178A 2016-02-22 2022-02-04 裸眼光学立体スクリーン Pending JP2022078037A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662298145P 2016-02-22 2016-02-22
US62/298,145 2016-02-22
PCT/US2017/018544 WO2017147023A1 (en) 2016-02-22 2017-02-19 Optical stereoscopic display screen for naked eye viewing
JP2018544104A JP2019512109A (ja) 2016-02-22 2017-02-19 裸眼光学立体スクリーン

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018544104A Division JP2019512109A (ja) 2016-02-22 2017-02-19 裸眼光学立体スクリーン

Publications (1)

Publication Number Publication Date
JP2022078037A true JP2022078037A (ja) 2022-05-24

Family

ID=59629860

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018544104A Pending JP2019512109A (ja) 2016-02-22 2017-02-19 裸眼光学立体スクリーン
JP2022016178A Pending JP2022078037A (ja) 2016-02-22 2022-02-04 裸眼光学立体スクリーン

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018544104A Pending JP2019512109A (ja) 2016-02-22 2017-02-19 裸眼光学立体スクリーン

Country Status (3)

Country Link
US (1) US10725316B2 (ja)
EP (1) EP3420398A1 (ja)
JP (2) JP2019512109A (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3420398A1 (en) * 2016-02-22 2019-01-02 Jay Song Optical stereoscopic display screen for naked eye viewing
CN109246463B (zh) * 2017-06-02 2020-06-26 腾讯科技(深圳)有限公司 用于显示弹幕的方法和装置
JP7076963B2 (ja) * 2017-08-01 2022-05-30 キヤノンメディカルシステムズ株式会社 医用画像診断装置
CN110376734B (zh) * 2018-04-12 2021-11-19 肥鲨技术 单面板头戴式显示器
EP3553592A3 (en) * 2018-04-12 2020-01-22 Fat Shark Technology SEZC Single-panel head-mounted display
EP3890592B1 (en) * 2018-12-07 2024-04-17 Cochlear Limited Speech discrimination test system
EP4037543A1 (en) * 2019-09-30 2022-08-10 Alcon Inc. Improved ocular aberrometer systems and methods
CN113660476A (zh) * 2021-08-16 2021-11-16 纵深视觉科技(南京)有限责任公司 一种基于Web页面的立体显示系统及方法
WO2023032310A1 (ja) * 2021-08-30 2023-03-09 ソニーグループ株式会社 光学素子及び画像表示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001042250A (ja) * 1999-07-30 2001-02-16 Minolta Co Ltd 画像表示装置
JP2007127820A (ja) * 2005-11-02 2007-05-24 Epson Imaging Devices Corp ディスプレイ装置
US20070297073A1 (en) * 2006-06-23 2007-12-27 John Braithwaite 3d enhancement system for monitor
JP2011002824A (ja) * 2009-05-20 2011-01-06 Tokyo Univ Of Agriculture & Technology 立体画像表示装置
JP2013040487A (ja) * 2011-08-16 2013-02-28 Hitachi Constr Mach Co Ltd 作業機械
JP2014023012A (ja) * 2012-07-20 2014-02-03 Murata Mfg Co Ltd 通信端末
JP2019512109A (ja) * 2016-02-22 2019-05-09 ソン, ジェイSONG, Jay 裸眼光学立体スクリーン

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1981001201A1 (en) * 1979-10-16 1981-04-30 Secr Defence Brit Methods and apparatus for producing three-dimensional displays
JP2000206459A (ja) * 1999-01-11 2000-07-28 Sanyo Electric Co Ltd 眼鏡無し立体映像表示装置
US6788274B2 (en) * 2000-01-31 2004-09-07 National Institute Of Information And Communications Technology Apparatus and method for displaying stereoscopic images
KR101324436B1 (ko) * 2010-04-02 2013-10-31 엘지디스플레이 주식회사 입체영상 표시장치, 입체영상 표시장치용 모기판 및 그 모기판의 제조방법
DE102012205271B3 (de) * 2012-03-30 2013-07-18 Carl Zeiss Vision International Gmbh Visualisierungssystem für dreidimensionale Bilder
JP2014026012A (ja) * 2012-07-25 2014-02-06 Akira Oba 裸眼立体(3d)映像装置及びそのアダプター
US9649200B2 (en) * 2014-07-28 2017-05-16 Wasaw Orthopedic, Inc. Spinal implant system and method
CN105676466B (zh) * 2016-01-07 2017-12-15 京东方科技集团股份有限公司 一种3d显示面板、显示装置
KR101651995B1 (ko) * 2016-01-27 2016-08-30 주식회사 썸텍 안폭 조절이 필요 없는 무안경식 3d 디스플레이 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001042250A (ja) * 1999-07-30 2001-02-16 Minolta Co Ltd 画像表示装置
JP2007127820A (ja) * 2005-11-02 2007-05-24 Epson Imaging Devices Corp ディスプレイ装置
US20070297073A1 (en) * 2006-06-23 2007-12-27 John Braithwaite 3d enhancement system for monitor
JP2011002824A (ja) * 2009-05-20 2011-01-06 Tokyo Univ Of Agriculture & Technology 立体画像表示装置
JP2013040487A (ja) * 2011-08-16 2013-02-28 Hitachi Constr Mach Co Ltd 作業機械
JP2014023012A (ja) * 2012-07-20 2014-02-03 Murata Mfg Co Ltd 通信端末
JP2019512109A (ja) * 2016-02-22 2019-05-09 ソン, ジェイSONG, Jay 裸眼光学立体スクリーン

Also Published As

Publication number Publication date
US10725316B2 (en) 2020-07-28
EP3420398A1 (en) 2019-01-02
US20170242260A1 (en) 2017-08-24
JP2019512109A (ja) 2019-05-09

Similar Documents

Publication Publication Date Title
JP2022078037A (ja) 裸眼光学立体スクリーン
JP2019512109A5 (ja)
CN107430277B (zh) 用于沉浸式虚拟现实的高级折射光学器件
WO2011017485A2 (en) 3d autostereoscopic display with true depth perception
US6788274B2 (en) Apparatus and method for displaying stereoscopic images
Iizuka Welcome to the wonderful world of 3D: introduction, principles and history
CN102520527A (zh) 一种裸眼立体显示系统及其方法
KR102070800B1 (ko) 입체 디스플레이 장치 및 그 디스플레이 방법
Kakeya MOEVision: simple multiview display with clear floating image
US20160070112A1 (en) Adjustable optical stereoscopic glasses
CN106199972A (zh) 一种用于观察大尺寸屏幕3d显示的头戴式光学系统
CN103676167A (zh) 立体显示装置及储存媒体
JP2006243732A (ja) 2次元/3次元兼用の画像ディスプレイ装置
JP2018508841A (ja) 調節可能光学立体メガネ
US20170038598A1 (en) Adjustable optical stereoscopic glasses
JP2008015121A (ja) 多視点立体ディスプレイ装置
JP2012022278A (ja) 映像実体感メガネ
JP2001218231A (ja) 立体画像を表示する装置および方法
WO2015035248A1 (en) Adjustable optical stereoscopic glasses
KR101093929B1 (ko) 깊이 지도를 이용하여 3차원 영상을 표시하는 방법 및 시스템
US10142619B2 (en) Wide angle viewing device II
JP2011033820A (ja) 3次元画像表示装置
CN104698592A (zh) 基于菲涅尔透镜的裸眼悬浮立体显示系统及显示方法
CN104270628A (zh) 基于菲涅尔透镜的裸眼悬浮立体显示系统及使用方法
Shih et al. 24.4: Distinguished student paper: floating 3D image for high resolution portable device using integral photography theory

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220304

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230428

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231017

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240115

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240314