JP2022072280A - Method for manufacturing light reflection element used in optical image forming device - Google Patents

Method for manufacturing light reflection element used in optical image forming device Download PDF

Info

Publication number
JP2022072280A
JP2022072280A JP2020181638A JP2020181638A JP2022072280A JP 2022072280 A JP2022072280 A JP 2022072280A JP 2020181638 A JP2020181638 A JP 2020181638A JP 2020181638 A JP2020181638 A JP 2020181638A JP 2022072280 A JP2022072280 A JP 2022072280A
Authority
JP
Japan
Prior art keywords
reflecting element
light reflecting
light
adhesive
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020181638A
Other languages
Japanese (ja)
Other versions
JP7503475B2 (en
Inventor
誠 大坪
Makoto Otsubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asukanet Co Ltd
Original Assignee
Asukanet Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asukanet Co Ltd filed Critical Asukanet Co Ltd
Priority to JP2020181638A priority Critical patent/JP7503475B2/en
Publication of JP2022072280A publication Critical patent/JP2022072280A/en
Application granted granted Critical
Publication of JP7503475B2 publication Critical patent/JP7503475B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

To provide a method for manufacturing a light reflection element which is used in an optical image forming device, with which it is possible to improve the accuracy of end surface of the light reflection element, and even when juxtaposing a plurality of light reflection elements or optical image forming devices, it is possible to provide a clear real image in which the light reflection layers of the adjacent light reflection elements or optical image forming devices are aligned.SOLUTION: A first to a fourth support member 15 to 18 are pressed against and fastened via a peelable second adhesive to upper and lower surfaces A and B in a thickness direction of a raw laminate 13 created by laminating and fastening, via a first adhesive, a plurality of rectangular transparent plates 11 in which a light reflection layer 12 is formed, and to surfaces C and D orthogonally facing said surfaces, respectively, so as to form a first laminate block 19. The first laminate block 19 is cut off in a direction orthogonal to the light reflection layer 12 to manufacture a light reflection element starting material 25. The cut surface of the light reflection element starting material 25 is polished while the cut pieces 21 to 24 of the first to fourth support members 15 to 18 are fastened, and chips when cut and polished are eliminated.SELECTED DRAWING: Figure 1

Description

本発明は、一側の面に垂直に所定間隔で平行配置された多数の光反射層を有する対となる光反射素子をそれぞれの光反射層が直交するようにして配置した光学結像装置に用いる光反射素子の製造方法に関する。 The present invention relates to an optical imaging apparatus in which paired light reflecting elements having a large number of light reflecting layers arranged in parallel at predetermined intervals perpendicular to one surface are arranged so that the light reflecting layers are orthogonal to each other. The present invention relates to a method for manufacturing a light reflecting element to be used.

出願人は、特許文献1に示すように、透明平板の内部に、透明平板の一方側の面に垂直に多数かつ帯状の平面光反射層を一定のピッチで並べて形成した第1及び第2の光制御パネルを用い、第1及び第2の光制御パネルのそれぞれの一面側を、平面光反射層を直交させて向かい合わせて形成した光学結像装置を提案した。そして、特許文献2には、対象物を反対側の面対称となる位置に実像として結像させるための光学結像装置の製造方法が開示されている。また大型の光学結像装置については特許文献3、4に開示されている。 As shown in Patent Document 1, the applicant has formed the first and second transparent flat plates by arranging a large number of strip-shaped plane light reflecting layers perpendicular to one surface of the transparent flat plate at a constant pitch. We have proposed an optical imaging device in which one surface side of each of the first and second optical control panels is formed by using an optical control panel with the plane light reflecting layers orthogonal to each other. Further, Patent Document 2 discloses a method for manufacturing an optical imaging device for forming an image of an object as a real image at a position symmetrical with respect to a plane on the opposite side. Further, a large-scale optical imaging device is disclosed in Patent Documents 3 and 4.

国際公開第2009/131128号International Publication No. 2009/131128 特許第5085767号公報Japanese Patent No. 5085767 国際公開第2013/179405号International Publication No. 2013/179405 特開2013-101230号公報Japanese Unexamined Patent Publication No. 2013-101230

しかしながら、特許文献1、2に記載の光学結像装置の製造方法においては、光学結像装置に使用する光反射素子(光制御パネル)の精度が多少相違しても、一枚の光学結像装置では隅の部分は使用しないので問題は生じなかったが、特許文献3、4に記載のように複数の光学結像装置を貼り合わせて(タイリングして)大型の光学結像装置を製造すると、個々の光学結像装置の端面を正確に一致させる必要があった。
更に、光学結像装置が一応完成した後に縦横の寸法を合わせるために研磨すると、光反射素子が欠けたり、光学結像装置を構成する光反射素子がずれたりするなどの問題が生じていた。
However, in the method for manufacturing an optical imaging device described in Patent Documents 1 and 2, even if the accuracy of the light reflecting element (optical control panel) used in the optical imaging device is slightly different, one optical imaging device is used. Since the corner portion is not used in the apparatus, no problem occurs, but as described in Patent Documents 3 and 4, a plurality of optical imaging devices are bonded (tied) to manufacture a large optical imaging device. Then, it was necessary to accurately match the end faces of the individual optical imaging devices.
Further, if the optical imaging device is once completed and then polished to match the vertical and horizontal dimensions, there have been problems such as chipping of the light reflecting element and misalignment of the light reflecting element constituting the optical imaging device.

本発明はかかる事情に鑑みてなされたもので、光反射素子の端面の寸法精度を向上し、複数の光反射素子又は光学結像装置を並べても、隣合う光反射素子又は光学結像装置の光反射層が正しく並んで鮮明な実像を提供できる光学結像装置に用いる光反射素子の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and the dimensional accuracy of the end face of the light reflecting element is improved, and even if a plurality of light reflecting elements or optical imaging devices are arranged side by side, the adjacent light reflecting element or optical imaging device can be used. It is an object of the present invention to provide a method for manufacturing a light reflecting element used in an optical imaging device capable of providing a clear real image by arranging light reflecting layers correctly.

前記目的に沿う本発明に係る光反射素子の製造方法は、一側空間に配置された対象物の像を他側空間に実像として形成する光学結像装置に用いる光反射素子の製造方法であって、
少なくとも一方の面に光反射層が形成された複数(通常は200~1000枚程度)の矩形(正方形が好ましい)透明板を、前記光反射層に対して直交する方向に難剥離性の第1の接着剤を介して積層固着して原積層体を形成し、該原積層体の厚み方向上下の面Aと面B、及びこれに直交して対向する面Cと面Dにそれぞれ第1~第4の支持部材を剥離可能な第2の接着剤を介して押圧固着した第1の積層ブロックを形成する第1工程と、
前記第1の積層ブロックを前記光反射層と直交する方向に前記第1~第4の支持部材と共に等間隔で切断して光反射素子原材を製造する第2工程と、
切断した前記光反射素子原材の切断面を前記第1~第4の支持部材の切断片が固着された状態で研磨する(これにより製造された光反射素子原材の厚みをtとする)第3工程と、
前記第3工程で研磨され、前記第1~第4の支持部材の切断片を除去した光反射素子材を複数枚重ねて剥離可能な第3の接着剤で固着して第2の積層ブロックを形成する第4工程と、
前記第2の積層ブロックの対向する面C′、面D′を研磨して、前記光反射素子材の幅を規定値に合わせる第5工程と、
前記第3の接着剤を解いて前記光反射素子を形成する第6工程とを有する。
The method for manufacturing a light-reflecting element according to the present invention according to the above object is a method for manufacturing a light-reflecting element used in an optical imaging device that forms an image of an object arranged in one side space as a real image in the other side space. hand,
A plurality of (usually about 200 to 1000) rectangular (preferably square) transparent plates having a light reflecting layer formed on at least one surface thereof are made of a first piece that is resistant to peeling in a direction orthogonal to the light reflecting layer. The original laminated body is formed by laminating and fixing via the adhesive of the above, and the first to the upper and lower surfaces A and B of the original laminated body, and the surfaces C and D facing orthogonal to the surface A and the surface D, respectively. The first step of forming the first laminated block in which the fourth support member is pressed and fixed via the removable second adhesive, and the first step.
A second step of cutting the first laminated block together with the first to fourth support members at equal intervals in a direction orthogonal to the light reflecting layer to manufacture a light reflecting element raw material.
The cut surface of the cut light-reflecting element raw material is polished in a state where the cut pieces of the first to fourth support members are fixed (the thickness of the light-reflecting element raw material produced thereby is t). Third step and
A plurality of light reflecting element materials polished in the third step and from which the cut pieces of the first to fourth support members have been removed are stacked and fixed with a peelable third adhesive to form a second laminated block. The fourth step of forming and
The fifth step of polishing the facing surfaces C'and D'of the second laminated block to adjust the width of the light reflecting element material to a specified value.
It has a sixth step of melting the third adhesive to form the light reflecting element.

この後、2枚の光反射素子をそれぞれの光反射層が平面視して直交するようにして透明な第5の接着剤で接合して光学結像装置とすることも可能であり、光反射素子の端部を合わせてより大型の光反射素子を作り、この後2枚の大型の光反射素子をその反射面(光反射層)を直交させて接合し大型の光学結像装置を形成することもできる。また、複数枚の光学結像装置を端部を当接させながら並べて大型の光学結像装置とすることもできる。
本発明に係る光反射素子の製造方法において、前記第4工程の後、前記第5工程の前に、前記第2の積層ブロックの研磨する前記面C′及び前記面D′に直交して囲む面E~面Hの少なくとも端部を剥離可能な第4の接着剤で補強してもよい(研磨面周囲の補強工程4A)。
After that, it is also possible to join the two light-reflecting elements with a transparent fifth adhesive so that the light-reflecting layers are orthogonal to each other in a plan view to form an optical imaging device. The ends of the elements are combined to form a larger light-reflecting element, and then two large-sized light-reflecting elements are joined so that their reflecting surfaces (light-reflecting layers) are orthogonal to each other to form a large-sized optical imaging device. You can also do it. Further, a plurality of optical imaging devices can be arranged side by side with their ends abutting to form a large-sized optical imaging device.
In the method for manufacturing a light reflecting element according to the present invention, after the fourth step and before the fifth step, the second laminated block is surrounded orthogonally to the surface C'and the surface D'to be polished. At least the end portions of the surfaces E to H may be reinforced with a peelable fourth adhesive (reinforcing step 4A around the polished surface).

本発明に係る光反射素子の製造方法において、前記第5工程の前に前記面C′及び前記面D′に直交して囲む面E~面Hに剥離可能な第4の接着剤で第5~第8の補強用の支持部材を接合し、前記第2の積層ブロックの疵の発生を防止するのが好ましい。この場合は
研磨面周囲の補強工程4Aは行わない。
In the method for manufacturing a light reflecting element according to the present invention, a fourth adhesive that can be peeled off from a surface E to a surface H that is orthogonal to the surface C'and the surface D'is used before the fifth step. It is preferable to join the eighth reinforcing support member to prevent the occurrence of defects in the second laminated block. In this case, the reinforcing step 4A around the polished surface is not performed.

本発明に係る光反射素子の製造方法において、前記第2の積層ブロックを囲む又は挟持する前記対向する第6、第8の補強用の支持部材が前記対向する第5、第7の補強用の支持部材を挟んだ状態で配置されているのが好ましい。 In the method for manufacturing a light reflecting element according to the present invention, the facing 6th and 8th reinforcing support members surrounding or sandwiching the 2nd laminated block are used for the facing 5th and 7th reinforcing members. It is preferable that they are arranged so as to sandwich the support member.

本発明に係る光反射素子の製造方法において、前記原積層体の厚みをhとすると、研磨された前記第2の積層ブロックから得られた前記光反射素子の幅wは、h±0.5mmの範囲にあって、前記光反射素子の平面視した形状は正方形であるのが好ましい。これによって光学結像装置に使用する対となる光反射素子を同時に製造できる。 In the method for manufacturing a light reflecting element according to the present invention, where h is the thickness of the original laminated body, the width w of the light reflecting element obtained from the polished second laminated block is h ± 0.5 mm. It is preferable that the shape of the light reflecting element in a plan view is a square within the above range. As a result, a pair of light reflecting elements used in the optical imaging device can be manufactured at the same time.

また、本発明に係る光反射素子の製造方法において、前記第1、第2の支持部材の切断片の除去は、前記第5工程の後に行われる場合もある。
なお、本発明において、第1の接着剤(第5の接着剤)は例えば自硬性又は熱硬化性を有する熱硬化性樹脂系、エポキシ系、エラストマー系などの接着剤が利用できるが、矩形透明板を強固に接合できるものであれば他の接着剤であってもよい。また、第2~第4の接着剤は加熱(例えば、80℃に加熱)すると溶ける熱可塑性の接着剤、水溶性の接着剤を使用するのがよいが、本発明はこれら接着剤の種類に限定されない。
Further, in the method for manufacturing a light reflecting element according to the present invention, the removal of the cut pieces of the first and second support members may be performed after the fifth step.
In the present invention, as the first adhesive (fifth adhesive), for example, a thermosetting resin-based adhesive, an epoxy-based adhesive, an elastomer-based adhesive having self-hardening or thermosetting property can be used, but the rectangular transparent. Other adhesives may be used as long as the plates can be firmly bonded. Further, as the second to fourth adhesives, it is preferable to use a thermoplastic adhesive or a water-soluble adhesive that melts when heated (for example, heated to 80 ° C.). Not limited.

本発明に係る光反射素子の製造方法においては、光反射素子材の端部を研磨する場合、矩形透明板の欠けやずれなどが発生し難く、寸法精度の高い光反射素子を製造できる。これによって大型の光学結像装置を容易に製造できる。即ち、同じ寸法の光反射素子を製造できるので、複数の光反射素子を並べて大型の光反射素子を製造でき、この光反射素子を各光反射層が直交するように貼り合わせて大型の光学結像装置を構成することができる。
また、各光反射素子の精度が高いので、例えば、4枚、9枚、16枚の光反射素子を平面上に並べてより大型の光反射素子を形成できる。更に、光反射素子を組み合わせた光学結像装置をタイリングして大型の光学結像装置を製造することも容易となる。
In the method for manufacturing a light-reflecting element according to the present invention, when the end portion of the light-reflecting element material is polished, the rectangular transparent plate is less likely to be chipped or displaced, and a light-reflecting element with high dimensional accuracy can be manufactured. This makes it possible to easily manufacture a large-sized optical imaging device. That is, since a light reflecting element having the same dimensions can be manufactured, a large number of light reflecting elements can be arranged side by side to manufacture a large light reflecting element, and the light reflecting elements are bonded together so that the light reflecting layers are orthogonal to each other to form a large optical connection. An image device can be configured.
Further, since the accuracy of each light reflecting element is high, for example, four, nine, or sixteen light reflecting elements can be arranged on a plane to form a larger light reflecting element. Further, it becomes easy to manufacture a large-sized optical imaging device by tiling an optical imaging device in which a light reflecting element is combined.

(A)はガラス板材の説明図、(B)は本発明の一実施の形態に係る光反射素子の製造方法の第1工程の説明図である。(A) is an explanatory diagram of a glass plate material, and (B) is an explanatory diagram of a first step of a method for manufacturing a light reflecting element according to an embodiment of the present invention. 同光反射素子の製造方法の第2工程の説明図である。It is explanatory drawing of the 2nd process of the manufacturing method of the said light reflection element. (A)、(B)はそれぞれ同第2工程で製造された光反射素子原材の斜視図、側面図である。(A) and (B) are perspective views and side views of the light reflecting element raw material manufactured in the second step, respectively. (A)は同光反射素子原材から第1~第4の支持部材の切断片を除去した光反射素子材の斜視図、(B)は同光反射素子材を複数枚重ねて形成した第2の積層ブロックの斜視図である。(A) is a perspective view of a light-reflecting element material in which cut pieces of the first to fourth support members are removed from the same light-reflecting element raw material, and (B) is a first formed by stacking a plurality of the same light-reflecting element materials. It is a perspective view of 2 laminated blocks. (A)は第2の積層ブロックに第5~第8の補強用の支持部材を接合する説明図、(B)は第5~第8の補強用の支持部材が接合された第2の積層ブロックの斜視図である。(A) is an explanatory view in which the fifth to eighth reinforcing support members are joined to the second laminated block, and (B) is the second laminate in which the fifth to eighth reinforcing support members are joined. It is a perspective view of a block. (A)は対となる光反射素子の斜視図、(B)は光反射層が直交する状態で光反射素子を接合した光学結像装置の斜視図を示す。(A) is a perspective view of a pair of light reflecting elements, and (B) is a perspective view of an optical imaging device in which light reflecting elements are joined in a state where the light reflecting layers are orthogonal to each other. 複数の光反射素子を並べて接合しようとする平面図である。It is a top view which tries to join a plurality of light reflecting elements side by side.

続いて、図1~図7を参照しながら、本発明の第1の実施の形態に係る光学結像装置に用いる光反射素子の製造方法について説明する。図1(A)、(B)に示すように、最終的に光反射素子10(図6(A)、(B)参照)を製造するために、矩形の透明板の一例である透明なガラス板11と、ガラス板11の一面に設けられた光反射層12とを有するガラス板材12aが用いられる。ガラス板11は、例えば一辺が約80~500mmの略正方形を成しているが、長方形であってもよい。ガラス板11の厚さは例えば0.1~4.0mmである。なお、矩形透明板は、例えばアクリル樹脂等の透明な合成樹脂材料(プラスチック)によって形成してもよい。 Subsequently, a method for manufacturing a light reflecting element used in the optical imaging device according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 7. As shown in FIGS. 1 (A) and 1 (B), transparent glass which is an example of a rectangular transparent plate for finally manufacturing the light reflecting element 10 (see FIGS. 6 (A) and 6 (B)). A glass plate material 12a having a plate 11 and a light reflecting layer 12 provided on one surface of the glass plate 11 is used. The glass plate 11 forms, for example, a substantially square having a side of about 80 to 500 mm, but may be rectangular. The thickness of the glass plate 11 is, for example, 0.1 to 4.0 mm. The rectangular transparent plate may be formed of a transparent synthetic resin material (plastic) such as acrylic resin.

ガラス板11は両面が平面であって可能な範囲で厚みが均一なものを使用する。 ガラス板11にはアルミニウムや銀等の金属蒸着によって光反射層12が形成される。金属蒸着の代わりに、スパッタ、スプレー、メッキ等の手法によって光反射層12が形成されてもよい。なお、光反射層12の厚みは例えば50~400nm程度であるのがよいが、この数字には限定されない。なお、光反射層12はガラス板11の両面に形成してもよい。 The glass plate 11 is flat on both sides and has a uniform thickness as much as possible. A light reflecting layer 12 is formed on the glass plate 11 by vapor deposition of a metal such as aluminum or silver. Instead of metal vapor deposition, the light reflecting layer 12 may be formed by a method such as sputtering, spraying, or plating. The thickness of the light reflecting layer 12 is preferably, for example, about 50 to 400 nm, but is not limited to this number. The light reflecting layer 12 may be formed on both sides of the glass plate 11.

光反射層12が形成されたガラス板11(即ち、ガラス板材12a)を所定枚数(例えば500~1000枚用意して透明な第1の接着剤を介して光反射層12に対して直交する方向に積層して原積層体13とするが、各ガラス板材12aは第1の接着剤が固まる前にプレス等の平面体で面Aと面B、及び面Cと面Dを十分な押圧力で押圧されて第1の接着剤を均一に伸ばし、厚みh(面Aと面Bの距離)と、面Cと面Dのできる限りの平面性及び平行性を保っているのが好ましい(図示せず)。第1の接着剤としては、時間の経過と共に硬化する自硬型又は加熱硬化型の接着剤を使用するのが好ましい(難剥離型の接着剤)。これによって原積層体13の寸法である高さhと幅wが決定される(w>h)。なお、高さhは変更しないが、wは研磨によって小さくなる。 A predetermined number (for example, 500 to 1000) of the glass plates 11 (that is, the glass plate material 12a) on which the light reflecting layer 12 is formed is prepared and the direction is orthogonal to the light reflecting layer 12 via the transparent first adhesive. Each glass plate material 12a is a flat surface such as a press before the first adhesive is hardened, and the surfaces A and B, and the surfaces C and D are pressed with sufficient pressing pressure. It is preferable that the first adhesive is uniformly stretched by being pressed to maintain the thickness h (distance between the surface A and the surface B) and the flatness and parallelism of the surface C and the surface D as much as possible (shown). As the first adhesive, it is preferable to use a self-hardening type or heat-curing type adhesive that cures with the passage of time (difficult-to-peelable type adhesive). The height h and the width w are determined (w> h). The height h is not changed, but w is reduced by polishing.

ここで、原積層体13の厚み方向上下の面A、面Bには第1、第2の支持部材15、16が第2の接着剤を介して押し当てられ、面A、面Bとは直交する原積層体13の対向する面C、面Dには第3、第4の支持部材17、18が第2の接着剤を介して押し当てられる。ここで、第1、第2の支持部材15、16の幅を原積層体13の面C、面D間の幅より小さくして、第3、第4の支持部材17、18の間に隙間を有して入るようにしておくのがよい。ここで、第2の接着剤としては加熱(例えば、80℃に加熱)すれば溶解(液化)し常温では強固に固化する接着剤(通常、ワックスと称されている)、又は水溶性の接着剤(以上、剥離可能型の接着剤)を使用するのが好ましい。
なお、原積層体13の厚みhはガラス板材12aの枚数を調整して、面C及び面Dの幅(面間距離)wより小さくしておく。これにより、最終製品である光反射素子10の形状をh=w(±0.1mm以内まで許容とするのが好ましいが必須の要件ではない)として正方形に調整できる。この理由は面C及び面D間の幅wは研磨過程で減少する方向に調整できるからである。これによって、図2に示す第1の積層ブロック19となる(以上、第1工程)。
Here, the first and second support members 15 and 16 are pressed against the upper and lower surfaces A and B of the original laminated body 13 in the thickness direction via the second adhesive, and the surfaces A and B are referred to as the surfaces A and B. The third and fourth support members 17 and 18 are pressed against the opposing surfaces C and D of the orthogonal original laminate 13 via the second adhesive. Here, the width of the first and second support members 15 and 16 is made smaller than the width between the surfaces C and D of the original laminated body 13, and a gap is provided between the third and fourth support members 17 and 18. It is better to bring it in. Here, the second adhesive is an adhesive (usually called wax) that melts (liquefies) when heated (for example, heated to 80 ° C.) and solidifies firmly at room temperature, or a water-soluble adhesive. It is preferable to use an agent (above, a peelable adhesive).
The thickness h of the original laminated body 13 is set to be smaller than the width (inter-plane distance) w of the surfaces C and D by adjusting the number of glass plate materials 12a. As a result, the shape of the light reflecting element 10 which is the final product can be adjusted to a square shape with h = w (preferably within ± 0.1 mm, but not an essential requirement). The reason for this is that the width w between the surfaces C and D can be adjusted in a direction of decreasing in the polishing process. As a result, the first laminated block 19 shown in FIG. 2 is obtained (the above is the first step).

次に、ガラス板材12aが積層固着された原積層体13に対する第1~第4の支持部材15~18の接合(押圧固着)が完了した第1の積層ブロック19を第1の支持部材15を上にして載置台(図示せず)に固定し、図2に示すように、第1の支持部材15の上方から各ガラス板材12aの光反射層12に直交する方向に、第1の積層ブロック19を第1~第4の支持部材15~18と共に、所定厚み(等間隔)にマルチワイヤーソー20で同時に切断(スライス)して、図3(A)、(B)に示すように周囲に第1~第4の支持部材15~18の切断片21~24が固着した複数枚の光反射素子原材25を形成する(以上、第2工程)。 Next, the first laminated block 19 in which the joining (pressing and fixing) of the first to fourth support members 15 to 18 to the original laminated body 13 to which the glass plate material 12a is laminated and fixed is completed is attached to the first support member 15. It is fixed to a mounting table (not shown) with it facing up, and as shown in FIG. 2, a first laminated block is formed in a direction orthogonal to the light reflecting layer 12 of each glass plate material 12a from above the first supporting member 15. 19 is simultaneously cut (sliced) with a multi-wire saw 20 to a predetermined thickness (equally spaced) together with the first to fourth support members 15 to 18, and around as shown in FIGS. 3A and 3B. A plurality of light reflecting element raw materials 25 to which the cut pieces 21 to 24 of the first to fourth support members 15 to 18 are fixed are formed (the above is the second step).

この後、光反射素子原材25を水平にして、周囲の切断片21~24が固着した状態で光反射素子原材25の両面を光学研磨(鏡面研磨)し、好ましくは表面の算術平均粗さRaを1~0.1μm程度又はそれ以下とする(以下の研磨においても同じ)。この場合、光反射素子原材25の周囲には支持部材15~18の切断片21~24が固着されているので、切断及び研磨時にガラス板材12aが欠けたり、捲れたりすることがないという利点がある。各光反射素子原材25の厚みtは、切断時の厚みと研磨時の研磨代を考慮して一定に調整する(以上、第3工程)。図において、4連の▽マークは超精密な光学研磨であることを示す。 After that, the light-reflecting element raw material 25 is made horizontal, and both sides of the light-reflecting element raw material 25 are optically polished (mirror-polished) with the surrounding cut pieces 21 to 24 fixed to the surface, preferably the arithmetic average roughness of the surface. Ra is set to about 1 to 0.1 μm or less (the same applies to the following polishing). In this case, since the cut pieces 21 to 24 of the support members 15 to 18 are fixed around the light reflecting element raw material 25, there is an advantage that the glass plate material 12a is not chipped or rolled up during cutting and polishing. There is. The thickness t of each light reflecting element raw material 25 is adjusted to be constant in consideration of the thickness at the time of cutting and the polishing allowance at the time of polishing (the above is the third step). In the figure, the four ▽ marks indicate that the polishing is ultra-precision optical polishing.

次に、図4(A)に示すように光反射素子原材25の周囲に設けられている切断片21~24を加熱して又は液体(溶剤)を用いて外し、光反射素子材25aを、図4(B)に示すように剥離可能な第3の接着剤(第2の接着剤と同じ)を介して積層して第2の積層ブロック27を形成する(以上、第4工程)。なお、光反射素子材25aを単に重ねただけでは、第2の積層ブロック27の対向する面C′、面D′の平面度が悪いので第3の接着剤が固まる前に、図示しない平板で面C′、面D′を押圧するのが好ましい。面C′、面D′がある程度揃った状態で、図4(B)に示すように、この第2の積層ブロック27の対向する面C′、面D′の光学研磨を行う。このとき光学研磨された面C″、面D″の間隔w(光反射素子10の幅)を原積層体13の厚みhに±0.5mmの範囲、好ましくは、±0.1mmの範囲で一致させる(以上、第5工程)のがよい。 Next, as shown in FIG. 4A, the cut pieces 21 to 24 provided around the light reflecting element raw material 25 are heated or removed using a liquid (solvent) to remove the light reflecting element material 25a. , As shown in FIG. 4B, the second laminated block 27 is formed by laminating via a peelable third adhesive (same as the second adhesive) (the above is the fourth step). If the light reflecting element materials 25a are simply stacked, the flatness of the facing surfaces C'and D'of the second laminated block 27 is poor, so before the third adhesive hardens, a flat plate (not shown) is used. It is preferable to press the surface C'and the surface D'. As shown in FIG. 4B, the opposite surfaces C'and D'of the second laminated block 27 are optically polished in a state where the surfaces C'and D'are aligned to some extent. At this time, the distance w (width of the light reflecting element 10) between the optically polished surfaces C ″ and the surface D ″ is set to the thickness h of the original laminate 13 in the range of ± 0.5 mm, preferably in the range of ± 0.1 mm. It is better to match (the above is the fifth step).

この後、第3の接着剤の接合を解いて第2の積層ブロック27を複数の光反射素子10に分解する。この光反射素子10は厚みがtで、平面視した(切断面を正面視した)形状が一辺がh(=w)の正方形となる(以上、第6工程)。そこで、図6(A)に示すように2枚の光反射素子10を用意し、それぞれの光反射層12が平面視して直交するように配置して透明な第5の接着剤(第1の接着剤と同じ)で接合し厚みが2tの光学結像装置30が完成する。この光学結像装置30により一側空間に配置された対象物の像を他側空間に実像として形成することができる。 After that, the bonding of the third adhesive is broken and the second laminated block 27 is decomposed into a plurality of light reflecting elements 10. The light reflecting element 10 has a thickness of t, and the shape viewed in a plane (viewing the cut surface in front) is a square having one side h (= w) (the above is the sixth step). Therefore, as shown in FIG. 6A, two light reflecting elements 10 are prepared, and the light reflecting layers 12 are arranged so as to be orthogonal to each other in a plan view, and a transparent fifth adhesive (first). The optical imaging apparatus 30 having a thickness of 2 tons is completed by joining with the same adhesive as the above. The optical imaging device 30 can form an image of an object arranged in one side space as a real image in the other side space.

上記実施の形態では、第2の積層ブロック27の周囲に支持部材(保護部材)を設けずに面C′、面D′の研磨を行ったが、第2の積層ブロック27の周囲に補強用の支持部材を設けて研磨すると研磨時の欠けが無くなるので、これを防止した実施の形態について図5(A)、(B)を参照しながら説明する。即ち、第4工程で又は第4工程と第5工程の間に、複数枚の光反射素子材25aを第5の補強用の支持部材35の上に剥離容易な第3の接着剤を介して積層し第2の積層ブロック27を形成する。第2の積層ブロック27の面C′、面D′に直交する側面で第2の積層ブロック27を囲む第5~第8の面(面E~面H)31~34に第5~第8の補強用の支持部材35~38を剥離可能な第4の接着剤を介して貼り付ける(なお、第5の補強用の支持部材35は底板となる)。ここで、第5、第7の補強用の支持部材35、37それぞれの幅はh(又は僅少の範囲でhより短く)とし、第6、第8の補強用の支持部材36、38で挟持状態とするのが好ましい。これによって、研磨時に第2の積層ブロック27の疵や捲れの発生を防止することになる。 In the above embodiment, the surfaces C'and D'are polished without providing a support member (protective member) around the second laminated block 27, but the surface C'and the surface D'are polished around the second laminated block 27 for reinforcement. When the support member of No. 5 is provided and polished, the chipping at the time of polishing disappears, and an embodiment in which this is prevented will be described with reference to FIGS. 5 (A) and 5 (B). That is, in the fourth step or between the fourth step and the fifth step, a plurality of light reflecting element materials 25a are placed on the fifth reinforcing support member 35 via a third adhesive that can be easily peeled off. It is laminated to form a second laminated block 27. The fifth to eighth surfaces (planes E to H) 31 to 34 surrounding the second laminated block 27 on the side surface orthogonal to the surface C'and the surface D'of the second laminated block 27 are the fifth to eighth. The reinforcing support members 35 to 38 of the above are attached via a peelable fourth adhesive (note that the fifth reinforcing support member 35 serves as a bottom plate). Here, the widths of the fifth and seventh reinforcing support members 35 and 37 are h (or shorter than h in a small range), and are sandwiched between the sixth and eighth reinforcing support members 36 and 38. It is preferable to keep it in a state. This prevents the second laminated block 27 from being scratched or curled during polishing.

なお、第3工程で切断片21~24を除去したが、切断片23、24のみを除去することもできる。
前記実施の形態においては、矩形透明板をガラス板を用いて説明したが、透明樹脂等も使用できる。また、前記実施の形態においては、光反射素子は平面視して正方形であったが、矩形であってもよい。
また、前記実施の形態においては、各ガラス板に光反射層を設けたが、端部のガラス板に対して光反射層を形成しないこともできる。
更に、第4工程の後、第5工程の前に、第2の積層ブロックの面C′及び面D′に直交して第2の積層ブロックを囲む面E~面Hの端部を剥離可能な第4の接着剤(例えば、ワックス)で補強して、第5工程で、面C′及び面D′を研磨してもよい。これによって、第2の積層ブロックの側面が更に補強され研磨時の欠けが無くなる。
Although the cut pieces 21 to 24 were removed in the third step, only the cut pieces 23 and 24 can be removed.
In the above-described embodiment, the rectangular transparent plate has been described using a glass plate, but a transparent resin or the like can also be used. Further, in the above-described embodiment, the light reflecting element is square in a plan view, but it may be rectangular.
Further, in the above-described embodiment, the light-reflecting layer is provided on each glass plate, but the light-reflecting layer may not be formed on the glass plate at the end.
Further, after the fourth step and before the fifth step, the ends of the surfaces E to H surrounding the second laminated block can be peeled off at right angles to the surfaces C'and D'of the second laminated block. The surface C'and the surface D'may be polished in the fifth step by reinforcing with a fourth adhesive (for example, wax). As a result, the side surface of the second laminated block is further reinforced and there is no chipping during polishing.

図7には、以上の工程で製造された光反射素子10を複数枚(この実施の形態では4枚、更に9枚、16枚、その他の枚数でもよい)、光反射層12の向きを揃えて、水平に横並びして接合した大型の光反射素子40を示すが、透明な平面基台41の上に載置され、直角配置された2つの位置決め部材43、44、押圧部材45、46によって所定位置に保持されている。この場合、各光反射素子10の形状が同じであるので、隣合う光反射素子10の光反射層12の位置を合わせることができ、より大型の光学結像装置を製造できる。 In FIG. 7, a plurality of light reflecting elements 10 manufactured by the above steps (in this embodiment, four, further 9, 16, or any other number), and the orientation of the light reflecting layer 12 are aligned. The large-sized light reflecting elements 40 joined side by side horizontally are shown by two positioning members 43, 44 and pressing members 45, 46 mounted on a transparent flat base 41 and arranged at right angles. It is held in place. In this case, since the shapes of the light reflecting elements 10 are the same, the positions of the light reflecting layers 12 of the adjacent light reflecting elements 10 can be aligned, and a larger optical imaging device can be manufactured.

10:光反射素子、11:ガラス板、12:光反射層、12a:ガラス板材、13:原積層体、15:第1の支持部材、16:第2の支持部材、17:第3の支持部材、18:第4の支持部材、19:第1の積層ブロック、20:ワイヤーソー、21~24:切断片、25:光反射素子原材、25a:光反射素子材、27:第2の積層ブロック、30:光学結像装置、31~34:第5~第8の面、35~38:第5~第8の補強用の支持部材、40:大型の光反射素子、41:平面基台、43、44:位置決め部材、45、46:押圧部材 10: Light reflecting element, 11: Glass plate, 12: Light reflecting layer, 12a: Glass plate material, 13: Original laminate, 15: First support member, 16: Second support member, 17: Third support Member, 18: 4th support member, 19: 1st laminated block, 20: wire saw, 21-24: cut piece, 25: light reflecting element raw material, 25a: light reflecting element material, 27: second Laminated block, 30: Optical imaging device, 31 to 34: 5th to 8th planes, 35 to 38: 5th to 8th reinforcing support members, 40: Large light reflecting element, 41: Planar base Table, 43, 44: Positioning member, 45, 46: Pressing member

Claims (4)

一側空間に配置された対象物の像を他側空間に実像として形成する光学結像装置に用いる光反射素子の製造方法であって、
少なくとも一方の面に光反射層が形成された複数の矩形透明板を、前記光反射層に対して直交する方向に第1の接着剤を介して積層固着して原積層体を形成し、該原積層体の厚み方向上下の面Aと面B、及びこれに直交して対向する面Cと面Dにそれぞれ第1~第4の支持部材を剥離可能な第2の接着剤を介して押圧固着した第1の積層ブロックを形成する第1工程と、
前記第1の積層ブロックを前記光反射層と直交する方向に前記第1~第4の支持部材と共に等間隔で切断して光反射素子原材を製造する第2工程と、
切断した前記光反射素子原材の切断面を前記第1~第4の支持部材の切断片が固着された状態で研磨する第3工程と、
前記第3工程で研磨され、前記第1~第4の支持部材の切断片を除去した光反射素子材を複数枚重ねて剥離可能な第3の接着剤で固着して第2の積層ブロックを形成する第4工程と、
前記第2の積層ブロックの対向する面C′、面D′を研磨して、前記光反射素子材の幅を規定値に合わせる第5工程と、
前記第3の接着剤を解いて前記光反射素子を形成する第6工程とを有する光反射素子の製造方法。
A method for manufacturing a light reflecting element used in an optical imaging device that forms an image of an object arranged in one side space as a real image in the other side space.
A plurality of rectangular transparent plates having a light-reflecting layer formed on at least one surface thereof are laminated and fixed via a first adhesive in a direction orthogonal to the light-reflecting layer to form an original laminate. The first to fourth support members are pressed against the upper and lower surfaces A and B in the thickness direction of the original laminated body, and the surfaces C and D facing orthogonal to the surfaces C and D, respectively, via a second adhesive that can be peeled off. The first step of forming the fixed first laminated block and
A second step of cutting the first laminated block together with the first to fourth support members at equal intervals in a direction orthogonal to the light reflecting layer to manufacture a light reflecting element raw material.
The third step of polishing the cut surface of the cut light reflecting element raw material in a state where the cut pieces of the first to fourth support members are fixed, and the third step.
A plurality of light reflecting element materials polished in the third step and from which the cut pieces of the first to fourth support members have been removed are stacked and fixed with a peelable third adhesive to form a second laminated block. The fourth step of forming and
The fifth step of polishing the facing surfaces C'and D'of the second laminated block to adjust the width of the light reflecting element material to a specified value.
A method for manufacturing a light-reflecting element, which comprises a sixth step of melting the third adhesive to form the light-reflecting element.
請求項1記載の光反射素子の製造方法において、前記第5工程の前に前記面C′及び前記面D′に直交して囲む面E~面Hに剥離可能な第4の接着剤で第5~第8の補強用の支持部材を接合し、前記第2の積層ブロックの疵の発生を防止することを特徴とする光反射素子の製造方法。 In the method for manufacturing a light reflecting element according to claim 1, a fourth adhesive that can be peeled off from a surface E to a surface H that is orthogonal to the surface C'and the surface D'before the fifth step is used. A method for manufacturing a light reflecting element, which comprises joining the fifth to eighth reinforcing support members to prevent the occurrence of defects in the second laminated block. 請求項2記載の光反射素子の製造方法において、前記第2の積層ブロックを囲む前記対向する第6、第8の補強用の支持部材が前記対向する第5、第7の補強用の支持部材を挟持していることを特徴とする光反射素子の製造方法。 In the method for manufacturing a light reflecting element according to claim 2, the facing 6th and 8th reinforcing support members surrounding the 2nd laminated block are opposed to the 5th and 7th reinforcing support members. A method for manufacturing a light-reflecting element, which is characterized by sandwiching the light-reflecting element. 請求項1~3のいずれか1項記載の光反射素子の製造方法において、前記原積層体の厚みをhとすると、研磨された前記第2の積層ブロックから得られた前記光反射素子の幅wは、h±0.5mmの範囲にあって、前記光反射素子の平面視した形状は正方形であることを特徴とする光反射素子の製造方法。 In the method for manufacturing a light reflecting element according to any one of claims 1 to 3, where h is the thickness of the original laminated body, the width of the light reflecting element obtained from the polished second laminated block. A method for manufacturing a light reflecting element, wherein w is in the range of h ± 0.5 mm and the shape of the light reflecting element in a plan view is a square.
JP2020181638A 2020-10-29 2020-10-29 Method for manufacturing an optical reflecting element for use in an optical imaging device Active JP7503475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020181638A JP7503475B2 (en) 2020-10-29 2020-10-29 Method for manufacturing an optical reflecting element for use in an optical imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020181638A JP7503475B2 (en) 2020-10-29 2020-10-29 Method for manufacturing an optical reflecting element for use in an optical imaging device

Publications (2)

Publication Number Publication Date
JP2022072280A true JP2022072280A (en) 2022-05-17
JP7503475B2 JP7503475B2 (en) 2024-06-20

Family

ID=81604409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020181638A Active JP7503475B2 (en) 2020-10-29 2020-10-29 Method for manufacturing an optical reflecting element for use in an optical imaging device

Country Status (1)

Country Link
JP (1) JP7503475B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199810A (en) 1998-10-30 2000-07-18 Toyo Commun Equip Co Ltd Manufacture of optical device
WO2013179405A1 (en) 2012-05-30 2013-12-05 パイオニア株式会社 Method for manufacturing reflective plane-symmetrical image-formation element, reflective plane-symmetrical image-formation element, and space image display device provided with reflective plane-symmetrical image-formation element
CN104520747A (en) 2012-08-03 2015-04-15 夏普株式会社 Reflective type imaging element and optical system, and method of manufacturing reflective type imaging element
TW201518784A (en) 2013-11-14 2015-05-16 Wintek Corp Display device, optical device thereof and manufacturing method of optical device
JP6541986B2 (en) 2015-02-18 2019-07-10 コニカミノルタ株式会社 Optical element and method of manufacturing imaging element

Also Published As

Publication number Publication date
JP7503475B2 (en) 2024-06-20

Similar Documents

Publication Publication Date Title
JP6165206B2 (en) Manufacturing method of light control panel, light control panel, optical imaging apparatus, and aerial image forming system
TWI304137B (en)
JP2000143264A (en) Production of optical device
JP6591127B2 (en) Stereoscopic image imaging apparatus and manufacturing method of stereoscopic image imaging apparatus
JP2000143264A5 (en)
JP2022072280A (en) Method for manufacturing light reflection element used in optical image forming device
JP2008158144A (en) Manufacturing method of cross prism
JPWO2016132984A1 (en) Optical element, reflective aerial imaging element using the same, and manufacturing method thereof
WO2018105566A1 (en) Transparent substrate laminate manufacturing method and aerial image display device manufacturing method
JP6541987B2 (en) Optical element and method of manufacturing imaging element
JP2000199810A (en) Manufacture of optical device
JPWO2018220876A1 (en) Manufacturing method of stereoscopic image forming apparatus and stereoscopic image forming apparatus
JP5617848B2 (en) Optical element manufacturing method and jig used in the manufacturing method
JP2000241610A (en) Manufacture of optical prism
JPH0566303A (en) Manufacture of polarized light separating prism
CN114624797B (en) Method for manufacturing optical imaging device and light reflection element forming body
JP6614021B2 (en) Manufacturing method of reflecting element and manufacturing method of imaging element
JP7489297B2 (en) Manufacturing method for optical imaging device and light reflecting element forming body
JP6541986B2 (en) Optical element and method of manufacturing imaging element
JP2003057417A (en) Optical device and method for manufacturing the same
JP2001337209A (en) Method for manufacturing device for correcting optical path
JP2017181854A (en) Method for manufacturing imaging element
JP2006084861A (en) Method for manufacturing optical device and optical device
WO2021070400A1 (en) Optical image forming device and method for manufacturing same
JP2019144449A (en) Image forming element manufacturing method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230703

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230920

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240610

R150 Certificate of patent or registration of utility model

Ref document number: 7503475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150