JP2022069978A - エアシリンダの検知方法およびエアシリンダの検知装置 - Google Patents

エアシリンダの検知方法およびエアシリンダの検知装置 Download PDF

Info

Publication number
JP2022069978A
JP2022069978A JP2020178962A JP2020178962A JP2022069978A JP 2022069978 A JP2022069978 A JP 2022069978A JP 2020178962 A JP2020178962 A JP 2020178962A JP 2020178962 A JP2020178962 A JP 2020178962A JP 2022069978 A JP2022069978 A JP 2022069978A
Authority
JP
Japan
Prior art keywords
air cylinder
mahalanobis distance
abnormality sign
detection device
statistical values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020178962A
Other languages
English (en)
Inventor
太一 伊集院
Taichi Ijuin
宏隆 今泉
Hirotaka Imaizumi
祐輝 山本
Yuki Yamamoto
侑平 西村
Yuhei Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Can Co Ltd
Original Assignee
Daiwa Can Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Can Co Ltd filed Critical Daiwa Can Co Ltd
Priority to JP2020178962A priority Critical patent/JP2022069978A/ja
Publication of JP2022069978A publication Critical patent/JP2022069978A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】異常検知の正確さを担保できるとともに、少ないデータで、且つ、管理が容易なエアシリンダの異常予兆を検知する検知方法および検知装置を提供する。【解決手段】検知装置1は、エアシリンダ101のストロークから移動時間を求め、前記移動時間から動作のばらつきに関わる2種以上の統計値を演算し、前記2種以上の統計値についてマハラノビス距離を演算し、前記マハラノビス距離が前記エアシリンダの異常予兆を判定する閾値の範囲外であるときに、前記エアシリンダの異常予兆と判定する。【選択図】図1

Description

本発明は、エアシリンダの異常予兆を検知するエアシリンダの検知方法およびエアシリンダの検知装置に関する。
従来、エアシリンダの異常検知方法として、可動部の動作開始部と動作終了部に設置された磁気センサにより、動作開始から動作終了までの移動時間を測定し、可動部の速度が設定していた上限値よりも速い、または下限値よりも遅い場合に異常と判定していた。エアシリンダに異常が発生したことを検知していたのでは、対応が遅れ、修理に要する時間が長くなる。例えば、エアシリンダを製造装置等に用いた場合、製造装置の稼働率が大きく下がることになる。
そこで、異常が発生する前に、異常予兆を検知することが求められていた。例えば、工作機械の故障予知方法および装置として、過去の動作時間の最大値と最小値を表示し、現在の動作時間と比較することにより故障を予知する方法が知られている(例えば、特許文献1参照)。
特公平07-004731号公報
エアシリンダの故障で典型的なものは、パッキンの摩耗によるエア漏れである。程度の軽いエア漏れであれば、明らかな動作遅れが確認された場合でも、流量調整弁を操作することにより、正常な動作時間での動作へと復帰させることができる。すなわち、エア漏れの程度が軽ければ、エアの流量を増やすことにより、動作の遅れを解消することができるので、見た目には正常に動作しているエアシリンダでも、エア漏れが進行し、故障の発生が近づいているものが存在している。このため、故障予兆を検知するためにエアシリンダの可動部の移動時間を監視しても、異常予兆を検知しにくい。そこで、移動時間のばらつきに関わる統計値を算出し、異常を検知することが行われている。具体的には、移動時間の範囲(最大値-最小値)、分散、標準偏差、変動係数、四分位範囲などが用いられる。特に、検知の精度を高めるため、複数種の統計値を用いて、多元的に異常の度合いを判定することが行われている。しかし、複数種の統計値を管理する必要があるため、管理が煩雑になる問題がある。
また、エア漏れに対しては、圧力検知による方法も考えられるが、流体用圧力センサのコストや取り付け、特に数百台といったように、多数のシリンダを使用する設備では、それにかかるコストや労力を考慮すると、採用しにくい。
そこで本発明は、異常検知の正確さを担保できるとともに、少ないデータで、且つ、管理が容易なエアシリンダの異常予兆を検知する検知方法および検知装置を提供することを目的とする。
本実施形態の一態様によれば、エアシリンダの検知方法は、エアシリンダのストロークから移動時間を求め、前記移動時間から動作のばらつきに関わる2種以上の統計値を演算し、前記2種以上の統計値についてマハラノビス距離を演算し、前記マハラノビス距離が前記エアシリンダの異常予兆を判定する閾値の範囲外であるときに、前記エアシリンダの異常予兆と判定する。
本実施形態の一態様によれば、エアシリンダの検知装置は、エアシリンダのストロークから移動時間を求める移動時間演算部と、記憶した移動時間から動作のばらつきに関わる2種以上の統計値を演算するとともに、前記2種以上の統計値からマハラノビス距離を演算する統計値演算部と、前記統計値演算部で演算したマハラノビス距離が、前記エアシリンダの異常予兆を判定する閾値の範囲外であるときに、前記エアシリンダの異常予兆と判定する診断部と、を備える。
本発明によれば、異常予兆の正確さを担保できるとともに、少ないデータで、且つ、管理が容易なエアシリンダの異常予兆を検知する検知方法および検知装置を提供することができる。
本発明の一実施形態に係る検知装置のシステム構成を模式的に示す説明図。 同検知装置の構成を示すブロック図。 同検知装置で求めた複数種の統計値の例を示すグラフ。 同統計値から求めたマハラノビス距離の例を示すグラフ。 同検知装置を用いたエアシリンダの異常予兆の検知方法の一例を示す流れ図。
本発明の一実施形態に係るエアシリンダ101の検知装置1について図1乃至図5を用いて説明する。
図1は、本発明の一実施形態に係るエアシリンダ101の異常予兆を検知する検知装置1、及び、エアシリンダ101を用いる装置100のシステム構成を模式的に示す説明図である。図2は、一実施形態に係る検知装置1の構成例、及び、エアシリンダ101を用いる装置100の構成例を示すブロック図である。図3は、検知装置1で求めた3種の統計値の例を示すグラフであり、図4は、3種の統計値から求めたマハラノビス距離の例を示すグラフである。図5は、検知装置1を用いたエアシリンダ101の異常予兆を検知する検知方法の一例を示す流れ図である。
検知装置1は、例えば、複数種の統計値から求めたマハラノビス距離に基づいて、装置100に用いられるエアシリンダ101の異常予兆を検知する装置である。
先ず、装置100の一例について図1及び図2を用いて説明する。装置100は、例えば、構成品として、単数又は複数のエアシリンダ101を有する工作機械や製造装置等である。
具体例として、装置100は、単数又は複数のエアシリンダ101と、エアシリンダ101に圧縮空気を供給するエアポンプ102と、エアシリンダ101及びエアポンプ102を接続する配管103と、配管103に設けられた弁104と、エアポンプ102及び弁104を制御する制御装置110と、を備える。
エアシリンダ101は、空気圧によって可動部が移動するアクチュエータである。エアシリンダ101は、単動式であってもよく、複動式であってもよい。エアシリンダ101は、シリンダ101aと、シリンダ101a内に設けられたピストン(可動部)と、ピストンに設けられたロッド(可動部)101bと、ピストンに設けられたパッキンと、を備える。エアシリンダ101は、ピストンが空気圧によって移動することで、ロッド101bが移動する。
単動式のエアシリンダ101は、ピストンの往復動のうち一方の移動が空気圧により行われ、他方の移動が例えばコイルスプリング等の付勢部材による押圧により行われる。複動式のエアシリンダ101は、ピストンの往復動が空気圧により行われる。パッキンは、摺動シールである。パッキンは、ピストンにより区画されたシリンダ101a内の2つの空間を密封する。
エアポンプ102は、エアシリンダ101を駆動する圧縮空気をエアシリンダ101に吐出する。
配管103は、エアポンプ102及びエアシリンダ101を流体的に接続する。エアシリンダ101が単動式の場合、配管は、エアポンプ102とエアシリンダ101の1つのポートとを接続する。エアシリンダ101が複動式の場合、配管は、エアポンプ102とエアシリンダ101の2つのポートとを接続する。
弁104は、圧縮空気の流れを制御することで、エアシリンダ101の駆動を制御する制御弁である。例えば、弁104は、開度を調整することで、圧縮空気の流量を調整可能な流量調整弁である。また、弁104は、配管103を開閉し、エアポンプ102から供給される圧縮空気をエアシリンダ101に供給する開閉弁である。また、弁104は、配管103の流路を切り換える切替弁であってもよい。また、弁104は、開閉弁、流量弁及び切替弁を有する構成でもよい。
制御装置110は、少なくともエアシリンダ101の駆動を制御する。例えば、制御装置110は、エアポンプ102及び弁104を制御することで、エアシリンダ101に所定の動作を行わせる。また、制御装置110は、装置100を構成する他の構成を制御する。ここで、他の構成とは、例えば、装置100が工作機械や製造装置である場合には、モータ、他のエアシリンダ、ポンプ、各種弁、ヒータ等の各種構成である。
具体例として、制御装置110は、2つの磁気センサ111と、入力部112と、表示部113と、インターフェース114と、通信部115と、メモリ116と、プロセッサ117と、を備える。
磁気センサ111は、例えば、エアシリンダ101のストロークの開始位置と終端位置を検出可能に、エアシリンダ101の二箇所に設けられる。ここでストロークとは、エアシリンダ101の一動作である。より具体的には、エアシリンダ101を装置に用い、そして、エアシリンダ101の往復動の一方が装置100に使用される場合には、ストロークは、装置100に使用される方向のエアシリンダ101の一動作を意味する。
2つの磁気センサ111は、エアシリンダ101の可動部であるピストン又はロッド101bの動作開始部と動作終了部に設けられる。2つの磁気センサ111の一方は、エアシリンダ101のストローク開始位置におけるピストン又はロッド101bを検出する。そして、2つの磁気センサ111の他方は、ピストン又はロッド101bのエアシリンダ101のストローク終端位置におけるピストン又はロッド101bを検出する。
また、ストロークの開始位置は、エアシリンダ101の動作指令があったときのピストン又はロッド101bの位置であり、終端位置とは、エアシリンダ101が動作し、ピストン又はロッド101bが終端に移動した位置である。各磁気センサ111は、例えば、インターフェース114を介して、プロセッサ117へ検出信号を出力する。
磁気センサ111は、ストロークの開始位置又は終端位置を検出し、検出信号を制御装置110に出力する。磁気センサ111がエアシリンダ101の動作位置を検出すると、検出信号は制御装置に取り込まれ、制御装置からデータ収集装置に送られる。
入力部112は、例えば、ボタンを含む操作パネル、タッチパネル、キーボード、マウス等のユーザ入力を受け付ける装置と、圧力センサ、マイクロフォン、カメラ等のセンサとの、少なくともいずれかを有する。入力部112は、エアシリンダ101の駆動パラメータ等の各種設定、装置100の各装置の設定等の任意のユーザからの指令であるユーザ入力を受け付ける装置である。
表示部113は、例えば、液晶ディスプレイ、または有機ELディスプレイなどの表示デバイスを有する。また、表示部113は、表示デバイスに代えて、又は、表示デバイスに加えて、スピーカ、LED(Light Emitting Diode)点灯部等を有していても良い。
インターフェース114は、磁気センサ111や弁104、外部端末等に電気的に接続可能な端子又は回路である。
通信部115は、プロセッサ117により制御され、検知装置1等の外部装置と通信可能な任意の通信インターフェースである。通信部115は、有線通信技術又は無線通信技術を用いて、検知装置1と通信を行う。具体例として、通信部115は、BLE規格(Bluetooth(登録商標) Low Energyの規格)、Wi-Fi(登録商標)等の無線通信技術、またはUSBなどの有線通信技術を用いて、検知装置1に接続できる。なお、通信部115は、BLE規格の通信とは別に、基地局及びネットワークを介して管理サーバや他の通信端末に通信可能なモバイル端末の通常の通信インターフェースを含んでもよい。例えば、通信部115は、プロセッサ117の通信制御回路117aにより制御され、磁気センサの検出信号を含む各種情報、パラメータ、各種プログラム、及び、これらデータやプログラムを変更する変更指示を検知装置1の後述する通信部11に送信する。
メモリ116は、記憶部である。メモリ116は、データの読出及び書込が可能である。メモリ116は、プロセッサ117によって使用されるデータ、エアシリンダ101の運転データやエアシリンダ101の制御に用いる各種データやプログラム等を格納する。また、メモリ116は、装置100の他の構成を制御する各種データやプログラム等を格納する。
メモリ116は、例えば、EEPROM(Electrically Erasable Programmable Read-Only Memory)(登録商標)、ROM(Read only memory)又はNAND型フラッシュメモリ等の不揮発性メモリを含む。また、メモリ116は、フラッシュメモリを搭載したSSD(Solid State Drive)を含む。
プロセッサ117は、エアシリンダ101を含む装置100の各構成を制御する制御部である。プロセッサ117は、マイコン、CPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)、DSP(Digital Signal Processor)、またはその他の汎用または専用のプロセッサなどであってもよい。プロセッサ117は、例えば、通信部115の通信制御、表示部113の表示制御、エアシリンダ101の処理制御などの任意の処理を行う。図2に示すように、プロセッサ117は、例えば、インターフェース114等を介して、エアポンプ102、弁104及び各磁気センサ111等に接続される。
プロセッサ117は、例えば、処理回路とメモリとを含む。プロセッサ117は、例えば、メモリとしての不揮発性のEEPROM領域や揮発性のDRAM領域等の記憶領域を含む。また、プロセッサ117は、メモリ116又は記憶領域に記憶されたプログラム等を実行することで、通信部115を介した通信を制御する通信制御回路117a、及び、エアポンプ102や弁104等を介してエアシリンダ101の駆動を含む装置100を制御する処理回路117bとして機能する。なお、プロセッサ117内の各部の機能分担は、便宜的なものであり、適宜、変更可能である。
次に、検知装置1について、図1及び図2を用いて説明する。検知装置1は、データ収集装置2と、データ解析装置3と、を備える。検知装置1は、制御装置110とともにエアシリンダ101の異常予兆の検知を行う検知システムを構成する。
データ収集装置2は、エアシリンダ101の複数回のストロークにおける制御装置110の通信部115から出力された磁気センサ111の検出信号を受信する。データ収集装置2は、移動時間演算部2aを有する。移動時間演算部2aは、磁気センサ111で検出されたエアシリンダ101のストロークの開始位置及び終端位置における検出信号から、ピストン(ロッド101b)の移動時間を演算し、該移動時間データをデータ解析装置3に送信する。
データ解析装置3は、統計値演算部3a及び診断部3bを有する。また、データ解析装置3は、記憶部を有する。記憶部は、統計値演算部3a又は診断部3bに設けられても良い。データ解析装置3は、制御装置110から受信した移動時間データを該記憶部に記憶する。記憶された所定数のデータから、統計値演算部3aは、ばらつきに関する複数種の統計値及びマハラノビス距離を演算する。
具体例として、統計値演算部3aは、統計値としての移動時間の範囲(最大値と最小値の差)、分散、標準偏差、四分位範囲のうち、2種以上の統計値を演算する。そして、統計値演算部3aは、演算された複数種の統計値についてマハラノビス距離を算出する。
マハラノビス距離については、エアシリンダの動き始めからの所定数のデータの集合を基準データ集合として設定し、この基準データ集合からのマハラノビス距離を演算する。演算されたマハラノビス距離のデータは、診断部3bに出力される。
診断部3bは、設定された閾値を参照し、統計値演算部3aで演算されたマハラノビス距離が閾値の範囲内であるか否かを判定する。診断部3bは、マハラノビス距離が閾値の範囲内であれば正常に動作していると判定する。診断部3bは、マハラノビス距離が閾値の範囲外である場合には異常予兆であると判定する。データ解析装置3又は診断部3bは、異常予兆の判定結果(情報)を表示装置への表示等により外部に出力する。なお、異常予兆の判定結果は、表示装置への表示に限らず、例えば、異常予兆の情報を外部端末に送信する構成であってもよい。
閾値は、例えば、データ解析装置3に設けられた記憶部に記憶される。ここで、閾値は、過去のデータに基づき、マハラノビス距離がその値を超えると、その時点から所定回数の動作後に、エアシリンダ101に異常または故障が発生する値に設定される。
具体例を挙げて閾値について、図3及び図4を用いて説明する。例えば、図3に、所定数の移動時間データから、ばらつきに関する3種の統計値を算出したグラフを示す。図3における3種の統計値は、範囲、標準偏差、四分位範囲である。
また、図3の各統計値は、左側の範囲Xに軽度のエア漏れが発生したエアシリンダ101に対し、エアシリンダ101に供給する圧縮空気の流量を増加させることにより、移動時間の遅れを解消した状態で動作させ、その移動時間から演算した統計値を示す。すなわち、範囲Xにおいて統計値を取得したエアシリンダ101は、軽度のエア漏れは発生しているものの、移動時間は正常なエアシリンダである。
なお、図3の中央付近の時点Yで、エアシリンダ101に、可動部の移動時間が正常でない異常または可動部が移動しない故障が発生し、エア漏れのない正常なエアシリンダ101に交換した。そして、図3の時点Yから右側の範囲Zは、エア漏れのない正常なエアシリンダ101の移動時間から演算した統計値を示す。
範囲X及び範囲Zの統計値のデータを比較すると、範囲Xの統計値のばらつきが、範囲Zの統計値のばらつきよりも大きくなっていることが分かる。
また、図4に、図3に示した3種の統計値から算出したマハラノビス距離のグラフを示す。図4の時点Yから左側の範囲Xは、軽度のエア漏れの発生したエアシリンダ101(交換前のエアシリンダ101)から求めた3種の統計値から演算したマハラノビス距離のグラフである。また、図4の時点Yから右側の範囲Zは、交換後のエアシリンダ101から求めた3種の統計値から演算したマハラノビス距離のグラフである。
図4に示すように、範囲Xのマハラノビス距離は、範囲Zのマハラノビス距離よりも、マハラノビス距離の値が大きく、また、マハラノビス距離のばらつきも大きい。即ち、交換後の正常なエアシリンダ101に対応するマハラノビス距離は、パッキンの損傷がなく、結果、マハラノビス距離の値自体が小さく、ばらつきも小さいことが分かる。
この点からも明らかなように、軽度のエア漏れが発生したエアシリンダ101では、ばらつきに関わる範囲、標準偏差、四分位範囲の値が、正常時と比べて大きくなっている。そして、これらの統計値から算出したマハラノビス距離の値も、エア漏れのない状態と比べてマハラノビス距離の値及びばらつきが大きくなる。また、パッキンからの軽度なエア漏れ等が生じていても圧縮空気の流量の調整によって移動時間が正常なエアシリンダ101である場合でも、エアシリンダ101の動作を重ねると、マハラノビス距離の値が大きく、また、マハラノビス距離のばらつきも大きくなる。
このように、パッキンからの軽度なエア漏れ等が生じていても圧縮空気の流量の調整によって、移動時間を正常の範囲としたエアシリンダ101である場合でも、マハラノビス距離は、エア漏れ等が生じていない正常なエアシリンダ101のマハラノビス距離と、値やばらつきが異なる。そして、パッキンからの軽度なエア漏れ等が生じているエアシリンダ101は、使用を継続すると、その後、流量調整を行っても移動時間が正常でないか、又は、移動しなくなる異常又は故障が生じる。
よって、閾値は、図3の範囲Zに示すばらつきに関わる正常なエアシリンダ101の複数種の統計値から演算したマハラノビス距離の値、又は、パッキンからの軽度なエア漏れ等が生じた初期段階のエアシリンダ101の複数種の統計値から演算したマハラノビス距離の値から上限の閾値を設定することが望ましい。
この閾値から、統計値演算部3aで検出したマハラノビス距離が外れると、エアシリンダ101が、パッキンからの軽度なエア漏れ等が生じていても圧縮空気の流量の調整によって、移動時間が正常な状態であることを判定できる。即ち、閾値は、エアシリンダ101から求められるマハラノビス距離がその値を超えると、その時点から所定回数の動作後に、エアシリンダ101に異常または故障が発生する値となる。
このようなデータ収集装置2及びデータ解析装置3は、複数の処理端末により構成されていてもよく、同じ処理端末で構成されていてもよい。処理端末は、例えば、PC、モバイル端末(例えば、タブレット、スマートフォン、ラップトップ、フィーチャーフォンなど)等が挙げられる。しかしながら、処理端末は、これらに限られない。例えば、検知装置1(データ収集装置2及びデータ解析装置3)は、装置100の制御装置110が検知装置1としての機能を発揮する構成であってもよい。
本実施形態においては、検知装置1は、例えば、1つの処理端末により構成され、該処理端末がデータ収集装置2及びデータ解析装置3としての機能を発揮する例を用いて説明する。以下、検知装置1の具体例の構成を説明する。
図2に示すように、検知装置1は、例えば、通信部11と、入力部12と、インターフェース13と、表示部14と、メモリ15と、プロセッサ16と、を備える。
通信部11は、プロセッサ16により制御され、有線通信技術又は無線通信技術を用いて、制御装置110の通信部115、及び、他の処理端末と通信可能な任意の通信インターフェースである。通信部11は、例えば、通信モジュール又は通信基板等として実装されていてもよい。通信モジュールは、例えばコネクタを介して制御装置110の通信部115や制御基板等に着脱自在に設けられてもよい。具体的には、通信部11は、例えば、BLE規格、Wi-Fi(登録商標)、NFC等の無線通信技術、又はUSB等の有線通信技術を用いて、制御装置110の通信部115と接続できる。
入力部12は、例えば、ボタンを含む操作パネル、タッチパネル、キーボード、マウス、等のユーザ入力を受け付ける装置と、圧力センサ、マイクロフォン、カメラなどのセンサとの、少なくともいずれかを有する。入力部12は、エアシリンダ101の駆動パラメータ等の各種設定、装置100の各装置の設定等の任意のユーザからの指令であるユーザ入力を受け付ける装置である。
インターフェース13は、処理端末、各種センサ等の外部装置に電気的に接続可能な端子又は回路である。
表示部14は、例えば、液晶ディスプレイ、または有機ELディスプレイなどの表示デバイスを有する。表示部14は、異常判定の結果(情報)を表示する表示装置として機能する。また、表示部14は、表示デバイスに代えて、又は、表示デバイスに加えて、スピーカ、LED(Light Emitting Diode)点灯部等を有していても良い。
メモリ15は、記憶部である。検知装置1がデータ解析装置3の機能を発揮する構成であることから、例えば、メモリ15はデータ解析装置3の記憶部を構成する。メモリ15は、データの読出及び書込が可能である。メモリ15は、プロセッサ16によって使用されるデータ、エアシリンダ101の運転データ、エアシリンダ101の異常予兆の検知制御に用いる各種データやプログラム等を格納する。また、メモリ15は、処理端末としての検知装置1の他の構成を制御する各種データやプログラム等を格納する。
メモリ15は、例えば、EEPROM(Electrically Erasable Programmable Read-Only Memory)(登録商標)、ROM(Read only memory)又はNAND型フラッシュメモリ等の不揮発性メモリを含む。また、メモリ15は、フラッシュメモリを搭載したSSD(Solid State Drive)を含む。
プロセッサ16は、マイコン、CPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)、DSP(Digital Signal Processor)、またはその他の汎用または専用のプロセッサなどであってもよい。プロセッサ16は、例えば、通信部11の通信制御、表示部14の表示制御、エアシリンダ101の異常予兆検出の処理制御などの任意の処理を行う。図2に示すように、プロセッサ16は、例えば、通信部11やインターフェース13を介して、制御装置110や外部装置等に接続される。
プロセッサ16は、例えば、処理回路とメモリとを含む。プロセッサ16は、例えば、メモリとしての不揮発性のEEPROM領域や揮発性のDRAM領域等の記憶領域16aを含む。また、プロセッサ16は、メモリ15又は記憶領域16aに記憶されたプログラム等を実行することで、ピストン(ロッド101b)の移動時間を演算する移動時間演算回路16b、ばらつきに関する複数種の統計値及び演算された複数種の統計値についてのマハラノビス距離を演算する統計値演算回路16c、及び、マハラノビス距離が閾値の範囲内であるか否かを判定する診断回路16dとして機能する。
即ち、プロセッサ16は、プログラム等を実行することで、移動時間演算回路16b、統計値演算回路16c及び診断回路16dが、移動時間演算部2a、統計値演算部3a及び診断部3bとしての機能を発揮する。なお、プロセッサ16内の各部の機能分担は、便宜的なものであり、適宜、変更可能である。
次に、このように構成された検知装置1を用いたエアシリンダ101の異常予兆の検知方法について、図5に示す流れ図を用いて説明する。
まず、プロセッサ16は、通信部11を介して、制御装置110の通信部115から出力された磁気センサ111の検出信号を受信し、複数回のストロークの開始位置及び終端位置の情報(ストローク位置)を取得する(ステップST11)。次いで、移動時間演算回路16bは、磁気センサ111で複数回検出されたエアシリンダ101のストロークの開始位置及び終端位置における検出信号から、ストローク時間としてのピストン(ロッド101b)の移動時間である移動時間データを演算する(ステップST12)。また、移動時間演算回路16bは、移動時間データを統計値演算回路16cに送信する。統計値演算回路16c又はプロセッサ16は、メモリ15又は記憶領域16aに、演算した移動時間データを記憶する(ステップST13)。
統計値演算回路16cは、メモリ15又は記憶領域16aに記憶された所定数の移動時間データから、ばらつきに関する複数種の統計値を演算する(ステップST14)。そして、統計値演算回路16cは、演算した複数種の統計値を診断回路16dに送信する。
また、統計値演算回路16cは、演算した複数種の統計値に基づいてマハラノビス距離を演算する(ステップST15)。統計値演算回路16cは、演算したマハラノビス距離をメモリ15又は記憶領域16aに記憶する。また、統計値演算回路16cは、演算されたマハラノビス距離のデータを診断回路16dに出力する。
診断回路16dは、統計値演算回路16cで演算されたマハラノビス距離が閾値の範囲内であるか否かを判定する(ステップST16)。
マハラノビス距離が閾値の範囲内である場合(ステップST16のYES)には、診断回路16dは、エアシリンダ101が正常と判定する(ステップST17)。そして、ステップST11に戻り、プロセッサ16は、再びエアシリンダ101の検出信号を受信し、ステップST11以降の工程を実行する。
マハラノビス距離が閾値の範囲外である場合(ステップST16のNO)には、診断回路16dは、エアシリンダ101の異常予兆であると判定する(ステップST18)。プロセッサ16又は診断回路16dは、エアシリンダ101のステップST17の正常判定及びステップST18の異常予兆判定の結果を表示部14に表示する(ステップST19)。そして、ステップST11に戻り、プロセッサ16は、再びエアシリンダ101の検出信号を受信し、ステップST11以降の工程を実行する。なお、判定結果の表示部14への表示は、例えば、ステップST18の異常予兆判定のみ行ってもよい。
なお、ステップST19において、プロセッサ16又は診断回路16dがエアシリンダ101のステップST17の正常判定及びステップST18の異常予兆判定の結果を表示部14に表示する構成とした。しかし、プロセッサ16は、ステップST19に加え、又は、ステップST19に替えて、通信部11を介して、制御装置110や、管理システムや管理センター等の外部端末に異常予兆判定の情報を出力する構成としてもよい。
このように構成された検知装置1によれば、複数種の統計値からマハラノビス距離を求め、該マハラノビス距離が所定回数の動作後にエアシリンダ101が異常となる閾値の範囲外であるときに、異常予兆を判定する。よって、検知装置1は、エアシリンダ101に異常が実際に発生する前に、異常予兆を検知することができる。
また、検知装置1により実際に異常が発生する前に異常予兆の検知ができることから、異常予兆判定後、エアシリンダ101の交換又は修理の準備等の対応を行える。即ち、検知装置1によって異常予兆を行うことで、エアシリンダ101の異常が実際に発生する前に適切な対応をとることができる。よって、エアシリンダ101の異常発生後に要するエアシリンダ101の交換や修理の時間を低減できるため、装置100の稼働停止時間を抑制できる。即ち、検知装置1によれば、装置100としての機械や製造ライン等の稼働率の低下を防止できる。
また、検知装置1は、2以上の統計値からマハラノビス距離を演算し、このマハラノビス距離を用いて異常予兆の判定を行う。このため、検知装置1は、1つの統計値を用いるよりも、正確な異常予兆の検知が可能となる。
また、従来技術のように、複数種の統計値を用いて異常予兆の判定を行うと、多元的な管理が必要となる。しかしながら、本実施形態においては、検知装置1は、複数種の統計値に基づいてマハラノビス距離を求め、このマハラノビス距離を異常予兆の判定に用いる構成であることから、管理が簡便になる。
上述したように本発明の一実施形態に係る検知装置1によれば、複数種の統計値から求めたマハラノビス距離を用いてエアシリンダの異常予兆を検知することで、異常予兆の正確さを担保できるとともに、管理が容易となる。
なお、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。
1…検知装置、2…データ収集装置、2a…移動時間演算部、3…データ解析装置、3a…統計値演算部、3b…診断部、11…通信部、12…入力部、13…インターフェース、14…表示部、15…メモリ、16…プロセッサ、16a…記憶領域、16b…移動時間演算回路、16c…統計値演算回路、16d…診断回路、100…装置、101…エアシリンダ、101a…シリンダ、101b…ロッド、102…エアポンプ、103…配管、104…弁、110…制御装置、111…磁気センサ、112…入力部、113…表示部、114…インターフェース、115…通信部、116…メモリ、117…プロセッサ、117a…通信制御回路、117b…処理回路。

Claims (6)

  1. エアシリンダのストロークから移動時間を求め、
    前記移動時間から動作のばらつきに関わる2種以上の統計値を演算し、
    前記2種以上の統計値についてマハラノビス距離を演算し、
    前記マハラノビス距離が前記エアシリンダの異常予兆を判定する閾値の範囲外であるときに、前記エアシリンダの異常予兆と判定する、
    エアシリンダの検知方法。
  2. 前記統計値は、範囲、分散、標準偏差、変動係数、四分位範囲から選択される2種以上の統計値を含む、請求項1に記載のエアシリンダの検知方法。
  3. 前記エアシリンダの異常予兆を判定後、前記異常予兆の情報を外部に出力する、請求項1又は請求項2に記載のエアシリンダの検知方法。
  4. エアシリンダのストロークから移動時間を求める移動時間演算部と、
    記憶した移動時間から動作のばらつきに関わる2種以上の統計値を演算するとともに、前記2種以上の統計値からマハラノビス距離を演算する統計値演算部と、
    前記統計値演算部で演算したマハラノビス距離が、前記エアシリンダの異常予兆を判定する閾値の範囲外であるときに、前記エアシリンダの異常予兆と判定する診断部と、
    を備えるエアシリンダの検知装置。
  5. 前記統計値は、範囲、分散、標準偏差、変動係数、四分位範囲から選択される2種以上の統計値を含む、請求項4に記載のエアシリンダの検知装置。
  6. 前記エアシリンダの異常予兆を判定後、前記異常予兆の情報を外部に出力する、請求項4又は請求項5に記載のエアシリンダの検知装置。
JP2020178962A 2020-10-26 2020-10-26 エアシリンダの検知方法およびエアシリンダの検知装置 Pending JP2022069978A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020178962A JP2022069978A (ja) 2020-10-26 2020-10-26 エアシリンダの検知方法およびエアシリンダの検知装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020178962A JP2022069978A (ja) 2020-10-26 2020-10-26 エアシリンダの検知方法およびエアシリンダの検知装置

Publications (1)

Publication Number Publication Date
JP2022069978A true JP2022069978A (ja) 2022-05-12

Family

ID=81534368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020178962A Pending JP2022069978A (ja) 2020-10-26 2020-10-26 エアシリンダの検知方法およびエアシリンダの検知装置

Country Status (1)

Country Link
JP (1) JP2022069978A (ja)

Similar Documents

Publication Publication Date Title
KR101668826B1 (ko) 액추에이터의 이상 검출 시스템
US9739396B2 (en) Apparatus for fluid control device leak detection
KR102334507B1 (ko) 압력 조절기 진단 시스템 및 방법
JP5719367B2 (ja) 弁の較正
CN206075161U (zh) 用于校准定位器的装置、过程控制系统和计算机设备
KR102221570B1 (ko) 밸브 디바이스의 작동 방법, 밸브 디바이스, 및 컴퓨터 프로그램을 갖는 데이터 저장 매체
CA2944729C (en) System and method for controlling a valve
BR112014026187B1 (pt) Sistema acionador e método de predizer uma falha no referido sistema
CN102449569A (zh) 用于控制数字液压控制器的方法
JP2008520919A (ja) 少なくとも1つの空気弁アクチュエータ装置のための診断装置
US11408450B2 (en) Device and method for monitoring response time in a valve manifold assembly
US11274685B2 (en) Actuator of a process device having a controller configured to operate in a measured position feedback mode and a simulated position feedback mode
CN107976988B (zh) 在线和离线控制阀数据的集成
US10808738B2 (en) Method for the supply of compressed air to a compressed-air consumer, valve device and data carrier with a computer program
CN105987677A (zh) 用于部分冲程测试的压力控制
US11319973B2 (en) Abnormality detecting system and abnormality detecting method
JP5692542B2 (ja) 推定センサ値を利用する流体回路の制御
JP2022069978A (ja) エアシリンダの検知方法およびエアシリンダの検知装置
CN110050149B (zh) 用于运行传动装置的气动调节系统的方法以及用于执行该方法的控制器
CN109899341B (zh) 流体压致动器的动作检测装置
US11714020B2 (en) Diagnostic device, control device, fluid system and method for diagnosing leakage of pressurized fluid
JP6120234B2 (ja) 油圧駆動アーマチュアの位置表示方法及び装置
JP5563173B1 (ja) 液圧装置および液圧装置の制御方法
EP3688315A1 (en) Method and apparatus for controlling a double-acting pneumatic actuator
US11243133B2 (en) Diagnostic apparatus, system and method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231006