JP2022069815A - Polarizing plate with retardation layer, and image display device - Google Patents

Polarizing plate with retardation layer, and image display device Download PDF

Info

Publication number
JP2022069815A
JP2022069815A JP2020178700A JP2020178700A JP2022069815A JP 2022069815 A JP2022069815 A JP 2022069815A JP 2020178700 A JP2020178700 A JP 2020178700A JP 2020178700 A JP2020178700 A JP 2020178700A JP 2022069815 A JP2022069815 A JP 2022069815A
Authority
JP
Japan
Prior art keywords
retardation layer
polarizing plate
layer
retardation
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020178700A
Other languages
Japanese (ja)
Inventor
一晃 米澤
Kazuaki Yonezawa
周作 後藤
Shusaku Goto
寛 友久
Hiroshi TOMOHISA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2020178700A priority Critical patent/JP2022069815A/en
Priority to PCT/JP2021/020737 priority patent/WO2022091471A1/en
Priority to CN202180069199.1A priority patent/CN116324604A/en
Priority to KR1020237011361A priority patent/KR20230056787A/en
Priority to TW110135828A priority patent/TW202219563A/en
Publication of JP2022069815A publication Critical patent/JP2022069815A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8793Arrangements for polarized light emission

Abstract

To provide a polarizing plate with a retardation layer that has superior visibility through polarizing sunglasses and also has superior bending properties although having simple composition.SOLUTION: A polarizing plate with a retardation layer is used for a bendable image display device. The polarizing plate with the retardation layer has: a polarizing plate including a polarizer and a protective layer at least on one side of the polarizer; and the retardation layer provided on the opposite side from a view side of the polarizing plate and having a circular polarizing function or elliptic polarizing function, wherein the total thickness is 80 μm or less, the angle that an axis of bending of the image display device and an axis of absorption of the polarizer contain is 30 to 60°, and the protective layer has an elastic modulus of 5,000 MPa or less.SELECTED DRAWING: Figure 2

Description

本発明は、位相差層付偏光板および画像表示装置に関する。 The present invention relates to a polarizing plate with a retardation layer and an image display device.

近年、液晶表示装置およびエレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置、無機EL表示装置)に代表される画像表示装置が急速に普及している。画像表示装置には、代表的には偏光板および位相差板が用いられている。実用的には、偏光板と位相差板とを一体化した位相差層付偏光板が広く用いられているところ(例えば、特許文献1)、最近、画像表示装置の薄型化への要望が強くなるに伴って、位相差層付偏光板についても薄型化の要望が強まっている。さらに、画像表示装置の用途の拡大に伴い、画像表示装置に対する要望が多様化している。例えばスマートフォンにおいては、折り畳み可能とすること、偏光サングラスを介した視認性を改善すること等が求められている。したがって、このような画像表示装置を実現し得る位相差層付偏光板が強く要望されている。 In recent years, image display devices represented by liquid crystal displays and electroluminescence (EL) display devices (for example, organic EL display devices and inorganic EL display devices) have rapidly become widespread. A polarizing plate and a retardation plate are typically used in an image display device. Practically, a polarizing plate with a retardation layer in which a polarizing plate and a retardation plate are integrated is widely used (for example, Patent Document 1), and recently, there is a strong demand for thinner image display devices. As a result, there is an increasing demand for thinner polarizing plates with a retardation layer. Further, with the expansion of applications of image display devices, demands for image display devices are diversifying. For example, smartphones are required to be foldable and to improve visibility through polarized sunglasses. Therefore, there is a strong demand for a polarizing plate with a retardation layer that can realize such an image display device.

特許第3325560号Patent No. 3325560

本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、簡易な構成でありながら偏光サングラスを介した視認性に優れ、かつ、折り曲げ性に優れた位相差層付偏光板を提供することにある。 The present invention has been made to solve the above-mentioned conventional problems, and its main purpose is to have a retardation layer having a simple structure, excellent visibility through polarized sunglasses, and excellent bendability. The purpose is to provide a polarizing plate.

本発明の位相差層付偏光板は、屈曲可能な画像表示装置に用いられる。当該位相差層付偏光板は、偏光子と該偏光子の少なくとも一方の側に保護層とを含む偏光板と;該偏光板の視認側と反対側に設けられた、円偏光機能または楕円偏光機能を有する位相差層と;を有し、総厚みは80μm以下であり、該画像表示装置の屈曲軸と該偏光子の吸収軸とのなす角度は30°~60°であり、該保護層の弾性率は5000MPa以下である。
1つの実施形態においては、上記位相差層付偏光板は、総厚みが60μm以下である。
1つの実施形態においては、上記偏光子の厚みは10μm以下である。
1つの実施形態においては、上記偏光板は、上記偏光子の上記位相差層と反対側のみに保護層を含む。
1つの実施形態においては、上記保護層の弾性率は4000MPa以下である。
1つの実施形態においては、上記保護層の厚みは45μm以下である。
1つの実施形態においては、上記屈曲軸と上記偏光子の吸収軸とのなす角度は40°~50°である。
1つの実施形態においては、上記位相差層は液晶化合物の配向固化層である。
1つの実施形態においては、上記位相差層は単一層であり、該位相差層のRe(550)は100nm~190nmであり、該位相差層のRe(450)/Re(550)は0.8以上1未満であり、該位相差層の遅相軸と上記偏光子の吸収軸とのなす角度は40°~50°である。1つの実施形態においては、上記位相差層付偏光板は上記位相差層の外側に別の位相差層をさらに有し、該別の位相差層の屈折率特性はnz>nx=nyの関係を示す。
1つの実施形態においては、上記位相差層は、第1の液晶化合物の配向固化層と第2の液晶化合物の配向固化層との積層構造を有し;該第1の液晶化合物の配向固化層のRe(550)は200nm~300nmであり、その遅相軸と上記偏光子の吸収軸とのなす角度は10°~20°であり;該第2の液晶化合物の配向固化層のRe(550)は100nm~190nmであり、その遅相軸と該偏光子の吸収軸とのなす角度は70°~80°である。
本発明の別の局面によれば、画像表示装置が提供される。この画像表示装置は、上記位相差層付偏光板を備える。
The polarizing plate with a retardation layer of the present invention is used in a bendable image display device. The polarizing plate with a retardation layer includes a polarizing plate and a polarizing plate containing a protective layer on at least one side of the polarizing element; a circular polarization function or elliptically polarized light provided on the side opposite to the visible side of the polarizing plate. The protective layer has a functional retardation layer; The elastic coefficient of the above is 5000 MPa or less.
In one embodiment, the polarizing plate with a retardation layer has a total thickness of 60 μm or less.
In one embodiment, the thickness of the stator is 10 μm or less.
In one embodiment, the polarizing plate includes a protective layer only on the opposite side of the polarizing element to the retardation layer.
In one embodiment, the elastic modulus of the protective layer is 4000 MPa or less.
In one embodiment, the protective layer has a thickness of 45 μm or less.
In one embodiment, the angle formed by the bending axis and the absorbing axis of the polarizing element is 40 ° to 50 °.
In one embodiment, the retardation layer is an oriented solidified layer of a liquid crystal compound.
In one embodiment, the retardation layer is a single layer, the Re (550) of the retardation layer is 100 nm to 190 nm, and the Re (450) / Re (550) of the retardation layer is 0. It is 8 or more and less than 1, and the angle formed by the slow axis of the retardation layer and the absorption axis of the polarizing element is 40 ° to 50 °. In one embodiment, the polarizing plate with a retardation layer further has another retardation layer outside the retardation layer, and the refractive index characteristic of the other retardation layer has a relationship of nz> nx = ny. Is shown.
In one embodiment, the retardation layer has a laminated structure of an oriented solidified layer of a first liquid crystal compound and an oriented solidified layer of a second liquid crystal compound; an oriented solidified layer of the first liquid crystal compound. The Re (550) of the second liquid crystal compound is 200 nm to 300 nm, and the angle formed by the slow axis thereof and the absorption axis of the above-mentioned polarizing element is 10 ° to 20 °; the Re (550) of the oriented solidification layer of the second liquid crystal compound is formed. ) Is 100 nm to 190 nm, and the angle formed by the slow axis thereof and the absorption axis of the polarizing element is 70 ° to 80 °.
According to another aspect of the present invention, an image display device is provided. This image display device includes the above-mentioned polarizing plate with a retardation layer.

本発明の実施形態によれば、位相差層付偏光板において、屈曲可能な画像表示装置に適用した場合の屈曲軸と偏光子の吸収軸との角度を最適化し、かつ、保護層の弾性率を最適化することにより、簡易な構成でありながら偏光サングラスを介した視認性に優れ、かつ、折り曲げ性に優れた位相差層付偏光板を実現することができる。 According to the embodiment of the present invention, in the polarizing plate with a retardation layer, the angle between the bending axis and the absorption axis of the polarizing element when applied to a bendable image display device is optimized, and the elastic modulus of the protective layer is optimized. By optimizing the above, it is possible to realize a polarizing plate with a retardation layer, which has a simple structure, is excellent in visibility through polarized sunglasses, and is excellent in bendability.

本発明の実施形態による位相差層付偏光板を適用した画像表示装置が屈曲した状態を示す概略斜視図である。It is a schematic perspective view which shows the bent state of the image display device which applied the polarizing plate with a retardation layer by embodiment of this invention. 本発明の1つの実施形態による位相差層付偏光板の概略平面図である。FIG. 3 is a schematic plan view of a polarizing plate with a retardation layer according to one embodiment of the present invention. 本発明の1つの実施形態による位相差層付偏光板の概略断面図である。It is schematic cross-sectional view of the polarizing plate with a retardation layer by one Embodiment of this invention. 本発明の別の実施形態による位相差層付偏光板の概略断面図である。It is schematic cross-sectional view of the polarizing plate with a retardation layer by another embodiment of this invention.

以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.

(用語および記号の定義)
本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
本明細書において角度に言及するときは、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は±45°を意味し;また例えば「30°~60°」は+30°~+60°または-30°~-60°を意味する。
(Definition of terms and symbols)
Definitions of terms and symbols herein are as follows.
(1) Refractive index (nx, ny, nz)
"Nx" is the refractive index in the direction in which the refractive index in the plane is maximized (that is, the direction of the slow phase axis), and "ny" is the direction orthogonal to the slow phase axis in the plane (that is, the direction of the phase advance axis). Is the refractive index of, and "nz" is the refractive index in the thickness direction.
(2) In-plane phase difference (Re)
“Re (λ)” is an in-plane phase difference measured with light having a wavelength of λ nm at 23 ° C. For example, "Re (550)" is an in-plane phase difference measured with light having a wavelength of 550 nm at 23 ° C. Re (λ) is obtained by the formula: Re (λ) = (nx−ny) × d, where d (nm) is the thickness of the layer (film).
(3) Phase difference in the thickness direction (Rth)
“Rth (λ)” is a phase difference in the thickness direction measured with light having a wavelength of λ nm at 23 ° C. For example, "Rth (550)" is a phase difference in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C. Rth (λ) is obtained by the formula: Rth (λ) = (nx-nz) × d, where d (nm) is the thickness of the layer (film).
(4) Nz coefficient The Nz coefficient is obtained by Nz = Rth / Re.
(5) Angle When referring to an angle herein, the angle includes both clockwise and counterclockwise with respect to the reference direction. Thus, for example, "45 °" means ± 45 °; and, for example, "30 ° to 60 °" means + 30 ° to + 60 ° or -30 ° to -60 °.

A.位相差層付偏光板の全体構成
図1は、本発明の実施形態による位相差層付偏光板を適用した画像表示装置が屈曲した状態を示す概略斜視図であり;図2は、本発明の1つの実施形態による位相差層付偏光板の概略平面図であり;図3は、本発明の1つの実施形態による位相差層付偏光板の概略断面図であり;図4は、本発明の別の実施形態による位相差層付偏光板の概略断面図である。図3に示す例の位相差層付偏光板100は、偏光板10と位相差層20とを代表的には視認側からこの順に有する。図示例においては、偏光板10は、偏光子11と偏光子11の両側に保護層12および13とを含む。目的に応じて、保護層12および13の一方は省略されてもよい。1つの実施形態においては、偏光板10は、偏光子11の視認側(位相差層20と反対側)のみに保護層12を有する。位相差層付偏光板の構成要素は、代表的には、任意の適切な接着層(接着剤層または粘着剤層:図示せず)を介して貼り合わせられている。実用的には、位相差層20の偏光板10と反対側に(すなわち、視認側と反対側の最外層として)粘着剤層(図示せず)が設けられ、位相差層付偏光板は画像表示パネルに貼り付け可能とされている。さらに、粘着剤層の表面には、位相差層付偏光板が使用に供されるまで、剥離フィルム(図示せず)が仮着されていることが好ましい。剥離フィルムを仮着することにより、粘着剤層を保護するとともに、位相差層付偏光板のロール形成が可能となる。
A. Overall Configuration of Polarizing Plate with Disparity Layer FIG. 1 is a schematic perspective view showing a bent state of an image display device to which a polarizing plate with a retardation layer is applied according to an embodiment of the present invention; FIG. 2 is a schematic perspective view of the present invention. FIG. 3 is a schematic plan view of a polarizing plate with a retardation layer according to one embodiment; FIG. 3 is a schematic cross-sectional view of a polarizing plate with a retardation layer according to one embodiment of the present invention; FIG. 4 is a schematic cross-sectional view of the polarizing plate with a retardation layer. It is a schematic cross-sectional view of the polarizing plate with a retardation layer according to another embodiment. The polarizing plate with a retardation layer 100 in the example shown in FIG. 3 typically has a polarizing plate 10 and a retardation layer 20 in this order from the viewing side. In the illustrated example, the polarizing plate 10 includes a polarizing element 11 and protective layers 12 and 13 on both sides of the polarizing element 11. Depending on the purpose, one of the protective layers 12 and 13 may be omitted. In one embodiment, the polarizing plate 10 has a protective layer 12 only on the visible side (opposite side of the retardation layer 20) of the polarizing element 11. The components of the polarizing plate with a retardation layer are typically bonded via any suitable adhesive layer (adhesive layer or adhesive layer: not shown). Practically, an adhesive layer (not shown) is provided on the side opposite to the polarizing plate 10 of the retardation layer 20 (that is, as the outermost layer on the side opposite to the viewing side), and the polarizing plate with the retardation layer is an image. It can be pasted on the display panel. Further, it is preferable that a release film (not shown) is temporarily attached to the surface of the pressure-sensitive adhesive layer until the polarizing plate with a retardation layer is used. By temporarily attaching the release film, the pressure-sensitive adhesive layer can be protected and a roll of the polarizing plate with a retardation layer can be formed.

位相差層付偏光板は、図1に示すように、屈曲可能な画像表示装置に用いられる。位相差層付偏光板は、図1および2に示すように、画像表示装置の屈曲軸Fと偏光子11の吸収軸Aとのなす角度が30°~60°であり、好ましくは35°~55°であり、より好ましくは40°~50°であり、さらに好ましくは42°~48°であり、特に好ましくは約45°である。このような構成であれば、位相差層付偏光板の視認側に特定の層(代表的には、λ/4板のような(楕)円偏光機能を付与する層、面内位相差Re(550)が1000nmを超えるような超高位相差層)を形成することなく、偏光サングラスを介して視認する場合に優れた視認性を実現することができる。したがって、本発明の実施形態による位相差層付偏光板は、層数が少ないので簡易かつ低コストであり、その結果として薄型である。さらに、このような構成であれば、保護層の弾性率を最適化する効果との相乗的な効果により、優れた折り曲げ性(屈曲性)を実現することができる。より詳細には、屈曲軸が偏光子の吸収軸に平行である場合には、位相差層付偏光板(実質的には、偏光板)は非常に割れやすくなる。一方、屈曲軸が偏光子の吸収軸に直交する場合には割れにくくなるが、偏光サングラスを介して視認する場合の視認性がきわめて不十分である。屈曲軸と偏光子の吸収軸とが上記所定の角度をなすように最適化することにより、優れた折り曲げ性(屈曲性)と偏光サングラスを介して視認する場合の優れた視認性とを両立することができる。なお、図示例においては、屈曲軸Fは画像表示装置の短辺方向であるが、屈曲軸Fは長辺方向であってもよく、長辺方向または短辺方向に対して所定の角度を有する方向(斜め方向)であってもよい。屈曲軸方向に対して吸収軸方向を規定することにより、位相差層付偏光板を矩形以外の異形(例えば、円形、楕円形、三角形、不定形)の画像表示装置に適用した場合であっても、上記の効果が得られ得る。 As shown in FIG. 1, the polarizing plate with a retardation layer is used in a bendable image display device. As shown in FIGS. 1 and 2, in the polarizing plate with a retardation layer, the angle formed by the bending axis F of the image display device and the absorption axis A of the polarizing element 11 is 30 ° to 60 °, preferably 35 ° to 35 °. It is 55 °, more preferably 40 ° to 50 °, still more preferably 42 ° to 48 °, and particularly preferably about 45 °. With such a configuration, a specific layer (typically, a layer that imparts a (elliptical) circular polarization function such as a λ / 4 plate, an in-plane retardation Re) on the visible side of a polarizing plate with a retardation layer. It is possible to realize excellent visibility when visually recognizing through polarized sunglasses without forming an ultra-high retardation layer in which (550) exceeds 1000 nm). Therefore, the polarizing plate with a retardation layer according to the embodiment of the present invention is simple and low cost because the number of layers is small, and as a result, it is thin. Further, with such a configuration, excellent bendability (flexibility) can be realized by a synergistic effect with the effect of optimizing the elastic modulus of the protective layer. More specifically, when the bending axis is parallel to the absorption axis of the substituent, the polarizing plate with a retardation layer (substantially, the polarizing plate) becomes very fragile. On the other hand, when the bending axis is orthogonal to the absorption axis of the polarizing element, it becomes difficult to break, but the visibility when visually recognizing through polarized sunglasses is extremely insufficient. By optimizing the bending axis and the absorption axis of the stator to form the above-mentioned predetermined angle, both excellent bending property (flexibility) and excellent visibility when visually recognizing through polarized sunglasses are achieved. be able to. In the illustrated example, the bending axis F is in the short side direction of the image display device, but the bending axis F may be in the long side direction and has a predetermined angle with respect to the long side direction or the short side direction. It may be a direction (diagonal direction). By defining the absorption axis direction with respect to the bending axis direction, the polarizing plate with a retardation layer is applied to an image display device having a shape other than a rectangle (for example, a circle, an ellipse, a triangle, or an indefinite shape). However, the above effect can be obtained.

位相差層付偏光板は、総厚み(偏光板、位相差層、およびこれらを積層する接着層の合計厚み)が80μm以下であり、好ましくは70μm以下であり、より好ましくは60μm以下であり、さらに好ましくは50μm以下であり、特に好ましくは40μm以下である。位相差層付偏光板の総厚みは、例えば25μm以上であり得る。本発明の実施形態によれば、このような非常に小さい総厚みであっても、偏光サングラスを介して視認する場合に優れた視認性を実現することができる。言い換えれば、位相差層付偏光板は、偏光サングラスを介して視認するような用途に用いられる場合であっても総厚みを非常に小さくすることができる。その結果、屈曲時の断面2次モーメントが小さくなり、各構成要素(層)にかかる応力が小さくなる。したがって、サングラスを介して視認する場合の優れた視認性に加えて、優れた折り曲げ性(屈曲性)を実現することができる。 The polarizing plate with a retardation layer has a total thickness (total thickness of the polarizing plate, the retardation layer, and the adhesive layer laminating them) of 80 μm or less, preferably 70 μm or less, and more preferably 60 μm or less. It is more preferably 50 μm or less, and particularly preferably 40 μm or less. The total thickness of the polarizing plate with a retardation layer can be, for example, 25 μm or more. According to the embodiment of the present invention, even with such a very small total thickness, excellent visibility can be realized when visually recognizing through polarized sunglasses. In other words, the polarizing plate with a retardation layer can make the total thickness very small even when it is used for applications such as viewing through polarized sunglasses. As a result, the moment of inertia of area at the time of bending becomes small, and the stress applied to each component (layer) becomes small. Therefore, in addition to the excellent visibility when visually recognizing through sunglasses, excellent bendability (flexibility) can be realized.

本発明の実施形態においては、保護層12および/または13の弾性率は5000MPa以下であり、好ましくは4500MPa以下であり、より好ましくは4000MPa以下であり、さらに好ましくは3500MPa以下である。保護層の弾性率の下限は、例えば2000MPaであり得る。好ましくは、位相差層付偏光板(実質的には、偏光板)は保護層12のみを有し、保護層12の弾性率が上記範囲である。保護層の弾性率が大きすぎる場合には、屈曲時の歪が同じである場合に保護層にかかる圧縮応力が大きくなる。その結果、折り曲げを繰り返した場合に保護層にクラックが発生しやすくなる。保護層の弾性率を上記範囲に最適化することにより、折り曲げ時のクラックを抑制し、優れた折り曲げ性(屈曲性)を実現することができる。なお、弾性率は、JIS Z 2284に準じて測定され得る。 In the embodiment of the present invention, the elastic modulus of the protective layer 12 and / or 13 is 5000 MPa or less, preferably 4500 MPa or less, more preferably 4000 MPa or less, and further preferably 3500 MPa or less. The lower limit of the elastic modulus of the protective layer can be, for example, 2000 MPa. Preferably, the polarizing plate with a retardation layer (substantially, a polarizing plate) has only the protective layer 12, and the elastic modulus of the protective layer 12 is in the above range. If the elastic modulus of the protective layer is too large, the compressive stress applied to the protective layer becomes large when the strain at the time of bending is the same. As a result, cracks are likely to occur in the protective layer when bending is repeated. By optimizing the elastic modulus of the protective layer to the above range, cracks at the time of bending can be suppressed and excellent bending property (flexibility) can be realized. The elastic modulus can be measured according to JIS Z 2284.

位相差層20は、円偏光機能または楕円偏光機能を有する。位相差層20は、代表的には、液晶化合物の配向固化層(液晶配向固化層)である。液晶化合物を用いることにより、得られる位相差層のnxとnyとの差を非液晶材料に比べて格段に大きくすることができるので、所望の面内位相差を得るための位相差層の厚みを格段に小さくすることができる。したがって、位相差層付偏光板の顕著な薄型化を実現することができる。その結果、上記のような優れた折り曲げ性(屈曲性)を実現することができる。本明細書において「配向固化層」とは、液晶化合物が層内で所定の方向に配向し、その配向状態が固定されている層をいう。なお、「配向固化層」は、後述のように液晶モノマーを硬化させて得られる配向硬化層を包含する概念である。位相差層20においては、代表的には、棒状の液晶化合物が位相差層の遅相軸方向に並んだ状態で配向している(ホモジニアス配向)。位相差層20は、図3に示すように単一層であってもよく、図4に示すように2層以上の積層構造を有していてもよい。 The retardation layer 20 has a circular polarization function or an elliptically polarization function. The retardation layer 20 is typically an alignment solidification layer (liquid crystal alignment solidification layer) of a liquid crystal compound. By using a liquid crystal compound, the difference between nx and ny of the obtained retardation layer can be significantly increased as compared with the non-liquid crystal material, so that the thickness of the retardation layer for obtaining a desired in-plane retardation can be obtained. Can be made much smaller. Therefore, it is possible to realize a remarkable reduction in thickness of the polarizing plate with a retardation layer. As a result, the above-mentioned excellent bendability (flexibility) can be realized. As used herein, the term "aligned solidified layer" refers to a layer in which a liquid crystal compound is oriented in a predetermined direction within the layer and the oriented state is fixed. The "oriented solidified layer" is a concept including an oriented cured layer obtained by curing a liquid crystal monomer as described later. In the retardation layer 20, the rod-shaped liquid crystal compounds are typically oriented in a state of being aligned in the slow axis direction of the retardation layer (homogeneous orientation). The retardation layer 20 may be a single layer as shown in FIG. 3, or may have a laminated structure of two or more layers as shown in FIG.

位相差層付偏光板は、その他の光学機能層をさらに含んでいてもよい。位相差層付偏光板に設けられ得る光学機能層の種類、特性、数、組み合わせ、配置位置等は、目的に応じて適切に設定され得る。例えば、位相差層付偏光板は、導電層または導電層付等方性基材をさらに有していてもよい(いずれも図示せず)。導電層または導電層付等方性基材は、代表的には、第2の位相差層22の外側(偏光板10と反対側)に設けられる。導電層または導電層付等方性基材は、代表的には、必要に応じて設けられる任意の層であり、省略されてもよい。なお、導電層または導電層付等方性基材が設けられる場合、位相差層付偏光板は、画像表示セル(例えば、有機ELセル)と偏光板との間にタッチセンサが組み込まれた、いわゆるインナータッチパネル型入力表示装置に適用され得る。また例えば、位相差層付偏光板は、その他の位相差層をさらに含んでいてもよい。その他の位相差層の光学的特性(例えば、屈折率特性、面内位相差、Nz係数、光弾性係数)、厚み、配置位置等は、目的に応じて適切に設定され得る。 The polarizing plate with a retardation layer may further include other optical functional layers. The type, characteristics, number, combination, arrangement position, and the like of the optical functional layers that can be provided on the polarizing plate with a retardation layer can be appropriately set according to the purpose. For example, the polarizing plate with a retardation layer may further have a conductive layer or an isotropic substrate with a conductive layer (neither is shown). The conductive layer or the isotropic base material with the conductive layer is typically provided on the outside of the second retardation layer 22 (on the opposite side of the polarizing plate 10). The conductive layer or the isotropic base material with the conductive layer is typically any layer provided as needed, and may be omitted. When a conductive layer or an isotropic substrate with a conductive layer is provided, the polarizing plate with a retardation layer is a so-called inner in which a touch sensor is incorporated between an image display cell (for example, an organic EL cell) and the polarizing plate. It can be applied to a touch panel type input display device. Further, for example, the polarizing plate with a retardation layer may further include another retardation layer. The optical characteristics (for example, refractive index characteristics, in-plane retardation, Nz coefficient, photoelastic coefficient), thickness, arrangement position, and the like of the other retardation layer can be appropriately set according to the purpose.

以下、位相差層付偏光板の構成要素について、より詳細に説明する。 Hereinafter, the components of the polarizing plate with a retardation layer will be described in more detail.

B.偏光板
B-1.偏光子
偏光子11としては、任意の適切な偏光子が採用され得る。例えば、偏光子を形成する樹脂フィルムは、単層の樹脂フィルムであってもよく、二層以上の積層体であってもよい。
B. Polarizing plate B-1. Polarizer As the splitter 11, any suitable polarizing element may be adopted. For example, the resin film forming the polarizing element may be a single-layer resin film or a laminated body having two or more layers.

単層の樹脂フィルムから構成される偏光子の具体例としては、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理および延伸処理が施されたもの、PVAの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。好ましくは、光学特性に優れることから、PVA系フィルムをヨウ素で染色し一軸延伸して得られた偏光子が用いられる。 Specific examples of the polarizing element composed of a single-layer resin film include a hydrophilic polymer film such as a polyvinyl alcohol (PVA) -based film, a partially formalized PVA-based film, and an ethylene / vinyl acetate copolymer-based partially saponified film. Examples thereof include those which have been dyed and stretched with a bicolor substance such as iodine and a bicolor dye, and polyene-based oriented films such as a dehydrated product of PVA and a dehydrogenated product of polyvinyl chloride. Preferably, since the PVA-based film is excellent in optical properties, a polarizing element obtained by dyeing a PVA-based film with iodine and uniaxially stretching it is used.

上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前にPVA系フィルムを水に浸漬して水洗することで、PVA系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、PVA系フィルムを膨潤させて染色ムラなどを防止することができる。 The dyeing with iodine is performed, for example, by immersing a PVA-based film in an aqueous iodine solution. The draw ratio of the uniaxial stretching is preferably 3 to 7 times. The stretching may be performed after the dyeing treatment or may be performed while dyeing. Further, it may be dyed after being stretched. If necessary, the PVA-based film is subjected to a swelling treatment, a crosslinking treatment, a cleaning treatment, a drying treatment and the like. For example, by immersing the PVA-based film in water and washing it with water before dyeing, it is possible not only to clean the dirt and blocking inhibitor on the surface of the PVA-based film, but also to swell the PVA-based film to prevent uneven dyeing. Can be prevented.

積層体を用いて得られる偏光子の具体例としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、好ましくは、樹脂基材の片側に、ハロゲン化物とポリビニルアルコール系樹脂とを含むポリビニルアルコール系樹脂層を形成する。延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。加えて、本実施形態においては、好ましくは、積層体は、長手方向に搬送しながら加熱することにより幅方向に2%以上収縮させる乾燥収縮処理に供される。代表的には、本実施形態の製造方法は、積層体に、空中補助延伸処理と染色処理と水中延伸処理と乾燥収縮処理とをこの順に施すことを含む。補助延伸を導入することにより、熱可塑性樹脂上にPVAを塗布する場合でも、PVAの結晶性を高めることが可能となり、高い光学特性を達成することが可能となる。また、同時にPVAの配向性を事前に高めることで、後の染色工程や延伸工程で水に浸漬された時に、PVAの配向性の低下や溶解などの問題を防止することができ、高い光学特性を達成することが可能になる。さらに、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、ポリビニルアルコール分子の配向の乱れ、および配向性の低下が抑制され得る。これにより、染色処理および水中延伸処理など、積層体を液体に浸漬して行う処理工程を経て得られる偏光子の光学特性を向上し得る。さらに、乾燥収縮処理により積層体を幅方向に収縮させることにより、光学特性を向上させることができる。得られた樹脂基材/偏光子の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光子の保護層としてもよく)、樹脂基材/偏光子の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような偏光子の製造方法の詳細は、例えば特開2012-73580号公報、特許第6470455号に記載されている。これらの公報は、その全体の記載が本明細書に参考として援用される。 Specific examples of the polarizing element obtained by using the laminate include a laminate of a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material, or a resin base material and the resin. Examples thereof include a polarizing element obtained by using a laminate with a PVA-based resin layer coated and formed on a base material. The ligand obtained by using the laminate of the resin base material and the PVA-based resin layer coated and formed on the resin base material is, for example, a resin base material obtained by applying a PVA-based resin solution to the resin base material and drying the resin base material. It is produced by forming a PVA-based resin layer on top of the PVA-based resin layer to obtain a laminate of a resin base material and a PVA-based resin layer; obtain. In the present embodiment, a polyvinyl alcohol-based resin layer containing a halide and a polyvinyl alcohol-based resin is preferably formed on one side of the resin base material. Stretching typically involves immersing the laminate in an aqueous boric acid solution for stretching. Further, stretching may further comprise, if necessary, stretching the laminate in the air at a high temperature (eg, 95 ° C. or higher) prior to stretching in boric acid aqueous solution. In addition, in the present embodiment, preferably, the laminate is subjected to a drying shrinkage treatment in which the laminate is shrunk by 2% or more in the width direction by heating while being conveyed in the longitudinal direction. Typically, the production method of the present embodiment includes subjecting the laminate to an aerial auxiliary stretching treatment, a dyeing treatment, an underwater stretching treatment, and a drying shrinkage treatment in this order. By introducing the auxiliary stretching, even when PVA is applied on the thermoplastic resin, the crystallinity of PVA can be enhanced and high optical characteristics can be achieved. At the same time, by increasing the orientation of PVA in advance, it is possible to prevent problems such as deterioration of PVA orientation and dissolution when immersed in water in a subsequent dyeing step or stretching step, and high optical characteristics. Will be possible to achieve. Further, when the PVA-based resin layer is immersed in a liquid, the disorder of the orientation of the polyvinyl alcohol molecule and the decrease in the orientation can be suppressed as compared with the case where the PVA-based resin layer does not contain a halide. This makes it possible to improve the optical characteristics of the polarizing element obtained through a treatment step of immersing the laminate in a liquid, such as a dyeing treatment and a stretching treatment in water. Further, the optical characteristics can be improved by shrinking the laminated body in the width direction by the drying shrinkage treatment. The obtained resin base material / polarizing element laminate may be used as it is (that is, the resin base material may be used as a protective layer for the polarizing element), and the resin base material is peeled off from the resin base material / polarizing element laminate. Then, an arbitrary appropriate protective layer according to the purpose may be laminated on the peeled surface and used. Details of the method for producing such a polarizing element are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 and Japanese Patent No. 6470455. The entire description of these publications is incorporated herein by reference.

偏光子の厚みは、好ましくは15μm以下であり、より好ましくは12μm以下であり、さらに好ましくは10μm以下であり、特に好ましくは3μm~10μmであり、とりわけ好ましくは3μm~8μmである。偏光子の厚みがこのような範囲であれば、上記所望の総厚みが実現され、優れた折り曲げ性が実現され得る。 The thickness of the splitter is preferably 15 μm or less, more preferably 12 μm or less, still more preferably 10 μm or less, particularly preferably 3 μm to 10 μm, and particularly preferably 3 μm to 8 μm. When the thickness of the stator is in such a range, the desired total thickness can be realized and excellent bendability can be realized.

偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率は、好ましくは41.5%~46.0%であり、より好ましくは43.0%~46.0%であり、さらに好ましくは44.5%~46.0%である。偏光子の偏光度は、好ましくは97.0%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.9%以上である。 The splitter preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm. The simple substance transmittance of the polarizing element is preferably 41.5% to 46.0%, more preferably 43.0% to 46.0%, still more preferably 44.5% to 46.0%. be. The degree of polarization of the polarizing element is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.

B-2.保護層
保護層12および13は、それぞれ、上記の弾性率を満足し得る限りにおいて、偏光子の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、環状オレフィン系(例えば、ポリノルボルネン系)、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。
B-2. Protective Layer The protective layers 12 and 13, respectively, are formed of any suitable film that can be used as a protective layer for the polarizing element as long as the above elastic modulus can be satisfied. Specific examples of the material that is the main component of the film include cellulosic resins such as triacetylcellulose (TAC), polyesters, polyvinyl alcohols, polycarbonates, polyamides, polyimides, polyethersulfones, and polysulfones. , Polyester-based, cyclic olefin-based (for example, polynorbornene-based), polyolefin-based, (meth) acrylic-based, acetate-based transparent resins and the like.

位相差層付偏光板は、代表的には画像表示装置の視認側に配置され、保護層12は、その視認側に配置される。したがって、保護層12には、必要に応じて、ハードコート処理、反射防止処理、スティッキング防止処理、アンチグレア処理等の表面処理が施されていてもよい。 The polarizing plate with a retardation layer is typically arranged on the visual recognition side of the image display device, and the protective layer 12 is arranged on the visual recognition side thereof. Therefore, the protective layer 12 may be subjected to surface treatment such as hard coat treatment, antireflection treatment, sticking prevention treatment, and antiglare treatment, if necessary.

保護層12および13の厚みは、それぞれ、好ましくは60μm以下であり、より好ましくは45μm以下であり、さらに好ましくは10μm~40μmである。なお、表面処理が施されている場合、保護層12の厚みは、表面処理層の厚みを含めた厚みである。 The thicknesses of the protective layers 12 and 13 are preferably 60 μm or less, more preferably 45 μm or less, and further preferably 10 μm to 40 μm, respectively. When the surface treatment is applied, the thickness of the protective layer 12 is the thickness including the thickness of the surface treatment layer.

C.位相差層
位相差層20は、上記のとおり、単一層であってもよく2層以上の積層構造を有していてもよい。
C. Phase difference layer As described above, the phase difference layer 20 may be a single layer or may have a laminated structure of two or more layers.

位相差層20が単一層である場合、位相差層は、代表的にはλ/4板として機能し得る。具体的には、位相差層のRe(550)は、好ましくは100nm~180nmであり、より好ましくは110nm~170nmであり、さらに好ましくは110nm~160nmである。位相差層の厚みは、λ/4板の所望の面内位相差が得られるよう調整され得る。位相差層の厚みは例えば1.0μm~2.5μmであり得る。本実施形態においては、位相差層の遅相軸と偏光子の吸収軸とのなす角度は、好ましくは40°~50°であり、より好ましくは42°~48°であり、さらに好ましくは44°~46°である。この実施形態においては、位相差層付偏光板は、位相差層20の外側にnz>nx=nyの屈折率特性を示す位相差層(図示せず)をさらに有していてもよい。位相差層が単一層である場合、位相差層は、好ましくは、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示す。この場合、位相差層のRe(450)/Re(550)は、好ましくは0.8以上1未満であり、より好ましくは0.8~0.95である。 When the retardation layer 20 is a single layer, the retardation layer can typically function as a λ / 4 plate. Specifically, the Re (550) of the retardation layer is preferably 100 nm to 180 nm, more preferably 110 nm to 170 nm, and further preferably 110 nm to 160 nm. The thickness of the retardation layer can be adjusted to obtain the desired in-plane retardation of the λ / 4 plate. The thickness of the retardation layer can be, for example, 1.0 μm to 2.5 μm. In the present embodiment, the angle formed by the slow axis of the retardation layer and the absorption axis of the polarizing element is preferably 40 ° to 50 °, more preferably 42 ° to 48 °, and even more preferably 44. ° to 46 °. In this embodiment, the polarizing plate with a retardation layer may further have a retardation layer (not shown) exhibiting a refractive index characteristic of nz> nx = ny on the outside of the retardation layer 20. When the retardation layer is a single layer, the retardation layer preferably exhibits a reverse dispersion wavelength characteristic in which the retardation value increases with the wavelength of the measurement light. In this case, Re (450) / Re (550) of the retardation layer is preferably 0.8 or more and less than 1, and more preferably 0.8 to 0.95.

位相差層20が積層構造を有する場合、位相差層は、代表的には図4に示すように偏光板側から順にH層21とQ層22との2層構造を有する。H層は、代表的にはλ/2板として機能し得、Q層は、代表的にはλ/4板として機能し得る。具体的には、H層のRe(550)は好ましくは200nm~300nmであり、より好ましくは220nm~290nmであり、さらに好ましくは230nm~280nmであり;Q層のRe(550)は、好ましくは100nm~180nmであり、より好ましくは110nm~170nmであり、さらに好ましくは110nm~150nmである。H層の厚みは、λ/2板の所望の面内位相差が得られるよう調整され得る。H層が液晶配向固化層である場合には、その厚みは例えば2.0μm~4.0μmであり得る。Q層の厚みは、λ/4板の所望の面内位相差が得られるよう調整され得る。Q層が液晶配向固化層である場合には、その厚みは例えば1.0μm~2.5μmであり得る。本実施形態においては、H層の遅相軸と偏光子の吸収軸とのなす角度は、好ましくは10°~20°であり、より好ましくは12°~18°であり、さらに好ましくは12°~16°であり;Q層の遅相軸と偏光子の吸収軸とのなす角度は、好ましくは70°~80°であり、より好ましくは72°~78°であり、さらに好ましくは72°~76°である。なお、H層およびQ層の配置順序は逆であってもよく、H層の遅相軸と偏光子の吸収軸とのなす角度およびQ層の遅相軸と偏光子の吸収軸とのなす角度は逆であってもよい。位相差層が積層構造を有する場合、それぞれの層(例えば、H層およびQ層)は、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示してもよく、位相差値が測定光の波長に応じて小さくなる正の波長分散特性を示してもよく、位相差値が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示してもよい。 When the retardation layer 20 has a laminated structure, the retardation layer typically has a two-layer structure of an H layer 21 and a Q layer 22 in order from the polarizing plate side as shown in FIG. The H layer can typically function as a λ / 2 plate, and the Q layer can typically function as a λ / 4 plate. Specifically, the Re (550) of the H layer is preferably 200 nm to 300 nm, more preferably 220 nm to 290 nm, still more preferably 230 nm to 280 nm; and the Re (550) of the Q layer is preferably. It is 100 nm to 180 nm, more preferably 110 nm to 170 nm, and even more preferably 110 nm to 150 nm. The thickness of the H layer can be adjusted to obtain the desired in-plane phase difference of the λ / 2 plate. When the H layer is a liquid crystal oriented solidified layer, its thickness can be, for example, 2.0 μm to 4.0 μm. The thickness of the Q layer can be adjusted to obtain the desired in-plane phase difference of the λ / 4 plate. When the Q layer is a liquid crystal oriented solidified layer, its thickness can be, for example, 1.0 μm to 2.5 μm. In the present embodiment, the angle formed by the slow phase axis of the H layer and the absorption axis of the polarizing element is preferably 10 ° to 20 °, more preferably 12 ° to 18 °, and even more preferably 12 °. The angle between the slow axis of the Q layer and the absorption axis of the stator is preferably 70 ° to 80 °, more preferably 72 ° to 78 °, and even more preferably 72 °. It is ~ 76 °. The arrangement order of the H layer and the Q layer may be reversed, and the angle formed by the slow axis of the H layer and the absorption axis of the stator and the slow axis of the Q layer and the absorption axis of the splitter are formed. The angles may be reversed. When the retardation layer has a laminated structure, each layer (for example, H layer and Q layer) may exhibit a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, and the retardation value may be exhibited. May show a positive wavelength dispersion characteristic that decreases according to the wavelength of the measurement light, or may show a flat wavelength dispersion characteristic in which the phase difference value hardly changes depending on the wavelength of the measurement light.

位相差層(積層構造を有する場合にはそれぞれの層)は、代表的には、屈折率特性がnx>ny=nzの関係を示す。なお、「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny>nzまたはny<nzとなる場合があり得る。位相差層のNz係数は、好ましくは0.9~1.5であり、より好ましくは0.9~1.3である。 The retardation layer (each layer in the case of having a laminated structure) typically shows a relationship in which the refractive index characteristic is nx> ny = nz. It should be noted that "ny = nz" includes not only the case where ny and nz are completely equal, but also the case where they are substantially equal. Therefore, ny> nz or ny <nz may occur within a range that does not impair the effect of the present invention. The Nz coefficient of the retardation layer is preferably 0.9 to 1.5, and more preferably 0.9 to 1.3.

位相差層は、代表的には上記のとおり液晶配向固化層である。液晶化合物としては、例えば、液晶相がネマチック相である液晶化合物(ネマチック液晶)が挙げられる。このような液晶化合物として、例えば、液晶ポリマーや液晶モノマーが使用可能である。液晶化合物の液晶性の発現機構は、リオトロピックでもサーモトロピックでもどちらでもよい。液晶ポリマーおよび液晶モノマーは、それぞれ単独で用いてもよく、組み合わせてもよい。 The retardation layer is typically a liquid crystal oriented solidifying layer as described above. Examples of the liquid crystal compound include a liquid crystal compound (nematic liquid crystal) in which the liquid crystal phase is a nematic phase. As such a liquid crystal compound, for example, a liquid crystal polymer or a liquid crystal monomer can be used. The liquid crystal expression mechanism of the liquid crystal compound may be either lyotropic or thermotropic. The liquid crystal polymer and the liquid crystal monomer may be used alone or in combination.

液晶化合物が液晶モノマーである場合、当該液晶モノマーは、重合性モノマーおよび架橋性モノマーであることが好ましい。液晶モノマーを重合または架橋(すなわち、硬化)させることにより、液晶モノマーの配向状態を固定できるからである。液晶モノマーを配向させた後に、例えば、液晶モノマー同士を重合または架橋させれば、それによって上記配向状態を固定することができる。ここで、重合によりポリマーが形成され、架橋により3次元網目構造が形成されることとなるが、これらは非液晶性である。したがって、形成された位相差層は、例えば、液晶性化合物に特有の温度変化による液晶相、ガラス相、結晶相への転移が起きることはない。その結果、位相差層は、温度変化に影響されない、極めて安定性に優れた位相差層となる。 When the liquid crystal compound is a liquid crystal monomer, the liquid crystal monomer is preferably a polymerizable monomer and a crosslinkable monomer. This is because the orientation state of the liquid crystal monomer can be fixed by polymerizing or cross-linking (that is, curing) the liquid crystal monomer. After the liquid crystal monomers are oriented, for example, if the liquid crystal monomers are polymerized or crosslinked with each other, the oriented state can be fixed. Here, the polymer is formed by polymerization, and the three-dimensional network structure is formed by crosslinking, but these are non-liquid crystal. Therefore, the formed retardation layer does not undergo a transition to a liquid crystal phase, a glass phase, or a crystal phase due to a temperature change peculiar to a liquid crystal compound, for example. As a result, the retardation layer becomes an extremely stable retardation layer that is not affected by temperature changes.

液晶モノマーが液晶性を示す温度範囲は、その種類に応じて異なる。具体的には、当該温度範囲は、好ましくは40℃~120℃であり、さらに好ましくは50℃~100℃であり、最も好ましくは60℃~90℃である。 The temperature range in which the liquid crystal monomer exhibits liquid crystallinity differs depending on the type. Specifically, the temperature range is preferably 40 ° C. to 120 ° C., more preferably 50 ° C. to 100 ° C., and most preferably 60 ° C. to 90 ° C.

上記液晶モノマーとしては、任意の適切な液晶モノマーが採用され得る。例えば、特表2002-533742(WO00/37585)、EP358208(US5211877)、EP66137(US4388453)、WO93/22397、EP0261712、DE19504224、DE4408171、およびGB2280445等に記載の重合性メソゲン化合物等が使用できる。このような重合性メソゲン化合物の具体例としては、例えば、BASF社の商品名LC242、Merck社の商品名E7、Wacker-Chem社の商品名LC-Sillicon-CC3767が挙げられる。液晶モノマーとしては、例えばネマチック性液晶モノマーが好ましい。 As the liquid crystal monomer, any suitable liquid crystal monomer can be adopted. For example, the polymerizable mesogen compounds described in Special Tables 2002-533742 (WO00 / 37585), EP358208 (US5211877), EP66137 (US43884553), WO93 / 22397, EP0261712, DE19504224, DE4408171, and GB2280445 can be used. Specific examples of such a polymerizable mesogen compound include, for example, BASF's trade name LC242, Merck's trade name E7, and Wacker-Chem's trade name LC-Silicon-CC3767. As the liquid crystal monomer, for example, a nematic liquid crystal monomer is preferable.

D.画像表示装置
上記A項からC項に記載の位相差層付偏光板は、画像表示装置に適用され得る。したがって、位相差層付偏光板を含む画像表示装置もまた、本発明の実施形態に包含される。画像表示装置は、代表的には、画像表示セルと、画像表示セルに粘着剤層を介して貼り合わせられた位相差層付偏光板と、を含む。画像表示装置の代表例としては、液晶表示装置、エレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置、無機EL表示装置)が挙げられる。画像表示装置は、上記のとおり屈曲可能であり、好ましくは折り畳み可能である。このような画像表示装置において、本発明の実施形態による位相差層付偏光板の効果が顕著となる。
D. Image display device The polarizing plate with a retardation layer according to the above items A to C can be applied to an image display device. Therefore, an image display device including a polarizing plate with a retardation layer is also included in the embodiment of the present invention. The image display device typically includes an image display cell and a polarizing plate with a retardation layer attached to the image display cell via an adhesive layer. Typical examples of the image display device include a liquid crystal display device and an electroluminescence (EL) display device (for example, an organic EL display device and an inorganic EL display device). The image display device is bendable as described above, and is preferably foldable. In such an image display device, the effect of the polarizing plate with a retardation layer according to the embodiment of the present invention becomes remarkable.

以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。各特性の測定方法は以下の通りである。なお、特に明記しない限り、実施例および比較例における「部」および「%」は重量基準である。
(1)厚み
10μm以下の厚みは、干渉膜厚計(大塚電子社製、製品名「MCPD-3000」)を用いて測定した。10μmを超える厚みは、デジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。
(2)弾性率
JIS Z 2284に準じて測定した。具体的には、以下のとおりであった。実施例および比較例で用いた保護層から幅10mm、長さ100mmの短冊状のサンプル片を切り出し、高速対応1連式オートグラフ(島津製作所社製)を用いて、以下の条件でサンプル片を長手方向に引っ張り、得られたS-S(Stress-Strain)カーブより弾性率を求めた。測定条件としては、引張速度が50mm/min、チャック間距離が100mm、測定温度が常温(25℃)であった。S-Sカーブから弾性率を求める方法は以下のとおりであった。S-Sカーブの初期立ち上がりのところに接線を引き、接線の延長線が100%伸び率となる位置の強度を読み取り、その値を測定したサンプル片の断面積(厚み×サンプル幅(10mm))で除した値を、弾性率とした。
(3)折り曲げ試験
実施例および比較例で得られた位相差層付偏光板を100mm×55mmのサイズに切り出し、測定試料とした。ここで、屈曲軸が測定資料の短辺方向となるように切り出した。この測定試料について、屈曲試験機(ユアサシステム機器(株)社製、製品名「CL09 Type D01」)を用いて連続折り曲げ試験を行った。折り曲げは、室温で、視認側保護層が内側となるようにして行った。折り曲げの曲率半径は3mmであった。500000回折り曲げた際のクラックの有無を目視により観察し、以下の基準で評価した。
○:クラックは認められなかった
×:クラックが認められた
(4)偏光サングラスを介して視認した時の視認性
市販の液晶表示装置の視認側の偏光板を取り除き、偏光板を取り除いた面を洗浄し、当該洗浄面に実施例および比較例で得られた位相差層付偏光板を貼り合わせた。位相差層付偏光板の偏光子の吸収軸と液晶表示装置の短辺との角度が0°、30°、40°、45°、50°、60°および90°となるようにして貼り合わせた。このようにして得られた液晶表示装置に所定の文字を表示させ、偏光サングラスをかけて当該表示画面を観察した。ここで、偏光サングラスの吸収軸方向を画像表示装置の短辺方向および長辺方向のそれぞれに合わせて観察し、以下の基準で評価した。
○:短辺方向または長辺方向のいずれに偏光サングラスの吸収軸方向を合わせても表示画面の内容を理解可能に認識できた
×:短辺方向または長辺方向の少なくとも一方に偏光サングラスの吸収軸方向を合わせた際に表示画面の内容を認識できなかった
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The measurement method of each characteristic is as follows. Unless otherwise specified, "parts" and "%" in Examples and Comparative Examples are based on weight.
(1) Thickness The thickness of 10 μm or less was measured using an interference film thickness meter (manufactured by Otsuka Electronics Co., Ltd., product name “MCPD-3000”). Thicknesses exceeding 10 μm were measured using a digital micrometer (manufactured by Anritsu, product name “KC-351C”).
(2) Elastic modulus The elastic modulus was measured according to JIS Z 2284. Specifically, it was as follows. A strip-shaped sample piece having a width of 10 mm and a length of 100 mm is cut out from the protective layer used in the examples and comparative examples, and the sample piece is cut under the following conditions using a high-speed compatible single-unit autograph (manufactured by Shimadzu Corporation). The elastic modulus was determined from the obtained SS (Stress-Strain) curve by pulling in the longitudinal direction. The measurement conditions were a tensile speed of 50 mm / min, a distance between chucks of 100 mm, and a measurement temperature of room temperature (25 ° C.). The method for obtaining the elastic modulus from the SS curve was as follows. A tangent line is drawn at the initial rise of the SS curve, the strength at the position where the extension line of the tangent line has a 100% elongation rate is read, and the cross-sectional area of the sample piece (thickness x sample width (10 mm)) for which the value is measured is measured. The value divided by is taken as the elastic modulus.
(3) Bending test The polarizing plate with a retardation layer obtained in Examples and Comparative Examples was cut into a size of 100 mm × 55 mm and used as a measurement sample. Here, it was cut out so that the bending axis was in the direction of the short side of the measurement data. This measurement sample was subjected to a continuous bending test using a bending tester (manufactured by Yuasa System Equipment Co., Ltd., product name "CL09 Type D01"). Bending was performed at room temperature so that the protective layer on the visual side was on the inside. The radius of curvature of the bend was 3 mm. The presence or absence of cracks when bent 500,000 times was visually observed and evaluated according to the following criteria.
◯: No cracks were observed ×: Cracks were observed (4) Visibility when visually recognized through polarized sunglasses The polarizing plate on the visual recognition side of a commercially available liquid crystal display device was removed, and the surface from which the polarizing plate was removed was removed. After washing, the polarizing plate with a retardation layer obtained in Examples and Comparative Examples was attached to the washed surface. Bonding is performed so that the angles between the absorption axis of the polarizing element of the polarizing plate with a retardation layer and the short side of the liquid crystal display device are 0 °, 30 °, 40 °, 45 °, 50 °, 60 ° and 90 °. rice field. A predetermined character was displayed on the liquid crystal display device thus obtained, and the display screen was observed by wearing polarized sunglasses. Here, the absorption axis direction of the polarized sunglasses was observed according to each of the short side direction and the long side direction of the image display device, and evaluated according to the following criteria.
○: The contents of the display screen could be recognized in an understandable manner regardless of whether the absorption axis direction of the polarized sunglasses was aligned with either the short side direction or the long side direction. ×: Absorption of the polarized sunglasses in at least one of the short side direction and the long side direction. The contents of the display screen could not be recognized when the axial directions were aligned.

[実施例1-1]
1.偏光板の作製
熱可塑性樹脂基材として、長尺状で、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用い、樹脂基材の片面に、コロナ処理を施した。
ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマー」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加したものを水に溶かし、PVA水溶液(塗布液)を調製した。
樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
得られた積層体を、130℃のオーブン内で縦方向(長手方向)に2.4倍に一軸延伸した(空中補助延伸処理)。
次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光子の単体透過率(Ts)が所定の値となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4重量%、ヨウ化カリウム濃度5重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
その後、約90℃に保たれたオーブン中で乾燥しながら、表面温度が約75℃に保たれたSUS製の加熱ロールに接触させた(乾燥収縮処理)。
このようにして、樹脂基材上に厚み約5μmの偏光子を形成し、樹脂基材/偏光子の構成を有する偏光板を得た。
[Example 1-1]
1. 1. Fabrication of Polarizing Plate As a thermoplastic resin base material, an amorphous isophthal copolymerized polyethylene terephthalate film (thickness: 100 μm) having a Tg of about 75 ° C. is used, and one side of the resin base material is treated with corona. Was given.
100 parts by weight of PVA-based resin in which polyvinyl alcohol (polymerization degree 4200, saponification degree 99.2 mol%) and acetacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosefimer") are mixed at a ratio of 9: 1. A PVA aqueous solution (coating solution) was prepared by dissolving 13 parts by weight of potassium iodide in water.
The PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 13 μm, and a laminate was prepared.
The obtained laminate was uniaxially stretched 2.4 times in the vertical direction (longitudinal direction) in an oven at 130 ° C. (aerial auxiliary stretching treatment).
Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C. (a boric acid aqueous solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
Next, in a dyeing bath having a liquid temperature of 30 ° C. (an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water), the polarizing element finally obtained is charged. It was immersed for 60 seconds while adjusting the concentration so that the simple substance transmittance (Ts) became a predetermined value (staining treatment).
Then, it was immersed in a cross-linked bath having a liquid temperature of 40 ° C. (a boric acid aqueous solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds. (Crossing treatment).
Then, while immersing the laminate in a boric acid aqueous solution (boric acid concentration 4% by weight, potassium iodide concentration 5% by weight) at a liquid temperature of 70 ° C., the total in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds. Uniaxial stretching was performed so that the stretching ratio was 5.5 times (underwater stretching treatment).
Then, the laminate was immersed in a washing bath having a liquid temperature of 20 ° C. (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) (cleaning treatment).
Then, while drying in an oven kept at about 90 ° C., the sauce was brought into contact with a heating roll made of SUS whose surface temperature was kept at about 75 ° C. (dry shrinkage treatment).
In this way, a polarizing element having a thickness of about 5 μm was formed on the resin substrate, and a polarizing plate having a resin substrate / polarizing element configuration was obtained.

さらに、得られた偏光子の表面(樹脂基材とは反対側の面)に、保護基材(保護層)としてHC-TACフィルムを、紫外線硬化型接着剤(厚み1.0μm)を介して貼り合せた。なお、HC-TACフィルムは、トリアセチルセルロース(TAC)フィルム(厚み25μm)にハードコート(HC)層(厚み7μm)が形成されたフィルムであり、TACフィルムが偏光子側となるようにして貼り合わせた。このようにして、保護層/偏光子の構成を有する偏光板を得た。保護層の弾性率は3872MPaであった。 Further, an HC-TAC film as a protective base material (protective layer) is placed on the surface of the obtained substituent (the surface opposite to the resin base material) via an ultraviolet curable adhesive (thickness 1.0 μm). I pasted them together. The HC-TAC film is a film in which a hard coat (HC) layer (thickness 7 μm) is formed on a triacetyl cellulose (TAC) film (thickness 25 μm), and the TAC film is attached so as to be on the splitter side. I matched it. In this way, a polarizing plate having a protective layer / polarizing element configuration was obtained. The elastic modulus of the protective layer was 3872 MPa.

2.位相差層の作製
ネマチック液晶相を示す重合性液晶(BASF社製:商品名「Paliocolor LC242」、下記式で表される)10gと、当該重合性液晶化合物に対する光重合開始剤(BASF社製:商品名「イルガキュア907」)3gとを、トルエン40gに溶解して、液晶組成物(塗工液)を調製した。

Figure 2022069815000002
ポリエチレンテレフタレート(PET)フィルム(厚み38μm)表面を、ラビング布を用いてラビングし、配向処理を施した。配向処理の方向は、偏光板に貼り合わせる際に偏光子の吸収軸の方向に対して視認側から見て15°方向となるようにした。この配向処理表面に、上記液晶塗工液をバーコーターにより塗工し、90℃で2分間加熱乾燥することによって液晶化合物を配向させた。このようにして形成された液晶層に、メタルハライドランプを用いて1mJ/cmの光を照射し、当該液晶層を硬化させることによって、PETフィルム上に液晶配向固化層Aを形成した。液晶配向固化層Aの厚みは2μm、面内位相差Re(550)は270nmであった。さらに、液晶配向固化層Aは、nx>ny=nzの屈折率分布を有していた。液晶配向固化層AをW層として用いた。
塗工厚みを変更したこと、および、配向処理方向を偏光子の吸収軸の方向に対して視認側から見て75°方向となるようにしたこと以外は上記と同様にして、PETフィルム上に液晶配向固化層Bを形成した。液晶配向固化層Bの厚みは1μm、面内位相差Re(550)は140nmであった。さらに、液晶配向固化層Bは、nx>ny=nzの屈折率分布を有していた。液晶配向固化層BをQ層として用いた。 2. 2. Preparation of Phase Difference Layer 10 g of polymerizable liquid crystal (manufactured by BASF: trade name "Pariocolor LC242", represented by the following formula) showing a nematic liquid crystal phase and a photopolymerization initiator for the polymerizable liquid crystal compound (manufactured by BASF: A liquid crystal composition (coating liquid) was prepared by dissolving 3 g of the trade name "Irgacure 907") in 40 g of toluene.
Figure 2022069815000002
The surface of a polyethylene terephthalate (PET) film (thickness 38 μm) was rubbed with a rubbing cloth and subjected to an orientation treatment. The direction of the alignment treatment was set to be 15 ° when viewed from the visual recognition side with respect to the direction of the absorption axis of the polarizing element when the polarizing plate was attached. The liquid crystal coating liquid was applied to the alignment-treated surface with a bar coater, and the liquid crystal compound was oriented by heating and drying at 90 ° C. for 2 minutes. The liquid crystal layer thus formed was irradiated with light of 1 mJ / cm 2 using a metal halide lamp, and the liquid crystal layer was cured to form a liquid crystal oriented solidified layer A on the PET film. The thickness of the liquid crystal oriented solidified layer A was 2 μm, and the in-plane retardation Re (550) was 270 nm. Further, the liquid crystal oriented solidified layer A had a refractive index distribution of nx> ny = nz. The liquid crystal alignment solidified layer A was used as the W layer.
On the PET film in the same manner as above, except that the coating thickness was changed and the orientation processing direction was set to be 75 ° when viewed from the visual side with respect to the direction of the absorber's absorption axis. The liquid crystal oriented solidified layer B was formed. The thickness of the liquid crystal oriented solidified layer B was 1 μm, and the in-plane retardation Re (550) was 140 nm. Further, the liquid crystal oriented solidified layer B had a refractive index distribution of nx> ny = nz. The liquid crystal alignment solidification layer B was used as the Q layer.

3.位相差層付偏光板の作製
上記1.で得られた偏光板の偏光子表面に、上記2.で得られた液晶配向固化層A(W層)および液晶配向固化層B(Q層)をこの順に転写した。このとき、偏光子の吸収軸と配向固化層Aの遅相軸とのなす角度が15°、偏光子の吸収軸と配向固化層Bの遅相軸とのなす角度が75°になるようにして転写(貼り合わせ)を行った。なお、それぞれの転写(貼り合わせ)は、紫外線硬化型接着剤(厚み1.0μm)を介して行った。このようにして、保護層/接着剤/偏光子/接着剤/W層/接着剤/Q層の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板の厚みは43μmであった。この位相差層付偏光板を、短辺方向に屈曲軸を有する屈曲可能な画像表示装置に対応する所定サイズの矩形に打ち抜いた。ここで、偏光子の吸収軸が屈曲軸に対して30°となるように打ち抜いた。得られた位相差層付偏光板を上記(3)および(4)の評価に供した。結果を表1に示す。
3. 3. Fabrication of polarizing plate with retardation layer 1. On the surface of the polarizing plate of the polarizing plate obtained in 2. above. The liquid crystal oriented solidified layer A (W layer) and the liquid crystal oriented solidified layer B (Q layer) obtained in 1) were transferred in this order. At this time, the angle between the absorption axis of the stator and the slow axis of the oriented solidification layer A is 15 °, and the angle between the absorption axis of the splitter and the slow axis of the oriented solidification layer B is 75 °. Transferred (bonded). Each transfer (bonding) was performed via an ultraviolet curable adhesive (thickness 1.0 μm). In this way, a polarizing plate with a retardation layer having a structure of a protective layer / adhesive / polarizing element / adhesive / W layer / adhesive / Q layer was obtained. The thickness of the obtained polarizing plate with a retardation layer was 43 μm. This polarizing plate with a retardation layer was punched into a rectangle of a predetermined size corresponding to a bendable image display device having a bending axis in the short side direction. Here, the absorber was punched so that the absorption axis was 30 ° with respect to the bending axis. The obtained polarizing plate with a retardation layer was subjected to the evaluations of (3) and (4) above. The results are shown in Table 1.

[実施例1-2]~[実施例1-5]および[比較例1-1]~[比較例1-2]
偏光子の吸収軸と屈曲軸との角度が表1に示す角度となるようにして打ち抜いたこと以外は実施例1-1と同様にして、位相差層付偏光板を得た。得られた位相差層付偏光板を実施例1-1と同様の評価に供した。結果を表1に示す。
[Example 1-2] to [Example 1-5] and [Comparative Example 1-1] to [Comparative Example 1-2]
A polarizing plate with a retardation layer was obtained in the same manner as in Example 1-1 except that the angle between the absorption axis and the bending axis of the polarizing element was punched so as to be the angle shown in Table 1. The obtained polarizing plate with a retardation layer was subjected to the same evaluation as in Example 1-1. The results are shown in Table 1.

[実施例2-1]
実施例1-1と同様にして、保護層/偏光子の構成を有する偏光板を作製した。一方、以下のようにして位相差層(逆分散波長依存性を示しλ/4板として機能し得る単一位相差層)および別の位相差層(ポジティブCプレート)を作製した。
式(II)で表される化合物55部、式(III)で表される化合物25部、式(IV)で表される化合物20部をシクロペンタノン(CPN)400部に加えた後、60℃に加温、撹拌して溶解させ、溶解が確認された後、室温に戻し、イルガキュア907(BASFジャパン株式会社製)3部、メガファックF-554(DIC株式会社製)0.2部、p-メトキシフェノール(MEHQ)0.1部を加えて、さらに撹拌を行い、溶液を得た。溶液は、透明で均一であった。得られた溶液を0.20μmのメンブランフィルターでろ過し、重合性組成物を得た。一方、配向膜用ポリイミド溶液を厚さ0.7mmのガラス基材にスピンコート法を用いて塗布し、100℃で10分乾燥した後、200℃で60分焼成することにより塗膜を得た。得られた塗膜をラビング処理し、配向膜を形成した。ラビング処理は、市販のラビング装置を用いて行った。基材(実質的には、配向膜)に、上記で得られた重合性組成物をスピンコート法で塗布し、100℃で2分乾燥した。得られた塗布膜を室温まで冷却した後、高圧水銀ランプを用いて、30mW/cmの強度で30秒間紫外線を照射して液晶配向固化層Cを得た。液晶配向固化層の厚みは3.0μmであり、面内位相差Re(550)は130nmであった。また、液晶配向固化層のRe(450)/Re(550)は0.851であり、逆分散波長特性を示した。この液晶配向固化層を位相差層とした。

Figure 2022069815000003
Figure 2022069815000004
[Example 2-1]
A polarizing plate having a protective layer / polarizing element configuration was produced in the same manner as in Example 1-1. On the other hand, a retardation layer (a single retardation layer that exhibits inverse dispersion wavelength dependence and can function as a λ / 4 plate) and another retardation layer (positive C plate) were prepared as follows.
After adding 55 parts of the compound represented by the formula (II), 25 parts of the compound represented by the formula (III), and 20 parts of the compound represented by the formula (IV) to 400 parts of cyclopentanone (CPN), 60 parts are added. Heat to ℃, stir to dissolve, and after confirming the dissolution, return to room temperature, Irgacure 907 (manufactured by BASF Japan Co., Ltd.) 3 parts, Megafuck F-554 (manufactured by DIC Co., Ltd.) 0.2 parts, 0.1 part of p-methoxyphenol (MEHQ) was added, and the mixture was further stirred to obtain a solution. The solution was clear and uniform. The obtained solution was filtered through a 0.20 μm membrane filter to obtain a polymerizable composition. On the other hand, a polyimide solution for an alignment film was applied to a glass substrate having a thickness of 0.7 mm by a spin coating method, dried at 100 ° C. for 10 minutes, and then fired at 200 ° C. for 60 minutes to obtain a coating film. .. The obtained coating film was subjected to a rubbing treatment to form an alignment film. The rubbing treatment was performed using a commercially available rubbing device. The polymerizable composition obtained above was applied to a substrate (substantially an alignment film) by a spin coating method, and dried at 100 ° C. for 2 minutes. The obtained coating film was cooled to room temperature and then irradiated with ultraviolet rays at an intensity of 30 mW / cm 2 for 30 seconds using a high-pressure mercury lamp to obtain a liquid crystal oriented solidified layer C. The thickness of the liquid crystal oriented solidified layer was 3.0 μm, and the in-plane retardation Re (550) was 130 nm. The Re (450) / Re (550) of the liquid crystal oriented solidified layer was 0.851, showing the reverse dispersion wavelength characteristic. This liquid crystal oriented solidified layer was used as a retardation layer.
Figure 2022069815000003
Figure 2022069815000004

下記化学式(I)(式中の数字65および35はモノマーユニットのモル%を示し、便宜的にブロックポリマー体で表している:重量平均分子量5000)で示される側鎖型液晶ポリマー20重量部、ネマチック液晶相を示す重合性液晶(BASF社製:商品名PaliocolorLC242)80重量部および光重合開始剤(チバスペシャリティーケミカルズ社製:商品名イルガキュア907)5重量部をシクロペンタノン200重量部に溶解して液晶塗工液を調製した。そして、基材フィルム(ノルボルネン系樹脂フィルム:日本ゼオン(株)製、商品名「ゼオネックス」)に当該塗工液をバーコーターにより塗工した後、80℃で4分間加熱乾燥することによって液晶を配向させた。この液晶層に紫外線を照射し、液晶層を硬化させることにより、基材上に別の位相差層となる液晶配向固化層(ポジティブCプレート、厚み3μm)を形成した。この層のRe(590)は0nm、Rth(590)は-100nmであり、nz>nx=nyの屈折率特性を示した。

Figure 2022069815000005
20 parts by weight of the side chain liquid crystal polymer represented by the following chemical formula (I) (numbers 65 and 35 in the formula represent mol% of the monomer unit and are conveniently represented by a block polymer: weight average molecular weight 5000). Dissolve 80 parts by weight of a polymerizable liquid crystal (BASF: trade name Palocolor LC242) showing a nematic liquid crystal phase and 5 parts by weight of a photopolymerization initiator (Ciba Specialty Chemicals: trade name Irgacure 907) in 200 parts by weight of cyclopentanone. The liquid crystal coating liquid was prepared. Then, the liquid crystal is formed by applying the coating liquid to a base film (norbornene-based resin film: manufactured by Nippon Zeon Corporation, trade name "Zeonex") with a bar coater, and then heating and drying at 80 ° C. for 4 minutes. Oriented. By irradiating this liquid crystal layer with ultraviolet rays and curing the liquid crystal layer, a liquid crystal oriented solidified layer (positive C plate, thickness 3 μm) to be another retardation layer was formed on the substrate. Re (590) of this layer was 0 nm, Rth (590) was -100 nm, and showed a refractive index characteristic of nz> nx = ny.
Figure 2022069815000005

上記で得られた偏光板の偏光子表面に、粘着剤層(厚み5μm)を介して液晶配向固化層Cを転写し、さらに、液晶配向固化層Cの表面にポジティブCプレートを転写した。このようにして、保護層/接着剤/偏光子/粘着剤層/位相差層/接着剤/ポジティブCプレートの構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板の厚みは49μmであった。この位相差層付偏光板を、短辺方向に屈曲軸を有する屈曲可能な画像表示装置に対応する所定サイズの矩形に打ち抜いた。ここで、偏光子の吸収軸が屈曲軸に対して30°となるように打ち抜いた。得られた位相差層付偏光板を実施例1-1と同様の評価に供した。結果を表1に示す。 The liquid crystal oriented solidified layer C was transferred to the surface of the polarizing element of the polarizing plate obtained above via the pressure-sensitive adhesive layer (thickness 5 μm), and the positive C plate was further transferred to the surface of the liquid crystal oriented solidified layer C. In this way, a polarizing plate with a retardation layer having a structure of a protective layer / adhesive / a polarizing element / an adhesive layer / a retardation layer / an adhesive / a positive C plate was obtained. The thickness of the obtained polarizing plate with a retardation layer was 49 μm. This polarizing plate with a retardation layer was punched into a rectangle of a predetermined size corresponding to a bendable image display device having a bending axis in the short side direction. Here, the absorber was punched so that the absorption axis was 30 ° with respect to the bending axis. The obtained polarizing plate with a retardation layer was subjected to the same evaluation as in Example 1-1. The results are shown in Table 1.

[実施例2-2]~[実施例2-5]および[比較例2-1]~[比較例2-2]
偏光子の吸収軸と屈曲軸との角度が表1に示す角度となるようにして打ち抜いたこと以外は実施例2-1と同様にして、位相差層付偏光板を得た。得られた位相差層付偏光板を実施例1-1と同様の評価に供した。結果を表1に示す。
[Example 2-2] to [Example 2-5] and [Comparative Example 2-1] to [Comparative Example 2-2]
A polarizing plate with a retardation layer was obtained in the same manner as in Example 2-1 except that the angle between the absorption axis and the bending axis of the polarizing element was punched so as to be the angle shown in Table 1. The obtained polarizing plate with a retardation layer was subjected to the same evaluation as in Example 1-1. The results are shown in Table 1.

[実施例3-1]
保護層としてHC-TACフィルムの代わりにアクリル系樹脂フィルム(厚み20μm)を用いたこと以外は実施例1-1と同様にして、位相差層付偏光板を得た。保護フィルムの弾性率は2881MPaであった。また、得られた位相差層付偏光板の厚みは31μmであった。この位相差層付偏光板を、短辺方向に屈曲軸を有する屈曲可能な画像表示装置に対応する所定サイズの矩形に打ち抜いた。ここで、偏光子の吸収軸が屈曲軸に対して30°となるように打ち抜いた。得られた位相差層付偏光板を実施例1-1と同様の評価に供した。結果を表1に示す。
[Example 3-1]
A polarizing plate with a retardation layer was obtained in the same manner as in Example 1-1 except that an acrylic resin film (thickness 20 μm) was used instead of the HC-TAC film as the protective layer. The elastic modulus of the protective film was 2881 MPa. The thickness of the obtained polarizing plate with a retardation layer was 31 μm. This polarizing plate with a retardation layer was punched into a rectangle of a predetermined size corresponding to a bendable image display device having a bending axis in the short side direction. Here, the absorber was punched so that the absorption axis was 30 ° with respect to the bending axis. The obtained polarizing plate with a retardation layer was subjected to the same evaluation as in Example 1-1. The results are shown in Table 1.

[実施例3-2]~[実施例3-5]および[比較例3-1]~[比較例3-2]
偏光子の吸収軸と屈曲軸との角度が表1に示す角度となるようにして打ち抜いたこと以外は実施例3-1と同様にして、位相差層付偏光板を得た。得られた位相差層付偏光板を実施例1-1と同様の評価に供した。結果を表1に示す。
[Example 3-2] to [Example 3-5] and [Comparative Example 3-1] to [Comparative Example 3-2]
A polarizing plate with a retardation layer was obtained in the same manner as in Example 3-1 except that the angle between the absorption axis and the bending axis of the polarizing element was punched so as to be the angle shown in Table 1. The obtained polarizing plate with a retardation layer was subjected to the same evaluation as in Example 1-1. The results are shown in Table 1.

[実施例4-1]
保護層としてHC-TACフィルムの代わりにアクリル系樹脂フィルム(厚み40μm)を用いたこと以外は実施例1-1と同様にして、位相差層付偏光板を得た。保護フィルムの弾性率は3066MPaであった。また、得られた位相差層付偏光板の厚みは51μmであった。この位相差層付偏光板を、短辺方向に屈曲軸を有する屈曲可能な画像表示装置に対応する所定サイズの矩形に打ち抜いた。ここで、偏光子の吸収軸が屈曲軸に対して30°となるように打ち抜いた。得られた位相差層付偏光板を実施例1-1と同様の評価に供した。結果を表1に示す。
[Example 4-1]
A polarizing plate with a retardation layer was obtained in the same manner as in Example 1-1 except that an acrylic resin film (thickness 40 μm) was used instead of the HC-TAC film as the protective layer. The elastic modulus of the protective film was 3066 MPa. The thickness of the obtained polarizing plate with a retardation layer was 51 μm. This polarizing plate with a retardation layer was punched into a rectangle of a predetermined size corresponding to a bendable image display device having a bending axis in the short side direction. Here, the absorber was punched so that the absorption axis was 30 ° with respect to the bending axis. The obtained polarizing plate with a retardation layer was subjected to the same evaluation as in Example 1-1. The results are shown in Table 1.

[実施例4-2]~[実施例4-5]および[比較例4-1]~[比較例4-2]
偏光子の吸収軸と屈曲軸との角度が表1に示す角度となるようにして打ち抜いたこと以外は実施例4-1と同様にして、位相差層付偏光板を得た。得られた位相差層付偏光板を実施例1-1と同様の評価に供した。結果を表1に示す。
[Example 4-2] to [Example 4-5] and [Comparative Example 4-1] to [Comparative Example 4-2]
A polarizing plate with a retardation layer was obtained in the same manner as in Example 4-1 except that the angle between the absorption axis and the bending axis of the polarizing element was punched so as to be the angle shown in Table 1. The obtained polarizing plate with a retardation layer was subjected to the same evaluation as in Example 1-1. The results are shown in Table 1.

[比較例5-1]
以下のようにして位相差層(逆分散波長依存性を示しλ/4板として機能し得る単一位相差層)を作製した。
撹拌翼、及び還流冷却器を具備した竪型撹拌反応器2器からなるバッチ重合装置を用いて重合を行った。特開2015-25111号公報に記載の方法で合成したビス[9-(2-フェノキシカルボニルエチル)フルオレン-9-イル]メタン(BPFM)を30.31質量部(0.047mol)、イソソルビド(ISB、ロケットフルーレ社製)を39.94質量部(0.273mol)、スピログリコール(SPG、三菱ガス化学(株)製)を30.20質量部(0.099mol)、ジフェニルカーボネート(DPC、三菱ケミカル(株)製)を69.67質量部(0.325mol)、および触媒として酢酸カルシウム1水和物7.88×10-4質量部(4.47×10-6mol)を仕込んだ。反応器内を減圧窒素置換した後、熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温開始40分後に内温を220℃に到達させ、この温度を保持するように制御すると同時に減圧を開始し、220℃に到達してから90分で13.3kPaにした。重合反応とともに副生するフェノール蒸気を110℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を反応器に戻し、凝縮しないフェノール蒸気は45℃の凝縮器に導いて回収した。第1反応器に窒素を導入して一旦大気圧まで復圧させた後、第1反応器内のオリゴマー化された反応液を第2反応器に移した。次いで、第2反応器内の昇温および減圧を開始して、40分で内温240℃、圧力20kPaにした。その後、さらに圧力を下げながら、所定の攪拌動力となるまで重合を進行させた。所定動力に到達した時点で反応器に窒素を導入して復圧し、生成したポリエステルカーボネートを水中に押し出し、ストランドをカッティングしてペレットを得た。この樹脂の各モノマーに由来する構造単位の比率は、BPFM/ISB/SPG/DPC=21.5/39.4/30.0/9.1質量%であった。得られたペレットを、100℃で6時間以上、真空乾燥をした後、単軸押出機(いすず化工機社製、スクリュー径25mm、シリンダー設定温度:250℃)、Tダイ(幅300mm、設定温度:220℃)、チルロール(設定温度:120~130℃)および巻取機を備えたフィルム製膜装置を用いて、長さ3m、幅200mm、厚み100μmの長尺未延伸フィルムを作製した。この長尺未延伸フィルムを、延伸温度をTg(139℃)として延伸し、厚み37μmの位相差フィルムを得た。得られた位相差フィルムは、nx>ny=nzの屈折率特性を示し、Re(550)は145nm、Re(450)/Re(550)は0.85であった。
[Comparative Example 5-1]
A retardation layer (a single retardation layer that exhibits inverse dispersion wavelength dependence and can function as a λ / 4 plate) was prepared as follows.
Polymerization was carried out using a batch polymerization apparatus consisting of two vertical stirring reactors equipped with a stirring blade and a reflux condenser. 30.31 parts by mass (0.047 mol) of bis [9- (2-phenoxycarbonylethyl) fluoren-9-yl] methane (BPFM) synthesized by the method described in JP-A-2015-25111, isosorbide (ISB). , Rocket Foil Co., Ltd.) 39.94 parts by mass (0.273 mol), Spiroglycol (SPG, manufactured by Mitsubishi Gas Chemicals Co., Ltd.) 30.20 parts by mass (0.099 mol), Diphenyl carbonate (DPC, Mitsubishi Chemical Co., Ltd.) (Manufactured by Co., Ltd.) was charged with 69.67 parts by mass (0.325 mol) and 7.88 × 10 -4 parts by mass (4.47 × 10-6 mol) of calcium acetate monohydrate as a catalyst. After substituting nitrogen under reduced pressure in the reactor, heating was performed with a heat medium, and stirring was started when the internal temperature reached 100 ° C. The internal temperature was brought to 220 ° C. 40 minutes after the start of the temperature rise, and the depressurization was started at the same time as controlling to maintain this temperature, and the temperature was 13.3 kPa 90 minutes after reaching 220 ° C. The phenol vapor produced by the polymerization reaction was guided to a reflux condenser at 110 ° C., the monomer component contained in a small amount in the phenol vapor was returned to the reactor, and the non-condensed phenol vapor was guided to a condenser at 45 ° C. for recovery. Nitrogen was introduced into the first reactor and the pressure was once restored to atmospheric pressure, and then the oligomerized reaction solution in the first reactor was transferred to the second reactor. Then, the temperature rise and depressurization in the second reactor were started, and the internal temperature was 240 ° C. and the pressure was 20 kPa in 40 minutes. Then, while further reducing the pressure, the polymerization was allowed to proceed until the predetermined stirring power was obtained. When the predetermined power was reached, nitrogen was introduced into the reactor to repressurize, the produced polyester carbonate was extruded into water, and the strands were cut to obtain pellets. The ratio of the structural units derived from each monomer of this resin was BPFM / ISB / SPG / DPC = 21.5 / 39.4 / 30.0 / 9.1% by mass. The obtained pellets are vacuum dried at 100 ° C. for 6 hours or more, and then a single shaft extruder (manufactured by Isuzu Kakohki Co., Ltd., screw diameter 25 mm, cylinder set temperature: 250 ° C.), T-die (width 300 mm, set temperature). : 220 ° C.), a chill roll (set temperature: 120 to 130 ° C.), and a film forming apparatus equipped with a winder were used to prepare a long unstretched film having a length of 3 m, a width of 200 mm, and a thickness of 100 μm. This long unstretched film was stretched at a stretching temperature of Tg (139 ° C.) to obtain a retardation film having a thickness of 37 μm. The obtained retardation film exhibited a refractive index characteristic of nx> ny = nz, Re (550) was 145 nm, and Re (450) / Re (550) was 0.85.

上記で得られた位相差フィルムを位相差層として用いたこと、接着剤層の代わりに粘着剤層(厚み5μm)を介して位相差フィルムを偏光子に貼り合わせたこと、および、位相差層表面に実施例2-1で用いたポジティブCプレートを転写したこと以外は実施例1-1と同様にして、保護層/接着剤/偏光子/粘着剤層/位相差層(位相差フィルム)/接着剤/ポジティブCプレートの構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板の厚みは89μmであった。この位相差層付偏光板を、短辺方向に屈曲軸を有する屈曲可能な画像表示装置に対応する所定サイズの矩形に打ち抜いた。ここで、偏光子の吸収軸が屈曲軸に対して0°となるように打ち抜いた。得られた位相差層付偏光板を実施例1-1と同様の評価に供した。結果を表1に示す。 The retardation film obtained above was used as the retardation layer, the retardation film was bonded to the polarizing element via an adhesive layer (thickness 5 μm) instead of the adhesive layer, and the retardation layer. Protective layer / adhesive / polarizing element / pressure-sensitive adhesive layer / retardation layer (phase difference film) in the same manner as in Example 1-1 except that the positive C plate used in Example 2-1 was transferred to the surface. A polarizing plate with a retardation layer having the structure of / adhesive / positive C plate was obtained. The thickness of the obtained polarizing plate with a retardation layer was 89 μm. This polarizing plate with a retardation layer was punched into a rectangle of a predetermined size corresponding to a bendable image display device having a bending axis in the short side direction. Here, the absorber was punched so that the absorption axis was 0 ° with respect to the bending axis. The obtained polarizing plate with a retardation layer was subjected to the same evaluation as in Example 1-1. The results are shown in Table 1.

[比較例5-2]~[比較例5-7]
偏光子の吸収軸と屈曲軸との角度が表1に示す角度となるようにして打ち抜いたこと以外は比較例5-1と同様にして、位相差層付偏光板を得た。得られた位相差層付偏光板を実施例1-1と同様の評価に供した。結果を表1に示す。
[Comparative Example 5-2] to [Comparative Example 5-7]
A polarizing plate with a retardation layer was obtained in the same manner as in Comparative Example 5-1 except that the angle between the absorption axis and the bending axis of the polarizing element was punched so as to be the angle shown in Table 1. The obtained polarizing plate with a retardation layer was subjected to the same evaluation as in Example 1-1. The results are shown in Table 1.

[比較例6-1]
保護層としてHC-TACフィルムの代わりにHC-COPフィルムを用いたこと以外は実施例1-1と同様にして、位相差層付偏光板を得た。保護フィルムの弾性率は1988MPaであった。また、得られた位相差層付偏光板の厚みは84μmであった。この位相差層付偏光板を、短辺方向に屈曲軸を有する屈曲可能な画像表示装置に対応する所定サイズの矩形に打ち抜いた。ここで、偏光子の吸収軸が屈曲軸に対して30°となるように打ち抜いた。得られた位相差層付偏光板を実施例1-1と同様の評価に供した。結果を表1に示す。
[Comparative Example 6-1]
A polarizing plate with a retardation layer was obtained in the same manner as in Example 1-1 except that an HC-COP film was used instead of the HC-TAC film as the protective layer. The elastic modulus of the protective film was 1988 MPa. The thickness of the obtained polarizing plate with a retardation layer was 84 μm. This polarizing plate with a retardation layer was punched into a rectangle of a predetermined size corresponding to a bendable image display device having a bending axis in the short side direction. Here, the absorber was punched so that the absorption axis was 30 ° with respect to the bending axis. The obtained polarizing plate with a retardation layer was subjected to the same evaluation as in Example 1-1. The results are shown in Table 1.

[比較例6-2]~[比較例6-7]
偏光子の吸収軸と屈曲軸との角度が表1に示す角度となるようにして打ち抜いたこと以外は比較例6-1と同様にして、位相差層付偏光板を得た。得られた位相差層付偏光板を実施例1-1と同様の評価に供した。結果を表1に示す。
[Comparative Example 6-2] to [Comparative Example 6-7]
A polarizing plate with a retardation layer was obtained in the same manner as in Comparative Example 6-1 except that the angle between the absorption axis and the bending axis of the polarizing element was punched so as to be the angle shown in Table 1. The obtained polarizing plate with a retardation layer was subjected to the same evaluation as in Example 1-1. The results are shown in Table 1.

[比較例7-1]
以下のようにして偏光板を作製した。
平均重合度が2,400、ケン化度が99.9モル%、厚みが30μmであるポリビニルアルコール系樹脂フィルムを用意した。ポリビニルアルコールフィルムを、周速比の異なるロール間で、20℃の膨潤浴(水浴)中に30秒間浸漬して膨潤しながら搬送方向に2.4倍に延伸し(膨潤工程)、続いて、30℃の染色浴(ヨウ素濃度が0.03重量%、ヨウ化カリウム濃度が0.3重量%である水溶液)中で最終延伸後の単体透過率が所望の値となるように浸漬して染色しながら元のポリビニルアルコールフィルム(搬送方向に全く延伸していないポリビニルアルコールフィルム)を基準にして搬送方向に3.7倍に延伸した(染色工程)。この時の浸漬時間は約60秒であった。次いで、染色したポリビニルアルコールフィルムを、40℃の架橋浴(ホウ酸濃度が3.0重量%、ヨウ化カリウム濃度が3.0重量%である水溶液)中で浸漬しながら元のポリビニルアルコールフィルムを基準にして搬送方向に4.2倍まで延伸した(架橋工程)。さらに、得られたポリビニルアルコールフィルムを、64℃の延伸浴(ホウ酸濃度が4.0重量%、ヨウ化カリウム濃度が5.0重量%である水溶液)中で50秒間浸漬して元のポリビニルアルコールフィルムを基準にして搬送方向に6.0倍まで延伸した(延伸工程)後、20℃の洗浄浴(ヨウ化カリウム濃度が3.0重量%である水溶液)中で5秒間浸漬した(洗浄工程)。洗浄したポリビニルアルコールフィルムを、30℃で2分間乾燥して偏光子(厚み12μm)を作製した。得られた偏光子の一方の面に実施例1-1と同様にしてHC-TACフィルムを貼り合わせ、もう一方の面に厚みが25μmのTACフィルムを貼り合わせた。このようにして、視認側保護層(HC-TACフィルム)/偏光子/内側保護層(TACフィルム)の構成を有する偏光板を作製した。視認側保護層の弾性率は実施例1-1と同様に3872MPaであった。
[Comparative Example 7-1]
A polarizing plate was produced as follows.
A polyvinyl alcohol-based resin film having an average degree of polymerization of 2,400, a saponification degree of 99.9 mol%, and a thickness of 30 μm was prepared. The polyvinyl alcohol film was immersed in a swelling bath (water bath) at 20 ° C. for 30 seconds between rolls having different peripheral speed ratios and stretched 2.4 times in the transport direction while swelling (swelling step). Dyeing by immersing in a dyeing bath at 30 ° C. (an aqueous solution having an iodine concentration of 0.03% by weight and a potassium iodide concentration of 0.3% by weight) so that the single transmittance after final stretching becomes a desired value. While using the original polyvinyl alcohol film (polyvinyl alcohol film not stretched at all in the transport direction) as a reference, the film was stretched 3.7 times in the transport direction (dyeing step). The immersion time at this time was about 60 seconds. Next, the original polyvinyl alcohol film was placed while immersing the dyed polyvinyl alcohol film in a cross-linked bath at 40 ° C. (an aqueous solution having a boric acid concentration of 3.0% by weight and a potassium iodide concentration of 3.0% by weight). It was stretched up to 4.2 times in the transport direction as a reference (crosslinking step). Further, the obtained polyvinyl alcohol film is immersed in a stretching bath at 64 ° C. (an aqueous solution having a boric acid concentration of 4.0% by weight and a potassium iodide concentration of 5.0% by weight) for 50 seconds to obtain the original polyvinyl alcohol. After stretching up to 6.0 times in the transport direction with reference to the alcohol film (stretching step), it was immersed in a washing bath at 20 ° C. (an aqueous solution having a potassium iodide concentration of 3.0% by weight) for 5 seconds (washing). Process). The washed polyvinyl alcohol film was dried at 30 ° C. for 2 minutes to prepare a stator (thickness 12 μm). The HC-TAC film was bonded to one surface of the obtained polarizing element in the same manner as in Example 1-1, and the TAC film having a thickness of 25 μm was bonded to the other surface. In this way, a polarizing plate having a structure of a visible side protective layer (HC-TAC film) / a stator / an inner protective layer (TAC film) was produced. The elastic modulus of the visual-viewing side protective layer was 3872 MPa as in Example 1-1.

上記で得られた偏光板を用いたこと以外は比較例5-1と同様にして、保護層/接着剤/偏光子/接着剤/保護層/粘着剤層/位相差層(位相差フィルム)/接着剤/ポジティブCプレートの構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板の厚みは116μmであった。この位相差層付偏光板を、短辺方向に屈曲軸を有する屈曲可能な画像表示装置に対応する所定サイズの矩形に打ち抜いた。ここで、偏光子の吸収軸が屈曲軸に対して0°となるように打ち抜いた。得られた位相差層付偏光板を実施例1-1と同様の評価に供した。結果を表1に示す。 Protective layer / adhesive / polarizing element / adhesive / protective layer / adhesive layer / retardation layer (phase difference film) in the same manner as in Comparative Example 5-1 except that the polarizing plate obtained above was used. A polarizing plate with a retardation layer having the structure of / adhesive / positive C plate was obtained. The thickness of the obtained polarizing plate with a retardation layer was 116 μm. This polarizing plate with a retardation layer was punched into a rectangle of a predetermined size corresponding to a bendable image display device having a bending axis in the short side direction. Here, the absorber was punched so that the absorption axis was 0 ° with respect to the bending axis. The obtained polarizing plate with a retardation layer was subjected to the same evaluation as in Example 1-1. The results are shown in Table 1.

[比較例7-2]~[比較例7-7]
偏光子の吸収軸と屈曲軸との角度が表1に示す角度となるようにして打ち抜いたこと以外は比較例7-1と同様にして、位相差層付偏光板を得た。得られた位相差層付偏光板を実施例1-1と同様の評価に供した。結果を表1に示す。
[Comparative Example 7-2] to [Comparative Example 7-7]
A polarizing plate with a retardation layer was obtained in the same manner as in Comparative Example 7-1 except that the angle between the absorption axis and the bending axis of the polarizing element was punched so as to be the angle shown in Table 1. The obtained polarizing plate with a retardation layer was subjected to the same evaluation as in Example 1-1. The results are shown in Table 1.

[比較例8-1]
比較例7-1で作製した偏光子の片面に輝度向上フィルム(吸水率0.75%、Tg75℃の非晶質のイソフタル酸共重合ポリエチレンテレフタレート(IPA共重合PET)フィルム(厚み:30μm))を貼り合わせ、輝度向上フィルム/偏光子の構成を有する偏光板を作製した。以下の手順は実施例1-1と同様にして、保護層(輝度向上フィルム)/接着剤/偏光子/接着剤/W層/接着剤/Q層の構成を有する位相差層付偏光板を得た。保護層の弾性率は5005MPaであった。また、得られた位相差層付偏光板の厚みは48μmであった。この位相差層付偏光板を、短辺方向に屈曲軸を有する屈曲可能な画像表示装置に対応する所定サイズの矩形に打ち抜いた。ここで、偏光子の吸収軸が屈曲軸に対して0°となるように打ち抜いた。得られた位相差層付偏光板を実施例1-1と同様の評価に供した。結果を表1に示す。
[Comparative Example 8-1]
Brightness improving film (water absorption 0.75%, amorphous isophthalic acid copolymerized polyethylene terephthalate (IPA copolymerized PET) film (thickness: 30 μm) with a water absorption of 0.75% and Tg 75 ° C.) prepared in Comparative Example 7-1 on one side. To prepare a polarizing plate having a brightness-enhancing film / polarizing element. The following procedure is the same as in Example 1-1, and a polarizing plate with a retardation layer having a structure of a protective layer (brightness improving film) / adhesive / polarizing element / adhesive / W layer / adhesive / Q layer is used. Obtained. The elastic modulus of the protective layer was 5005 MPa. The thickness of the obtained polarizing plate with a retardation layer was 48 μm. This polarizing plate with a retardation layer was punched into a rectangle of a predetermined size corresponding to a bendable image display device having a bending axis in the short side direction. Here, the absorber was punched so that the absorption axis was 0 ° with respect to the bending axis. The obtained polarizing plate with a retardation layer was subjected to the same evaluation as in Example 1-1. The results are shown in Table 1.

[比較例8-2]~[比較例8-7]
偏光子の吸収軸と屈曲軸との角度が表1に示す角度となるようにして打ち抜いたこと以外は比較例8-1と同様にして、位相差層付偏光板を得た。得られた位相差層付偏光板を実施例1-1と同様の評価に供した。結果を表1に示す。
[Comparative Example 8-2] to [Comparative Example 8-7]
A polarizing plate with a retardation layer was obtained in the same manner as in Comparative Example 8-1 except that the angle between the absorption axis and the bending axis of the polarizing element was punched so as to be the angle shown in Table 1. The obtained polarizing plate with a retardation layer was subjected to the same evaluation as in Example 1-1. The results are shown in Table 1.

Figure 2022069815000006
Figure 2022069815000006

[評価]
表1から明らかなように、本発明の実施例によれば、折り曲げ性と偏光サングラスを介して視認した場合の視認性のいずれにも優れた位相差層付偏光板が得られることがわかる。
[evaluation]
As is clear from Table 1, according to the embodiment of the present invention, it can be seen that a polarizing plate with a retardation layer having excellent bendability and visibility when visually recognized through polarized sunglasses can be obtained.

本発明の位相差層付偏光板は、屈曲可能な画像表示装置であって、偏光サングラスを介して視認され得る画像表示装置に好適に用いられ得る。 The polarizing plate with a retardation layer of the present invention is a bendable image display device, and can be suitably used for an image display device that can be visually recognized through polarized sunglasses.

10 偏光板
11 偏光子
12 保護層
20 位相差層
21 H層
22 Q層
100 位相差層付偏光板
102 位相差層付偏光板
10 Polarizing plate 11 Polarizer 12 Protective layer 20 Phase difference layer 21 H layer 22 Q layer 100 Polarizing plate with retardation layer 102 Polarizing plate with retardation layer 102

Claims (12)

屈曲可能な画像表示装置に用いられる位相差層付偏光板であって、
偏光子と該偏光子の少なくとも一方の側に保護層とを含む偏光板と;該偏光板の視認側と反対側に設けられた、円偏光機能または楕円偏光機能を有する位相差層と;を有し、
総厚みが80μm以下であり、
該画像表示装置の屈曲軸と該偏光子の吸収軸とのなす角度が30°~60°であり、
該保護層の弾性率が5000MPa以下である、
位相差層付偏光板。
A polarizing plate with a retardation layer used in a bendable image display device.
A polarizing plate containing a polarizing element and a protective layer on at least one side of the polarizing element; and a retardation layer having a circular polarization function or an elliptically polarizing function provided on the side opposite to the visible side of the polarizing plate; Have and
The total thickness is 80 μm or less,
The angle formed by the bending axis of the image display device and the absorption axis of the polarizing element is 30 ° to 60 °.
The elastic modulus of the protective layer is 5000 MPa or less.
Polarizing plate with retardation layer.
総厚みが60μm以下である、請求項1に記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to claim 1, wherein the total thickness is 60 μm or less. 前記偏光子の厚みが10μm以下である、請求項1または2に記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to claim 1 or 2, wherein the polarizing element has a thickness of 10 μm or less. 前記偏光板が、前記偏光子の前記位相差層と反対側のみに保護層を含む、請求項1から3のいずれかに記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to any one of claims 1 to 3, wherein the polarizing plate includes a protective layer only on the side opposite to the retardation layer of the polarizing element. 前記保護層の弾性率が4000MPa以下である、請求項4に記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to claim 4, wherein the elastic modulus of the protective layer is 4000 MPa or less. 前記保護層の厚みが45μm以下である、請求項5に記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to claim 5, wherein the protective layer has a thickness of 45 μm or less. 前記屈曲軸と前記偏光子の吸収軸とのなす角度が40°~50°である、請求項1から6のいずれかに記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to any one of claims 1 to 6, wherein the angle formed by the bending axis and the absorption axis of the polarizing element is 40 ° to 50 °. 前記位相差層が液晶化合物の配向固化層である、請求項1から7のいずれかに記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to any one of claims 1 to 7, wherein the retardation layer is an orientation-solidified layer of a liquid crystal compound. 前記位相差層が単一層であり、該位相差層のRe(550)が100nm~190nmであり、該位相差層のRe(450)/Re(550)が0.8以上1未満であり、該位相差層の遅相軸と前記偏光子の吸収軸とのなす角度が40°~50°である、請求項8に記載の位相差層付偏光板。 The retardation layer is a single layer, the Re (550) of the retardation layer is 100 nm to 190 nm, and the Re (450) / Re (550) of the retardation layer is 0.8 or more and less than 1. The polarizing plate with a retardation layer according to claim 8, wherein the angle formed by the slow axis of the retardation layer and the absorption axis of the polarizing element is 40 ° to 50 °. 前記位相差層付偏光板が前記位相差層の外側に別の位相差層をさらに有し、該別の位相差層の屈折率特性がnz>nx=nyの関係を示す、請求項9に記載の位相差層付偏光板。 The ninth aspect of the present invention indicates that the polarizing plate with a retardation layer further has another retardation layer outside the retardation layer, and the refractive index characteristics of the other retardation layer show a relationship of nz> nz = ny. The above-mentioned polarizing plate with a retardation layer. 前記位相差層が、第1の液晶化合物の配向固化層と第2の液晶化合物の配向固化層との積層構造を有し、
該第1の液晶化合物の配向固化層のRe(550)が200nm~300nmであり、その遅相軸と前記偏光子の吸収軸とのなす角度が10°~20°であり、
該第2の液晶化合物の配向固化層のRe(550)が100nm~190nmであり、その遅相軸と該偏光子の吸収軸とのなす角度が70°~80°である、
請求項8に記載の位相差層付偏光板。
The retardation layer has a laminated structure of an oriented solidified layer of a first liquid crystal compound and an oriented solidified layer of a second liquid crystal compound.
The Re (550) of the oriented solidified layer of the first liquid crystal compound is 200 nm to 300 nm, and the angle formed by the slow axis thereof and the absorption axis of the polarizing element is 10 ° to 20 °.
The Re (550) of the oriented solidified layer of the second liquid crystal compound is 100 nm to 190 nm, and the angle between the slow axis thereof and the absorption axis of the substituent is 70 ° to 80 °.
The polarizing plate with a retardation layer according to claim 8.
請求項1から11のいずれかに記載の位相差層付偏光板を備える、画像表示装置。
An image display device comprising the polarizing plate with a retardation layer according to any one of claims 1 to 11.
JP2020178700A 2020-10-26 2020-10-26 Polarizing plate with retardation layer, and image display device Pending JP2022069815A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020178700A JP2022069815A (en) 2020-10-26 2020-10-26 Polarizing plate with retardation layer, and image display device
PCT/JP2021/020737 WO2022091471A1 (en) 2020-10-26 2021-05-31 Retardation-layer-equipped polarizing plate, and image display device
CN202180069199.1A CN116324604A (en) 2020-10-26 2021-05-31 Polarizing plate with retardation layer and image display device
KR1020237011361A KR20230056787A (en) 2020-10-26 2021-05-31 Polarizing plate with retardation layer and image display device
TW110135828A TW202219563A (en) 2020-10-26 2021-09-27 Retardation-layer-equipped polarizing plate, and image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020178700A JP2022069815A (en) 2020-10-26 2020-10-26 Polarizing plate with retardation layer, and image display device

Publications (1)

Publication Number Publication Date
JP2022069815A true JP2022069815A (en) 2022-05-12

Family

ID=81383896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020178700A Pending JP2022069815A (en) 2020-10-26 2020-10-26 Polarizing plate with retardation layer, and image display device

Country Status (5)

Country Link
JP (1) JP2022069815A (en)
KR (1) KR20230056787A (en)
CN (1) CN116324604A (en)
TW (1) TW202219563A (en)
WO (1) WO2022091471A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69923536T2 (en) 1998-10-30 2006-03-30 Teijin Ltd. PHASE DIFFERENTIAL FILM AND THIS USING OPTICAL DEVICE
KR102207545B1 (en) * 2014-09-25 2021-01-26 동우 화인켐 주식회사 Touch sensing electrode with polarizing plate and display device comprising the same, and manufacturing method thereof
KR20180061485A (en) * 2016-11-28 2018-06-08 삼성디스플레이 주식회사 Flexible display device
KR102207644B1 (en) * 2017-07-26 2021-01-25 후지필름 가부시키가이샤 Organic Electroluminescence Display
JP2019091023A (en) * 2017-11-10 2019-06-13 住友化学株式会社 Circularly polarizing plate
JP6866339B2 (en) * 2018-04-11 2021-04-28 住友化学株式会社 Polarizing plate and display device
JP6804168B2 (en) * 2018-10-15 2020-12-23 日東電工株式会社 Polarizing plate with retardation layer and image display device using it
JP7355583B2 (en) * 2018-10-15 2023-10-03 日東電工株式会社 Polarizing plate with retardation layer and image display device using the same
JP7334047B2 (en) * 2019-03-13 2023-08-28 日東電工株式会社 Image display device and circularly polarizing plate used in the image display device

Also Published As

Publication number Publication date
CN116324604A (en) 2023-06-23
KR20230056787A (en) 2023-04-27
TW202219563A (en) 2022-05-16
WO2022091471A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
JP6890160B2 (en) Polarizing plate with retardation layer and image display device using it
JP6999059B2 (en) Polarizing plate with retardation layer and image display device using it
JP2020064278A (en) Polarizing plate with phase difference layer and image display device using the same
JP2021063975A (en) Polarizing plate with retardation layer and organic electroluminescence display device using the same
JP2020064277A (en) Polarizing plate with phase difference layer and image display device using the same
JP6797499B2 (en) Polarizing plate with retardation layer and image display device using it
JP2020064279A (en) Polarizing plate with phase difference layer and image display device using the same
JP2020064280A (en) Polarizing plate with phase difference layer and image display device using the same
JP2020064274A (en) Polarizing plate with phase difference layer and image display device using the same
JP6804168B2 (en) Polarizing plate with retardation layer and image display device using it
WO2021070467A1 (en) Phase difference layer-attached polarization plate and organic electro luminescence display device using same
WO2020246321A1 (en) Production method for polarizing plate having phase difference layer and hard coat layer
WO2022091471A1 (en) Retardation-layer-equipped polarizing plate, and image display device
KR20220135162A (en) Polarizing plate and method for manufacturing polarizing plate
TWI827658B (en) Polarizing plate with retardation layer and image display device using the polarizing plate with retardation layer
JP6890162B2 (en) Polarizing plate with retardation layer and image display device using it
WO2022074872A1 (en) Method for manufacturing phase difference layer-equipped polarizing plate
WO2022107394A1 (en) Phase difference layer-equipped phase difference layer-equipped polarizing plate and organic electroluminescence display device using same
JP7046127B2 (en) An image display device including an optical laminate and a polarizing plate with a retardation layer of the optical laminate.
TWI827659B (en) Polarizing plate with retardation layer and image display device using the polarizing plate with retardation layer
JP2022037502A (en) Polarization plate with retardation layer and image display device
WO2020080171A1 (en) Polarizing plate with phase difference layer, and image display device using this
WO2020080173A1 (en) Polarizing plate with phase difference layer, and image display device using this
WO2020080172A1 (en) Polarizing plate with phase difference layer, and image display device using this
JP2022106205A (en) Laminate and method for manufacturing polarizing plate with retardation layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230712