WO2020080173A1 - Polarizing plate with phase difference layer, and image display device using this - Google Patents

Polarizing plate with phase difference layer, and image display device using this Download PDF

Info

Publication number
WO2020080173A1
WO2020080173A1 PCT/JP2019/039580 JP2019039580W WO2020080173A1 WO 2020080173 A1 WO2020080173 A1 WO 2020080173A1 JP 2019039580 W JP2019039580 W JP 2019039580W WO 2020080173 A1 WO2020080173 A1 WO 2020080173A1
Authority
WO
WIPO (PCT)
Prior art keywords
retardation layer
polarizing plate
film
layer
polarizing
Prior art date
Application number
PCT/JP2019/039580
Other languages
French (fr)
Japanese (ja)
Inventor
後藤 周作
寛教 柳沼
寛 友久
清水 享
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019183610A external-priority patent/JP6890162B2/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020217011104A priority Critical patent/KR102526025B1/en
Priority to CN201980067863.1A priority patent/CN112840251B/en
Publication of WO2020080173A1 publication Critical patent/WO2020080173A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to a polarizing plate with a retardation layer and an image display device using the same.
  • image display devices represented by liquid crystal display devices and electroluminescence (EL) display devices for example, organic EL display devices and inorganic EL display devices
  • EL electroluminescence
  • a polarizing plate and a retardation plate are typically used for the image display device.
  • a polarizing plate with a retardation layer in which a polarizing plate and a retardation plate are integrated is widely used (for example, Patent Document 1), and recently, there is a strong demand for thinner image display devices. Accordingly, there is an increasing demand for thinner polarizing plates with retardation layers.
  • the present invention has been made to solve the above-mentioned conventional problems, and a main object thereof is to provide a polarizing plate with a retardation layer, which is thin, excellent in handleability, and excellent in optical characteristics. .
  • the polarizing plate with a retardation layer of the present invention has a polarizing plate including a polarizing film, a protective layer on at least one side of the polarizing film, and a retardation layer.
  • the polarizing film is composed of a polyvinyl alcohol-based resin film containing a dichroic material, has a thickness of 8 ⁇ m or less, and has an orthogonal absorbance of 1.00 or less per 1 ⁇ m of thickness at a wavelength of 210 nm.
  • Re (550) of the retardation layer is 100 nm to 190 nm, Re (450) / Re (550) is 0.8 or more and less than 1, and the slow axis of the retardation layer and the absorption axis of the polarizing film.
  • the protective layer is composed of a base material having an elastic modulus of 3000 MPa or more.
  • the polarizing plate with a retardation layer has a total thickness of 90 ⁇ m or less, a front reflection hue of 3.5 or less, and the protective layer is made of a resin film having an elastic modulus of 3000 MPa or more. Composed.
  • the protective layer is composed of a triacetyl cellulose resin film.
  • the polarizing plate includes the polarizing film and the protective layer arranged only on one side of the polarizing film, and the retardation layer includes the polarizing film via an adhesive layer. Are pasted together.
  • the above-mentioned retardation layer comprises a polycarbonate resin film.
  • the retardation layer is composed of a polycarbonate-based resin film having a thickness of 40 ⁇ m or less.
  • the ratio (A 470 / A 600 ) of the orthogonal absorbance A 470 at a wavelength of 470 nm and the orthogonal absorbance A 600 at a wavelength of 600 nm of the polarizing film is 0.7 to 2.00.
  • the orthogonal b value of the polarizing film is greater than ⁇ 10 and +10 or less.
  • the iodine concentration of the polarizing film is 3.0% by weight or more.
  • the single transmittance of the polarizing film is 42.5% or more.
  • the above-mentioned polarizing plate with a retardation layer further has a conductive layer or an isotropic substrate with a conductive layer outside the above-mentioned retardation layer.
  • the polarizing plate with a retardation layer is elongated, the polarizing film has an absorption axis in the longitudinal direction, and the retardation layer is 40 ° to 40 ° with respect to the longitudinal direction.
  • an image display device is provided.
  • This image display device includes the above polarizing plate with a retardation layer.
  • the image display device is an organic electroluminescence display device or an inorganic electroluminescence display device.
  • a halide typically potassium iodide
  • PVA polyvinyl alcohol
  • two-stage stretching including auxiliary stretching in air and stretching in water, and drying and shrinking with a heating roll.
  • FIG. 1 is a schematic sectional view of a polarizing plate with a retardation layer according to one embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a polarizing plate with a retardation layer according to another embodiment of the present invention. It is a schematic diagram showing an example of dry shrinkage processing using a heating roll in a manufacturing method of a polarizing film used for a polarizing plate with a phase contrast layer of the present invention.
  • Refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (that is, the slow axis direction), and “ny” is the direction in the plane that is orthogonal to the slow axis (that is, the fast axis direction).
  • nz is the refractive index in the thickness direction.
  • In-plane retardation (Re) “Re ( ⁇ )” is an in-plane retardation measured with light having a wavelength of ⁇ nm at 23 ° C.
  • Re (550) is an in-plane retardation measured with light having a wavelength of 550 nm at 23 ° C.
  • Phase difference in the thickness direction (Rth) is a phase difference in the thickness direction measured with light having a wavelength of ⁇ nm at 23 ° C.
  • Rth (550) is a phase difference in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C.
  • FIG. 1 is a schematic sectional view of a polarizing plate with a retardation layer according to an embodiment of the present invention.
  • the polarizing plate 100 with a retardation layer of this embodiment includes a polarizing plate 10 and a retardation layer 20.
  • the polarizing plate 10 includes a polarizing film 11, a first protective layer 12 arranged on one side of the polarizing film 11, and a second protective layer 13 arranged on the other side of the polarizing film 11. .
  • one of the first protective layer 12 and the second protective layer 13 may be omitted.
  • the retardation layer 20 can also function as a protective layer for the polarizing film 11
  • the second protective layer 13 may be omitted.
  • the polarizing film is composed of a polyvinyl alcohol-based resin film containing a dichroic substance.
  • the thickness of the polarizing film is 8 ⁇ m or less, and the orthogonal absorbance (hereinafter referred to as unit absorbance) per 1 ⁇ m thickness at a wavelength of 210 nm is 1.00 or less.
  • a retardation layer-attached polarizing plate 101 may be provided with another retardation layer 50 and / or a conductive layer or an isotropic substrate 60 with a conductive layer.
  • Another retardation layer 50 and the conductive layer or the isotropic substrate 60 with a conductive layer are typically provided outside the retardation layer 20 (on the side opposite to the polarizing plate 10).
  • Another retardation layer 50 and the conductive layer or the isotropic substrate 60 with a conductive layer are typically provided in this order from the retardation layer 20 side.
  • the different retardation layer 50 and the conductive layer or the isotropic substrate 60 with a conductive layer are typically arbitrary layers provided as needed, and either one or both may be omitted.
  • the retardation layer 20 may be referred to as a first retardation layer
  • another retardation layer 50 may be referred to as a second retardation layer.
  • the polarizing plate with a retardation layer is a so-called inner layer in which a touch sensor is incorporated between an image display cell (for example, an organic EL cell) and the polarizing plate. It can be applied to a touch panel type input display device.
  • Re (550) of the first retardation layer 20 is 100 nm to 190 nm, and Re (450) / Re (550) is 0.8 or more and less than 1. Further, the angle formed by the slow axis of the first retardation layer 20 and the absorption axis of the polarizing film 11 is 40 ° to 50 °.
  • the above-described embodiments may be combined as appropriate, and the components in the above-described embodiments may be modified as is obvious in the art.
  • the configuration in which the isotropic substrate 60 with a conductive layer is provided outside the second retardation layer 50 is replaced with an optically equivalent configuration (for example, a laminate of the second retardation layer and the conductive layer). Good.
  • the polarizing plate with a retardation layer according to the embodiment of the present invention may further include another retardation layer.
  • Other optical properties of the retardation layer for example, refractive index properties, in-plane retardation, Nz coefficient, photoelastic coefficient), thickness, arrangement position and the like can be appropriately set according to the purpose.
  • the polarizing plate with a retardation layer of the present invention may have a sheet-like shape or a long shape.
  • "long shape” means an elongated shape having a length sufficiently longer than the width, and for example, an elongated shape having a length 10 times or more, preferably 20 times or more the width. Including.
  • the long polarizing plate with a retardation layer can be wound into a roll.
  • the polarizing plate and the retardation layer are also elongated.
  • the polarizing film preferably has an absorption axis in the longitudinal direction.
  • the first retardation layer is preferably an obliquely stretched film having a slow axis in a direction forming an angle of 40 ° to 50 ° with respect to the lengthwise direction. If the polarizing film and the first retardation layer have such a configuration, the polarizing plate with the retardation layer can be produced by roll-to-roll.
  • an adhesive layer (not shown) is provided on the opposite side of the retardation layer to the polarizing plate, and the polarizing plate with retardation layer can be attached to the image display cell. Further, it is preferable that a release film is temporarily attached to the surface of the pressure-sensitive adhesive layer until the polarizing plate with a retardation layer is used. By temporarily attaching the release film, the pressure-sensitive adhesive layer can be protected and the roll can be formed.
  • the front reflection hue ( ⁇ (a * 2 + b * 2 )) of the polarizing plate with a retardation layer is preferably 3.5 or less, more preferably 3.0 or less.
  • the front reflection hue is within the above range, undesired coloring is suppressed, and as a result, a polarizing plate with a retardation layer having excellent reflection characteristics can be obtained.
  • the total thickness of the polarizing plate with a retardation layer is preferably 140 ⁇ m or less, more preferably 120 ⁇ m or less, even more preferably 100 ⁇ m or less, even more preferably 90 ⁇ m or less, still more preferably 85 ⁇ m or less. is there.
  • the lower limit of the total thickness can be, for example, 30 ⁇ m.
  • an extremely thin polarizing plate with a retardation layer can be realized in this way.
  • Such a polarizing plate with a retardation layer can have extremely excellent flexibility and bending durability.
  • Such a polarizing plate with a retardation layer can be particularly suitably applied to a curved image display device and / or a bendable or bendable image display device.
  • the total thickness of the polarizing plate with a retardation layer constitutes the polarizing plate with a retardation layer except for an adhesive layer for adhering the polarizing plate with a retardation layer to an external adherend such as a panel or glass. It means the total thickness of all layers (that is, the total thickness of the polarizing plate with a retardation layer is a pressure-sensitive adhesive layer for sticking the polarizing plate with a retardation layer to an adjacent member such as an image display cell and its surface. Does not include the thickness of the release film that can be applied).
  • the polarizing film 11 has a thickness of 8 ⁇ m or less and a unit absorbance at a wavelength of 210 nm of 1.00 or less.
  • the polarizing film used in the present invention has an extremely small unit absorbance at a wavelength of 210 nm as compared with a normal thin polarizing film. This means that the content ratio of iodine ions (having absorption in the ultraviolet region near 210 nm) not forming a complex with PVA in the polarizing film is extremely small. In the polarizing film, iodine is roughly classified into iodine ions having absorption in the ultraviolet region and PVA-iodine complex having absorption in visible light.
  • the unit absorbance at a wavelength of 210 nm is preferably 0.80 or less, more preferably 0.60 or less.
  • the lower limit of the unit absorbance at the wavelength of 210 nm can be, for example, 0.20.
  • the unit absorbance is obtained by dividing the orthogonal absorbance A 210 obtained by the following formula based on the orthogonal transmittance Tc of the polarizing plate measured when obtaining the polarization degree described later by the thickness.
  • the unit absorbance of the polarizing plate substantially corresponds to the unit absorbance of the polarizing film.
  • Orthogonal absorbance log10 (100 / Tc) The use of a thin polarizing film having such characteristics is one of the features of the present invention.
  • the polarizing film has a unit absorbance as described above, and the ratio (A 550 / A 210 ) of the orthogonal absorbance A 550 at a wavelength of 550 nm and the orthogonal absorbance A 210 at a wavelength of 210 nm is preferably 1 or less. It is at least 0.4, more preferably at least 1.8, even more preferably at least 2.0, and particularly preferably at least 2.2.
  • the upper limit of the ratio (A 550 / A 210 ) may be 3.5, for example. This, in the polarizing film, decreasing the content ratio of iodine ion, PVA-I 5 having an absorption in the vicinity of 600 nm - means that the content ratio of the complex is increased.
  • the thickness of the polarizing film is preferably 1 ⁇ m to 8 ⁇ m, more preferably 1 ⁇ m to 7 ⁇ m, further preferably 2 ⁇ m to 5 ⁇ m, particularly preferably 2 ⁇ m to 4 ⁇ m, and particularly preferably 2 ⁇ m to 3 ⁇ m.
  • the polarizing film preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm.
  • the single transmittance of the polarizing film is preferably 49.0% or less, more preferably 48.0% or less.
  • the simple substance transmittance is preferably 41.5% or more, more preferably 42.0% or more, and further preferably 42.5% or more.
  • the polarization degree of the polarizing film is preferably 99.990% or more, and preferably 99.998% or less.
  • the single-piece transmittance is typically a Y value measured using an ultraviolet-visible spectrophotometer and subjected to luminosity correction.
  • the polarization degree is typically obtained by the following formula based on the parallel transmittance Tp and the orthogonal transmittance Tc measured by using an ultraviolet-visible spectrophotometer and subjected to the visibility correction.
  • Polarization degree (%) ⁇ (Tp-Tc) / (Tp + Tc) ⁇ 1/2 ⁇ 100
  • the transmittance of a thin polarizing film having a thickness of 8 ⁇ m or less is typically obtained by laminating a polarizing film (refractive index of surface: 1.53) and a protective film (refractive index: 1.50). It is measured using an ultraviolet-visible spectrophotometer with the body as the measurement target.
  • a polarizing film reffractive index of surface: 1.53
  • a protective film reffractive index: 1.50
  • the reflectance at the interface of each layer may change, and as a result, the measured transmittance may change.
  • the measured value of the transmittance may be corrected according to the refractive index of the surface of the protective film in contact with the air interface.
  • the transmittance correction value C is expressed by the following equation using the reflectance R 1 (transmission axis reflectance) of polarized light parallel to the transmission axis at the interface between the protective film and the air layer.
  • R 0 ((1.50-1) 2 /(1.50+1) 2) ⁇ (T 1/100)
  • R 1 ((n 1 -1 ) 2 / (n 1 +1) 2) ⁇ (T 1/100)
  • R 0 is the transmission axis reflectance when a protective film having a refractive index of 1.50 is used
  • n 1 is the refractive index of the protective film used
  • T 1 is the transmittance of the polarizing film. Is.
  • the correction amount C is about 0.2%.
  • the change amount of the correction value C when the transmittance T 1 of the polarizing film is changed by 2% is 0.03% or less, and the transmittance of the polarizing film is the correction value C.
  • the effect on the value of is limited.
  • appropriate correction can be performed according to the amount of absorption.
  • the polarizing film has a ratio (A 470 / A 600 ) of the orthogonal absorbance A 470 at a wavelength of 470 nm and the orthogonal absorbance A 600 at a wavelength of 600 nm of 0.7 or more, more preferably 0.75 or more, It is more preferably 0.80 or more, and particularly preferably 0.85 or more.
  • the ratio (A 470 / A 600 ) is preferably 2.00 or less, more preferably 1.33 or less.
  • the ratio (A 470 / A 600 ) is in such a range, the content ratio of the PVA-I3-complex having absorption near 480 nm can be maintained without being significantly reduced. As a result, good polarization performance can be realized over the entire visible light range.
  • the orthogonal b value of the polarizing film is, for example, larger than ⁇ 10, preferably ⁇ 7 or more, and more preferably ⁇ 5 or more.
  • the orthogonal b value is preferably +10 or less, more preferably +5 or less.
  • the orthogonal b value shows the hue when the polarizing film (finally, the polarizing plate with the retardation layer) is arranged in the orthogonal state.
  • the larger the absolute value of this numerical value the orthogonal hue (black in the image display device). (Indication) means that it looks tint.
  • the orthogonal b value is as low as ⁇ 10 or less, the black display looks blue and the display performance is deteriorated. That is, according to the embodiment of the present invention, it is possible to obtain a polarizing plate with a retardation layer that can realize an excellent hue during black display.
  • the orthogonal b value can be measured by a spectrophotometer represented by V-7100.
  • the iodine concentration of the polarizing film is preferably 3% by weight or more, more preferably 4% by weight or more, and further preferably 6% by weight or more.
  • the upper limit of iodine concentration may be, for example, 12% by weight.
  • the polarizing film can be typically manufactured by using a laminate of two or more layers.
  • a specific example of the polarizing film obtained by using the laminated body is a polarizing film obtained by using a laminated body of a resin base material and a PVA-based resin layer formed by coating on the resin base material.
  • a polarizing film obtained by using a laminate of a resin base material and a PVA-based resin layer applied and formed on the resin base material is, for example, a resin base material obtained by applying a PVA-based resin solution to the resin base material and drying it.
  • a PVA-based resin layer is formed thereon to obtain a laminate of a resin substrate and a PVA-based resin layer; the laminate is stretched and dyed to form the PVA-based resin layer as a polarizing film. obtain.
  • the stretching typically includes dipping the laminate in a boric acid aqueous solution and stretching. Further, the stretching may further include optionally stretching the laminate in air at a high temperature (for example, 95 ° C. or higher) before stretching in the aqueous boric acid solution.
  • the obtained resin base material / polarizing film laminate may be used as it is (that is, the resin base material may be used as a protective layer of the polarizing film), or the resin base material is peeled from the resin base material / polarizing film laminate.
  • any appropriate protective layer may be laminated and used on the peeled surface depending on the purpose. Details of the method for producing such a polarizing film are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. The entire description of the publication is incorporated herein by reference.
  • the method for manufacturing a polarizing film is typically a laminate of a polyvinyl alcohol resin layer containing a halide and a polyvinyl alcohol resin on one side of a long thermoplastic resin substrate. And subjecting the laminate to an in-air auxiliary stretching treatment, a dyeing treatment, an underwater stretching treatment, and a drying shrinkage treatment of shrinking 2% or more in the width direction by heating while conveying in the longitudinal direction in this order. including.
  • This can provide a polarizing film having excellent optical characteristics, having a thickness of 8 ⁇ m or less and a unit absorbance at a wavelength of 210 nm of 1.00 or less.
  • the crystallinity of PVA can be increased and high optical characteristics can be achieved even when PVA is applied onto the thermoplastic resin.
  • by preliminarily enhancing the orientation of PVA it is possible to prevent problems such as reduction in orientation and dissolution of PVA when immersed in water in the subsequent dyeing step or stretching step, and high optical characteristics. Can be achieved.
  • the PVA-based resin layer is dipped in a liquid, the disorder of the alignment of the polyvinyl alcohol molecules and the deterioration of the orientation can be suppressed as compared with the case where the PVA-based resin layer does not contain a halide.
  • optical characteristics of the polarizing film obtained through a treatment process such as a dyeing treatment and an underwater stretching treatment performed by immersing the laminate in a liquid can improve the optical characteristics of the polarizing film obtained through a treatment process such as a dyeing treatment and an underwater stretching treatment performed by immersing the laminate in a liquid. Further, the optical characteristics can be improved by shrinking the laminate in the width direction by the dry shrinking treatment.
  • the first protective layer 12 and the second protective layer 13 are each formed of any suitable film that can be used as a protective layer of a polarizing film.
  • the material serving as the main component of the film include cellulose resins such as triacetyl cellulose (TAC), polyester resins, polyvinyl alcohol resins, polycarbonate resins, polyamide resins, polyimide resins, polyether sulfone resins, and polysulfone resins.
  • TAC triacetyl cellulose
  • polyester resins polyvinyl alcohol resins
  • polycarbonate resins polyamide resins
  • polyimide resins polyether sulfone resins
  • polysulfone resins polysulfone resins.
  • thermosetting resin such as a (meth) acrylic resin, a urethane resin, a (meth) acrylic urethane resin, an epoxy resin, a silicone resin, or an ultraviolet curable resin
  • a glassy polymer such as a siloxane polymer may be used.
  • the polymer film described in JP 2001-343529 A (WO 01/37007) can also be used. Examples of the material of this film include a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in the side chain.
  • the polymer film can be, for example, an extruded product of the resin composition.
  • the protective layer (particularly, the protective layer on the viewing side) includes a TAC resin. By using the TAC resin film as the protective layer, the bending durability can be improved.
  • the polarizing plate with a retardation layer of the present invention is typically arranged on the viewing side of the image display device as described later, and the first protective layer 12 is typically arranged on the viewing side. Therefore, the first protective layer 12 may be subjected to surface treatment such as hard coat treatment, antireflection treatment, sticking prevention treatment, and antiglare treatment, if necessary. Further / or, if necessary, the first protective layer 12 is processed to improve the visibility when viewed through polarized sunglasses (typically, a (elliptical) circular polarization function is added, (Giving an ultrahigh phase difference) may be applied. By performing such a process, excellent visibility can be realized even when the display screen is viewed through a polarizing lens such as polarized sunglasses. Therefore, the polarizing plate with a retardation layer can be suitably applied to an image display device that can be used outdoors.
  • polarized sunglasses typically, a (elliptical) circular polarization function is added, (Giving an ultrahigh phase difference
  • the thickness of the first protective layer is preferably 5 ⁇ m to 80 ⁇ m, more preferably 10 ⁇ m to 40 ⁇ m, still more preferably 10 ⁇ m to 35 ⁇ m.
  • the thickness of the outer protective layer is the thickness including the thickness of the surface treated layer.
  • the second protective layer 13 is preferably optically isotropic in one embodiment.
  • “optically isotropic” means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is ⁇ 10 nm to +10 nm.
  • the second protective layer 13 may be a retardation layer having any appropriate retardation value in one embodiment.
  • the in-plane retardation Re (550) of the retardation layer is, for example, 110 nm to 150 nm.
  • the thickness of the second protective layer is preferably 5 ⁇ m to 80 ⁇ m, more preferably 10 ⁇ m to 40 ⁇ m, still more preferably 10 ⁇ m to 30 ⁇ m. From the viewpoint of reduction in thickness and weight, the second protective layer can be preferably omitted.
  • the polarizing film is, for example, a polyvinyl alcohol resin layer (PVA resin layer) containing a halide and a polyvinyl alcohol resin (PVA resin) on one side of a long thermoplastic resin substrate.
  • PVA resin layer polyvinyl alcohol resin layer
  • PVA resin polyvinyl alcohol resin layer
  • the content of the halide in the PVA-based resin layer is preferably 5 to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin.
  • the drying shrinkage treatment is preferably performed using a heating roll, and the temperature of the heating roll is preferably 60 ° C. to 120 ° C.
  • the shrinkage ratio in the width direction of the laminate by the dry shrinkage treatment is preferably 2% or more.
  • the polarizing film described in the above section B-1 can be obtained.
  • a laminate including a PVA-based resin layer containing a halide is prepared, and the laminate is stretched in multiple stages including in-air auxiliary stretching and underwater stretching, and the laminated laminate is heated with a heating roll. It is possible to obtain a polarizing film having excellent optical characteristics (typically, single transmittance and unit absorbance at a wavelength of 210 nm).
  • thermoplastic resin substrate and the PVA-based resin layer any suitable method can be adopted.
  • a PVA-based resin layer is formed on the thermoplastic resin substrate by applying a coating liquid containing a halide and a PVA-based resin on the surface of the thermoplastic resin substrate and drying the coating liquid.
  • the content of the halide in the PVA-based resin layer is preferably 5 to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin.
  • any appropriate method can be adopted as the method for applying the application liquid.
  • a roll coating method, a spin coating method, a wire bar coating method, a dip coating method, a die coating method, a curtain coating method, a spray coating method, a knife coating method (a comma coating method, etc.) and the like can be mentioned.
  • the coating / drying temperature of the coating liquid is preferably 50 ° C. or higher.
  • the thickness of the PVA resin layer is preferably 3 ⁇ m to 40 ⁇ m, more preferably 3 ⁇ m to 20 ⁇ m.
  • the thermoplastic resin substrate Before the PVA-based resin layer is formed, the thermoplastic resin substrate may be subjected to surface treatment (for example, corona treatment), or the easily adhesive layer may be formed on the thermoplastic resin substrate. By performing such a treatment, the adhesion between the thermoplastic resin base material and the PVA-based resin layer can be improved.
  • surface treatment for example, corona treatment
  • the easily adhesive layer may be formed on the thermoplastic resin substrate.
  • Thermoplastic resin substrate The thickness of the thermoplastic resin substrate is preferably 20 ⁇ m to 300 ⁇ m, more preferably 50 ⁇ m to 200 ⁇ m. If it is less than 20 ⁇ m, it may be difficult to form the PVA-based resin layer. If it exceeds 300 ⁇ m, it may take a long time for the thermoplastic resin substrate to absorb water in the below-described underwater stretching treatment, and an excessive load may be required for stretching.
  • the thermoplastic resin base material preferably has a water absorption of 0.2% or more, and more preferably 0.3% or more.
  • the thermoplastic resin base material absorbs water, and the water acts as a plasticizer and can be plasticized. As a result, the stretching stress can be significantly reduced, and stretching can be performed at a high ratio.
  • the water absorption of the thermoplastic resin substrate is preferably 3.0% or less, more preferably 1.0% or less.
  • thermoplastic resin substrate can be adjusted, for example, by introducing a modifying group into the constituent material.
  • the water absorption rate is a value determined according to JIS K7209.
  • the glass transition temperature (Tg) of the thermoplastic resin base material is preferably 120 ° C. or lower.
  • Tg The glass transition temperature of the thermoplastic resin base material.
  • the temperature is preferably 100 ° C. or lower, and more preferably 90 ° C. or lower.
  • the glass transition temperature of the thermoplastic resin substrate is preferably 60 ° C or higher.
  • the PVA-based resin layer can be stretched well at a suitable temperature (for example, about 60 ° C.).
  • the glass transition temperature of the thermoplastic resin substrate can be adjusted, for example, by introducing a modifying group into the constituent material and heating it with a crystallization material.
  • the glass transition temperature (Tg) is a value determined according to JIS K7121.
  • thermoplastic resin can be adopted as the constituent material of the thermoplastic resin base material.
  • the thermoplastic resin include ester-based resins such as polyethylene terephthalate-based resins, cycloolefin-based resins such as norbornene-based resins, olefin-based resins such as polypropylene, polyamide-based resins, polycarbonate-based resins, and copolymer resins thereof. Is mentioned. Among these, norbornene-based resins and amorphous polyethylene terephthalate-based resins are preferable.
  • an amorphous (non-crystallized) polyethylene terephthalate resin is preferably used.
  • an amorphous (hard to crystallize) polyethylene terephthalate resin is particularly preferably used.
  • Specific examples of the amorphous polyethylene terephthalate resin include a copolymer further containing isophthalic acid and / or cyclohexanedicarboxylic acid as a dicarboxylic acid, and a copolymer further containing cyclohexanedimethanol or diethylene glycol as a glycol.
  • the thermoplastic resin base material is composed of a polyethylene terephthalate resin having an isophthalic acid unit.
  • a thermoplastic resin substrate has extremely excellent stretchability and can suppress crystallization during stretching. It is considered that this is because the main chain is largely bent by introducing the isophthalic acid unit.
  • the polyethylene terephthalate resin has a terephthalic acid unit and an ethylene glycol unit.
  • the content ratio of the isophthalic acid unit is preferably 0.1 mol% or more, more preferably 1.0 mol% or more based on the total of all repeating units. This is because a thermoplastic resin substrate having extremely excellent stretchability can be obtained.
  • the content ratio of the isophthalic acid unit is preferably 20 mol% or less, more preferably 10 mol% or less, based on the total of all repeating units.
  • the crystallinity can be favorably increased in the drying shrinkage treatment described below.
  • the thermoplastic resin substrate may be stretched in advance (before forming the PVA-based resin layer).
  • the elongated thermoplastic resin substrate is stretched in the lateral direction.
  • the lateral direction is preferably a direction orthogonal to the stretching direction of the laminate described below.
  • orthogonal includes the case of being substantially orthogonal.
  • substantially orthogonal includes the case of 90 ° ⁇ 5.0 °, preferably 90 ° ⁇ 3.0 °, and more preferably 90 ° ⁇ 1.0 °.
  • the stretching temperature of the thermoplastic resin substrate is preferably Tg-10 ° C to Tg + 50 ° C with respect to the glass transition temperature (Tg).
  • the stretch ratio of the thermoplastic resin substrate is preferably 1.5 to 3.0 times.
  • thermoplastic resin substrate Any appropriate method can be adopted as a method for stretching the thermoplastic resin substrate. Specifically, it may be fixed-end stretching or free-end stretching. The stretching method may be dry or wet. Stretching of the thermoplastic resin substrate may be performed in one stage or in multiple stages. When performing in multiple stages, the above-mentioned draw ratio is a product of the draw ratio of each stage.
  • the coating liquid contains a halide and a PVA-based resin as described above.
  • the coating liquid is typically a solution prepared by dissolving the halide and the PVA resin in a solvent.
  • the solvent include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylolpropane, and amines such as ethylenediamine and diethylenetriamine. These can be used alone or in combination of two or more. Of these, water is preferable.
  • the PVA-based resin concentration of the solution is preferably 3 to 20 parts by weight with respect to 100 parts by weight of the solvent. With such a resin concentration, it is possible to form a uniform coating film in close contact with the thermoplastic resin substrate.
  • the content of the halide in the coating liquid is preferably 5 to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin.
  • Additives may be added to the coating liquid.
  • the additive include a plasticizer and a surfactant.
  • the plasticizer include polyhydric alcohols such as ethylene glycol and glycerin.
  • the surfactant include nonionic surfactants. These can be used for the purpose of further improving the uniformity, dyeability and stretchability of the obtained PVA-based resin layer.
  • any suitable resin can be adopted as the PVA-based resin.
  • Examples thereof include polyvinyl alcohol and ethylene-vinyl alcohol copolymer.
  • Polyvinyl alcohol is obtained by saponifying polyvinyl acetate.
  • the ethylene-vinyl alcohol copolymer can be obtained by saponifying an ethylene-vinyl acetate copolymer.
  • the degree of saponification of the PVA-based resin is usually 85 mol% to 100 mol%, preferably 95.0 mol% to 99.95 mol%, more preferably 99.0 mol% to 99.93 mol%. .
  • the degree of saponification can be determined according to JIS K 6726-1994. By using a PVA-based resin having such a saponification degree, a polarizing film having excellent durability can be obtained. If the degree of saponification is too high, gelation may occur.
  • the average degree of polymerization of the PVA resin can be appropriately selected according to the purpose.
  • the average degree of polymerization is usually 1000 to 10000, preferably 1200 to 4500, and more preferably 1500 to 4300.
  • the average degree of polymerization can be determined according to JIS K 6726-1994.
  • any suitable halide can be adopted as the above-mentioned halide.
  • examples include iodide and sodium chloride.
  • examples of iodides include potassium iodide, sodium iodide, and lithium iodide. Among these, potassium iodide is preferable.
  • the amount of halide in the coating solution is preferably 5 to 20 parts by weight with respect to 100 parts by weight of PVA-based resin, and more preferably 10 to 15 parts by weight with respect to 100 parts by weight of PVA-based resin. It is a department. If the amount of the halide exceeds 20 parts by weight with respect to 100 parts by weight of the PVA-based resin, the halide may bleed out and the polarizing film finally obtained may become cloudy.
  • the orientation of the polyvinyl alcohol molecules in the PVA-based resin increases, but when the stretched PVA-based resin layer is immersed in a liquid containing water, the polyvinyl alcohol molecules The orientation may be disturbed and the orientation may be deteriorated.
  • the laminate when a laminate of a thermoplastic resin base material and a PVA-based resin layer is stretched in boric acid water, the laminate is heated in boric acid water at a relatively high temperature in order to stabilize the stretching of the thermoplastic resin base material. In the case of stretching, the above-mentioned tendency of decreasing the degree of orientation is remarkable.
  • stretching of a PVA film alone in boric acid water is generally performed at 60 ° C.
  • stretching of a laminate of A-PET (thermoplastic resin base material) and PVA-based resin layer is performed. It is carried out at a high temperature of around 70 ° C.
  • the orientation of PVA in the initial stage of stretching may be lowered in a stage before being raised by the underwater stretching.
  • by forming a laminate of a PVA-based resin layer containing a halide and a thermoplastic resin substrate and stretching the laminate at high temperature in air (auxiliary stretching) before stretching in boric acid water.
  • the crystallization of the PVA-based resin in the PVA-based resin layer of the laminate after the auxiliary stretching can be promoted.
  • the PVA-based resin layer when the PVA-based resin layer is immersed in the liquid, the disorder of the alignment of the polyvinyl alcohol molecules and the deterioration of the orientation can be suppressed as compared with the case where the PVA-based resin layer does not contain a halide.
  • This can improve the optical characteristics of the polarizing film obtained through a treatment process such as a dyeing treatment and an underwater stretching treatment performed by immersing the laminate in a liquid.
  • auxiliary stretching treatment In-air auxiliary stretching treatment
  • a two-stage stretching method is selected in which dry stretching (auxiliary stretching) and boric acid in-water stretching are combined.
  • auxiliary stretching like two-stage stretching, it is possible to perform stretching while suppressing crystallization of the thermoplastic resin substrate, and excessive crystallization of the thermoplastic resin substrate in subsequent boric acid underwater stretching. Thereby, the problem that the stretchability is lowered can be solved, and the laminate can be stretched at a higher ratio.
  • the PVA-based resin on the thermoplastic resin base material in order to suppress the influence of the glass transition temperature of the thermoplastic resin base material, compared with the case of applying the PVA-based resin on a normal metal drum.
  • the crystallization of the PVA-based resin becomes relatively low, which may cause a problem that sufficient optical characteristics cannot be obtained.
  • the crystallinity of the PVA-based resin can be increased even when the PVA-based resin is applied on the thermoplastic resin, and high optical characteristics can be achieved.
  • the orientation of the PVA-based resin it is possible to prevent problems such as deterioration of the orientation of the PVA-based resin and dissolution when the PVA-based resin is immersed in water in the subsequent dyeing step or stretching step. It becomes possible to achieve high optical characteristics.
  • the stretching method for the in-air auxiliary stretching may be fixed-end stretching (for example, a stretching method using a tenter stretching machine) or free-end stretching (for example, a uniaxial stretching method in which a laminate is passed between rolls having different peripheral speeds).
  • free-end stretching can be positively adopted in order to obtain high optical characteristics.
  • the in-air stretching treatment includes a heating roll stretching step of stretching the laminate by the difference in peripheral speed between the heating rolls while conveying the laminate in the longitudinal direction.
  • the in-air stretching treatment typically includes a zone stretching step and a heating roll stretching step.
  • the order of the zone stretching step and the heating roll stretching step is not limited, and the zone stretching step may be performed first or the heating roll stretching step may be performed first.
  • the zone stretching step may be omitted.
  • the zone stretching step and the heated roll stretching step are performed in this order.
  • stretching is performed by gripping the film end portion and widening the distance between the tenter in the flow direction (expansion of the distance between the tenter is the stretching ratio).
  • the distance of the tenter in the width direction is set to be arbitrarily close.
  • it can be set so as to be closer to the free end stretching with respect to the stretching ratio in the machine direction.
  • the shrinkage ratio in the width direction is calculated by (1/1 / drawing ratio) 1/2 .
  • Assisted stretching in the air may be performed in one stage or in multiple stages.
  • the draw ratio is the product of the draw ratios in each stage.
  • the stretching direction in the in-air auxiliary stretching is preferably substantially the same as the stretching direction in the underwater stretching.
  • the draw ratio in the in-air auxiliary drawing is preferably 2.0 to 3.5 times.
  • the maximum draw ratio when the in-air auxiliary drawing and the underwater drawing are combined is preferably 5.0 times or more, more preferably 5.5 times or more, and further preferably 6.0 times, with respect to the original length of the laminate. That is all.
  • the "maximum stretch ratio” means a stretch ratio immediately before the laminated body breaks, and separately confirms the stretch ratio at which the laminated body breaks, and means a value 0.2 lower than the value.
  • the stretching temperature of the in-air auxiliary stretching can be set to any appropriate value depending on the forming material of the thermoplastic resin substrate, the stretching method and the like.
  • the stretching temperature is preferably the glass transition temperature (Tg) or higher of the thermoplastic resin substrate, more preferably the glass transition temperature (Tg) + 10 ° C. or higher of the thermoplastic resin substrate, and particularly preferably Tg + 15 ° C. or higher.
  • the upper limit of the stretching temperature is preferably 170 ° C.
  • the crystallization index of the PVA-based resin after the in-air auxiliary stretching is preferably 1.3 to 1.8, more preferably 1.4 to 1.7.
  • an insolubilization treatment is performed after the in-air auxiliary stretching treatment and before the underwater stretching treatment or the dyeing treatment.
  • the insolubilization treatment is typically performed by immersing the PVA-based resin layer in an aqueous boric acid solution.
  • concentration of the boric acid aqueous solution is preferably 1 to 4 parts by weight with respect to 100 parts by weight of water.
  • the liquid temperature of the insolubilizing bath (boric acid aqueous solution) is preferably 20 ° C to 50 ° C.
  • the above dyeing treatment is typically performed by dyeing the PVA-based resin layer with a dichroic material (typically iodine). Specifically, it is performed by adsorbing iodine on the PVA resin layer.
  • adsorption method include a method of immersing the PVA-based resin layer (laminate) in a dyeing solution containing iodine, a method of applying the dyeing solution to the PVA-based resin layer, and a method of applying the dyeing solution to the PVA-based resin layer.
  • Examples include a method of spraying.
  • a preferred method is to immerse the laminate in a dyeing solution (dyeing bath). This is because iodine can be favorably adsorbed.
  • the dye solution is preferably an iodine aqueous solution.
  • the iodine content is preferably 0.05 to 0.5 parts by weight with respect to 100 parts by weight of water.
  • iodide examples include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide.
  • potassium iodide is preferable.
  • the content of iodide is preferably 0.1 to 10 parts by weight, more preferably 0.3 to 5 parts by weight, based on 100 parts by weight of water.
  • the temperature of the dyeing solution during dyeing is preferably 20 ° C. to 50 ° C. in order to suppress dissolution of the PVA-based resin.
  • the immersion time is preferably 5 seconds to 5 minutes, more preferably 30 seconds to 90 seconds in order to secure the transmittance of the PVA-based resin layer.
  • the dyeing conditions can be set so that the single transmittance of the finally obtained polarizing film and the unit absorbance at a wavelength of 210 nm have desired values.
  • a dyeing condition preferably, an iodine aqueous solution is used as the dyeing solution, and the ratio of the contents of iodine and potassium iodide in the iodine aqueous solution is 1: 5 to 1:20.
  • the ratio of the contents of iodine and potassium iodide in the aqueous iodine solution is preferably 1: 5 to 1:10.
  • the boric acid contained in the treatment bath is mixed in the dyeing bath.
  • the concentration of boric acid in the dyeing bath may change with time, resulting in unstable dyeability.
  • the upper limit of the boric acid concentration in the dyeing bath is preferably 4 parts by weight, more preferably 2 parts by weight, relative to 100 parts by weight of water. Adjusted.
  • the lower limit of the concentration of boric acid in the dyeing bath is preferably 0.1 part by weight, more preferably 0.2 part by weight, still more preferably 0.5 part by weight, relative to 100 parts by weight of water.
  • the dyeing process is performed using a dyeing bath in which boric acid is preliminarily blended. This can reduce the rate of change in boric acid concentration when boric acid in the treatment bath is mixed in the dyeing bath.
  • the amount of boric acid blended in the dyeing bath in advance (that is, the content of boric acid not derived from the treatment bath) is preferably 0.1 part by weight to 2 parts by weight with respect to 100 parts by weight of water. , And more preferably 0.5 to 1.5 parts by weight.
  • a crosslinking treatment is performed after the dyeing treatment and before the underwater stretching treatment.
  • the cross-linking treatment is typically performed by immersing the PVA-based resin layer in an aqueous boric acid solution.
  • the concentration of the aqueous boric acid solution is preferably 1 part by weight to 5 parts by weight with respect to 100 parts by weight of water.
  • the iodide content is preferably 1 to 5 parts by weight with respect to 100 parts by weight of water. Specific examples of iodide are as described above.
  • the liquid temperature of the crosslinking bath is preferably 20 ° C. to 50 ° C.
  • the underwater stretching treatment is performed by immersing the laminate in a stretching bath. According to the underwater stretching treatment, stretching can be performed at a temperature lower than the glass transition temperature (typically about 80 ° C.) of the thermoplastic resin substrate or the PVA-based resin layer, and the PVA-based resin layer is crystallized. It is possible to stretch at a high magnification while suppressing the above. As a result, a polarizing film having excellent optical properties can be manufactured.
  • any appropriate method can be adopted as the stretching method of the laminate. Specifically, it may be fixed-end stretching or free-end stretching (for example, a method of uniaxially stretching by passing a laminate between rolls having different peripheral speeds). Preferably, free end stretching is selected. Stretching of the laminate may be performed in one stage or in multiple stages. When performing in multiple stages, the stretching ratio (maximum stretching ratio) of the laminate to be described later is the product of the stretching ratios in each stage.
  • the underwater stretching is preferably performed by immersing the laminate in a boric acid aqueous solution (boric acid underwater stretching).
  • a boric acid aqueous solution boric acid underwater stretching
  • the PVA-based resin layer can be provided with rigidity that can withstand the tension applied during stretching and water resistance that does not dissolve in water.
  • boric acid can generate a tetrahydroxyborate anion in an aqueous solution to crosslink with a PVA-based resin by hydrogen bond.
  • the PVA-based resin layer can be imparted with rigidity and water resistance, can be favorably stretched, and a polarizing film having excellent optical characteristics can be manufactured.
  • the boric acid aqueous solution is preferably obtained by dissolving boric acid and / or borate in water as a solvent.
  • the boric acid concentration is preferably 1 part by weight to 10 parts by weight, more preferably 2.5 parts by weight to 6 parts by weight, particularly preferably 3 parts by weight to 5 parts by weight, relative to 100 parts by weight of water. Is.
  • concentration of boric acid By setting the concentration of boric acid to 1 part by weight or more, dissolution of the PVA-based resin layer can be effectively suppressed, and a polarizing film with higher characteristics can be manufactured.
  • an aqueous solution obtained by dissolving a boron compound such as borax, glyoxal, glutaraldehyde, or the like in a solvent can also be used.
  • iodide is added to the above stretching bath (boric acid aqueous solution).
  • iodide elution of iodine adsorbed on the PVA-based resin layer can be suppressed.
  • Specific examples of iodide are as described above.
  • the concentration of iodide is preferably 0.05 to 15 parts by weight, more preferably 0.5 to 8 parts by weight with respect to 100 parts by weight of water.
  • the stretching temperature (liquid temperature of the stretching bath) is preferably 40 ° C to 85 ° C, more preferably 60 ° C to 75 ° C. At such a temperature, the PVA-based resin layer can be stretched at a high magnification while suppressing the dissolution.
  • the glass transition temperature (Tg) of the thermoplastic resin substrate is preferably 60 ° C. or higher in relation to the formation of the PVA-based resin layer. In this case, if the stretching temperature is lower than 40 ° C., it may not be possible to stretch well even if the plasticization of the thermoplastic resin substrate by water is taken into consideration.
  • the higher the temperature of the stretching bath the higher the solubility of the PVA-based resin layer, and there is a possibility that excellent optical characteristics may not be obtained.
  • the immersion time of the laminate in the stretching bath is preferably 15 seconds to 5 minutes.
  • Draw ratio by underwater drawing is preferably 1.5 times or more, more preferably 3.0 times or more.
  • the total draw ratio of the laminated body is preferably 5.0 times or more, more preferably 5.5 times or more, with respect to the original length of the laminated body.
  • Such a high draw ratio can be achieved by adopting an underwater drawing method (boric acid underwater drawing).
  • the drying shrinkage treatment may be performed by zone heating performed by heating the entire zone, or may be performed by heating the transport roll (using a so-called heating roll) (heating roll drying method). Both are preferably used.
  • a heating roll By drying using a heating roll, it is possible to efficiently suppress the curling of the laminate by heating and to produce a polarizing film having an excellent appearance.
  • the crystallization of the thermoplastic resin substrate can be efficiently promoted to increase the crystallinity, which is relatively low. Even at the drying temperature, the crystallinity of the thermoplastic resin substrate can be satisfactorily increased.
  • the rigidity of the thermoplastic resin base material increases, and the thermoplastic resin base material can withstand the shrinkage of the PVA-based resin layer due to drying, and curling is suppressed.
  • the laminate can be dried while being kept flat, so that not only curling but also wrinkling can be suppressed.
  • the laminated body can be improved in optical characteristics by shrinking in the width direction by a drying shrinkage treatment. This is because the orientation of PVA and the PVA / iodine complex can be effectively enhanced.
  • the shrinkage ratio in the width direction of the laminate by the dry shrinkage treatment is preferably 1% to 10%, more preferably 2% to 8%, and particularly preferably 4% to 6%.
  • FIG. 3 is a schematic diagram showing an example of the drying shrinkage treatment.
  • the laminate 200 is dried while being transported by the transport rolls R1 to R6 heated to a predetermined temperature and the guide rolls G1 to G4.
  • the transport rolls R1 to R6 are arranged so as to alternately and continuously heat the surface of the PVA resin layer and the surface of the thermoplastic resin substrate.
  • one surface of the laminate 200 for example, thermoplastic
  • the transport rolls R1 to R6 may be arranged so that only the resin substrate surface) is continuously heated.
  • the drying conditions can be controlled by adjusting the heating temperature of the transfer rolls (heating roll temperature), the number of heating rolls, the contact time with the heating rolls, and the like.
  • the temperature of the heating roll is preferably 60 ° C to 120 ° C, more preferably 65 ° C to 100 ° C, and particularly preferably 70 ° C to 80 ° C.
  • the crystallinity of the thermoplastic resin can be favorably increased, curling can be favorably suppressed, and an optical laminate having extremely excellent durability can be manufactured.
  • the temperature of the heating roll can be measured with a contact thermometer. In the illustrated example, six transport rolls are provided, but there is no particular limitation as long as there are multiple transport rolls.
  • the number of transport rolls is usually 2 to 40, preferably 4 to 30.
  • the contact time (total contact time) between the laminate and the heating roll is preferably 1 second to 300 seconds, more preferably 1 to 20 seconds, and further preferably 1 to 10 seconds.
  • the heating roll may be provided in a heating furnace (for example, an oven) or may be provided in a normal production line (under room temperature environment). Preferably, it is provided in a heating furnace equipped with a blowing means.
  • a heating furnace equipped with a blowing means.
  • the temperature of hot air drying is preferably 30 ° C to 100 ° C.
  • the hot air drying time is preferably 1 to 300 seconds.
  • the wind speed of the hot air is preferably about 10 m / s to 30 m / s. The wind speed is the wind speed in the heating furnace, and can be measured by a mini vane type digital anemometer.
  • a washing treatment is performed after the underwater stretching treatment and before the drying shrinkage treatment.
  • the cleaning treatment is typically performed by immersing the PVA-based resin layer in an aqueous potassium iodide solution.
  • the first retardation layer 20 may have any appropriate optical property and / or mechanical property depending on the purpose.
  • the first retardation layer 20 typically has a slow axis.
  • the angle ⁇ formed by the slow axis of the first retardation layer 20 and the absorption axis of the polarizing film 11 is 40 ° to 50 ° as described above, preferably 42 ° to 48 °. And more preferably about 45 °. If the angle ⁇ is in such a range, by using the ⁇ / 4 plate as the first retardation layer as described later, very excellent circular polarization characteristics (as a result, very excellent antireflection characteristics) A polarizing plate with a retardation layer having is obtained.
  • the first retardation layer preferably has a refractive index characteristic of nx> ny ⁇ nz.
  • the first retardation layer is typically provided to impart antireflection characteristics to the polarizing plate, and can function as a ⁇ / 4 plate in one embodiment.
  • the in-plane retardation Re (550) of the first retardation layer is preferably 100 nm to 190 nm, more preferably 110 nm to 170 nm, still more preferably 130 nm to 160 nm.
  • the Nz coefficient of the first retardation layer is preferably 0.9 to 3, more preferably 0.9 to 2.5, further preferably 0.9 to 1.5, particularly preferably 0.9 to 1. It is 3. By satisfying such a relationship, a very excellent reflective hue can be achieved when the obtained polarizing plate with a retardation layer is used in an image display device.
  • the first retardation layer may exhibit an inverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, and a positive wavelength dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light. It may be shown, or may exhibit a flat wavelength dispersion characteristic in which the phase difference value hardly changes even with the wavelength of the measurement light.
  • the first retardation layer exhibits an inverse dispersion wavelength characteristic.
  • Re (450) / Re (550) of the retardation layer is preferably 0.8 or more and less than 1, and more preferably 0.8 or more and 0.95 or less. With such a configuration, it is possible to realize a very excellent antireflection characteristic.
  • the absolute value of the photoelastic coefficient of the first retardation layer is preferably 2 ⁇ 10 ⁇ 11 m 2 / N or less, more preferably 2.0 ⁇ 10 ⁇ 13 m 2 / N to 1.5 ⁇ 10 ⁇ 11. m 2 / N, more preferably from 1.0 ⁇ 10 -12 m 2 /N ⁇ 1.2 ⁇ 10 -11 m 2 / N resin.
  • the absolute value of the photoelastic coefficient is in such a range, it is difficult for the phase difference to change when contraction stress occurs during heating. As a result, heat unevenness of the obtained image display device can be favorably prevented.
  • the first retardation layer is typically composed of a stretched film of a resin film.
  • the thickness of the first retardation layer is preferably 70 ⁇ m or less, more preferably 45 ⁇ m to 60 ⁇ m.
  • the thickness of the first retardation layer is preferably 40 ⁇ m or less, more preferably 10 ⁇ m to 40 ⁇ m. And more preferably 20 ⁇ m to 30 ⁇ m.
  • the first retardation layer 20 may be composed of any appropriate resin film that can satisfy the above characteristics.
  • resins include polycarbonate resins, polyester carbonate resins, polyester resins, polyvinyl acetal resins, polyarylate resins, cyclic olefin resins, cellulose resins, polyvinyl alcohol resins, polyamide resins. , A polyimide resin, a polyether resin, a polystyrene resin, and an acrylic resin. These resins may be used alone or in combination (for example, blending or copolymerization).
  • a polycarbonate resin or a polyester carbonate resin (hereinafter sometimes simply referred to as a polycarbonate resin) can be preferably used.
  • a polycarbonate-based resin is a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, an alicyclic diol, an alicyclic dimethanol, di, tri or polyethylene glycol, and an alkylene.
  • the polycarbonate-based resin is a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, a structural unit derived from an alicyclic dimethanol and / or di, tri or polyethylene glycol. And a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, and a structural unit derived from a di-, tri-, or polyethylene glycol. .
  • the polycarbonate-based resin may include a structural unit derived from another dihydroxy compound, if necessary.
  • the glass transition temperature of the polycarbonate resin is preferably 110 ° C. or higher and 150 ° C. or lower, and more preferably 120 ° C. or higher and 140 ° C. or lower. If the glass transition temperature is excessively low, the heat resistance tends to be poor, dimensional change may occur after film formation, and the image quality of the obtained organic EL panel may be deteriorated. If the glass transition temperature is excessively high, the molding stability during film molding may be deteriorated, and the transparency of the film may be impaired.
  • the glass transition temperature is calculated according to JIS K 7121 (1987).
  • the molecular weight of the polycarbonate resin can be represented by reduced viscosity.
  • the reduced viscosity is measured using a Ubbelohde viscosity tube at a temperature of 20.0 ° C. ⁇ 0.1 ° C. by precisely adjusting the polycarbonate concentration to 0.6 g / dL using methylene chloride as a solvent.
  • the lower limit of the reduced viscosity is usually preferably 0.30 dL / g, more preferably 0.35 dL / g or more.
  • the upper limit of the reduced viscosity is usually preferably 1.20 dL / g, more preferably 1.00 dL / g, further preferably 0.80 dL / g.
  • the reduced viscosity is smaller than the lower limit, there may occur a problem that the mechanical strength of the molded product becomes small.
  • the reduced viscosity is higher than the upper limit value, the fluidity at the time of molding may be lowered, and the productivity and the moldability may be lowered.
  • a commercially available film may be used as the polycarbonate resin film.
  • Specific examples of commercially available products include Teijin's product names “Pure Ace WR-S”, “Pure Ace WR-W”, “Pure Ace WR-M”, and Nitto Denko's product name “NRF”.
  • the first retardation layer 20 is obtained, for example, by stretching a film formed of the above polycarbonate resin.
  • Any appropriate molding method can be adopted as a method of forming a film from the polycarbonate-based resin. Specific examples include compression molding method, transfer molding method, injection molding method, extrusion molding method, blow molding method, powder molding method, FRP molding method, cast coating method (for example, casting method), calender molding method, hot press. Law etc. are mentioned.
  • An extrusion molding method or a cast coating method is preferable. This is because the smoothness of the obtained film can be improved and good optical uniformity can be obtained.
  • the molding conditions can be appropriately set according to the composition and type of the resin used, the characteristics desired for the retardation layer, and the like. As described above, since many film products of the polycarbonate-based resin are commercially available, the commercially available film may be directly subjected to the stretching treatment.
  • the thickness of the resin film can be set to any appropriate value depending on the desired thickness of the first retardation layer, desired optical characteristics, stretching conditions described below, and the like.
  • the thickness is preferably 50 ⁇ m to 300 ⁇ m.
  • Any appropriate stretching method and stretching conditions can be adopted for the above stretching.
  • various stretching methods such as free-end stretching, fixed-end stretching, free-end contraction, and fixed-end contraction can be used alone or simultaneously or sequentially.
  • the stretching direction can also be performed in various directions and dimensions such as the length direction, the width direction, the thickness direction, and the oblique direction.
  • the stretching temperature is preferably Tg-30 ° C. to Tg + 60 ° C., more preferably Tg-10 ° C. to Tg + 50 ° C., with respect to the glass transition temperature (Tg) of the resin film.
  • the retardation film is produced by uniaxially stretching a resin film or uniaxially stretching a fixed end.
  • a specific example of the fixed-end uniaxial stretching is a method of stretching the resin film in the width direction (transverse direction) while running the resin film in the longitudinal direction.
  • the stretching ratio is preferably 1.1 times to 3.5 times.
  • the retardation film can be produced by continuously stretching a long resin film in the direction of the angle ⁇ with respect to the longitudinal direction.
  • a long stretched film having an orientation angle of ⁇ with respect to the longitudinal direction of the film (a slow axis in the direction of angle ⁇ ) can be obtained.
  • Roll-to-roll is possible, and the manufacturing process can be simplified.
  • the angle ⁇ may be an angle formed by the absorption axis of the polarizing film and the slow axis of the retardation layer in the polarizing plate with the retardation layer.
  • the angle ⁇ is, as described above, preferably 40 ° to 50 °, more preferably 42 ° to 48 °, and further preferably about 45 °.
  • a stretching machine used for oblique stretching for example, a tenter type stretching machine capable of applying a feeding force or a pulling force or a pulling force at different speeds in the lateral and / or longitudinal directions can be mentioned.
  • the tenter type stretching machine include a horizontal uniaxial stretching machine and a simultaneous biaxial stretching machine, but any appropriate stretching machine may be used as long as a long resin film can be continuously stretched obliquely.
  • the retardation layer having the desired in-plane retardation and having a slow axis in the desired direction (substantially long Phase-difference film) can be obtained.
  • the stretching temperature of the above-mentioned film may vary depending on the in-plane retardation value and thickness desired for the retardation layer, the type of resin used, the thickness of the film used, the stretching ratio, and the like. Specifically, the stretching temperature is preferably Tg-30 ° C to Tg + 30 ° C, more preferably Tg-15 ° C to Tg + 15 ° C, and most preferably Tg-10 ° C to Tg + 10 ° C. By stretching at such a temperature, the first retardation layer having suitable properties in the present invention can be obtained.
  • Tg is a glass transition temperature of the constituent material of the film.
  • the retardation Rth (550) in the thickness direction of the second retardation layer is preferably ⁇ 50 nm to ⁇ 300 nm, more preferably ⁇ 70 nm to ⁇ 250 nm, further preferably ⁇ 90 nm to ⁇ 200 nm, particularly preferably -100 nm to -180 nm.
  • the second retardation layer preferably comprises a film containing a liquid crystal material fixed in homeotropic alignment.
  • the liquid crystal material (liquid crystal compound) capable of homeotropic alignment may be a liquid crystal monomer or a liquid crystal polymer.
  • Specific examples of the method of forming the liquid crystal compound and the retardation layer include the liquid crystal compound and the method of forming the retardation layer described in JP-A-2002-333642, [0020] to [0028].
  • the thickness of the second retardation layer is preferably 0.5 ⁇ m to 10 ⁇ m, more preferably 0.5 ⁇ m to 8 ⁇ m, and further preferably 0.5 ⁇ m to 5 ⁇ m.
  • the conductive layer is formed by any appropriate film formation method (eg, vacuum deposition method, sputtering method, CVD method, ion plating method, spray method, etc.). It may be formed by depositing a metal oxide film thereon.
  • the metal oxide include indium oxide, tin oxide, zinc oxide, indium-tin complex oxide, tin-antimony complex oxide, zinc-aluminum complex oxide, and indium-zinc complex oxide. Of these, indium-tin composite oxide (ITO) is preferable.
  • the thickness of the conductive layer is preferably 50 nm or less, more preferably 35 nm or less.
  • the lower limit of the thickness of the conductive layer is preferably 10 nm.
  • the conductive layer may be transferred from the above-mentioned base material to the first retardation layer (or the second retardation layer, if present), and the conductive layer alone may serve as the constituent layer of the polarizing plate with the retardation layer.
  • it may be laminated on the first retardation layer (or the second retardation layer, if present) as a laminate with the substrate (substrate with conductive layer).
  • the above-mentioned substrate is optically isotropic, so that the conductive layer can be used as a isotropic substrate with a conductive layer in a polarizing plate with a retardation layer.
  • any suitable isotropic substrate can be adopted.
  • the material forming the isotropic substrate include, for example, a material having a resin having no conjugated system such as norbornene-based resin or olefin-based resin as a main skeleton, and a cyclic structure such as a lactone ring or a glutarimide ring of an acrylic resin. Materials included in the main chain are included. When such a material is used, it is possible to suppress the development of retardation due to the orientation of the molecular chains when forming the isotropic substrate.
  • the thickness of the isotropic substrate is preferably 50 ⁇ m or less, more preferably 35 ⁇ m or less. The lower limit of the thickness of the isotropic substrate is, for example, 20 ⁇ m.
  • the conductive layer and / or the conductive layer of the isotropic substrate with the conductive layer may be patterned as required. By patterning, conductive parts and insulating parts can be formed. As a result, electrodes can be formed.
  • the electrodes may function as touch sensor electrodes that sense a touch on the touch panel. Any appropriate method can be adopted as the patterning method. Specific examples of the patterning method include a wet etching method and a screen printing method.
  • the polarizing plate with a retardation layer described in the above items A to E can be applied to an image display device. Therefore, the present invention includes an image display device using such a polarizing plate with a retardation layer.
  • Typical examples of the image display device include a liquid crystal display device and an electroluminescence (EL) display device (for example, an organic EL display device and an inorganic EL display device).
  • the image display device according to the embodiment of the present invention includes the polarizing plate with a retardation layer described in the above items A to E on the viewing side.
  • the polarizing plate with a retardation layer is laminated such that the retardation layer is on the image display cell (for example, liquid crystal cell, organic EL cell, inorganic EL cell) side (the polarizing film is on the viewing side).
  • the image display device has a curved shape (substantially a curved display screen) and / or is bendable or foldable. In such an image display device, the effect of the polarizing plate with a retardation layer of the present invention becomes remarkable.
  • the measuring method of each characteristic is as follows. Unless otherwise specified, "parts" and “%” in the examples and comparative examples are based on weight.
  • Thickness The thickness of 10 ⁇ m or less was measured using an interference film thickness meter (manufactured by Otsuka Electronics Co., Ltd., product name “MCPD-3000”). The thickness exceeding 10 ⁇ m was measured using a digital micrometer (manufactured by Anritsu Corporation, product name “KC-351C”).
  • Orthogonal b value The polarizing plates used in Examples and Comparative Examples were measured using an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, product name "V7100"), and the hue in the crossed Nicols state was obtained. . It is shown that the lower the orthogonal b value is (the negative value is and the larger the absolute value is), the more the hue is blue instead of neutral.
  • the polarizing plate with a retardation layer obtained in each of Examples and Comparative Examples was cut out into a size of 110 mm ⁇ 60 mm. At this time, the polarizing film was cut out so that the absorption axis direction was the long side direction.
  • the cut out polarizing plate with a retardation layer was attached to a glass plate of 120 mm ⁇ 70 mm size and 0.2 mm thickness via an adhesive to give a test sample.
  • the test sample was placed in a heating oven maintained at 85 ° C. for 24 hours, and the amount of warp after taking out was measured. When the test sample was allowed to stand on a flat surface with the glass plate facing down, the height of the highest portion from the flat surface was defined as the amount of warpage.
  • the number of times of bending before occurrence was measured and evaluated according to the following criteria (bending diameter: 2 mm ⁇ ). ⁇ Evaluation criteria> Less than 10,000 times: Poor 10,000 times or more and less than 30,000 times: Good 30,000 times or more: Excellent (7) Front reflection hue
  • the measurement sample was measured by the SCE method using a spectrocolorimeter (CM-2600d manufactured by Konica Minolta), and the values of a * and b * were substituted into ⁇ (a * 2 + b * 2 ).
  • the front reflection hue was determined.
  • Elastic Modulus The film to be measured is formed into a tensile test dumbbell having a parallel part width of 10 mm and a length of 40 mm based on JIS K6734: 2000, and a tensile test is performed according to JIS K7161: 1994 to determine the tensile elastic modulus. I asked.
  • the length direction usually coincides with the stretching direction of the polarizing film.
  • Example 1 Preparation of Polarizing Film
  • an amorphous isophthalic copolymer polyethylene terephthalate film (thickness: 100 ⁇ m) having a long shape, a water absorption of 0.75% and a Tg of about 75 ° C. was used as the thermoplastic resin substrate. Corona treatment was applied to one surface of the resin substrate.
  • Polyvinyl alcohol (polymerization degree: 4200, saponification degree: 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosephimmer Z410") in a ratio of 9: 1 100 weight of PVA-based resin
  • 13 parts by weight of potassium iodide was added and dissolved in water to prepare a PVA aqueous solution (coating solution).
  • the PVA aqueous solution was applied to the corona-treated surface of the resin substrate and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 8 ⁇ m, and a laminate was prepared.
  • the obtained laminated body was uniaxially stretched 2.4 times in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds in an oven at 130 ° C. (in-air auxiliary stretching treatment).
  • the laminated body was immersed in an insolubilizing bath having a liquid temperature of 40 ° C. (boric acid aqueous solution obtained by mixing 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
  • a dyeing bath having a liquid temperature of 30 ° C.
  • the total draw ratio was 5.5 in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds.
  • Uniaxial stretching was performed so as to double the length (underwater stretching treatment).
  • the laminate was immersed in a cleaning bath having a liquid temperature of 20 ° C. (an aqueous solution obtained by mixing 4 parts by weight of potassium iodide with 100 parts by weight of water) (cleaning treatment).
  • cleaning treatment while being dried in an oven kept at 90 ° C., it was brought into contact with a SUS heating roll whose surface temperature was kept at 75 ° C. for about 2 seconds (dry shrinkage treatment).
  • the shrinkage ratio in the width direction of the laminate due to the dry shrinkage treatment was 2.5%. In this way, a polarizing film having a thickness of 3.4 ⁇ m was formed on the resin base material.
  • a cycloolefin film with a hard coat layer (refractive index 1.53) as a protective layer were bonded via an ultraviolet curable adhesive.
  • the curable adhesive was applied so that the total thickness was 1.0 ⁇ m, and the curable adhesive was pasted using a roll machine. Then, UV rays were irradiated from the protective layer side to cure the adhesive.
  • the resin substrate was peeled off to obtain a long-sized polarizing plate (width: 1300 mm) having a structure of protective layer / adhesive layer / polarizing film.
  • the single transmittance of the polarizing film was 43.5%, the unit absorbance at a wavelength of 210 nm was 0.45, A 470 / A 600 was 0.76, and the orthogonal b value was -3.6.
  • the temperature rise and pressure reduction in the second reactor were started, and the internal temperature was set to 240 ° C. and the pressure was set to 0.2 kPa in 50 minutes. Then, the polymerization was allowed to proceed until a predetermined stirring power was obtained. When the predetermined power was reached, nitrogen was introduced into the reactor to restore the pressure, the produced polyester carbonate resin was extruded into water, and the strands were cut to obtain pellets.
  • Example 2-1 Preparation of Polarizing Film
  • the thickness of the polarizing film obtained by changing the coating thickness of the PVA aqueous solution (coating liquid) to 13 ⁇ m was set to 4.6 ⁇ m, and the concentration of the dyeing bath was adjusted to obtain the single transmittance of the polarizing film ( A polarizing film was formed on the resin substrate in the same manner as in Example 1 except that Ts) was set to 43.0%.
  • polarizing plate 1 A polarizing plate having a structure of protective layer / adhesive layer / polarizing film was prepared in the same manner as in Example 1 except that the polarizing film obtained in (2) was used.
  • the single transmittance of the polarizing plate (essentially, the polarizing film) was 43.0%, and the polarization degree was 99.995%.
  • the unit absorbance at a wavelength of 210 nm was 0.70
  • a 470 / A 600 was 0.87
  • the orthogonal b value was ⁇ 3.0.
  • Example 2-2 Production of Polarizing Film Polarizing on a resin substrate was performed in the same manner as in Example 2-1 except that the concentration of the dyeing bath was adjusted so that the single transmittance (Ts) of the polarizing film was 44.0%. A film was formed.
  • Ts single transmittance
  • polarizing plate 1 A polarizing plate having a structure of protective layer / adhesive layer / polarizing film was prepared in the same manner as in Example 1 except that the polarizing film obtained in (2) was used.
  • the single transmittance of the polarizing plate (substantially, the polarizing film) was 44.0%, and the polarization degree was 99.96%.
  • the unit absorbance at a wavelength of 210 nm was 0.50, A 470 / A 600 was 0.87, and the orthogonal b value was ⁇ 5.0.
  • Example 3 Production of Polarizing Plate with Retardation Layer
  • the retardation film obtained in the same manner as in Example 2-1 is attached to the surface of the polarizing film of the polarizing plate obtained in the above to have a constitution of protective layer / adhesive layer / polarizer / adhesive layer / retardation layer.
  • a polarizing plate with a retardation layer was produced.
  • the total thickness of the obtained polarizing plate with a retardation layer was 87 ⁇ m.
  • the obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 2-1. The results are shown in Table 1.
  • Example 3-1 Production of Polarizing Film A polarizing film having a thickness of 4.6 ⁇ m was formed on the resin substrate in the same manner as in Example 2-1.
  • polarizing plate 1 Preparation of polarizing plate 1. Except that the polarizing film obtained in 1. was used and that a triacetyl cellulose (TAC) film with a hard coat layer (hard coat layer thickness 7 ⁇ m, TAC thickness 25 ⁇ m, elastic modulus: 3600 MPa) was used as a protective layer. In the same manner as in Example 1, a polarizing plate having a structure of protective layer / adhesive layer / polarizing film was produced.
  • TAC triacetyl cellulose
  • the Re (550) of the obtained retardation film was 144 nm, and the Re (450) / Re (550) was 0.86.
  • Example 3-2 A long polyester carbonate resin film having a thickness of 105 ⁇ m obtained in the same manner as in Example 3-1 was stretched in the width direction while adjusting so as to obtain a predetermined retardation to obtain a retardation film having a thickness of 38 ⁇ m. Obtained.
  • the Re (550) of the obtained retardation film was 140 nm.
  • Got The total thickness of the obtained polarizing plate with a retardation layer was 81 ⁇ m.
  • the obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 2-1. The results are shown in Table 1.
  • Example 3-3 A long polyester carbonate resin film having a thickness of 105 ⁇ m obtained in the same manner as in Example 3-1 was stretched in the width direction while adjusting so as to obtain a predetermined retardation to obtain a retardation film having a thickness of 38 ⁇ m. Obtained.
  • the Re (550) of the obtained retardation film was 149 nm.
  • Got The total thickness of the obtained polarizing plate with a retardation layer was 81 ⁇ m.
  • the obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 2-1. The results are shown in Table 1.
  • Example 4-1 Production of Polarizing Film A polarizing film having a thickness of 4.6 ⁇ m was formed on the resin substrate in the same manner as in Example 2-2.
  • polarizing plate 1 A polarizing plate having a structure of protective layer / adhesive layer / polarizing film was produced in the same manner as in Example 3-1 except that the polarizing film obtained in step 1 was used.
  • Example 4-2 Production of Polarizing Film A polarizing film having a thickness of 4.6 ⁇ m was formed on the resin substrate in the same manner as in Example 2-2.
  • polarizing plate 1 A polarizing plate having a structure of protective layer / adhesive layer / polarizing film was produced in the same manner as in Example 3-1 except that the polarizing film obtained in step 1 was used.
  • Example 5 The polycarbonate resin film obtained in the same manner as in Example 1 was obliquely stretched by a method according to Example 2 in JP-A-2014-194483 to obtain a retardation film having a thickness of 58 ⁇ m.
  • the Re (550) of the obtained retardation film was 144 nm
  • the Re (450) / Re (550) was 0.86
  • the Nz coefficient was 1.21
  • the orientation angle (the direction of the slow axis). was 45 ° with respect to the longitudinal direction.
  • This retardation film and the polarizing plate of Example 2-2 were laminated by a roll-to-roll method with an acrylic pressure-sensitive adhesive (thickness 5 ⁇ m) interposed between the protective layer / adhesive layer / polarizing film / adhesive layer / retardation layer.
  • a polarizing plate with a retardation layer having the constitution was obtained.
  • the total thickness of the obtained polarizing plate with a retardation layer was 97 ⁇ m.
  • the obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 2-1. The results are shown in Table 1.
  • the original polyvinyl alcohol film (polyvinyl alcohol film which was not stretched at all in the transport direction) was stretched 3.7 times in the transport direction (dyeing step).
  • the immersion time at this time was about 60 seconds.
  • the dyed polyvinyl alcohol film in a crosslinking bath at 40 ° C. (an aqueous solution having a boric acid concentration of 3.0 wt% and a potassium iodide concentration of 3.0 wt%)
  • the original polyvinyl alcohol film was immersed. It was stretched to 4.2 times in the transport direction based on the standard (crosslinking step). Further, the obtained polyvinyl alcohol film was immersed in a stretching bath at 64 ° C.
  • Polarizing Plate As an adhesive, a polyvinyl alcohol resin containing an acetoacetyl group (average polymerization degree: 1,200, saponification degree: 98.5 mol%, acetoacetylation degree: 5 mol%) and methylolmelamine were used. The containing aqueous solution was used.
  • This adhesive was used so that the thickness of the adhesive layer was 0.1 ⁇ m, and a triacetyl cellulose (TAC) film with a hard coat layer (hard coat layer thickness 7 ⁇ m, on one surface of the polarizer obtained above)
  • TAC triacetyl cellulose
  • a TAC film having a thickness of 25 ⁇ m and an elastic modulus of 3600 MPa was attached to the other surface of the polarizer with a TAC film having a thickness of 25 ⁇ m by a roll laminating machine, and then dried by heating in an oven (temperature: 60 ° C., time: 5 minutes). Then, a polarizing plate having a structure of protective layer 1 (thickness 32 ⁇ m) / adhesive layer / polarizer / adhesive layer / protective layer 2 was prepared.
  • the direction of the orientation treatment was set to be 15 ° with respect to the direction of the absorption axis of the polarizer when it was attached to the polarizing plate, as viewed from the viewing side.
  • the liquid crystal coating liquid was applied to the surface of the alignment treatment by a bar coater, and the liquid crystal compound was aligned by heating and drying at 90 ° C. for 2 minutes.
  • the liquid crystal layer thus formed was irradiated with light of 1 mJ / cm 2 using a metal halide lamp to cure the liquid crystal layer, thereby forming a liquid crystal alignment solidified layer A on the PET film.
  • the thickness of the liquid crystal alignment fixed layer A was 2.5 ⁇ m, and the in-plane retardation Re (550) was 270 nm.
  • the coating thickness was changed and the orientation treatment direction was set to be the direction of 75 ° with respect to the absorption axis direction of the polarizer when viewed from the viewing side.
  • a liquid crystal alignment fixed layer B was formed.
  • the thickness of the liquid crystal alignment fixed layer B was 1.5 ⁇ m, and the in-plane retardation Re (550) was 140 nm.
  • Re (450) / Re (550) of the liquid crystal alignment fixed layers A and B was 1.11.
  • protective layer 1 / adhesive layer / polarizer / adhesive layer / protective layer 2 / adhesive layer / retardation layer (first orientation solidification layer / adhesion layer / second orientation solidification layer) is provided.
  • a polarizing plate with a retardation layer was obtained.
  • the total thickness of the obtained polarizing plate with a retardation layer was 75 ⁇ m.
  • the obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 2-1. The results are shown in Table 1.
  • Polarizing Plate An acrylic film (surface refractive index 1.50, 20 ⁇ m) as a protective layer was provided on the surface of the polarizing film obtained above (the surface opposite to the resin substrate) with an ultraviolet curable adhesive. Pasted through. Specifically, the curable adhesive was applied so that the total thickness was 1.0 ⁇ m, and the curable adhesive was pasted using a roll machine. Then, UV rays were irradiated from the protective layer side to cure the adhesive. Next, after slitting both ends, the resin substrate was peeled off to obtain a long-sized polarizing plate (width: 1300 mm) having a structure of protective layer / adhesive layer / polarizing film.
  • the polarizing film produced by the predetermined method shows excellent optical characteristics while being thin.
  • a polarizing plate with a retardation layer which is thin, has excellent optical characteristics, and is significantly suppressed in warpage after a heating test (as a result, is excellent in handleability)
  • an excellent reflection hue can be obtained by using in combination with a retardation layer composed of a polycarbonate resin (including a polyester carbonate resin) film.
  • the polarizing plate with a retardation layer of Comparative Example 3 is thin, has excellent optical characteristics, and is significantly suppressed in warpage after a heating test, but has a large reflective hue and has a display characteristic. I was not satisfied with it.
  • the polarizing plate with a retardation layer of the present invention is suitably used as a circular polarizing plate for liquid crystal display devices, organic EL display devices and inorganic EL display devices.
  • Reference Signs List 10 polarizing plate 11 polarizing film 12 first protective layer 13 second protective layer 20 retardation layer 100 retardation layer-attached polarizing plate 101 retardation layer-attached polarizing plate

Abstract

A polarizing plate with a phase difference layer is provided which is thin, has excellent handling, and excellent optical characteristics. The polarizing plate with a phase difference layer comprises a polarizing plate, which includes a polarizing film, and a protection layer on at least one side of the polarizing film, and a phase difference layer. The polarizing film is configured from a polyvinyl alcohol-base resin film containing a dichroic substance, and is at most 8 μm thick, and the orthogonal absorbance per 1 μm thickness at the wavelength 210 nm is less than or equal to 1.00. Re(550) of the phase difference layer is 100-190 nm, and Re(450)/Re(550) is greater than or equal to 0.8 and less than 1. The angle formed between the slow axis of the phase difference layer and the absorption axis of the polarizing membrane is 40°-50°.

Description

位相差層付偏光板およびそれを用いた画像表示装置Polarizing plate with retardation layer and image display device using the same
 本発明は、位相差層付偏光板およびそれを用いた画像表示装置に関する。 The present invention relates to a polarizing plate with a retardation layer and an image display device using the same.
 近年、液晶表示装置およびエレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置、無機EL表示装置)に代表される画像表示装置が急速に普及している。画像表示装置には、代表的には偏光板および位相差板が用いられている。実用的には、偏光板と位相差板とを一体化した位相差層付偏光板が広く用いられているところ(例えば、特許文献1)、最近、画像表示装置の薄型化への要望が強くなるに伴って、位相差層付偏光板についても薄型化の要望が強まっている。また、近年、湾曲した画像表示装置および/または屈曲もしくは折り曲げ可能な画像表示装置に対する要望が高まっているところ、偏光板および位相差層付偏光板についても、さらなる薄型化およびさらなる柔軟化が求められている。位相差層付偏光板の薄型化を目的として、厚みに対する寄与の大きい偏光膜の保護層および位相差フィルムの薄型化が進んでいる。しかし、保護層および位相差フィルムを薄型化すると、偏光膜の収縮の影響が相対的に大きくなり、画像表示装置の反りおよび位相差層付偏光板の操作性の低下という問題が生じる。 In recent years, image display devices represented by liquid crystal display devices and electroluminescence (EL) display devices (for example, organic EL display devices and inorganic EL display devices) have rapidly become popular. A polarizing plate and a retardation plate are typically used for the image display device. Practically, a polarizing plate with a retardation layer in which a polarizing plate and a retardation plate are integrated is widely used (for example, Patent Document 1), and recently, there is a strong demand for thinner image display devices. Accordingly, there is an increasing demand for thinner polarizing plates with retardation layers. Further, in recent years, there has been an increasing demand for a curved image display device and / or an image display device that can be bent or bent, and thus a polarizing plate and a polarizing plate with a retardation layer are required to be thinner and more flexible. ing. For the purpose of reducing the thickness of the polarizing plate with a retardation layer, the thickness of the protective layer of the polarizing film and the retardation film, which make a large contribution to the thickness, has been reduced. However, when the protective layer and the retardation film are made thin, the influence of the shrinkage of the polarizing film becomes relatively large, which causes the problems of warpage of the image display device and deterioration of the operability of the polarizing plate with the retardation layer.
 上記のような問題を解決するためには、偏光膜も併せて薄型化することが必要である。しかし、偏光膜の厚みを単に薄くすると、光学特性が低下してしまう。より具体的には、トレードオフの関係にある偏光度と単体透過率の一方または両方が、実用的に許容不可能な程度にまで低下してしまう。その結果、位相差層付偏光板の光学特性もまた不十分となってしまう。 ▽ In order to solve the above problems, it is necessary to make the polarizing film thinner as well. However, if the thickness of the polarizing film is simply reduced, the optical characteristics will deteriorate. More specifically, one or both of the polarization degree and the single-body transmittance, which are in a trade-off relationship, are reduced to a practically unacceptable level. As a result, the optical characteristics of the polarizing plate with the retardation layer are also insufficient.
特許第3325560号公報Japanese Patent No. 3325560
 本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、薄型で、取扱い性に優れ、かつ、光学特性に優れた位相差層付偏光板を提供することにある。 The present invention has been made to solve the above-mentioned conventional problems, and a main object thereof is to provide a polarizing plate with a retardation layer, which is thin, excellent in handleability, and excellent in optical characteristics. .
 本発明の位相差層付偏光板は、偏光膜と該偏光膜の少なくとも一方の側に保護層とを含む偏光板と、位相差層と、を有する。該偏光膜は、二色性物質を含むポリビニルアルコール系樹脂フィルムで構成され、その厚みが8μm以下であり、波長210nmにおける厚み1μmあたりの直交吸光度が1.00以下である。該位相差層のRe(550)は100nm~190nmであり、Re(450)/Re(550)は0.8以上1未満であり、該位相差層の遅相軸と該偏光膜の吸収軸とのなす角度は40°~50°である。
 1つの実施形態においては、上記保護層が、弾性率が3000MPa以上である基材から構成される。
 1つの実施形態においては、上記位相差層付偏光板の総厚みが、90μm以下であり、正面反射色相が3.5以下であり、上記保護層が、弾性率が3000MPa以上である樹脂フィルムから構成される。
 1つの実施形態においては、上記保護層が、トリアセチルセルロース系樹脂フィルムから構成される。
 1つの実施形態においては、上記偏光板が、上記偏光膜と上記偏光膜の一方の側のみに配置された上記保護層とを含み、上記位相差層が、粘着剤層を介して上記偏光膜に貼り合わされている。
 1つの実施形態においては、上記位相差層が、ポリカーボネート系樹脂フィルムから構成される。
 1つの実施形態においては、上記位相差層が、40μm以下の厚みを有するポリカーボネート系樹脂フィルムから構成される。
 1つの実施形態においては、上記偏光膜の波長470nmにおける直交吸光度A470と波長600nmにおける直交吸光度A600との比(A470/A600)は0.7~2.00である。
 1つの実施形態においては、上記偏光膜の直交b値は-10より大きく+10以下である。
 1つの実施形態においては、上記偏光膜のヨウ素濃度は3.0重量%以上である。
 1つの実施形態においては、上記偏光膜の単体透過率は42.5%以上である。
 1つの実施形態においては、上記位相差層付偏光板は、上記位相差層の外側に別の位相差層をさらに有し、該別の位相差層の屈折率特性はnz>nx=nyの関係を示す。
 1つの実施形態においては、上記位相差層付偏光板は、上記位相差層の外側に導電層または導電層付等方性基材をさらに有する。
 1つの実施形態においては、上記位相差層付偏光板は長尺状であり、上記偏光膜は長尺方向に吸収軸を有し、上記位相差層は、長尺方向に対して40°~50°の角度をなす方向に遅相軸を有する斜め延伸フィルムである。1つの実施形態においては、上記位相差層付偏光板はロール状に巻回されている。
 本発明の別の局面によれば、画像表示装置が提供される。この画像表示装置は、上記の位相差層付偏光板を備える。
 1つの実施形態においては、上記画像表示装置は、有機エレクトロルミネセンス表示装置または無機エレクトロルミネセンス表示装置である。
The polarizing plate with a retardation layer of the present invention has a polarizing plate including a polarizing film, a protective layer on at least one side of the polarizing film, and a retardation layer. The polarizing film is composed of a polyvinyl alcohol-based resin film containing a dichroic material, has a thickness of 8 μm or less, and has an orthogonal absorbance of 1.00 or less per 1 μm of thickness at a wavelength of 210 nm. Re (550) of the retardation layer is 100 nm to 190 nm, Re (450) / Re (550) is 0.8 or more and less than 1, and the slow axis of the retardation layer and the absorption axis of the polarizing film. The angle formed by and is 40 ° to 50 °.
In one embodiment, the protective layer is composed of a base material having an elastic modulus of 3000 MPa or more.
In one embodiment, the polarizing plate with a retardation layer has a total thickness of 90 μm or less, a front reflection hue of 3.5 or less, and the protective layer is made of a resin film having an elastic modulus of 3000 MPa or more. Composed.
In one embodiment, the protective layer is composed of a triacetyl cellulose resin film.
In one embodiment, the polarizing plate includes the polarizing film and the protective layer arranged only on one side of the polarizing film, and the retardation layer includes the polarizing film via an adhesive layer. Are pasted together.
In one embodiment, the above-mentioned retardation layer comprises a polycarbonate resin film.
In one embodiment, the retardation layer is composed of a polycarbonate-based resin film having a thickness of 40 μm or less.
In one embodiment, the ratio (A 470 / A 600 ) of the orthogonal absorbance A 470 at a wavelength of 470 nm and the orthogonal absorbance A 600 at a wavelength of 600 nm of the polarizing film is 0.7 to 2.00.
In one embodiment, the orthogonal b value of the polarizing film is greater than −10 and +10 or less.
In one embodiment, the iodine concentration of the polarizing film is 3.0% by weight or more.
In one embodiment, the single transmittance of the polarizing film is 42.5% or more.
In one embodiment, the polarizing plate with a retardation layer further has another retardation layer outside the retardation layer, and the refractive index characteristic of the another retardation layer is nz> nx = ny. Show the relationship.
In one embodiment, the above-mentioned polarizing plate with a retardation layer further has a conductive layer or an isotropic substrate with a conductive layer outside the above-mentioned retardation layer.
In one embodiment, the polarizing plate with a retardation layer is elongated, the polarizing film has an absorption axis in the longitudinal direction, and the retardation layer is 40 ° to 40 ° with respect to the longitudinal direction. It is an obliquely stretched film having a slow axis in a direction forming an angle of 50 °. In one embodiment, the polarizing plate with a retardation layer is wound in a roll shape.
According to another aspect of the present invention, an image display device is provided. This image display device includes the above polarizing plate with a retardation layer.
In one embodiment, the image display device is an organic electroluminescence display device or an inorganic electroluminescence display device.
 本発明によれば、ポリビニルアルコール(PVA)系樹脂へのハロゲン化物(代表的には、ヨウ化カリウム)の添加、空中補助延伸および水中延伸を含む2段延伸、ならびに、加熱ロールによる乾燥および収縮を組み合わせて採用することにより、薄型でありながら、きわめて優れた光学特性を有する偏光膜を得ることができる。このような偏光膜を用いることにより、薄型で、取扱い性に優れ、かつ、光学特性に優れた位相差層付偏光板を実現することができる。 According to the present invention, addition of a halide (typically potassium iodide) to a polyvinyl alcohol (PVA) -based resin, two-stage stretching including auxiliary stretching in air and stretching in water, and drying and shrinking with a heating roll. By adopting in combination, it is possible to obtain a polarizing film that is thin and has extremely excellent optical characteristics. By using such a polarizing film, it is possible to realize a polarizing plate with a retardation layer, which is thin, has excellent handleability, and has excellent optical characteristics.
本発明の1つの実施形態による位相差層付偏光板の概略断面図である。1 is a schematic sectional view of a polarizing plate with a retardation layer according to one embodiment of the present invention. 本発明の別の実施形態による位相差層付偏光板の概略断面図である。FIG. 6 is a schematic cross-sectional view of a polarizing plate with a retardation layer according to another embodiment of the present invention. 本発明の位相差層付偏光板に用いられる偏光膜の製造方法における加熱ロールを用いた乾燥収縮処理の一例を示す概略図である。It is a schematic diagram showing an example of dry shrinkage processing using a heating roll in a manufacturing method of a polarizing film used for a polarizing plate with a phase contrast layer of the present invention.
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
(用語および記号の定義)
 本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
 「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
 「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
 Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
 本明細書において角度に言及するときは、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は±45°を意味する。
(Definition of terms and symbols)
The definitions of terms and symbols in the present specification are as follows.
(1) Refractive index (nx, ny, nz)
“Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (that is, the slow axis direction), and “ny” is the direction in the plane that is orthogonal to the slow axis (that is, the fast axis direction). , And "nz" is the refractive index in the thickness direction.
(2) In-plane retardation (Re)
“Re (λ)” is an in-plane retardation measured with light having a wavelength of λ nm at 23 ° C. For example, “Re (550)” is an in-plane retardation measured with light having a wavelength of 550 nm at 23 ° C. Re (λ) is calculated by the formula: Re (λ) = (nx−ny) × d, where d (nm) is the thickness of the layer (film).
(3) Phase difference in the thickness direction (Rth)
“Rth (λ)” is a phase difference in the thickness direction measured with light having a wavelength of λ nm at 23 ° C. For example, “Rth (550)” is a phase difference in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C. Rth (λ) is calculated by the formula: Rth (λ) = (nx−nz) × d, where d (nm) is the thickness of the layer (film).
(4) Nz coefficient The Nz coefficient is calculated by Nz = Rth / Re.
(5) Angle When an angle is referred to in this specification, the angle includes both clockwise and counterclockwise rotations with respect to the reference direction. Therefore, for example, “45 °” means ± 45 °.
A.位相差層付偏光板の全体構成
 図1は、本発明の1つの実施形態による位相差層付偏光板の概略断面図である。本実施形態の位相差層付偏光板100は、偏光板10と位相差層20とを有する。偏光板10は、偏光膜11と、偏光膜11の一方の側に配置された第1の保護層12と、偏光膜11のもう一方の側に配置された第2の保護層13とを含む。目的に応じて、第1の保護層12および第2の保護層13の一方は省略されてもよい。例えば、位相差層20が偏光膜11の保護層としても機能し得る場合には、第2の保護層13は省略されてもよい。本発明の実施形態においては、偏光膜は、二色性物質を含むポリビニルアルコール系樹脂フィルムで構成される。偏光膜の厚みは8μm以下であり、波長210nmにおける厚み1μmあたりの直交吸光度(以下、単位吸光度と称する)は1.00以下である。
A. Overall Configuration of Polarizing Plate with Retardation Layer FIG. 1 is a schematic sectional view of a polarizing plate with a retardation layer according to an embodiment of the present invention. The polarizing plate 100 with a retardation layer of this embodiment includes a polarizing plate 10 and a retardation layer 20. The polarizing plate 10 includes a polarizing film 11, a first protective layer 12 arranged on one side of the polarizing film 11, and a second protective layer 13 arranged on the other side of the polarizing film 11. . Depending on the purpose, one of the first protective layer 12 and the second protective layer 13 may be omitted. For example, when the retardation layer 20 can also function as a protective layer for the polarizing film 11, the second protective layer 13 may be omitted. In the embodiment of the present invention, the polarizing film is composed of a polyvinyl alcohol-based resin film containing a dichroic substance. The thickness of the polarizing film is 8 μm or less, and the orthogonal absorbance (hereinafter referred to as unit absorbance) per 1 μm thickness at a wavelength of 210 nm is 1.00 or less.
 図2に示すように、別の実施形態による位相差層付偏光板101においては、別の位相差層50ならびに/あるいは導電層または導電層付等方性基材60が設けられてもよい。別の位相差層50ならびに導電層または導電層付等方性基材60は、代表的には、位相差層20の外側(偏光板10と反対側)に設けられる。別の位相差層は、代表的には、屈折率特性がnz>nx=nyの関係を示す。別の位相差層50ならびに導電層または導電層付等方性基材60は、代表的には、位相差層20側からこの順に設けられる。別の位相差層50ならびに導電層または導電層付等方性基材60は、代表的には、必要に応じて設けられる任意の層であり、いずれか一方または両方が省略されてもよい。なお、便宜上、位相差層20を第1の位相差層と称し、別の位相差層50を第2の位相差層と称する場合がある。なお、導電層または導電層付等方性基材が設けられる場合、位相差層付偏光板は、画像表示セル(例えば、有機ELセル)と偏光板との間にタッチセンサが組み込まれた、いわゆるインナータッチパネル型入力表示装置に適用され得る。 As shown in FIG. 2, a retardation layer-attached polarizing plate 101 according to another embodiment may be provided with another retardation layer 50 and / or a conductive layer or an isotropic substrate 60 with a conductive layer. Another retardation layer 50 and the conductive layer or the isotropic substrate 60 with a conductive layer are typically provided outside the retardation layer 20 (on the side opposite to the polarizing plate 10). Another retardation layer typically has a refractive index characteristic of nz> nx = ny. Another retardation layer 50 and the conductive layer or the isotropic substrate 60 with a conductive layer are typically provided in this order from the retardation layer 20 side. The different retardation layer 50 and the conductive layer or the isotropic substrate 60 with a conductive layer are typically arbitrary layers provided as needed, and either one or both may be omitted. Note that, for convenience, the retardation layer 20 may be referred to as a first retardation layer, and another retardation layer 50 may be referred to as a second retardation layer. When a conductive layer or an isotropic base material with a conductive layer is provided, the polarizing plate with a retardation layer is a so-called inner layer in which a touch sensor is incorporated between an image display cell (for example, an organic EL cell) and the polarizing plate. It can be applied to a touch panel type input display device.
 本発明の実施形態においては、第1の位相差層20のRe(550)は100nm~190nmであり、Re(450)/Re(550)は0.8以上1未満である。さらに、第1の位相差層20の遅相軸と偏光膜11の吸収軸とのなす角度は40°~50°である。 In the embodiment of the present invention, Re (550) of the first retardation layer 20 is 100 nm to 190 nm, and Re (450) / Re (550) is 0.8 or more and less than 1. Further, the angle formed by the slow axis of the first retardation layer 20 and the absorption axis of the polarizing film 11 is 40 ° to 50 °.
 上記の実施形態は適宜組み合わせてもよく、上記の実施形態における構成要素に当業界で自明の改変を加えてもよい。例えば、第2の位相差層50の外側に導電層付等方性基材60を設ける構成を、光学的に等価な構成(例えば、第2の位相差層と導電層との積層体)に置き換えてもよい。 The above-described embodiments may be combined as appropriate, and the components in the above-described embodiments may be modified as is obvious in the art. For example, the configuration in which the isotropic substrate 60 with a conductive layer is provided outside the second retardation layer 50 is replaced with an optically equivalent configuration (for example, a laminate of the second retardation layer and the conductive layer). Good.
 本発明の実施形態による位相差層付偏光板は、その他の位相差層をさらに含んでいてもよい。その他の位相差層の光学的特性(例えば、屈折率特性、面内位相差、Nz係数、光弾性係数)、厚み、配置位置等は、目的に応じて適切に設定され得る。 The polarizing plate with a retardation layer according to the embodiment of the present invention may further include another retardation layer. Other optical properties of the retardation layer (for example, refractive index properties, in-plane retardation, Nz coefficient, photoelastic coefficient), thickness, arrangement position and the like can be appropriately set according to the purpose.
 本発明の位相差層付偏光板は、枚葉状であってもよく長尺状であってもよい。本明細書において「長尺状」とは、幅に対して長さが十分に長い細長形状を意味し、例えば、幅に対して長さが10倍以上、好ましくは20倍以上の細長形状を含む。長尺状の位相差層付偏光板は、ロール状に巻回可能である。位相差層付偏光板が長尺状である場合、偏光板および位相差層も長尺状である。この場合、偏光膜は、好ましくは長尺方向に吸収軸を有する。第1の位相差層は、好ましくは、長尺方向に対して40°~50°の角度をなす方向に遅相軸を有する斜め延伸フィルムである。偏光膜および第1の位相差層がこのような構成であれば、位相差層付偏光板をロールトゥロールにより作製することができる。 The polarizing plate with a retardation layer of the present invention may have a sheet-like shape or a long shape. In the present specification, "long shape" means an elongated shape having a length sufficiently longer than the width, and for example, an elongated shape having a length 10 times or more, preferably 20 times or more the width. Including. The long polarizing plate with a retardation layer can be wound into a roll. When the polarizing plate with a retardation layer is elongated, the polarizing plate and the retardation layer are also elongated. In this case, the polarizing film preferably has an absorption axis in the longitudinal direction. The first retardation layer is preferably an obliquely stretched film having a slow axis in a direction forming an angle of 40 ° to 50 ° with respect to the lengthwise direction. If the polarizing film and the first retardation layer have such a configuration, the polarizing plate with the retardation layer can be produced by roll-to-roll.
 実用的には、位相差層の偏光板と反対側には粘着剤層(図示せず)が設けられ、位相差層付偏光板は画像表示セルに貼り付け可能とされている。さらに、粘着剤層の表面には、位相差層付偏光板が使用に供されるまで、剥離フィルムが仮着されていることが好ましい。剥離フィルムを仮着することにより、粘着剤層を保護するとともに、ロール形成が可能となる。 In practice, an adhesive layer (not shown) is provided on the opposite side of the retardation layer to the polarizing plate, and the polarizing plate with retardation layer can be attached to the image display cell. Further, it is preferable that a release film is temporarily attached to the surface of the pressure-sensitive adhesive layer until the polarizing plate with a retardation layer is used. By temporarily attaching the release film, the pressure-sensitive adhesive layer can be protected and the roll can be formed.
 位相差層付偏光板の正面反射色相(√(a*2+b*2))は、好ましくは3.5以下であり、より好ましくは3.0以下である。正面反射色相が上記範囲内であれば所望でない色付き等が抑制される結果、反射特性に優れた位相差層付偏光板が得られ得る。 The front reflection hue (√ (a * 2 + b * 2 )) of the polarizing plate with a retardation layer is preferably 3.5 or less, more preferably 3.0 or less. When the front reflection hue is within the above range, undesired coloring is suppressed, and as a result, a polarizing plate with a retardation layer having excellent reflection characteristics can be obtained.
 位相差層付偏光板の総厚みは、好ましくは140μm以下であり、より好ましくは120μm以下であり、さらに好ましくは100μm以下であり、さらにより好ましくは90μm以下であり、さらにより好ましくは85μm以下である。総厚みの下限は、例えば30μmであり得る。本発明の実施形態によれば、このようにきわめて薄い位相差層付偏光板を実現することができる。このような位相差層付偏光板は、きわめて優れた可撓性および折り曲げ耐久性を有し得る。このような位相差層付偏光板は、湾曲した画像表示装置および/または屈曲もしくは折り曲げ可能な画像表示装置に特に好適に適用され得る。なお、位相差層付偏光板の総厚みとは、位相差層付偏光板をパネルやガラス等の外部被着体と密着させるための粘着剤層を除き、位相差層付偏光板を構成するすべての層の厚みの合計をいう(すなわち、位相差層付偏光板の総厚みは、位相差層付偏光板を画像表示セル等の隣接部材に貼り付けるための粘着剤層およびその表面に仮着され得る剥離フィルムの厚みを含まない)。 The total thickness of the polarizing plate with a retardation layer is preferably 140 μm or less, more preferably 120 μm or less, even more preferably 100 μm or less, even more preferably 90 μm or less, still more preferably 85 μm or less. is there. The lower limit of the total thickness can be, for example, 30 μm. According to the embodiment of the present invention, an extremely thin polarizing plate with a retardation layer can be realized in this way. Such a polarizing plate with a retardation layer can have extremely excellent flexibility and bending durability. Such a polarizing plate with a retardation layer can be particularly suitably applied to a curved image display device and / or a bendable or bendable image display device. It should be noted that the total thickness of the polarizing plate with a retardation layer constitutes the polarizing plate with a retardation layer except for an adhesive layer for adhering the polarizing plate with a retardation layer to an external adherend such as a panel or glass. It means the total thickness of all layers (that is, the total thickness of the polarizing plate with a retardation layer is a pressure-sensitive adhesive layer for sticking the polarizing plate with a retardation layer to an adjacent member such as an image display cell and its surface. Does not include the thickness of the release film that can be applied).
 以下、位相差層付偏光板の構成要素について、より詳細に説明する。 The constituent elements of the polarizing plate with retardation layer will be described in more detail below.
B.偏光板
B-1.偏光膜
 偏光膜11は、上記のとおり、厚みが8μm以下であり、波長210nmにおける単位吸光度が1.00以下である。本発明に用いられる偏光膜は、通常の薄型偏光膜に比べて波長210nmにおける単位吸光度が非常に小さい。これは、偏光膜におけるPVAと錯体を形成していないヨウ素イオン(210nm付近の紫外領域に吸収を有する)の含有比が非常に小さくなっていることを意味する。偏光膜中において、ヨウ素は紫外領域に吸収を有するヨウ素イオンと、可視光に吸収を有するPVA-ヨウ素錯体に大きく分けられる。この中で、偏光膜の偏光特性に寄与するのはPVA-ヨウ素錯体である。偏光膜に含有可能なヨウ素の量は有限であるため、ヨウ素イオンが減ることは、PVA-ヨウ素錯体が増加することにつながる。つまり、厚みが8μm以下のような薄型の偏光膜において、ヨウ素イオンを減らすことで、光学特性を高めることが可能となる。この傾向は、特に厚みが薄く膜中のヨウ素濃度が高くなる偏光膜において、顕著となる。波長210nmにおける単位吸光度は、好ましくは0.80以下であり、より好ましくは0.60以下である。波長210nmにおける単位吸光度の下限は、例えば0.20であり得る。単位吸光度は、後述する偏光度を求める際に測定される偏光板の直交透過率Tcに基づいて下記式により求められる直交吸光度A210を、厚みで除すことにより求められる。なお、偏光板の単位吸光度は、実質的には偏光膜の単位吸光度に対応する。
   直交吸光度=log10(100/Tc)
このような特性を有する薄型の偏光膜を用いることが、本発明の特徴の一つである。なお、偏光膜は、上記のような単位吸光度を有することと関連して、波長550nmにおける直交吸光度A550と波長210nmにおける直交吸光度A210との比(A550/A210)が、好ましくは1.4以上であり、より好ましくは1.8以上であり、さらに好ましくは2.0以上であり、特に好ましくは2.2以上である。比(A550/A210)の上限は、例えば3.5であり得る。これは、偏光膜において、ヨウ素イオンの含有比が減少し、600nm付近に吸収を有するPVA-I 錯体の含有比が増大していることを意味する。
B. Polarizing plate B-1. Polarizing Film As described above, the polarizing film 11 has a thickness of 8 μm or less and a unit absorbance at a wavelength of 210 nm of 1.00 or less. The polarizing film used in the present invention has an extremely small unit absorbance at a wavelength of 210 nm as compared with a normal thin polarizing film. This means that the content ratio of iodine ions (having absorption in the ultraviolet region near 210 nm) not forming a complex with PVA in the polarizing film is extremely small. In the polarizing film, iodine is roughly classified into iodine ions having absorption in the ultraviolet region and PVA-iodine complex having absorption in visible light. Among these, it is the PVA-iodine complex that contributes to the polarization characteristics of the polarizing film. Since the amount of iodine that can be contained in the polarizing film is finite, a decrease in iodine ions leads to an increase in PVA-iodine complex. That is, in a thin polarizing film having a thickness of 8 μm or less, it is possible to improve the optical characteristics by reducing iodine ions. This tendency becomes remarkable especially in a polarizing film having a small thickness and a high iodine concentration in the film. The unit absorbance at a wavelength of 210 nm is preferably 0.80 or less, more preferably 0.60 or less. The lower limit of the unit absorbance at the wavelength of 210 nm can be, for example, 0.20. The unit absorbance is obtained by dividing the orthogonal absorbance A 210 obtained by the following formula based on the orthogonal transmittance Tc of the polarizing plate measured when obtaining the polarization degree described later by the thickness. The unit absorbance of the polarizing plate substantially corresponds to the unit absorbance of the polarizing film.
Orthogonal absorbance = log10 (100 / Tc)
The use of a thin polarizing film having such characteristics is one of the features of the present invention. In addition, the polarizing film has a unit absorbance as described above, and the ratio (A 550 / A 210 ) of the orthogonal absorbance A 550 at a wavelength of 550 nm and the orthogonal absorbance A 210 at a wavelength of 210 nm is preferably 1 or less. It is at least 0.4, more preferably at least 1.8, even more preferably at least 2.0, and particularly preferably at least 2.2. The upper limit of the ratio (A 550 / A 210 ) may be 3.5, for example. This, in the polarizing film, decreasing the content ratio of iodine ion, PVA-I 5 having an absorption in the vicinity of 600 nm - means that the content ratio of the complex is increased.
 偏光膜の厚みは、好ましくは1μm~8μmであり、より好ましくは1μm~7μmであり、さらに好ましくは2μm~5μmであり、特に好ましくは2μm~4μmであり、とりわけ好ましくは2μm~3μmである。 The thickness of the polarizing film is preferably 1 μm to 8 μm, more preferably 1 μm to 7 μm, further preferably 2 μm to 5 μm, particularly preferably 2 μm to 4 μm, and particularly preferably 2 μm to 3 μm.
 偏光膜は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光膜の単体透過率は、好ましくは49.0%以下であり、より好ましくは48.0%以下である。一方、単体透過率は、好ましくは41.5%以上であり、より好ましくは42.0%以上であり、さらに好ましくは42.5%以上である。偏光膜の偏光度は、好ましくは99.990%以上であり、好ましくは99.998%以下である。上記単体透過率は、代表的には、紫外可視分光光度計を用いて測定し、視感度補正を行なったY値である。上記偏光度は、代表的には、紫外可視分光光度計を用いて測定して視感度補正を行なった平行透過率Tpおよび直交透過率Tcに基づいて、下記式により求められる。
   偏光度(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
The polarizing film preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm. The single transmittance of the polarizing film is preferably 49.0% or less, more preferably 48.0% or less. On the other hand, the simple substance transmittance is preferably 41.5% or more, more preferably 42.0% or more, and further preferably 42.5% or more. The polarization degree of the polarizing film is preferably 99.990% or more, and preferably 99.998% or less. The single-piece transmittance is typically a Y value measured using an ultraviolet-visible spectrophotometer and subjected to luminosity correction. The polarization degree is typically obtained by the following formula based on the parallel transmittance Tp and the orthogonal transmittance Tc measured by using an ultraviolet-visible spectrophotometer and subjected to the visibility correction.
Polarization degree (%) = {(Tp-Tc) / (Tp + Tc)} 1/2 × 100
 1つの実施形態においては、8μm以下の薄型の偏光膜の透過率は、代表的には、偏光膜(表面の屈折率:1.53)と保護フィルム(屈折率:1.50)との積層体を測定対象として、紫外可視分光光度計を用いて測定される。偏光膜の表面の屈折率および/または保護フィルムの空気界面に接する表面の屈折率に応じて、各層の界面での反射率が変化し、その結果、透過率の測定値が変化する場合がある。したがって、例えば、屈折率が1.50ではない保護フィルムを用いる場合、保護フィルムの空気界面に接する表面の屈折率に応じて透過率の測定値を補正してもよい。具体的には、透過率の補正値Cは、保護フィルムと空気層との界面における透過軸に平行な偏光の反射率R(透過軸反射率)を用いて、以下の式で表わされる。
C=R-R
=((1.50-1)/(1.50+1))×(T/100) 
=((n-1)/(n+1))×(T/100)
ここで、Rは、屈折率が1.50である保護フィルムを用いた場合の透過軸反射率であり、nは使用する保護フィルムの屈折率であり、Tは偏光膜の透過率である。例えば、表面屈折率が1.53である基材(シクロオレフィン系フィルム、ハードコート層付きフィルムなど)を保護フィルムとして用いる場合、補正量Cは約0.2%となる。この場合、測定により得られた透過率に0.2%を加算することで、表面の屈折率が1.53である偏光膜を屈折率が1.50である保護フィルムを用いた場合の透過率に換算することが可能である。なお、上記式に基づく計算によれば、偏光膜の透過率Tを2%変化させたときの補正値Cの変化量は0.03%以下であり、偏光膜の透過率が補正値Cの値に与える影響は限定的である。また、保護フィルムが表面反射以外の吸収を有する場合は、吸収量に応じて適切な補正を行うことができる。
In one embodiment, the transmittance of a thin polarizing film having a thickness of 8 μm or less is typically obtained by laminating a polarizing film (refractive index of surface: 1.53) and a protective film (refractive index: 1.50). It is measured using an ultraviolet-visible spectrophotometer with the body as the measurement target. Depending on the refractive index of the surface of the polarizing film and / or the refractive index of the surface of the protective film in contact with the air interface, the reflectance at the interface of each layer may change, and as a result, the measured transmittance may change. . Therefore, for example, when using a protective film whose refractive index is not 1.50, the measured value of the transmittance may be corrected according to the refractive index of the surface of the protective film in contact with the air interface. Specifically, the transmittance correction value C is expressed by the following equation using the reflectance R 1 (transmission axis reflectance) of polarized light parallel to the transmission axis at the interface between the protective film and the air layer.
C = R 1 -R 0
R 0 = ((1.50-1) 2 /(1.50+1) 2) × (T 1/100)
R 1 = ((n 1 -1 ) 2 / (n 1 +1) 2) × (T 1/100)
Here, R 0 is the transmission axis reflectance when a protective film having a refractive index of 1.50 is used, n 1 is the refractive index of the protective film used, and T 1 is the transmittance of the polarizing film. Is. For example, when a substrate having a surface refractive index of 1.53 (such as a cycloolefin film and a film with a hard coat layer) is used as a protective film, the correction amount C is about 0.2%. In this case, by adding 0.2% to the transmittance obtained by the measurement, the transmittance when the protective film having a refractive index of 1.50 is used for the polarizing film having a surface refractive index of 1.53. It can be converted into a rate. According to the calculation based on the above formula, the change amount of the correction value C when the transmittance T 1 of the polarizing film is changed by 2% is 0.03% or less, and the transmittance of the polarizing film is the correction value C. The effect on the value of is limited. When the protective film has absorption other than surface reflection, appropriate correction can be performed according to the amount of absorption.
 好ましくは、偏光膜は、波長470nmにおける直交吸光度A470と波長600nmにおける直交吸光度A600との比(A470/A600)が0.7以上であり、より好ましくは0.75以上であり、さらに好ましくは0.80以上であり、特に好ましくは0.85以上である。比(A470/A600)は、好ましくは2.00以下であり、より好ましくは1.33以下である。比(A470/A600)がこのような範囲であれば、480nm付近に吸収を有するPVA-I3-錯体の含有比を大幅に減少させることなく維持することができる。その結果、可視光全域にわたって良好な偏光性能を実現することができる。薄型偏光膜におけるヨウ素量が限られている中、従来の技術では、上記の単位吸光度および比(A470/A600)の両方を所望の範囲とすることは困難であったところ、本発明に用いられる偏光膜は、これらの両方を所望の範囲とすることができる。 Preferably, the polarizing film has a ratio (A 470 / A 600 ) of the orthogonal absorbance A 470 at a wavelength of 470 nm and the orthogonal absorbance A 600 at a wavelength of 600 nm of 0.7 or more, more preferably 0.75 or more, It is more preferably 0.80 or more, and particularly preferably 0.85 or more. The ratio (A 470 / A 600 ) is preferably 2.00 or less, more preferably 1.33 or less. When the ratio (A 470 / A 600 ) is in such a range, the content ratio of the PVA-I3-complex having absorption near 480 nm can be maintained without being significantly reduced. As a result, good polarization performance can be realized over the entire visible light range. While the amount of iodine in the thin polarizing film was limited, it was difficult for the prior art to set both the unit absorbance and the ratio (A 470 / A 600 ) in the desired range. The polarizing film used can have both of these in desired ranges.
 さらに、偏光膜の直交b値は、例えば-10より大きく、好ましくは-7以上であり、より好ましくは-5以上である。直交b値は、好ましくは+10以下であり、より好ましくは+5以下である。直交b値は偏光膜(最終的には、位相差層付偏光板)を直交状態に配置した場合の色相を示しており、この数値の絶対値が大きいほど、直交色相(画像表示装置における黒表示)が色味がかって見えることを意味する。例えば、直交b値が-10以下のように低い場合は、黒表示が青く色づいて見え、表示性能が低下する。すなわち、本発明の実施形態によれば、黒表示時に優れた色相を実現し得る位相差層付偏光板を得ることができる。なお、直交b値は、V-7100に代表される分光光度計により測定され得る。 Further, the orthogonal b value of the polarizing film is, for example, larger than −10, preferably −7 or more, and more preferably −5 or more. The orthogonal b value is preferably +10 or less, more preferably +5 or less. The orthogonal b value shows the hue when the polarizing film (finally, the polarizing plate with the retardation layer) is arranged in the orthogonal state. The larger the absolute value of this numerical value, the orthogonal hue (black in the image display device). (Indication) means that it looks tint. For example, when the orthogonal b value is as low as −10 or less, the black display looks blue and the display performance is deteriorated. That is, according to the embodiment of the present invention, it is possible to obtain a polarizing plate with a retardation layer that can realize an excellent hue during black display. The orthogonal b value can be measured by a spectrophotometer represented by V-7100.
 偏光膜のヨウ素濃度は、好ましくは3重量%以上であり、より好ましくは4重量%以上であり、さらに好ましくは6重量%以上である。ヨウ素濃度の上限は、例えば12重量%であり得る。ヨウ素濃度がこのような範囲であれば、上記の単位吸光度を小さくすることによる効果が顕著なものとなる。言い換えれば、上記の効果は、ヨウ素濃度がこのように高くなる薄型偏光膜において顕著である。 The iodine concentration of the polarizing film is preferably 3% by weight or more, more preferably 4% by weight or more, and further preferably 6% by weight or more. The upper limit of iodine concentration may be, for example, 12% by weight. When the iodine concentration is in such a range, the effect of reducing the unit absorbance becomes remarkable. In other words, the above effect is remarkable in the thin polarizing film having such a high iodine concentration.
 偏光膜としては、任意の適切な偏光膜が採用され得る。偏光膜は、代表的には、二層以上の積層体を用いて作製され得る。 Any suitable polarizing film can be adopted as the polarizing film. The polarizing film can be typically manufactured by using a laminate of two or more layers.
 積層体を用いて得られる偏光膜の具体例としては、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光膜が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光膜は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光膜とすること;により作製され得る。本実施形態においては、延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。得られた樹脂基材/偏光膜の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光膜の保護層としてもよく)、樹脂基材/偏光膜の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような偏光膜の製造方法の詳細は、例えば特開2012-73580号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。 A specific example of the polarizing film obtained by using the laminated body is a polarizing film obtained by using a laminated body of a resin base material and a PVA-based resin layer formed by coating on the resin base material. A polarizing film obtained by using a laminate of a resin base material and a PVA-based resin layer applied and formed on the resin base material is, for example, a resin base material obtained by applying a PVA-based resin solution to the resin base material and drying it. A PVA-based resin layer is formed thereon to obtain a laminate of a resin substrate and a PVA-based resin layer; the laminate is stretched and dyed to form the PVA-based resin layer as a polarizing film. obtain. In the present embodiment, the stretching typically includes dipping the laminate in a boric acid aqueous solution and stretching. Further, the stretching may further include optionally stretching the laminate in air at a high temperature (for example, 95 ° C. or higher) before stretching in the aqueous boric acid solution. The obtained resin base material / polarizing film laminate may be used as it is (that is, the resin base material may be used as a protective layer of the polarizing film), or the resin base material is peeled from the resin base material / polarizing film laminate. However, any appropriate protective layer may be laminated and used on the peeled surface depending on the purpose. Details of the method for producing such a polarizing film are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. The entire description of the publication is incorporated herein by reference.
 偏光膜の製造方法は、代表的には、長尺状の熱可塑性樹脂基材の片側に、ハロゲン化物とポリビニルアルコール系樹脂とを含むポリビニルアルコール系樹脂層を形成して積層体とすること、および、上記積層体に、空中補助延伸処理と、染色処理と、水中延伸処理と、長手方向に搬送しながら加熱することにより幅方向に2%以上収縮させる乾燥収縮処理と、をこの順に施すことを含む。これにより、厚みが8μm以下であり、波長210nmにおける単位吸光度が1.00以下である、優れた光学特性を有する偏光膜が提供され得る。すなわち、補助延伸を導入することにより、熱可塑性樹脂上にPVAを塗布する場合でも、PVAの結晶性を高めることが可能となり、高い光学特性を達成することが可能となる。また、同時にPVAの配向性を事前に高めることで、後の染色工程や延伸工程で水に浸漬された時に、PVAの配向性の低下や溶解などの問題を防止することができ、高い光学特性を達成することが可能になる。さらに、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、ポリビニルアルコール分子の配向の乱れ、および配向性の低下が抑制され得る。これにより、染色処理および水中延伸処理など、積層体を液体に浸漬して行う処理工程を経て得られる偏光膜の光学特性を向上し得る。さらに、乾燥収縮処理により積層体を幅方向に収縮させることにより、光学特性を向上させることができる。 The method for manufacturing a polarizing film is typically a laminate of a polyvinyl alcohol resin layer containing a halide and a polyvinyl alcohol resin on one side of a long thermoplastic resin substrate. And subjecting the laminate to an in-air auxiliary stretching treatment, a dyeing treatment, an underwater stretching treatment, and a drying shrinkage treatment of shrinking 2% or more in the width direction by heating while conveying in the longitudinal direction in this order. including. This can provide a polarizing film having excellent optical characteristics, having a thickness of 8 μm or less and a unit absorbance at a wavelength of 210 nm of 1.00 or less. That is, by introducing the auxiliary stretching, the crystallinity of PVA can be increased and high optical characteristics can be achieved even when PVA is applied onto the thermoplastic resin. At the same time, by preliminarily enhancing the orientation of PVA, it is possible to prevent problems such as reduction in orientation and dissolution of PVA when immersed in water in the subsequent dyeing step or stretching step, and high optical characteristics. Can be achieved. Furthermore, when the PVA-based resin layer is dipped in a liquid, the disorder of the alignment of the polyvinyl alcohol molecules and the deterioration of the orientation can be suppressed as compared with the case where the PVA-based resin layer does not contain a halide. This can improve the optical characteristics of the polarizing film obtained through a treatment process such as a dyeing treatment and an underwater stretching treatment performed by immersing the laminate in a liquid. Further, the optical characteristics can be improved by shrinking the laminate in the width direction by the dry shrinking treatment.
B-2.保護層
 第1の保護層12および第2の保護層13は、それぞれ、偏光膜の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。1つの実施形態においては、保護層(特に、視認側の保護層)はTAC系樹脂を含む。保護層としてTAC系樹脂フィルムを用いることにより、折り曲げ耐久性が向上され得る。
B-2. Protective Layer The first protective layer 12 and the second protective layer 13 are each formed of any suitable film that can be used as a protective layer of a polarizing film. Specific examples of the material serving as the main component of the film include cellulose resins such as triacetyl cellulose (TAC), polyester resins, polyvinyl alcohol resins, polycarbonate resins, polyamide resins, polyimide resins, polyether sulfone resins, and polysulfone resins. , Polystyrene-based, polynorbornene-based, polyolefin-based, (meth) acrylic-based, acetate-based transparent resins and the like. Further, a thermosetting resin such as a (meth) acrylic resin, a urethane resin, a (meth) acrylic urethane resin, an epoxy resin, a silicone resin, or an ultraviolet curable resin can be used. In addition to these, for example, a glassy polymer such as a siloxane polymer may be used. Further, the polymer film described in JP 2001-343529 A (WO 01/37007) can also be used. Examples of the material of this film include a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in the side chain. Can be used, and examples thereof include a resin composition having an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer. The polymer film can be, for example, an extruded product of the resin composition. In one embodiment, the protective layer (particularly, the protective layer on the viewing side) includes a TAC resin. By using the TAC resin film as the protective layer, the bending durability can be improved.
 本発明の位相差層付偏光板は、後述するように代表的には画像表示装置の視認側に配置され、第1の保護層12は、代表的にはその視認側に配置される。したがって、第1の保護層12には、必要に応じて、ハードコート処理、反射防止処理、スティッキング防止処理、アンチグレア処理等の表面処理が施されていてもよい。さらに/あるいは、第1の保護層12には、必要に応じて、偏光サングラスを介して視認する場合の視認性を改善する処理(代表的には、(楕)円偏光機能を付与すること、超高位相差を付与すること)が施されていてもよい。このような処理を施すことにより、偏光サングラス等の偏光レンズを介して表示画面を視認した場合でも、優れた視認性を実現することができる。したがって、位相差層付偏光板は、屋外で用いられ得る画像表示装置にも好適に適用され得る。 The polarizing plate with a retardation layer of the present invention is typically arranged on the viewing side of the image display device as described later, and the first protective layer 12 is typically arranged on the viewing side. Therefore, the first protective layer 12 may be subjected to surface treatment such as hard coat treatment, antireflection treatment, sticking prevention treatment, and antiglare treatment, if necessary. Further / or, if necessary, the first protective layer 12 is processed to improve the visibility when viewed through polarized sunglasses (typically, a (elliptical) circular polarization function is added, (Giving an ultrahigh phase difference) may be applied. By performing such a process, excellent visibility can be realized even when the display screen is viewed through a polarizing lens such as polarized sunglasses. Therefore, the polarizing plate with a retardation layer can be suitably applied to an image display device that can be used outdoors.
 第1の保護層の厚みは、好ましくは5μm~80μm、より好ましくは10μm~40μm、さらに好ましくは10μm~35μmである。なお、表面処理が施されている場合、外側保護層の厚みは、表面処理層の厚みを含めた厚みである。 The thickness of the first protective layer is preferably 5 μm to 80 μm, more preferably 10 μm to 40 μm, still more preferably 10 μm to 35 μm. When the surface treatment is applied, the thickness of the outer protective layer is the thickness including the thickness of the surface treated layer.
 第2の保護層13は、1つの実施形態においては、光学的に等方性であることが好ましい。本明細書において「光学的に等方性である」とは、面内位相差Re(550)が0nm~10nmであり、厚み方向の位相差Rth(550)が-10nm~+10nmであることをいう。第2の保護層13は、1つの実施形態においては、任意の適切な位相差値を有する位相差層であり得る。この場合、位相差層の面内位相差Re(550)は、例えば110nm~150nmである。第2の保護層の厚みは、好ましくは5μm~80μm、より好ましくは10μm~40μm、さらに好ましくは10μm~30μmである。薄型化および軽量化の観点からは、好ましくは第2の保護層は省略され得る。 The second protective layer 13 is preferably optically isotropic in one embodiment. In the present specification, “optically isotropic” means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is −10 nm to +10 nm. Say. The second protective layer 13 may be a retardation layer having any appropriate retardation value in one embodiment. In this case, the in-plane retardation Re (550) of the retardation layer is, for example, 110 nm to 150 nm. The thickness of the second protective layer is preferably 5 μm to 80 μm, more preferably 10 μm to 40 μm, still more preferably 10 μm to 30 μm. From the viewpoint of reduction in thickness and weight, the second protective layer can be preferably omitted.
B-3.偏光膜の製造方法
 偏光膜は、例えば、長尺状の熱可塑性樹脂基材の片側に、ハロゲン化物とポリビニルアルコール系樹脂(PVA系樹脂)とを含むポリビニルアルコール系樹脂層(PVA系樹脂層)を形成して積層体とすること、および、積層体に、空中補助延伸処理と、染色処理と、水中延伸処理と、長手方向に搬送しながら加熱することにより幅方向に2%以上収縮させる乾燥収縮処理と、をこの順に施すことを含む方法により作製され得る。PVA系樹脂層におけるハロゲン化物の含有量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部である。乾燥収縮処理は、加熱ロールを用いて処理することが好ましく、加熱ロールの温度は、好ましくは、60℃~120℃である。乾燥収縮処理による積層体の幅方向の収縮率は、好ましくは、2%以上である。このような製造方法によれば、上記B-1項で説明した偏光膜を得ることができる。特に、ハロゲン化物を含むPVA系樹脂層を含む積層体を作製し、上記積層体の延伸を空中補助延伸及び水中延伸を含む多段階延伸とし、延伸後の積層体を加熱ロールで加熱することにより、優れた光学特性(代表的には、単体透過率および波長210nmにおける単位吸光度)を有する偏光膜を得ることができる。
B-3. Method for manufacturing polarizing film The polarizing film is, for example, a polyvinyl alcohol resin layer (PVA resin layer) containing a halide and a polyvinyl alcohol resin (PVA resin) on one side of a long thermoplastic resin substrate. To form a laminated body, and the laminated body is subjected to an in-air auxiliary stretching treatment, a dyeing treatment, an underwater stretching treatment, and drying for shrinking 2% or more in the width direction by heating while conveying in the longitudinal direction. The shrinkage treatment and the shrinkage treatment may be performed in this order. The content of the halide in the PVA-based resin layer is preferably 5 to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin. The drying shrinkage treatment is preferably performed using a heating roll, and the temperature of the heating roll is preferably 60 ° C. to 120 ° C. The shrinkage ratio in the width direction of the laminate by the dry shrinkage treatment is preferably 2% or more. According to such a manufacturing method, the polarizing film described in the above section B-1 can be obtained. In particular, a laminate including a PVA-based resin layer containing a halide is prepared, and the laminate is stretched in multiple stages including in-air auxiliary stretching and underwater stretching, and the laminated laminate is heated with a heating roll. It is possible to obtain a polarizing film having excellent optical characteristics (typically, single transmittance and unit absorbance at a wavelength of 210 nm).
B-3-1.積層体の作製
 熱可塑性樹脂基材とPVA系樹脂層との積層体を作製する方法としては、任意の適切な方法が採用され得る。好ましくは、熱可塑性樹脂基材の表面に、ハロゲン化物とPVA系樹脂とを含む塗布液を塗布し、乾燥することにより、熱可塑性樹脂基材上にPVA系樹脂層を形成する。上記のとおり、PVA系樹脂層におけるハロゲン化物の含有量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部である。
B-3-1. Preparation of Laminate As a method of preparing a laminate of the thermoplastic resin substrate and the PVA-based resin layer, any suitable method can be adopted. Preferably, a PVA-based resin layer is formed on the thermoplastic resin substrate by applying a coating liquid containing a halide and a PVA-based resin on the surface of the thermoplastic resin substrate and drying the coating liquid. As described above, the content of the halide in the PVA-based resin layer is preferably 5 to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin.
 塗布液の塗布方法としては、任意の適切な方法を採用することができる。例えば、ロールコート法、スピンコート法、ワイヤーバーコート法、ディップコート法、ダイコート法、カーテンコート法、スプレーコート法、ナイフコート法(コンマコート法等)等が挙げられる。上記塗布液の塗布・乾燥温度は、好ましくは50℃以上である。 Any appropriate method can be adopted as the method for applying the application liquid. For example, a roll coating method, a spin coating method, a wire bar coating method, a dip coating method, a die coating method, a curtain coating method, a spray coating method, a knife coating method (a comma coating method, etc.) and the like can be mentioned. The coating / drying temperature of the coating liquid is preferably 50 ° C. or higher.
 PVA系樹脂層の厚みは、好ましくは、3μm~40μm、さらに好ましくは3μm~20μmである。 The thickness of the PVA resin layer is preferably 3 μm to 40 μm, more preferably 3 μm to 20 μm.
 PVA系樹脂層を形成する前に、熱可塑性樹脂基材に表面処理(例えば、コロナ処理等)を施してもよいし、熱可塑性樹脂基材上に易接着層を形成してもよい。このような処理を行うことにより、熱可塑性樹脂基材とPVA系樹脂層との密着性を向上させることができる。 Before the PVA-based resin layer is formed, the thermoplastic resin substrate may be subjected to surface treatment (for example, corona treatment), or the easily adhesive layer may be formed on the thermoplastic resin substrate. By performing such a treatment, the adhesion between the thermoplastic resin base material and the PVA-based resin layer can be improved.
B-3-1-1.熱可塑性樹脂基材
 熱可塑性樹脂基材の厚みは、好ましくは20μm~300μm、より好ましくは50μm~200μmである。20μm未満であると、PVA系樹脂層の形成が困難になるおそれがある。300μmを超えると、例えば、後述の水中延伸処理において、熱可塑性樹脂基材が水を吸収するのに長時間を要するとともに、延伸に過大な負荷を要するおそれがある。
B-3-1-1. Thermoplastic resin substrate The thickness of the thermoplastic resin substrate is preferably 20 μm to 300 μm, more preferably 50 μm to 200 μm. If it is less than 20 μm, it may be difficult to form the PVA-based resin layer. If it exceeds 300 μm, it may take a long time for the thermoplastic resin substrate to absorb water in the below-described underwater stretching treatment, and an excessive load may be required for stretching.
 熱可塑性樹脂基材は、好ましくは、その吸水率が0.2%以上であり、さらに好ましくは0.3%以上である。熱可塑性樹脂基材は、水を吸収し、水が可塑剤的な働きをして可塑化し得る。その結果、延伸応力を大幅に低下させることができ、高倍率に延伸することができる。一方、熱可塑性樹脂基材の吸水率は、好ましくは3.0%以下、さらに好ましくは1.0%以下である。このような熱可塑性樹脂基材を用いることにより、製造時に熱可塑性樹脂基材の寸法安定性が著しく低下して、得られる偏光膜の外観が悪化するなどの不具合を防止することができる。また、水中延伸時に基材が破断したり、熱可塑性樹脂基材からPVA系樹脂層が剥離したりするのを防止することができる。なお、熱可塑性樹脂基材の吸水率は、例えば、構成材料に変性基を導入することにより調整することができる。吸水率は、JIS K 7209に準じて求められる値である。 The thermoplastic resin base material preferably has a water absorption of 0.2% or more, and more preferably 0.3% or more. The thermoplastic resin base material absorbs water, and the water acts as a plasticizer and can be plasticized. As a result, the stretching stress can be significantly reduced, and stretching can be performed at a high ratio. On the other hand, the water absorption of the thermoplastic resin substrate is preferably 3.0% or less, more preferably 1.0% or less. By using such a thermoplastic resin base material, it is possible to prevent problems such as the dimensional stability of the thermoplastic resin base material being significantly reduced during production, and the appearance of the polarizing film obtained being deteriorated. In addition, it is possible to prevent the base material from breaking during the underwater stretching and the PVA-based resin layer from peeling off from the thermoplastic resin base material. The water absorption of the thermoplastic resin substrate can be adjusted, for example, by introducing a modifying group into the constituent material. The water absorption rate is a value determined according to JIS K7209.
 熱可塑性樹脂基材のガラス転移温度(Tg)は、好ましくは120℃以下である。このような熱可塑性樹脂基材を用いることにより、PVA系樹脂層の結晶化を抑制しながら、積層体の延伸性を十分に確保することができる。さらに、水による熱可塑性樹脂基材の可塑化と、水中延伸を良好に行うことを考慮すると、100℃以下、さらには90℃以下であることがより好ましい。一方、熱可塑性樹脂基材のガラス転移温度は、好ましくは60℃以上である。このような熱可塑性樹脂基材を用いることにより、上記PVA系樹脂を含む塗布液を塗布・乾燥する際に、熱可塑性樹脂基材が変形(例えば、凹凸やタルミ、シワ等の発生)するなどの不具合を防止して、良好に積層体を作製することができる。また、PVA系樹脂層の延伸を、好適な温度(例えば、60℃程度)にて良好に行うことができる。なお、熱可塑性樹脂基材のガラス転移温度は、例えば、構成材料に変性基を導入する、結晶化材料を用いて加熱することにより調整することができる。ガラス転移温度(Tg)は、JIS K 7121に準じて求められる値である。 The glass transition temperature (Tg) of the thermoplastic resin base material is preferably 120 ° C. or lower. By using such a thermoplastic resin substrate, it is possible to sufficiently secure the stretchability of the laminate while suppressing the crystallization of the PVA-based resin layer. Further, in consideration of good plasticization of the thermoplastic resin substrate with water and favorable underwater stretching, the temperature is preferably 100 ° C. or lower, and more preferably 90 ° C. or lower. On the other hand, the glass transition temperature of the thermoplastic resin substrate is preferably 60 ° C or higher. By using such a thermoplastic resin base material, the thermoplastic resin base material may be deformed (for example, unevenness, wrinkles, wrinkles, etc.) when the coating liquid containing the PVA-based resin is applied and dried. It is possible to satisfactorily produce a laminated body by preventing the above problems. Moreover, the PVA-based resin layer can be stretched well at a suitable temperature (for example, about 60 ° C.). The glass transition temperature of the thermoplastic resin substrate can be adjusted, for example, by introducing a modifying group into the constituent material and heating it with a crystallization material. The glass transition temperature (Tg) is a value determined according to JIS K7121.
 熱可塑性樹脂基材の構成材料としては、任意の適切な熱可塑性樹脂が採用され得る。熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート系樹脂等のエステル系樹脂、ノルボルネン系樹脂等のシクロオレフィン系樹脂、ポリプロピレン等のオレフィン系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、これらの共重合体樹脂等が挙げられる。これらの中でも、好ましくは、ノルボルネン系樹脂、非晶質のポリエチレンテレフタレート系樹脂である。 Any suitable thermoplastic resin can be adopted as the constituent material of the thermoplastic resin base material. Examples of the thermoplastic resin include ester-based resins such as polyethylene terephthalate-based resins, cycloolefin-based resins such as norbornene-based resins, olefin-based resins such as polypropylene, polyamide-based resins, polycarbonate-based resins, and copolymer resins thereof. Is mentioned. Among these, norbornene-based resins and amorphous polyethylene terephthalate-based resins are preferable.
 1つの実施形態においては、非晶質の(結晶化していない)ポリエチレンテレフタレート系樹脂が好ましく用いられる。中でも、非晶性の(結晶化しにくい)ポリエチレンテレフタレート系樹脂が特に好ましく用いられる。非晶性のポリエチレンテレフタレート系樹脂の具体例としては、ジカルボン酸としてイソフタル酸および/またはシクロヘキサンジカルボン酸をさらに含む共重合体や、グリコールとしてシクロヘキサンジメタノールやジエチレングリコールをさらに含む共重合体が挙げられる。 In one embodiment, an amorphous (non-crystallized) polyethylene terephthalate resin is preferably used. Among them, an amorphous (hard to crystallize) polyethylene terephthalate resin is particularly preferably used. Specific examples of the amorphous polyethylene terephthalate resin include a copolymer further containing isophthalic acid and / or cyclohexanedicarboxylic acid as a dicarboxylic acid, and a copolymer further containing cyclohexanedimethanol or diethylene glycol as a glycol.
 好ましい実施形態においては、熱可塑性樹脂基材は、イソフタル酸ユニットを有するポリエチレンテレフタレート系樹脂で構成される。このような熱可塑性樹脂基材は延伸性に極めて優れるとともに、延伸時の結晶化が抑制され得るからである。これは、イソフタル酸ユニットを導入することで、主鎖に大きな屈曲を与えることによるものと考えられる。ポリエチレンテレフタレート系樹脂は、テレフタル酸ユニットおよびエチレングリコールユニットを有する。イソフタル酸ユニットの含有割合は、全繰り返し単位の合計に対して、好ましくは0.1モル%以上、さらに好ましくは1.0モル%以上である。延伸性に極めて優れた熱可塑性樹脂基材が得られるからである。一方、イソフタル酸ユニットの含有割合は、全繰り返し単位の合計に対して、好ましくは20モル%以下、より好ましくは10モル%以下である。このような含有割合に設定することで、後述の乾燥収縮処理において結晶化度を良好に増加させることができる。 In a preferred embodiment, the thermoplastic resin base material is composed of a polyethylene terephthalate resin having an isophthalic acid unit. This is because such a thermoplastic resin substrate has extremely excellent stretchability and can suppress crystallization during stretching. It is considered that this is because the main chain is largely bent by introducing the isophthalic acid unit. The polyethylene terephthalate resin has a terephthalic acid unit and an ethylene glycol unit. The content ratio of the isophthalic acid unit is preferably 0.1 mol% or more, more preferably 1.0 mol% or more based on the total of all repeating units. This is because a thermoplastic resin substrate having extremely excellent stretchability can be obtained. On the other hand, the content ratio of the isophthalic acid unit is preferably 20 mol% or less, more preferably 10 mol% or less, based on the total of all repeating units. By setting such a content ratio, the crystallinity can be favorably increased in the drying shrinkage treatment described below.
 熱可塑性樹脂基材は、予め(PVA系樹脂層を形成する前)、延伸されていてもよい。1つの実施形態においては、長尺状の熱可塑性樹脂基材の横方向に延伸されている。横方向は、好ましくは、後述の積層体の延伸方向に直交する方向である。なお、本明細書において、「直交」とは、実質的に直交する場合も包含する。ここで、「実質的に直交」とは、90°±5.0°である場合を包含し、好ましくは90°±3.0°、さらに好ましくは90°±1.0°である。 The thermoplastic resin substrate may be stretched in advance (before forming the PVA-based resin layer). In one embodiment, the elongated thermoplastic resin substrate is stretched in the lateral direction. The lateral direction is preferably a direction orthogonal to the stretching direction of the laminate described below. In addition, in this specification, the term "orthogonal" includes the case of being substantially orthogonal. Here, “substantially orthogonal” includes the case of 90 ° ± 5.0 °, preferably 90 ° ± 3.0 °, and more preferably 90 ° ± 1.0 °.
 熱可塑性樹脂基材の延伸温度は、ガラス転移温度(Tg)に対し、好ましくはTg-10℃~Tg+50℃である。熱可塑性樹脂基材の延伸倍率は、好ましくは1.5倍~3.0倍である。 The stretching temperature of the thermoplastic resin substrate is preferably Tg-10 ° C to Tg + 50 ° C with respect to the glass transition temperature (Tg). The stretch ratio of the thermoplastic resin substrate is preferably 1.5 to 3.0 times.
 熱可塑性樹脂基材の延伸方法としては、任意の適切な方法が採用され得る。具体的には、固定端延伸でもよいし、自由端延伸でもよい。延伸方式は、乾式でもよいし、湿式でもよい。熱可塑性樹脂基材の延伸は、一段階で行ってもよいし、多段階で行ってもよい。多段階で行う場合、上述の延伸倍率は、各段階の延伸倍率の積である。 Any appropriate method can be adopted as a method for stretching the thermoplastic resin substrate. Specifically, it may be fixed-end stretching or free-end stretching. The stretching method may be dry or wet. Stretching of the thermoplastic resin substrate may be performed in one stage or in multiple stages. When performing in multiple stages, the above-mentioned draw ratio is a product of the draw ratio of each stage.
B-3-1-2.塗布液
 塗布液は、上記のとおり、ハロゲン化物とPVA系樹脂とを含む。上記塗布液は、代表的には、上記ハロゲン化物および上記PVA系樹脂を溶媒に溶解させた溶液である。溶媒としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、各種グリコール類、トリメチロールプロパン等の多価アルコール類、エチレンジアミン、ジエチレントリアミン等のアミン類が挙げられる。これらは単独で、または、二種以上組み合わせて用いることができる。これらの中でも、好ましくは、水である。溶液のPVA系樹脂濃度は、溶媒100重量部に対して、好ましくは3重量部~20重量部である。このような樹脂濃度であれば、熱可塑性樹脂基材に密着した均一な塗布膜を形成することができる。塗布液におけるハロゲン化物の含有量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部である。
B-3-1-2. Coating liquid The coating liquid contains a halide and a PVA-based resin as described above. The coating liquid is typically a solution prepared by dissolving the halide and the PVA resin in a solvent. Examples of the solvent include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylolpropane, and amines such as ethylenediamine and diethylenetriamine. These can be used alone or in combination of two or more. Of these, water is preferable. The PVA-based resin concentration of the solution is preferably 3 to 20 parts by weight with respect to 100 parts by weight of the solvent. With such a resin concentration, it is possible to form a uniform coating film in close contact with the thermoplastic resin substrate. The content of the halide in the coating liquid is preferably 5 to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin.
 塗布液に、添加剤を配合してもよい。添加剤としては、例えば、可塑剤、界面活性剤等が挙げられる。可塑剤としては、例えば、エチレングリコールやグリセリン等の多価アルコールが挙げられる。界面活性剤としては、例えば、非イオン界面活性剤が挙げられる。これらは、得られるPVA系樹脂層の均一性や染色性、延伸性をより一層向上させる目的で使用され得る。 Additives may be added to the coating liquid. Examples of the additive include a plasticizer and a surfactant. Examples of the plasticizer include polyhydric alcohols such as ethylene glycol and glycerin. Examples of the surfactant include nonionic surfactants. These can be used for the purpose of further improving the uniformity, dyeability and stretchability of the obtained PVA-based resin layer.
 上記PVA系樹脂としては、任意の適切な樹脂が採用され得る。例えば、ポリビニルアルコールおよびエチレン-ビニルアルコール共重合体が挙げられる。ポリビニルアルコールは、ポリ酢酸ビニルをケン化することにより得られる。エチレン-ビニルアルコール共重合体は、エチレン-酢酸ビニル共重合体をケン化することにより得られる。PVA系樹脂のケン化度は、通常85モル%~100モル%であり、好ましくは95.0モル%~99.95モル%、さらに好ましくは99.0モル%~99.93モル%である。ケン化度は、JIS K 6726-1994に準じて求めることができる。このようなケン化度のPVA系樹脂を用いることによって、耐久性に優れた偏光膜が得られ得る。ケン化度が高すぎる場合には、ゲル化してしまうおそれがある。 Any suitable resin can be adopted as the PVA-based resin. Examples thereof include polyvinyl alcohol and ethylene-vinyl alcohol copolymer. Polyvinyl alcohol is obtained by saponifying polyvinyl acetate. The ethylene-vinyl alcohol copolymer can be obtained by saponifying an ethylene-vinyl acetate copolymer. The degree of saponification of the PVA-based resin is usually 85 mol% to 100 mol%, preferably 95.0 mol% to 99.95 mol%, more preferably 99.0 mol% to 99.93 mol%. . The degree of saponification can be determined according to JIS K 6726-1994. By using a PVA-based resin having such a saponification degree, a polarizing film having excellent durability can be obtained. If the degree of saponification is too high, gelation may occur.
 PVA系樹脂の平均重合度は、目的に応じて適切に選択し得る。平均重合度は、通常1000~10000であり、好ましくは1200~4500、さらに好ましくは1500~4300である。なお、平均重合度は、JIS K 6726-1994に準じて求めることができる。 The average degree of polymerization of the PVA resin can be appropriately selected according to the purpose. The average degree of polymerization is usually 1000 to 10000, preferably 1200 to 4500, and more preferably 1500 to 4300. The average degree of polymerization can be determined according to JIS K 6726-1994.
 上記ハロゲン化物としては、任意の適切なハロゲン化物が採用され得る。例えば、ヨウ化物および塩化ナトリウムが挙げられる。ヨウ化物としては、例えば、ヨウ化カリウム、ヨウ化ナトリウム、およびヨウ化リチウムが挙げられる。これらの中でも、好ましくは、ヨウ化カリウムである。 Any suitable halide can be adopted as the above-mentioned halide. Examples include iodide and sodium chloride. Examples of iodides include potassium iodide, sodium iodide, and lithium iodide. Among these, potassium iodide is preferable.
 塗布液におけるハロゲン化物の量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部であり、より好ましくは、PVA系樹脂100重量部に対して10重量部~15重量部である。PVA系樹脂100重量部に対するハロゲン化物の量が20重量部を超えると、ハロゲン化物がブリードアウトし、最終的に得られる偏光膜が白濁する場合がある。 The amount of halide in the coating solution is preferably 5 to 20 parts by weight with respect to 100 parts by weight of PVA-based resin, and more preferably 10 to 15 parts by weight with respect to 100 parts by weight of PVA-based resin. It is a department. If the amount of the halide exceeds 20 parts by weight with respect to 100 parts by weight of the PVA-based resin, the halide may bleed out and the polarizing film finally obtained may become cloudy.
 一般に、PVA系樹脂層が延伸されることによって、PVA系樹脂中のポリビニルアルコール分子の配向性が高くなるが、延伸後のPVA系樹脂層を、水を含む液体に浸漬すると、ポリビニルアルコール分子の配向が乱れ、配向性が低下する場合がある。特に、熱可塑性樹脂基材とPVA系樹脂層との積層体をホウ酸水中延伸する場合において、熱可塑性樹脂基材の延伸を安定させるために比較的高い温度で上記積層体をホウ酸水中で延伸する場合、上記配向度低下の傾向が顕著である。例えば、PVAフィルム単体のホウ酸水中での延伸が60℃で行われることが一般的であるのに対し、A-PET(熱可塑性樹脂基材)とPVA系樹脂層との積層体の延伸は70℃前後の温度という高い温度で行われ、この場合、延伸初期のPVAの配向性が水中延伸により上がる前の段階で低下し得る。これに対して、ハロゲン化物を含むPVA系樹脂層と熱可塑性樹脂基材との積層体を作製し、積層体をホウ酸水中で延伸する前に空気中で高温延伸(補助延伸)することにより、補助延伸後の積層体のPVA系樹脂層中のPVA系樹脂の結晶化が促進され得る。その結果、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、ポリビニルアルコール分子の配向の乱れ、および配向性の低下が抑制され得る。これにより、染色処理および水中延伸処理など、積層体を液体に浸漬して行う処理工程を経て得られる偏光膜の光学特性を向上し得る。 Generally, when the PVA-based resin layer is stretched, the orientation of the polyvinyl alcohol molecules in the PVA-based resin increases, but when the stretched PVA-based resin layer is immersed in a liquid containing water, the polyvinyl alcohol molecules The orientation may be disturbed and the orientation may be deteriorated. In particular, when a laminate of a thermoplastic resin base material and a PVA-based resin layer is stretched in boric acid water, the laminate is heated in boric acid water at a relatively high temperature in order to stabilize the stretching of the thermoplastic resin base material. In the case of stretching, the above-mentioned tendency of decreasing the degree of orientation is remarkable. For example, while stretching of a PVA film alone in boric acid water is generally performed at 60 ° C., stretching of a laminate of A-PET (thermoplastic resin base material) and PVA-based resin layer is performed. It is carried out at a high temperature of around 70 ° C. In this case, the orientation of PVA in the initial stage of stretching may be lowered in a stage before being raised by the underwater stretching. On the other hand, by forming a laminate of a PVA-based resin layer containing a halide and a thermoplastic resin substrate, and stretching the laminate at high temperature in air (auxiliary stretching) before stretching in boric acid water. The crystallization of the PVA-based resin in the PVA-based resin layer of the laminate after the auxiliary stretching can be promoted. As a result, when the PVA-based resin layer is immersed in the liquid, the disorder of the alignment of the polyvinyl alcohol molecules and the deterioration of the orientation can be suppressed as compared with the case where the PVA-based resin layer does not contain a halide. This can improve the optical characteristics of the polarizing film obtained through a treatment process such as a dyeing treatment and an underwater stretching treatment performed by immersing the laminate in a liquid.
B-3-2.空中補助延伸処理
 特に、高い光学特性を得るためには、乾式延伸(補助延伸)とホウ酸水中延伸を組み合わせる、2段延伸の方法が選択される。2段延伸のように、補助延伸を導入することにより、熱可塑性樹脂基材の結晶化を抑制しながら延伸することができ、後のホウ酸水中延伸において熱可塑性樹脂基材の過度の結晶化により延伸性が低下するという問題を解決し、積層体をより高倍率に延伸することができる。さらには、熱可塑性樹脂基材上にPVA系樹脂を塗布する場合、熱可塑性樹脂基材のガラス転移温度の影響を抑制するために、通常の金属ドラム上にPVA系樹脂を塗布する場合と比べて塗布温度を低くする必要があり、その結果、PVA系樹脂の結晶化が相対的に低くなり、十分な光学特性が得られない、という問題が生じ得る。これに対して、補助延伸を導入することにより、熱可塑性樹脂上にPVA系樹脂を塗布する場合でも、PVA系樹脂の結晶性を高めることが可能となり、高い光学特性を達成することが可能となる。また、同時にPVA系樹脂の配向性を事前に高めることで、後の染色工程や延伸工程で水に浸漬された時に、PVA系樹脂の配向性の低下や溶解などの問題を防止することができ、高い光学特性を達成することが可能になる。
B-3-2. In-air auxiliary stretching treatment In order to obtain particularly high optical characteristics, a two-stage stretching method is selected in which dry stretching (auxiliary stretching) and boric acid in-water stretching are combined. By introducing auxiliary stretching like two-stage stretching, it is possible to perform stretching while suppressing crystallization of the thermoplastic resin substrate, and excessive crystallization of the thermoplastic resin substrate in subsequent boric acid underwater stretching. Thereby, the problem that the stretchability is lowered can be solved, and the laminate can be stretched at a higher ratio. Furthermore, in the case of applying the PVA-based resin on the thermoplastic resin base material, in order to suppress the influence of the glass transition temperature of the thermoplastic resin base material, compared with the case of applying the PVA-based resin on a normal metal drum. Therefore, it is necessary to lower the coating temperature, and as a result, the crystallization of the PVA-based resin becomes relatively low, which may cause a problem that sufficient optical characteristics cannot be obtained. On the other hand, by introducing the auxiliary stretching, the crystallinity of the PVA-based resin can be increased even when the PVA-based resin is applied on the thermoplastic resin, and high optical characteristics can be achieved. Become. Further, at the same time, by preliminarily enhancing the orientation of the PVA-based resin, it is possible to prevent problems such as deterioration of the orientation of the PVA-based resin and dissolution when the PVA-based resin is immersed in water in the subsequent dyeing step or stretching step. It becomes possible to achieve high optical characteristics.
 空中補助延伸の延伸方法は、固定端延伸(たとえば、テンター延伸機を用いて延伸する方法)でもよいし、自由端延伸(たとえば、周速の異なるロール間に積層体を通して一軸延伸する方法)でもよいが、高い光学特性を得るためには、自由端延伸が積極的に採用され得る。1つの実施形態においては、空中延伸処理は、上記積層体をその長手方向に搬送しながら、加熱ロール間の周速差により延伸する加熱ロール延伸工程を含む。空中延伸処理は、代表的には、ゾーン延伸工程と加熱ロール延伸工程とを含む。なお、ゾーン延伸工程と加熱ロール延伸工程の順序は限定されず、ゾーン延伸工程が先に行われてもよく、加熱ロール延伸工程が先に行われてもよい。ゾーン延伸工程は省略されてもよい。1つの実施形態においては、ゾーン延伸工程および加熱ロール延伸工程がこの順に行われる。また、別の実施形態では、テンター延伸機において、フィルム端部を把持し、テンター間の距離を流れ方向に広げることで延伸される(テンター間の距離の広がりが延伸倍率となる)。この時、幅方向(流れ方向に対して、垂直方向)のテンターの距離は、任意に近づくように設定される。好ましくは、流れ方向の延伸倍率に対して、自由端延伸により近くなるように設定され得る。自由端延伸の場合、幅方向の収縮率=(1/延伸倍率)1/2で計算される。 The stretching method for the in-air auxiliary stretching may be fixed-end stretching (for example, a stretching method using a tenter stretching machine) or free-end stretching (for example, a uniaxial stretching method in which a laminate is passed between rolls having different peripheral speeds). Although good, free-end stretching can be positively adopted in order to obtain high optical characteristics. In one embodiment, the in-air stretching treatment includes a heating roll stretching step of stretching the laminate by the difference in peripheral speed between the heating rolls while conveying the laminate in the longitudinal direction. The in-air stretching treatment typically includes a zone stretching step and a heating roll stretching step. The order of the zone stretching step and the heating roll stretching step is not limited, and the zone stretching step may be performed first or the heating roll stretching step may be performed first. The zone stretching step may be omitted. In one embodiment, the zone stretching step and the heated roll stretching step are performed in this order. Further, in another embodiment, in the tenter stretching machine, stretching is performed by gripping the film end portion and widening the distance between the tenter in the flow direction (expansion of the distance between the tenter is the stretching ratio). At this time, the distance of the tenter in the width direction (direction perpendicular to the flow direction) is set to be arbitrarily close. Preferably, it can be set so as to be closer to the free end stretching with respect to the stretching ratio in the machine direction. In the case of free end drawing, the shrinkage ratio in the width direction is calculated by (1/1 / drawing ratio) 1/2 .
 空中補助延伸は、一段階で行ってもよいし、多段階で行ってもよい。多段階で行う場合、延伸倍率は、各段階の延伸倍率の積である。空中補助延伸における延伸方向は、好ましくは、水中延伸の延伸方向と略同一である。 Assisted stretching in the air may be performed in one stage or in multiple stages. When performing in multiple stages, the draw ratio is the product of the draw ratios in each stage. The stretching direction in the in-air auxiliary stretching is preferably substantially the same as the stretching direction in the underwater stretching.
 空中補助延伸における延伸倍率は、好ましくは2.0倍~3.5倍である。空中補助延伸と水中延伸とを組み合わせた場合の最大延伸倍率は、積層体の元長に対して、好ましくは5.0倍以上、より好ましくは5.5倍以上、さらに好ましくは6.0倍以上である。本明細書において「最大延伸倍率」とは、積層体が破断する直前の延伸倍率をいい、別途、積層体が破断する延伸倍率を確認し、その値よりも0.2低い値をいう。 The draw ratio in the in-air auxiliary drawing is preferably 2.0 to 3.5 times. The maximum draw ratio when the in-air auxiliary drawing and the underwater drawing are combined is preferably 5.0 times or more, more preferably 5.5 times or more, and further preferably 6.0 times, with respect to the original length of the laminate. That is all. In the present specification, the "maximum stretch ratio" means a stretch ratio immediately before the laminated body breaks, and separately confirms the stretch ratio at which the laminated body breaks, and means a value 0.2 lower than the value.
 空中補助延伸の延伸温度は、熱可塑性樹脂基材の形成材料、延伸方式等に応じて、任意の適切な値に設定することができる。延伸温度は、好ましくは熱可塑性樹脂基材のガラス転移温度(Tg)以上であり、さらに好ましくは熱可塑性樹脂基材のガラス転移温度(Tg)+10℃以上、特に好ましくはTg+15℃以上である。一方、延伸温度の上限は、好ましくは170℃である。このような温度で延伸することで、PVA系樹脂の結晶化が急速に進むのを抑制して、当該結晶化による不具合(例えば、延伸によるPVA系樹脂層の配向を妨げる)を抑制することができる。空中補助延伸後のPVA系樹脂の結晶化指数は、好ましくは1.3~1.8であり、より好ましくは1.4~1.7である。PVA系樹脂の結晶化指数は、フーリエ変換赤外分光光度計を用い、ATR法により測定することができる。具体的には、偏光を測定光として測定を実施し、得られたスペクトルの1141cm-1および1440cm-1の強度を用いて、下記式に従って結晶化指数を算出する。
   結晶化指数=(I/I
ただし、
 :測定光を入射して測定したときの1141cm-1の強度
 :測定光を入射して測定したときの1440cm-1の強度
である。
The stretching temperature of the in-air auxiliary stretching can be set to any appropriate value depending on the forming material of the thermoplastic resin substrate, the stretching method and the like. The stretching temperature is preferably the glass transition temperature (Tg) or higher of the thermoplastic resin substrate, more preferably the glass transition temperature (Tg) + 10 ° C. or higher of the thermoplastic resin substrate, and particularly preferably Tg + 15 ° C. or higher. On the other hand, the upper limit of the stretching temperature is preferably 170 ° C. By stretching at such a temperature, it is possible to suppress rapid crystallization of the PVA-based resin and suppress defects due to the crystallization (for example, to prevent orientation of the PVA-based resin layer due to stretching). it can. The crystallization index of the PVA-based resin after the in-air auxiliary stretching is preferably 1.3 to 1.8, more preferably 1.4 to 1.7. The crystallization index of the PVA-based resin can be measured by the ATR method using a Fourier transform infrared spectrophotometer. Specifically, measurement is performed using polarized light as the measurement light, and the crystallization index is calculated according to the following formula using the intensities of 1141 cm −1 and 1440 cm −1 of the obtained spectrum.
Crystallization index = (I C / I R ).
However,
I C: intensity I R of 1141cm -1 when measured by the incident measurement light: the intensity of 1440cm -1 when measured by the incident measurement light.
B-3-3.不溶化処理
 必要に応じて、空中補助延伸処理の後、水中延伸処理や染色処理の前に、不溶化処理を施す。上記不溶化処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬することにより行う。不溶化処理を施すことにより、PVA系樹脂層に耐水性を付与し、水に浸漬した時のPVAの配向低下を防止することができる。当該ホウ酸水溶液の濃度は、水100重量部に対して、好ましくは1重量部~4重量部である。不溶化浴(ホウ酸水溶液)の液温は、好ましくは20℃~50℃である。
B-3-3. Insolubilization treatment If necessary, an insolubilization treatment is performed after the in-air auxiliary stretching treatment and before the underwater stretching treatment or the dyeing treatment. The insolubilization treatment is typically performed by immersing the PVA-based resin layer in an aqueous boric acid solution. By applying the insolubilization treatment, it is possible to impart water resistance to the PVA-based resin layer and prevent the orientation of PVA from being lowered when immersed in water. The concentration of the boric acid aqueous solution is preferably 1 to 4 parts by weight with respect to 100 parts by weight of water. The liquid temperature of the insolubilizing bath (boric acid aqueous solution) is preferably 20 ° C to 50 ° C.
B-3-4.染色処理
 上記染色処理は、代表的には、PVA系樹脂層を二色性物質(代表的には、ヨウ素)で染色することにより行う。具体的には、PVA系樹脂層にヨウ素を吸着させることにより行う。当該吸着方法としては、例えば、ヨウ素を含む染色液にPVA系樹脂層(積層体)を浸漬させる方法、PVA系樹脂層に当該染色液を塗工する方法、当該染色液をPVA系樹脂層に噴霧する方法等が挙げられる。好ましくは、染色液(染色浴)に積層体を浸漬させる方法である。ヨウ素が良好に吸着し得るからである。
B-3-4. Dyeing Treatment The above dyeing treatment is typically performed by dyeing the PVA-based resin layer with a dichroic material (typically iodine). Specifically, it is performed by adsorbing iodine on the PVA resin layer. Examples of the adsorption method include a method of immersing the PVA-based resin layer (laminate) in a dyeing solution containing iodine, a method of applying the dyeing solution to the PVA-based resin layer, and a method of applying the dyeing solution to the PVA-based resin layer. Examples include a method of spraying. A preferred method is to immerse the laminate in a dyeing solution (dyeing bath). This is because iodine can be favorably adsorbed.
 上記染色液は、好ましくは、ヨウ素水溶液である。ヨウ素の配合量は、水100重量部に対して、好ましくは0.05重量部~0.5重量部である。ヨウ素の水に対する溶解度を高めるため、ヨウ素水溶液にヨウ化物を配合することが好ましい。ヨウ化物としては、例えば、ヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化錫、ヨウ化チタン等が挙げられる。これらの中でも、好ましくは、ヨウ化カリウムである。ヨウ化物の配合量は、水100重量部に対して、好ましくは0.1重量部~10重量部、より好ましくは0.3重量部~5重量部である。染色液の染色時の液温は、PVA系樹脂の溶解を抑制するため、好ましくは20℃~50℃である。染色液にPVA系樹脂層を浸漬させる場合、浸漬時間は、PVA系樹脂層の透過率を確保するため、好ましくは5秒~5分であり、より好ましくは30秒~90秒である。 The dye solution is preferably an iodine aqueous solution. The iodine content is preferably 0.05 to 0.5 parts by weight with respect to 100 parts by weight of water. In order to increase the solubility of iodine in water, it is preferable to add iodide to the aqueous iodine solution. Examples of the iodide include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide. Etc. Among these, potassium iodide is preferable. The content of iodide is preferably 0.1 to 10 parts by weight, more preferably 0.3 to 5 parts by weight, based on 100 parts by weight of water. The temperature of the dyeing solution during dyeing is preferably 20 ° C. to 50 ° C. in order to suppress dissolution of the PVA-based resin. When the PVA-based resin layer is immersed in the dyeing solution, the immersion time is preferably 5 seconds to 5 minutes, more preferably 30 seconds to 90 seconds in order to secure the transmittance of the PVA-based resin layer.
 染色条件(濃度、液温、浸漬時間)は、最終的に得られる偏光膜の単体透過率および波長210nmにおける単位吸光度が所望の値となるように設定することができる。このような染色条件としては、好ましくは、染色液としてヨウ素水溶液を用い、ヨウ素水溶液におけるヨウ素およびヨウ化カリウムの含有量の比を、1:5~1:20とする。ヨウ素水溶液におけるヨウ素およびヨウ化カリウムの含有量の比は、好ましくは1:5~1:10である。これにより、上記のような光学特性を有する偏光膜が得られ得る。 The dyeing conditions (concentration, liquid temperature, immersion time) can be set so that the single transmittance of the finally obtained polarizing film and the unit absorbance at a wavelength of 210 nm have desired values. As such a dyeing condition, preferably, an iodine aqueous solution is used as the dyeing solution, and the ratio of the contents of iodine and potassium iodide in the iodine aqueous solution is 1: 5 to 1:20. The ratio of the contents of iodine and potassium iodide in the aqueous iodine solution is preferably 1: 5 to 1:10. As a result, a polarizing film having the above optical characteristics can be obtained.
 ホウ酸を含有する処理浴に積層体を浸漬する処理(代表的には、不溶化処理)の後に連続して染色処理を行う場合、当該処理浴に含まれるホウ酸が染色浴に混入することにより染色浴のホウ酸濃度が経時的に変化し、その結果、染色性が不安定になる場合がある。上記のような染色性の不安定化を抑制するために、染色浴のホウ酸濃度の上限は、水100重量部に対して、好ましくは4重量部、より好ましくは2重量部となるように調整される。一方で、染色浴のホウ酸濃度の下限は、水100重量部に対して、好ましくは0.1重量部であり、より好ましくは0.2重量部であり、さらに好ましくは0.5重量部である。1つの実施形態においては、予めホウ酸が配合された染色浴を用いて染色処理を行う。これにより、上記処理浴のホウ酸が染色浴に混入した場合のホウ酸濃度の変化の割合を低減し得る。予め染色浴に配合されるホウ酸の配合量(すなわち、上記処理浴に由来しないホウ酸の含有量)は、水100重量部に対して、好ましくは0.1重量部~2重量部であり、より好ましくは0.5重量部~1.5重量部である。 When the dyeing treatment is continuously performed after the treatment of dipping the laminate in a treatment bath containing boric acid (typically, the insolubilization treatment), the boric acid contained in the treatment bath is mixed in the dyeing bath. The concentration of boric acid in the dyeing bath may change with time, resulting in unstable dyeability. In order to suppress the destabilization of the dyeability as described above, the upper limit of the boric acid concentration in the dyeing bath is preferably 4 parts by weight, more preferably 2 parts by weight, relative to 100 parts by weight of water. Adjusted. On the other hand, the lower limit of the concentration of boric acid in the dyeing bath is preferably 0.1 part by weight, more preferably 0.2 part by weight, still more preferably 0.5 part by weight, relative to 100 parts by weight of water. Is. In one embodiment, the dyeing process is performed using a dyeing bath in which boric acid is preliminarily blended. This can reduce the rate of change in boric acid concentration when boric acid in the treatment bath is mixed in the dyeing bath. The amount of boric acid blended in the dyeing bath in advance (that is, the content of boric acid not derived from the treatment bath) is preferably 0.1 part by weight to 2 parts by weight with respect to 100 parts by weight of water. , And more preferably 0.5 to 1.5 parts by weight.
B-3-5.架橋処理
 必要に応じて、染色処理の後、水中延伸処理の前に、架橋処理を施す。上記架橋処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬させることにより行う。架橋処理を施すことにより、PVA系樹脂層に耐水性を付与し、後の水中延伸で、高温の水中へ浸漬した際のPVAの配向低下を防止することができる。当該ホウ酸水溶液の濃度は、水100重量部に対して、好ましくは1重量部~5重量部である。また、上記染色処理後に架橋処理を行う場合、さらに、ヨウ化物を配合することが好ましい。ヨウ化物を配合することにより、PVA系樹脂層に吸着させたヨウ素の溶出を抑制することができる。ヨウ化物の配合量は、水100重量部に対して、好ましくは1重量部~5重量部である。ヨウ化物の具体例は、上述のとおりである。架橋浴(ホウ酸水溶液)の液温は、好ましくは20℃~50℃である。
B-3-5. Crosslinking Treatment If necessary, a crosslinking treatment is performed after the dyeing treatment and before the underwater stretching treatment. The cross-linking treatment is typically performed by immersing the PVA-based resin layer in an aqueous boric acid solution. By performing the cross-linking treatment, it is possible to impart water resistance to the PVA-based resin layer and prevent the PVA from being lowered in orientation when it is immersed in high-temperature water in the subsequent underwater stretching. The concentration of the aqueous boric acid solution is preferably 1 part by weight to 5 parts by weight with respect to 100 parts by weight of water. Further, when the crosslinking treatment is performed after the dyeing treatment, it is preferable to further add iodide. By blending iodide, elution of iodine adsorbed on the PVA-based resin layer can be suppressed. The iodide content is preferably 1 to 5 parts by weight with respect to 100 parts by weight of water. Specific examples of iodide are as described above. The liquid temperature of the crosslinking bath (boric acid aqueous solution) is preferably 20 ° C. to 50 ° C.
B-3-6.水中延伸処理
 水中延伸処理は、積層体を延伸浴に浸漬させて行う。水中延伸処理によれば、上記熱可塑性樹脂基材やPVA系樹脂層のガラス転移温度(代表的には、80℃程度)よりも低い温度で延伸し得、PVA系樹脂層を、その結晶化を抑えながら、高倍率に延伸することができる。その結果、優れた光学特性を有する偏光膜を製造することができる。
B-3-6. Underwater Stretching Treatment The underwater stretching treatment is performed by immersing the laminate in a stretching bath. According to the underwater stretching treatment, stretching can be performed at a temperature lower than the glass transition temperature (typically about 80 ° C.) of the thermoplastic resin substrate or the PVA-based resin layer, and the PVA-based resin layer is crystallized. It is possible to stretch at a high magnification while suppressing the above. As a result, a polarizing film having excellent optical properties can be manufactured.
 積層体の延伸方法は、任意の適切な方法を採用することができる。具体的には、固定端延伸でもよいし、自由端延伸(例えば、周速の異なるロール間に積層体を通して一軸延伸する方法)でもよい。好ましくは、自由端延伸が選択される。積層体の延伸は、一段階で行ってもよいし、多段階で行ってもよい。多段階で行う場合、後述の積層体の延伸倍率(最大延伸倍率)は、各段階の延伸倍率の積である。 Any appropriate method can be adopted as the stretching method of the laminate. Specifically, it may be fixed-end stretching or free-end stretching (for example, a method of uniaxially stretching by passing a laminate between rolls having different peripheral speeds). Preferably, free end stretching is selected. Stretching of the laminate may be performed in one stage or in multiple stages. When performing in multiple stages, the stretching ratio (maximum stretching ratio) of the laminate to be described later is the product of the stretching ratios in each stage.
 水中延伸は、好ましくは、ホウ酸水溶液中に積層体を浸漬させて行う(ホウ酸水中延伸)。延伸浴としてホウ酸水溶液を用いることで、PVA系樹脂層に、延伸時にかかる張力に耐える剛性と、水に溶解しない耐水性とを付与することができる。具体的には、ホウ酸は、水溶液中でテトラヒドロキシホウ酸アニオンを生成してPVA系樹脂と水素結合により架橋し得る。その結果、PVA系樹脂層に剛性と耐水性とを付与して、良好に延伸することができ、優れた光学特性を有する偏光膜を製造することができる。 The underwater stretching is preferably performed by immersing the laminate in a boric acid aqueous solution (boric acid underwater stretching). By using an aqueous boric acid solution as the stretching bath, the PVA-based resin layer can be provided with rigidity that can withstand the tension applied during stretching and water resistance that does not dissolve in water. Specifically, boric acid can generate a tetrahydroxyborate anion in an aqueous solution to crosslink with a PVA-based resin by hydrogen bond. As a result, the PVA-based resin layer can be imparted with rigidity and water resistance, can be favorably stretched, and a polarizing film having excellent optical characteristics can be manufactured.
 上記ホウ酸水溶液は、好ましくは、溶媒である水にホウ酸および/またはホウ酸塩を溶解させることにより得られる。ホウ酸濃度は、水100重量部に対して、好ましくは1重量部~10重量部であり、より好ましくは2.5重量部~6重量部であり、特に好ましくは3重量部~5重量部である。ホウ酸濃度を1重量部以上とすることにより、PVA系樹脂層の溶解を効果的に抑制することができ、より高特性の偏光膜を製造することができる。なお、ホウ酸またはホウ酸塩以外に、ホウ砂等のホウ素化合物、グリオキザール、グルタルアルデヒド等を溶媒に溶解して得られた水溶液も用いることができる。 The boric acid aqueous solution is preferably obtained by dissolving boric acid and / or borate in water as a solvent. The boric acid concentration is preferably 1 part by weight to 10 parts by weight, more preferably 2.5 parts by weight to 6 parts by weight, particularly preferably 3 parts by weight to 5 parts by weight, relative to 100 parts by weight of water. Is. By setting the concentration of boric acid to 1 part by weight or more, dissolution of the PVA-based resin layer can be effectively suppressed, and a polarizing film with higher characteristics can be manufactured. In addition to boric acid or borate, an aqueous solution obtained by dissolving a boron compound such as borax, glyoxal, glutaraldehyde, or the like in a solvent can also be used.
 好ましくは、上記延伸浴(ホウ酸水溶液)にヨウ化物を配合する。ヨウ化物を配合することにより、PVA系樹脂層に吸着させたヨウ素の溶出を抑制することができる。ヨウ化物の具体例は、上述のとおりである。ヨウ化物の濃度は、水100重量部に対して、好ましくは0.05重量部~15重量部、より好ましくは0.5重量部~8重量部である。 Preferably, iodide is added to the above stretching bath (boric acid aqueous solution). By blending iodide, elution of iodine adsorbed on the PVA-based resin layer can be suppressed. Specific examples of iodide are as described above. The concentration of iodide is preferably 0.05 to 15 parts by weight, more preferably 0.5 to 8 parts by weight with respect to 100 parts by weight of water.
 延伸温度(延伸浴の液温)は、好ましくは40℃~85℃、より好ましくは60℃~75℃である。このような温度であれば、PVA系樹脂層の溶解を抑制しながら高倍率に延伸することができる。具体的には、上述のように、熱可塑性樹脂基材のガラス転移温度(Tg)は、PVA系樹脂層の形成との関係で、好ましくは60℃以上である。この場合、延伸温度が40℃を下回ると、水による熱可塑性樹脂基材の可塑化を考慮しても、良好に延伸できないおそれがある。一方、延伸浴の温度が高温になるほど、PVA系樹脂層の溶解性が高くなって、優れた光学特性が得られないおそれがある。積層体の延伸浴への浸漬時間は、好ましくは15秒~5分である。 The stretching temperature (liquid temperature of the stretching bath) is preferably 40 ° C to 85 ° C, more preferably 60 ° C to 75 ° C. At such a temperature, the PVA-based resin layer can be stretched at a high magnification while suppressing the dissolution. Specifically, as described above, the glass transition temperature (Tg) of the thermoplastic resin substrate is preferably 60 ° C. or higher in relation to the formation of the PVA-based resin layer. In this case, if the stretching temperature is lower than 40 ° C., it may not be possible to stretch well even if the plasticization of the thermoplastic resin substrate by water is taken into consideration. On the other hand, the higher the temperature of the stretching bath, the higher the solubility of the PVA-based resin layer, and there is a possibility that excellent optical characteristics may not be obtained. The immersion time of the laminate in the stretching bath is preferably 15 seconds to 5 minutes.
 水中延伸による延伸倍率は、好ましくは1.5倍以上、より好ましくは3.0倍以上である。積層体の総延伸倍率は、積層体の元長に対して、好ましくは5.0倍以上であり、さらに好ましくは5.5倍以上である。このような高い延伸倍率を達成することにより、光学特性に極めて優れた偏光膜を製造することができる。このような高い延伸倍率は、水中延伸方式(ホウ酸水中延伸)を採用することにより、達成し得る。 Draw ratio by underwater drawing is preferably 1.5 times or more, more preferably 3.0 times or more. The total draw ratio of the laminated body is preferably 5.0 times or more, more preferably 5.5 times or more, with respect to the original length of the laminated body. By achieving such a high draw ratio, a polarizing film having extremely excellent optical characteristics can be manufactured. Such a high draw ratio can be achieved by adopting an underwater drawing method (boric acid underwater drawing).
B-3-7.乾燥収縮処理
 上記乾燥収縮処理は、ゾーン全体を加熱して行うゾーン加熱により行っても良いし、搬送ロールを加熱する(いわゆる加熱ロールを用いる)ことにより行う(加熱ロール乾燥方式)こともできる。好ましくは、その両方を用いる。加熱ロールを用いて乾燥させることにより、効率的に積層体の加熱カールを抑制して、外観に優れた偏光膜を製造することができる。具体的には、加熱ロールに積層体を沿わせた状態で乾燥することにより、上記熱可塑性樹脂基材の結晶化を効率的に促進させて結晶化度を増加させることができ、比較的低い乾燥温度であっても、熱可塑性樹脂基材の結晶化度を良好に増加させることができる。その結果、熱可塑性樹脂基材は、その剛性が増加して、乾燥によるPVA系樹脂層の収縮に耐え得る状態となり、カールが抑制される。また、加熱ロールを用いることにより、積層体を平らな状態に維持しながら乾燥できるので、カールだけでなくシワの発生も抑制することができる。この時、積層体は、乾燥収縮処理により幅方向に収縮させることにより、光学特性を向上させることができる。PVAおよびPVA/ヨウ素錯体の配向性を効果的に高めることができるからである。乾燥収縮処理による積層体の幅方向の収縮率は、好ましくは1%~10%であり、より好ましくは2%~8%であり、特に好ましくは4%~6%である。加熱ロールを用いることにより、積層体を搬送しながら連続的に幅方向に収縮させることができ、高い生産性を実現することができる。
B-3-7. Drying Shrinkage Treatment The drying shrinkage treatment may be performed by zone heating performed by heating the entire zone, or may be performed by heating the transport roll (using a so-called heating roll) (heating roll drying method). Both are preferably used. By drying using a heating roll, it is possible to efficiently suppress the curling of the laminate by heating and to produce a polarizing film having an excellent appearance. Specifically, by drying the laminate along a heating roll, the crystallization of the thermoplastic resin substrate can be efficiently promoted to increase the crystallinity, which is relatively low. Even at the drying temperature, the crystallinity of the thermoplastic resin substrate can be satisfactorily increased. As a result, the rigidity of the thermoplastic resin base material increases, and the thermoplastic resin base material can withstand the shrinkage of the PVA-based resin layer due to drying, and curling is suppressed. Further, by using the heating roll, the laminate can be dried while being kept flat, so that not only curling but also wrinkling can be suppressed. At this time, the laminated body can be improved in optical characteristics by shrinking in the width direction by a drying shrinkage treatment. This is because the orientation of PVA and the PVA / iodine complex can be effectively enhanced. The shrinkage ratio in the width direction of the laminate by the dry shrinkage treatment is preferably 1% to 10%, more preferably 2% to 8%, and particularly preferably 4% to 6%. By using the heating roll, the laminate can be continuously contracted in the width direction while being conveyed, and high productivity can be realized.
 図3は、乾燥収縮処理の一例を示す概略図である。乾燥収縮処理では、所定の温度に加熱された搬送ロールR1~R6と、ガイドロールG1~G4とにより、積層体200を搬送しながら乾燥させる。図示例では、PVA樹脂層の面と熱可塑性樹脂基材の面を交互に連続加熱するように搬送ロールR1~R6が配置されているが、例えば、積層体200の一方の面(たとえば熱可塑性樹脂基材面)のみを連続的に加熱するように搬送ロールR1~R6を配置してもよい。 FIG. 3 is a schematic diagram showing an example of the drying shrinkage treatment. In the drying shrinkage treatment, the laminate 200 is dried while being transported by the transport rolls R1 to R6 heated to a predetermined temperature and the guide rolls G1 to G4. In the illustrated example, the transport rolls R1 to R6 are arranged so as to alternately and continuously heat the surface of the PVA resin layer and the surface of the thermoplastic resin substrate. However, for example, one surface of the laminate 200 (for example, thermoplastic The transport rolls R1 to R6 may be arranged so that only the resin substrate surface) is continuously heated.
 搬送ロールの加熱温度(加熱ロールの温度)、加熱ロールの数、加熱ロールとの接触時間等を調整することにより、乾燥条件を制御することができる。加熱ロールの温度は、好ましくは60℃~120℃であり、さらに好ましくは65℃~100℃であり、特に好ましくは70℃~80℃である。熱可塑性樹脂の結晶化度を良好に増加させて、カールを良好に抑制することができるとともに、耐久性に極めて優れた光学積層体を製造することができる。なお、加熱ロールの温度は、接触式温度計により測定することができる。図示例では、6個の搬送ロールが設けられているが、搬送ロールは複数個であれば特に制限はない。搬送ロールは、通常2個~40個、好ましくは4個~30個設けられる。積層体と加熱ロールとの接触時間(総接触時間)は、好ましくは1秒~300秒であり、より好ましくは1~20秒であり、さらに好ましくは1~10秒である。 The drying conditions can be controlled by adjusting the heating temperature of the transfer rolls (heating roll temperature), the number of heating rolls, the contact time with the heating rolls, and the like. The temperature of the heating roll is preferably 60 ° C to 120 ° C, more preferably 65 ° C to 100 ° C, and particularly preferably 70 ° C to 80 ° C. The crystallinity of the thermoplastic resin can be favorably increased, curling can be favorably suppressed, and an optical laminate having extremely excellent durability can be manufactured. The temperature of the heating roll can be measured with a contact thermometer. In the illustrated example, six transport rolls are provided, but there is no particular limitation as long as there are multiple transport rolls. The number of transport rolls is usually 2 to 40, preferably 4 to 30. The contact time (total contact time) between the laminate and the heating roll is preferably 1 second to 300 seconds, more preferably 1 to 20 seconds, and further preferably 1 to 10 seconds.
 加熱ロールは、加熱炉(例えば、オーブン)内に設けてもよいし、通常の製造ライン(室温環境下)に設けてもよい。好ましくは、送風手段を備える加熱炉内に設けられる。加熱ロールによる乾燥と熱風乾燥とを併用することにより、加熱ロール間での急峻な温度変化を抑制することができ、幅方向の収縮を容易に制御することができる。熱風乾燥の温度は、好ましくは30℃~100℃である。また、熱風乾燥時間は、好ましくは1秒~300秒である。熱風の風速は、好ましくは10m/s~30m/s程度である。なお、当該風速は加熱炉内における風速であり、ミニベーン型デジタル風速計により測定することができる。 The heating roll may be provided in a heating furnace (for example, an oven) or may be provided in a normal production line (under room temperature environment). Preferably, it is provided in a heating furnace equipped with a blowing means. By using the drying with the heating roll and the hot air drying together, a sharp temperature change between the heating rolls can be suppressed and the shrinkage in the width direction can be easily controlled. The temperature of hot air drying is preferably 30 ° C to 100 ° C. The hot air drying time is preferably 1 to 300 seconds. The wind speed of the hot air is preferably about 10 m / s to 30 m / s. The wind speed is the wind speed in the heating furnace, and can be measured by a mini vane type digital anemometer.
B-3-8.その他の処理
 好ましくは、水中延伸処理の後、乾燥収縮処理の前に、洗浄処理を施す。上記洗浄処理は、代表的には、ヨウ化カリウム水溶液にPVA系樹脂層を浸漬させることにより行う。
B-3-8. Other Treatments Preferably, a washing treatment is performed after the underwater stretching treatment and before the drying shrinkage treatment. The cleaning treatment is typically performed by immersing the PVA-based resin layer in an aqueous potassium iodide solution.
C.第1の位相差層
 第1の位相差層20は、目的に応じて任意の適切な光学的特性および/または機械的特性を有し得る。第1の位相差層20は、代表的には遅相軸を有する。1つの実施形態においては、第1の位相差層20の遅相軸と偏光膜11の吸収軸とのなす角度θは、上記のとおり40°~50°であり、好ましくは42°~48°であり、さらに好ましくは約45°である。角度θがこのような範囲であれば、後述するように第1の位相差層をλ/4板とすることにより、非常に優れた円偏光特性(結果として、非常に優れた反射防止特性)を有する位相差層付偏光板が得られ得る。
C. First Retardation Layer The first retardation layer 20 may have any appropriate optical property and / or mechanical property depending on the purpose. The first retardation layer 20 typically has a slow axis. In one embodiment, the angle θ formed by the slow axis of the first retardation layer 20 and the absorption axis of the polarizing film 11 is 40 ° to 50 ° as described above, preferably 42 ° to 48 °. And more preferably about 45 °. If the angle θ is in such a range, by using the λ / 4 plate as the first retardation layer as described later, very excellent circular polarization characteristics (as a result, very excellent antireflection characteristics) A polarizing plate with a retardation layer having is obtained.
 第1の位相差層は、好ましくは屈折率特性がnx>ny≧nzの関係を示す。第1の位相差層は、代表的には偏光板に反射防止特性を付与するために設けられ、1つの実施形態においてはλ/4板として機能し得る。この場合、第1の位相差層の面内位相差Re(550)は、好ましくは100nm~190nm、より好ましくは110nm~170nm、さらに好ましくは130nm~160nmである。なお、ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny<nzとなる場合があり得る。 The first retardation layer preferably has a refractive index characteristic of nx> ny ≧ nz. The first retardation layer is typically provided to impart antireflection characteristics to the polarizing plate, and can function as a λ / 4 plate in one embodiment. In this case, the in-plane retardation Re (550) of the first retardation layer is preferably 100 nm to 190 nm, more preferably 110 nm to 170 nm, still more preferably 130 nm to 160 nm. Here, “ny = nz” includes not only the case where ny and nz are completely equal but also the case where they are substantially equal. Therefore, ny <nz may be satisfied as long as the effect of the present invention is not impaired.
 第1の位相差層のNz係数は、好ましくは0.9~3、より好ましくは0.9~2.5、さらに好ましくは0.9~1.5、特に好ましくは0.9~1.3である。このような関係を満たすことにより、得られる位相差層付偏光板を画像表示装置に用いた場合に、非常に優れた反射色相を達成し得る。 The Nz coefficient of the first retardation layer is preferably 0.9 to 3, more preferably 0.9 to 2.5, further preferably 0.9 to 1.5, particularly preferably 0.9 to 1. It is 3. By satisfying such a relationship, a very excellent reflective hue can be achieved when the obtained polarizing plate with a retardation layer is used in an image display device.
 第1の位相差層は、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示してもよく、位相差値が測定光の波長に応じて小さくなる正の波長分散特性を示してもよく、位相差値が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示してもよい。1つの実施形態においては、第1の位相差層は、逆分散波長特性を示す。この場合、位相差層のRe(450)/Re(550)は、好ましくは0.8以上1未満であり、より好ましくは0.8以上0.95以下である。このような構成であれば、非常に優れた反射防止特性を実現することができる。 The first retardation layer may exhibit an inverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, and a positive wavelength dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light. It may be shown, or may exhibit a flat wavelength dispersion characteristic in which the phase difference value hardly changes even with the wavelength of the measurement light. In one embodiment, the first retardation layer exhibits an inverse dispersion wavelength characteristic. In this case, Re (450) / Re (550) of the retardation layer is preferably 0.8 or more and less than 1, and more preferably 0.8 or more and 0.95 or less. With such a configuration, it is possible to realize a very excellent antireflection characteristic.
 第1の位相差層は、光弾性係数の絶対値が好ましくは2×10-11/N以下、より好ましくは2.0×10-13/N~1.5×10-11/N、さらに好ましくは1.0×10-12/N~1.2×10-11/Nの樹脂を含む。光弾性係数の絶対値がこのような範囲であれば、加熱時の収縮応力が発生した場合に位相差変化が生じにくい。その結果、得られる画像表示装置の熱ムラが良好に防止され得る。 The absolute value of the photoelastic coefficient of the first retardation layer is preferably 2 × 10 −11 m 2 / N or less, more preferably 2.0 × 10 −13 m 2 / N to 1.5 × 10 −11. m 2 / N, more preferably from 1.0 × 10 -12 m 2 /N~1.2×10 -11 m 2 / N resin. When the absolute value of the photoelastic coefficient is in such a range, it is difficult for the phase difference to change when contraction stress occurs during heating. As a result, heat unevenness of the obtained image display device can be favorably prevented.
 第1の位相差層は、代表的には樹脂フィルムの延伸フィルムで構成される。1つの実施形態において、第1の位相差層の厚みは、好ましくは70μm以下であり、より好ましくは45μm~60μmである。第1の位相差層の厚みがこのような範囲であれば、加熱時のカールを良好に抑制しつつ、貼り合わせ時のカールを良好に調整することができる。また、後述するように第1の位相差層がポリカーボネート系樹脂フィルムで構成される実施形態においては、第1の位相差層の厚みは、好ましくは40μm以下であり、より好ましくは10μm~40μmであり、さらに好ましくは20μm~30μmである。第1の位相差層が、このような厚みを有するポリカーボネート系樹脂フィルムで構成されることにより、カールの発生を抑制しつつ、折り曲げ耐久性および反射色相の向上にも寄与し得る。 The first retardation layer is typically composed of a stretched film of a resin film. In one embodiment, the thickness of the first retardation layer is preferably 70 μm or less, more preferably 45 μm to 60 μm. When the thickness of the first retardation layer is within such a range, curl during heating can be suppressed well, and curl during bonding can be adjusted well. Further, as described later, in the embodiment in which the first retardation layer is composed of a polycarbonate resin film, the thickness of the first retardation layer is preferably 40 μm or less, more preferably 10 μm to 40 μm. And more preferably 20 μm to 30 μm. When the first retardation layer is formed of the polycarbonate resin film having such a thickness, curling can be suppressed and the bending durability and the reflection hue can be improved.
 第1の位相差層20は、上記の特性を満足し得る任意の適切な樹脂フィルムで構成され得る。そのような樹脂の代表例としては、ポリカーボネート系樹脂、ポリエステルカーボネート系樹脂、ポリエステル系樹脂、ポリビニルアセタール系樹脂、ポリアリレート系樹脂、環状オレフィン系樹脂、セルロース系樹脂、ポリビニルアルコール系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエーテル系樹脂、ポリスチレン系樹脂、アクリル系樹脂が挙げられる。これらの樹脂は、単独で用いてもよく組み合わせて(例えば、ブレンド、共重合)用いてもよい。第1の位相差層が逆分散波長特性を示す樹脂フィルムで構成される場合、ポリカーボネート系樹脂またはポリエステルカーボネート系樹脂(以下、単にポリカーボネート系樹脂と称する場合がある)が好適に用いられ得る。 The first retardation layer 20 may be composed of any appropriate resin film that can satisfy the above characteristics. Typical examples of such resins include polycarbonate resins, polyester carbonate resins, polyester resins, polyvinyl acetal resins, polyarylate resins, cyclic olefin resins, cellulose resins, polyvinyl alcohol resins, polyamide resins. , A polyimide resin, a polyether resin, a polystyrene resin, and an acrylic resin. These resins may be used alone or in combination (for example, blending or copolymerization). When the first retardation layer is composed of a resin film exhibiting reverse dispersion wavelength characteristics, a polycarbonate resin or a polyester carbonate resin (hereinafter sometimes simply referred to as a polycarbonate resin) can be preferably used.
 上記ポリカーボネート系樹脂としては、本発明の効果が得られる限りにおいて、任意の適切なポリカーボネート系樹脂を用いることができる。例えば、ポリカーボネート系樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジオール、脂環式ジメタノール、ジ、トリまたはポリエチレングリコール、ならびに、アルキレングリコールまたはスピログリコールからなる群から選択される少なくとも1つのジヒドロキシ化合物に由来する構造単位と、を含む。好ましくは、ポリカーボネート系樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジメタノールに由来する構造単位ならびに/あるいはジ、トリまたはポリエチレングリコールに由来する構造単位と、を含み;さらに好ましくは、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、ジ、トリまたはポリエチレングリコールに由来する構造単位と、を含む。ポリカーボネート系樹脂は、必要に応じてその他のジヒドロキシ化合物に由来する構造単位を含んでいてもよい。なお、本発明に好適に用いられ得るポリカーボネート系樹脂の詳細は、例えば、特開2014-10291号公報、特開2014-26266号公報、特開2015-212816号公報、特開2015-212817号公報、特開2015-212818号公報に記載されており、当該記載は本明細書に参考として援用される。 As the polycarbonate resin, any appropriate polycarbonate resin can be used as long as the effects of the present invention can be obtained. For example, a polycarbonate-based resin is a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, an alicyclic diol, an alicyclic dimethanol, di, tri or polyethylene glycol, and an alkylene. A structural unit derived from at least one dihydroxy compound selected from the group consisting of glycols or spiroglycols. Preferably, the polycarbonate-based resin is a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, a structural unit derived from an alicyclic dimethanol and / or di, tri or polyethylene glycol. And a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, and a structural unit derived from a di-, tri-, or polyethylene glycol. . The polycarbonate-based resin may include a structural unit derived from another dihydroxy compound, if necessary. Details of the polycarbonate-based resin that can be preferably used in the present invention are described in, for example, JP-A-2014-10291, 2014-26266, JP-A-2015-212816, and JP-A-2015-212817. , Japanese Patent Application Laid-Open No. 2015-212818, which description is incorporated herein by reference.
 前記ポリカーボネート系樹脂のガラス転移温度は、110℃以上150℃以下であることが好ましく、より好ましくは120℃以上140℃以下である。ガラス転移温度が過度に低いと耐熱性が悪くなる傾向にあり、フィルム成形後に寸法変化を起こす可能性があり、又、得られる有機ELパネルの画像品質を下げる場合がある。ガラス転移温度が過度に高いと、フィルム成形時の成形安定性が悪くなる場合があり、又フィルムの透明性を損なう場合がある。なお、ガラス転移温度は、JIS K 7121(1987)に準じて求められる。 The glass transition temperature of the polycarbonate resin is preferably 110 ° C. or higher and 150 ° C. or lower, and more preferably 120 ° C. or higher and 140 ° C. or lower. If the glass transition temperature is excessively low, the heat resistance tends to be poor, dimensional change may occur after film formation, and the image quality of the obtained organic EL panel may be deteriorated. If the glass transition temperature is excessively high, the molding stability during film molding may be deteriorated, and the transparency of the film may be impaired. The glass transition temperature is calculated according to JIS K 7121 (1987).
 前記ポリカーボネート系樹脂の分子量は、還元粘度で表すことができる。還元粘度は、溶媒として塩化メチレンを用い、ポリカーボネート濃度を0.6g/dLに精密に調製し、温度20.0℃±0.1℃でウベローデ粘度管を用いて測定される。還元粘度の下限は、通常0.30dL/gが好ましく、より好ましは0.35dL/g以上である。還元粘度の上限は、通常1.20dL/gが好ましく、より好ましくは1.00dL/g、更に好ましくは0.80dL/gである。還元粘度が前記下限値より小さいと成形品の機械的強度が小さくなるという問題が生じる場合がある。一方、還元粘度が前記上限値より大きいと、成形する際の流動性が低下し、生産性や成形性が低下するという問題が生じる場合がある。 The molecular weight of the polycarbonate resin can be represented by reduced viscosity. The reduced viscosity is measured using a Ubbelohde viscosity tube at a temperature of 20.0 ° C. ± 0.1 ° C. by precisely adjusting the polycarbonate concentration to 0.6 g / dL using methylene chloride as a solvent. The lower limit of the reduced viscosity is usually preferably 0.30 dL / g, more preferably 0.35 dL / g or more. The upper limit of the reduced viscosity is usually preferably 1.20 dL / g, more preferably 1.00 dL / g, further preferably 0.80 dL / g. If the reduced viscosity is smaller than the lower limit, there may occur a problem that the mechanical strength of the molded product becomes small. On the other hand, when the reduced viscosity is higher than the upper limit value, the fluidity at the time of molding may be lowered, and the productivity and the moldability may be lowered.
 ポリカーボネート系樹脂フィルムとして市販のフィルムを用いてもよい。市販品の具体例としては、帝人社製の商品名「ピュアエースWR-S」、「ピュアエースWR-W」、「ピュアエースWR-M」、日東電工社製の商品名「NRF」が挙げられる。 A commercially available film may be used as the polycarbonate resin film. Specific examples of commercially available products include Teijin's product names “Pure Ace WR-S”, “Pure Ace WR-W”, “Pure Ace WR-M”, and Nitto Denko's product name “NRF”. To be
 第1の位相差層20は、例えば、上記ポリカーボネート系樹脂から形成されたフィルムを延伸することにより得られる。ポリカーボネート系樹脂からフィルムを形成する方法としては、任意の適切な成形加工法が採用され得る。具体例としては、圧縮成形法、トランスファー成形法、射出成形法、押出成形法、ブロー成形法、粉末成形法、FRP成形法、キャスト塗工法(例えば、流延法)、カレンダー成形法、熱プレス法等が挙げられる。押出成形法またはキャスト塗工法が好ましい。得られるフィルムの平滑性を高め、良好な光学的均一性を得ることができるからである。成形条件は、使用される樹脂の組成や種類、位相差層に所望される特性等に応じて適宜設定され得る。なお、上記のとおり、ポリカーボネート系樹脂は、多くのフィルム製品が市販されているので、当該市販フィルムをそのまま延伸処理に供してもよい。 The first retardation layer 20 is obtained, for example, by stretching a film formed of the above polycarbonate resin. Any appropriate molding method can be adopted as a method of forming a film from the polycarbonate-based resin. Specific examples include compression molding method, transfer molding method, injection molding method, extrusion molding method, blow molding method, powder molding method, FRP molding method, cast coating method (for example, casting method), calender molding method, hot press. Law etc. are mentioned. An extrusion molding method or a cast coating method is preferable. This is because the smoothness of the obtained film can be improved and good optical uniformity can be obtained. The molding conditions can be appropriately set according to the composition and type of the resin used, the characteristics desired for the retardation layer, and the like. As described above, since many film products of the polycarbonate-based resin are commercially available, the commercially available film may be directly subjected to the stretching treatment.
 樹脂フィルム(未延伸フィルム)の厚みは、第1の位相差層の所望の厚み、所望の光学特性、後述の延伸条件などに応じて、任意の適切な値に設定され得る。好ましくは50μm~300μmである。 The thickness of the resin film (unstretched film) can be set to any appropriate value depending on the desired thickness of the first retardation layer, desired optical characteristics, stretching conditions described below, and the like. The thickness is preferably 50 μm to 300 μm.
 上記延伸は、任意の適切な延伸方法、延伸条件(例えば、延伸温度、延伸倍率、延伸方向)が採用され得る。具体的には、自由端延伸、固定端延伸、自由端収縮、固定端収縮などの様々な延伸方法を、単独で用いることも、同時もしくは逐次で用いることもできる。延伸方向に関しても、長さ方向、幅方向、厚さ方向、斜め方向等、様々な方向や次元に行なうことができる。延伸の温度は、樹脂フィルムのガラス転移温度(Tg)に対し、Tg-30℃~Tg+60℃であることが好ましく、より好ましくはTg-10℃~Tg+50℃である。 Any appropriate stretching method and stretching conditions (for example, stretching temperature, stretching ratio, stretching direction) can be adopted for the above stretching. Specifically, various stretching methods such as free-end stretching, fixed-end stretching, free-end contraction, and fixed-end contraction can be used alone or simultaneously or sequentially. The stretching direction can also be performed in various directions and dimensions such as the length direction, the width direction, the thickness direction, and the oblique direction. The stretching temperature is preferably Tg-30 ° C. to Tg + 60 ° C., more preferably Tg-10 ° C. to Tg + 50 ° C., with respect to the glass transition temperature (Tg) of the resin film.
 上記延伸方法、延伸条件を適宜選択することにより、上記所望の光学特性(例えば、屈折率特性、面内位相差、Nz係数)を有する位相差フィルムを得ることができる。 By appropriately selecting the stretching method and stretching conditions, it is possible to obtain a retardation film having the desired optical characteristics (eg, refractive index characteristics, in-plane retardation, Nz coefficient).
 1つの実施形態においては、位相差フィルムは、樹脂フィルムを一軸延伸もしくは固定端一軸延伸することにより作製される。固定端一軸延伸の具体例としては、樹脂フィルムを長手方向に走行させながら、幅方向(横方向)に延伸する方法が挙げられる。延伸倍率は、好ましくは1.1倍~3.5倍である。 In one embodiment, the retardation film is produced by uniaxially stretching a resin film or uniaxially stretching a fixed end. A specific example of the fixed-end uniaxial stretching is a method of stretching the resin film in the width direction (transverse direction) while running the resin film in the longitudinal direction. The stretching ratio is preferably 1.1 times to 3.5 times.
 別の実施形態においては、位相差フィルムは、長尺状の樹脂フィルムを長手方向に対して上記の角度θの方向に連続的に斜め延伸することにより作製され得る。斜め延伸を採用することにより、フィルムの長手方向に対して角度θの配向角(角度θの方向に遅相軸)を有する長尺状の延伸フィルムが得られ、例えば、偏光膜との積層に際してロールトゥロールが可能となり、製造工程を簡略化することができる。なお、角度θは、位相差層付偏光板において偏光膜の吸収軸と位相差層の遅相軸とがなす角度であり得る。角度θは、上記のとおり、好ましくは40°~50°であり、より好ましくは42°~48°であり、さらに好ましくは約45°である。 In another embodiment, the retardation film can be produced by continuously stretching a long resin film in the direction of the angle θ with respect to the longitudinal direction. By adopting oblique stretching, a long stretched film having an orientation angle of θ with respect to the longitudinal direction of the film (a slow axis in the direction of angle θ) can be obtained. Roll-to-roll is possible, and the manufacturing process can be simplified. The angle θ may be an angle formed by the absorption axis of the polarizing film and the slow axis of the retardation layer in the polarizing plate with the retardation layer. The angle θ is, as described above, preferably 40 ° to 50 °, more preferably 42 ° to 48 °, and further preferably about 45 °.
 斜め延伸に用いる延伸機としては、例えば、横および/または縦方向に、左右異なる速度の送り力もしくは引張り力または引き取り力を付加し得るテンター式延伸機が挙げられる。テンター式延伸機には、横一軸延伸機、同時二軸延伸機等があるが、長尺状の樹脂フィルムを連続的に斜め延伸し得る限り、任意の適切な延伸機が用いられ得る。 As a stretching machine used for oblique stretching, for example, a tenter type stretching machine capable of applying a feeding force or a pulling force or a pulling force at different speeds in the lateral and / or longitudinal directions can be mentioned. Examples of the tenter type stretching machine include a horizontal uniaxial stretching machine and a simultaneous biaxial stretching machine, but any appropriate stretching machine may be used as long as a long resin film can be continuously stretched obliquely.
 上記延伸機において左右の速度をそれぞれ適切に制御することにより、上記所望の面内位相差を有し、かつ、上記所望の方向に遅相軸を有する位相差層(実質的には、長尺状の位相差フィルム)が得られ得る。 By appropriately controlling the left and right speeds in the stretching machine, respectively, the retardation layer having the desired in-plane retardation and having a slow axis in the desired direction (substantially long Phase-difference film) can be obtained.
 上記フィルムの延伸温度は、位相差層に所望される面内位相差値および厚み、使用される樹脂の種類、使用されるフィルムの厚み、延伸倍率等に応じて変化し得る。具体的には、延伸温度は、好ましくはTg-30℃~Tg+30℃、さらに好ましくはTg-15℃~Tg+15℃、最も好ましくはTg-10℃~Tg+10℃である。このような温度で延伸することにより、本発明において適切な特性を有する第1の位相差層が得られ得る。なお、Tgは、フィルムの構成材料のガラス転移温度である。 The stretching temperature of the above-mentioned film may vary depending on the in-plane retardation value and thickness desired for the retardation layer, the type of resin used, the thickness of the film used, the stretching ratio, and the like. Specifically, the stretching temperature is preferably Tg-30 ° C to Tg + 30 ° C, more preferably Tg-15 ° C to Tg + 15 ° C, and most preferably Tg-10 ° C to Tg + 10 ° C. By stretching at such a temperature, the first retardation layer having suitable properties in the present invention can be obtained. In addition, Tg is a glass transition temperature of the constituent material of the film.
D.第2の位相差層
 第2の位相差層は、上記のとおり、屈折率特性がnz>nx=nyの関係を示す、いわゆるポジティブCプレートであり得る。第2の位相差層としてポジティブCプレートを用いることにより、斜め方向の反射を良好に防止することができ、反射防止機能の広視野角化が可能となる。この場合、第2の位相差層の厚み方向の位相差Rth(550)は、好ましくは-50nm~-300nm、より好ましくは-70nm~-250nm、さらに好ましくは-90nm~-200nm、特に好ましくは-100nm~-180nmである。ここで、「nx=ny」は、nxとnyが厳密に等しい場合のみならず、nxとnyが実質的に等しい場合も包含する。すなわち、第2の位相差層の面内位相差Re(550)は10nm未満であり得る。
D. Second Retardation Layer As described above, the second retardation layer may be a so-called positive C plate whose refractive index characteristics show a relationship of nz> nx = ny. By using the positive C plate as the second retardation layer, it is possible to favorably prevent reflection in an oblique direction, and it is possible to widen the viewing angle of the antireflection function. In this case, the retardation Rth (550) in the thickness direction of the second retardation layer is preferably −50 nm to −300 nm, more preferably −70 nm to −250 nm, further preferably −90 nm to −200 nm, particularly preferably -100 nm to -180 nm. Here, “nx = ny” includes not only the case where nx and ny are exactly equal but also the case where nx and ny are substantially equal. That is, the in-plane retardation Re (550) of the second retardation layer may be less than 10 nm.
 nz>nx=nyの屈折率特性を有する第2の位相差層は、任意の適切な材料で形成され得る。第2の位相差層は、好ましくは、ホメオトロピック配向に固定された液晶材料を含むフィルムからなる。ホメオトロピック配向させることができる液晶材料(液晶化合物)は、液晶モノマーであっても液晶ポリマーであってもよい。当該液晶化合物および当該位相差層の形成方法の具体例としては、特開2002-333642号公報の[0020]~[0028]に記載の液晶化合物および当該位相差層の形成方法が挙げられる。この場合、第2の位相差層の厚みは、好ましくは0.5μm~10μmであり、より好ましくは0.5μm~8μmであり、さらに好ましくは0.5μm~5μmである。 The second retardation layer having a refractive index characteristic of nz> nx = ny may be formed of any appropriate material. The second retardation layer preferably comprises a film containing a liquid crystal material fixed in homeotropic alignment. The liquid crystal material (liquid crystal compound) capable of homeotropic alignment may be a liquid crystal monomer or a liquid crystal polymer. Specific examples of the method of forming the liquid crystal compound and the retardation layer include the liquid crystal compound and the method of forming the retardation layer described in JP-A-2002-333642, [0020] to [0028]. In this case, the thickness of the second retardation layer is preferably 0.5 μm to 10 μm, more preferably 0.5 μm to 8 μm, and further preferably 0.5 μm to 5 μm.
E.導電層または導電層付等方性基材
 導電層は、任意の適切な成膜方法(例えば、真空蒸着法、スパッタリング法、CVD法、イオンプレーティング法、スプレー法等)により、任意の適切な基材上に、金属酸化物膜を成膜して形成され得る。金属酸化物としては、例えば、酸化インジウム、酸化スズ、酸化亜鉛、インジウム-スズ複合酸化物、スズ-アンチモン複合酸化物、亜鉛-アルミニウム複合酸化物、インジウム-亜鉛複合酸化物が挙げられる。なかでも好ましくは、インジウム-スズ複合酸化物(ITO)である。
E. Conductive Layer or Isotropic Substrate with Conductive Layer The conductive layer is formed by any appropriate film formation method (eg, vacuum deposition method, sputtering method, CVD method, ion plating method, spray method, etc.). It may be formed by depositing a metal oxide film thereon. Examples of the metal oxide include indium oxide, tin oxide, zinc oxide, indium-tin complex oxide, tin-antimony complex oxide, zinc-aluminum complex oxide, and indium-zinc complex oxide. Of these, indium-tin composite oxide (ITO) is preferable.
 導電層が金属酸化物を含む場合、該導電層の厚みは、好ましくは50nm以下であり、より好ましくは35nm以下である。導電層の厚みの下限は、好ましくは10nmである。 When the conductive layer contains a metal oxide, the thickness of the conductive layer is preferably 50 nm or less, more preferably 35 nm or less. The lower limit of the thickness of the conductive layer is preferably 10 nm.
 導電層は、上記基材から第1の位相差層(または、存在する場合には第2の位相差層)に転写されて導電層単独で位相差層付偏光板の構成層とされてもよく、基材との積層体(導電層付基材)として第1の位相差層(または、存在する場合には第2の位相差層)に積層されてもよい。好ましくは、上記基材は光学的に等方性であり、したがって、導電層は導電層付等方性基材として位相差層付偏光板に用いられ得る。 The conductive layer may be transferred from the above-mentioned base material to the first retardation layer (or the second retardation layer, if present), and the conductive layer alone may serve as the constituent layer of the polarizing plate with the retardation layer. Of course, it may be laminated on the first retardation layer (or the second retardation layer, if present) as a laminate with the substrate (substrate with conductive layer). Preferably, the above-mentioned substrate is optically isotropic, so that the conductive layer can be used as a isotropic substrate with a conductive layer in a polarizing plate with a retardation layer.
 光学的に等方性の基材(等方性基材)としては、任意の適切な等方性基材を採用し得る。等方性基材を構成する材料としては、例えば、ノルボルネン系樹脂やオレフィン系樹脂などの共役系を有さない樹脂を主骨格としている材料、ラクトン環やグルタルイミド環などの環状構造をアクリル系樹脂の主鎖中に有する材料などが挙げられる。このような材料を用いると、等方性基材を形成した際に、分子鎖の配向に伴う位相差の発現を小さく抑えることができる。等方性基材の厚みは、好ましくは50μm以下であり、より好ましくは35μm以下である。等方性基材の厚みの下限は、例えば20μmである。 As the optically isotropic substrate (isotropic substrate), any suitable isotropic substrate can be adopted. Examples of the material forming the isotropic substrate include, for example, a material having a resin having no conjugated system such as norbornene-based resin or olefin-based resin as a main skeleton, and a cyclic structure such as a lactone ring or a glutarimide ring of an acrylic resin. Materials included in the main chain are included. When such a material is used, it is possible to suppress the development of retardation due to the orientation of the molecular chains when forming the isotropic substrate. The thickness of the isotropic substrate is preferably 50 μm or less, more preferably 35 μm or less. The lower limit of the thickness of the isotropic substrate is, for example, 20 μm.
 上記導電層および/または上記導電層付等方性基材の導電層は、必要に応じてパターン化され得る。パターン化によって、導通部と絶縁部とが形成され得る。結果として、電極が形成され得る。電極は、タッチパネルへの接触を感知するタッチセンサ電極として機能し得る。パターニング方法としては、任意の適切な方法を採用し得る。パターニング方法の具体例としては、ウエットエッチング法、スクリーン印刷法が挙げられる。 The conductive layer and / or the conductive layer of the isotropic substrate with the conductive layer may be patterned as required. By patterning, conductive parts and insulating parts can be formed. As a result, electrodes can be formed. The electrodes may function as touch sensor electrodes that sense a touch on the touch panel. Any appropriate method can be adopted as the patterning method. Specific examples of the patterning method include a wet etching method and a screen printing method.
F.画像表示装置
 上記A項からE項に記載の位相差層付偏光板は、画像表示装置に適用され得る。したがって、本発明は、そのような位相差層付偏光板を用いた画像表示装置を包含する。画像表示装置の代表例としては、液晶表示装置、エレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置、無機EL表示装置)が挙げられる。本発明の実施形態による画像表示装置は、その視認側に上記A項からE項に記載の位相差層付偏光板を備える。位相差層付偏光板は、位相差層が画像表示セル(例えば、液晶セル、有機ELセル、無機ELセル)側となるように(偏光膜が視認側となるように)積層されている。1つの実施形態においては、画像表示装置は、湾曲した形状(実質的には、湾曲した表示画面)を有し、および/または、屈曲もしくは折り曲げ可能である。このような画像表示装置においては、本発明の位相差層付偏光板の効果が顕著となる。
F. Image Display Device The polarizing plate with a retardation layer described in the above items A to E can be applied to an image display device. Therefore, the present invention includes an image display device using such a polarizing plate with a retardation layer. Typical examples of the image display device include a liquid crystal display device and an electroluminescence (EL) display device (for example, an organic EL display device and an inorganic EL display device). The image display device according to the embodiment of the present invention includes the polarizing plate with a retardation layer described in the above items A to E on the viewing side. The polarizing plate with a retardation layer is laminated such that the retardation layer is on the image display cell (for example, liquid crystal cell, organic EL cell, inorganic EL cell) side (the polarizing film is on the viewing side). In one embodiment, the image display device has a curved shape (substantially a curved display screen) and / or is bendable or foldable. In such an image display device, the effect of the polarizing plate with a retardation layer of the present invention becomes remarkable.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。各特性の測定方法は以下の通りである。なお、特に明記しない限り、実施例および比較例における「部」および「%」は重量基準である。
(1)厚み
 10μm以下の厚みは、干渉膜厚計(大塚電子社製、製品名「MCPD-3000」)を用いて測定した。10μmを超える厚みは、デジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。
(2)単体透過率、単位吸光度および直交吸光度
 実施例および比較例の偏光板(保護フィルム/偏光膜)について、紫外可視分光光度計(日本分光製 V-7100)を用いて測定した単体透過率Ts、平行透過率Tp、直交透過率Tcをそれぞれ、偏光膜のTs、TpおよびTcとした。これらのTs、TpおよびTcは、JIS Z8701の2度視野(C光源)により測定して視感度補正を行なったY値である。なお、保護フィルムの屈折率は1.50であり、偏光膜の保護フィルムとは反対側の表面の屈折率は1.53であった。
 島津製作所社製 UV-3150を用いて測定波長210nmで測定された直交透過率Tc210から下記式により直交吸光度A210を求め、厚みにより除して単位吸光度とした。また、測定波長470nmの直交透過率Tc470から直交吸光度A470を、および、測定波長600nmの直交透過率Tc600から直交吸光度A600を、それぞれ日本分光製 V-7100を用いて求めた。
   直交吸光度=log10(100/Tc)
 なお、A470およびA600については、大塚電子社製 LPF-200などでも同等の測定をすることが可能である。
(3)ヨウ素濃度
 実施例および比較例で得られた偏光膜について、蛍光X線分析装置(リガク社製、商品名「ZSX-PRIMUS II」、測定径:ψ10mm)を用いて蛍光X線強度(kcps)を測定した。得られた蛍光X線強度と厚みから下記式を用いてヨウ素濃度(重量%)を求めた。
  (ヨウ素濃度)=20.5×(蛍光X線強度)/(フィルム厚み)
なお、濃度を算出する際の係数は測定装置によって異なるが、当該係数は適切な検量線を用いて求めることができる。本実施例では、PVA中にKI(I:K=1:1(モル比))を任意の値添加したサンプルを複数作成し、それらを測定することで検量線を求めた。
(4)直交b値
 実施例および比較例に用いた偏光板を、紫外可視分光光度計(日本分光社製、製品名「V7100」)を用いて測定し、クロスニコル状態での色相を求めた。直交b値が低い(負の値で、かつ、絶対値が大きい)偏光板ほど、色相がニュートラルではなく青色になっていることを示している。
(5)反り
 実施例および比較例で得られた位相差層付偏光板を110mm×60mmサイズに切り出した。このとき、偏光膜の吸収軸方向が長辺方向となるように切り出した。切り出した位相差層付偏光板を、120mm×70mmサイズ、厚み0.2mmのガラス板に粘着剤を介して貼り合わせ、試験サンプルとした。試験サンプルを、85℃に保持された加熱オーブンに24時間投入し、取り出した後の反り量を測定した。ガラス板を下にして試験サンプルを平面上に静置した時に、当該平面から最も高い部分の高さを反り量とした。
(6)折り曲げ耐久性
 実施例および比較例で得られた位相差層付偏光板を50mm×100mmサイズに切り出した。このとき、偏光膜の吸収軸方向が短辺方向となるように切り出した。恒温恒湿チャンバー付耐折試験機(YUASA社製、CL09 type-D01)を用いて、20℃50%RHの条件下で、切り出した位相差層付偏光板を折り曲げ試験に供した。具体的には、位相差層付偏光板を、位相差層側が外側となるように、吸収軸方向に平行な方向に繰り返し折り曲げて、表示不良となるようなクラック、剥がれやフィルムの破断等が発生するまでの折り曲げ回数を測定し、以下の基準で評価した(折り曲げ径:2mmφ)。
<評価基準>
   1万回未満:不良
   1万回以上3万回未満:良
   3万回以上:優
(7)正面反射色相
 実施例および比較例で得られた位相差層付偏光板を、紫外線吸収機能の無いアクリル系粘着剤を用いて反射板(東レフィルム社製、商品名「DMS-X42」;反射率86%、偏光板なしでの反射色相a=-0.22、b=0.32)上に貼り合せて測定サンプルを作製した。このとき、位相差層付偏光板の位相差層側が反射板と対向するように貼り合せた。当該測定サンプルに対して、分光測色計(コニカミノルタ製のCM-2600d)を用いてSCE方式で測定し、aおよびbの値を√(a*2+b*2)に代入して、正面反射色相を求めた。
(8)弾性率
 測定対象のフィルムを、JIS K6734:2000に基づき平行部幅10mm、長さ40mmの引張試験ダンベルに成形し、JIS K7161:1994に準拠して引張試験を行い、引張弾性率を求めた。ここで、長さ方向は、通常、偏光膜の延伸方向と一致する。
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to these Examples. The measuring method of each characteristic is as follows. Unless otherwise specified, "parts" and "%" in the examples and comparative examples are based on weight.
(1) Thickness The thickness of 10 μm or less was measured using an interference film thickness meter (manufactured by Otsuka Electronics Co., Ltd., product name “MCPD-3000”). The thickness exceeding 10 μm was measured using a digital micrometer (manufactured by Anritsu Corporation, product name “KC-351C”).
(2) Single transmittance, unit absorbance and cross absorbance The single transmittances of the polarizing plates (protective film / polarizing film) of Examples and Comparative Examples were measured by using an ultraviolet-visible spectrophotometer (V-7100 manufactured by JASCO Corporation). Ts, parallel transmittance Tp, and orthogonal transmittance Tc were set as Ts, Tp, and Tc of the polarizing film, respectively. These Ts, Tp and Tc are Y values measured by the 2 degree visual field (C light source) of JIS Z8701 and subjected to the luminosity correction. The refractive index of the protective film was 1.50, and the refractive index of the surface of the polarizing film opposite to the protective film was 1.53.
The orthogonal absorbance A 210 was determined from the orthogonal transmittance Tc 210 measured at a measurement wavelength of 210 nm using UV-3150 manufactured by Shimadzu Corporation according to the following formula, and divided by the thickness to obtain a unit absorbance. Further, an orthogonal absorbance A 470 from the perpendicular transmittance Tc 470 for measuring wavelength 470 nm, and, an orthogonal absorbance A 600 from the perpendicular transmittance Tc 600 for measuring wavelength 600 nm, respectively determined using a Nippon Bunko V-7100.
Orthogonal absorbance = log10 (100 / Tc)
For A 470 and A 600 , the same measurement can be performed using LPF-200 manufactured by Otsuka Electronics Co., Ltd.
(3) Iodine Concentration Regarding the polarizing films obtained in Examples and Comparative Examples, fluorescent X-ray intensity (measurement diameter: ψ10 mm, manufactured by Rigaku Corporation, trade name “ZSX-PRIMUS II”) was used. kcps) was measured. The iodine concentration (% by weight) was determined from the obtained fluorescent X-ray intensity and thickness using the following formula.
(Iodine concentration) = 20.5 × (fluorescent X-ray intensity) / (film thickness)
The coefficient for calculating the concentration differs depending on the measuring device, but the coefficient can be obtained using an appropriate calibration curve. In this example, a plurality of samples were prepared by adding KI (I: K = 1: 1 (molar ratio)) to PVA at an arbitrary value, and the samples were measured to obtain a calibration curve.
(4) Orthogonal b value The polarizing plates used in Examples and Comparative Examples were measured using an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, product name "V7100"), and the hue in the crossed Nicols state was obtained. . It is shown that the lower the orthogonal b value is (the negative value is and the larger the absolute value is), the more the hue is blue instead of neutral.
(5) Warpage The polarizing plate with a retardation layer obtained in each of Examples and Comparative Examples was cut out into a size of 110 mm × 60 mm. At this time, the polarizing film was cut out so that the absorption axis direction was the long side direction. The cut out polarizing plate with a retardation layer was attached to a glass plate of 120 mm × 70 mm size and 0.2 mm thickness via an adhesive to give a test sample. The test sample was placed in a heating oven maintained at 85 ° C. for 24 hours, and the amount of warp after taking out was measured. When the test sample was allowed to stand on a flat surface with the glass plate facing down, the height of the highest portion from the flat surface was defined as the amount of warpage.
(6) Bending durability The polarizing plates with retardation layers obtained in Examples and Comparative Examples were cut into a size of 50 mm x 100 mm. At this time, the polarizing film was cut out so that the absorption axis direction was the short side direction. Using a folding tester with a constant temperature and constant humidity chamber (CL09 type-D01 manufactured by YUASA), the cut out polarizing plate with a retardation layer was subjected to a bending test under the condition of 20 ° C. and 50% RH. Specifically, the polarizing plate with a retardation layer, so that the retardation layer side is the outer side, repeatedly bent in a direction parallel to the absorption axis direction, such as cracks that cause display defects, peeling or film breakage, etc. The number of times of bending before occurrence was measured and evaluated according to the following criteria (bending diameter: 2 mmφ).
<Evaluation criteria>
Less than 10,000 times: Poor 10,000 times or more and less than 30,000 times: Good 30,000 times or more: Excellent (7) Front reflection hue The polarizing plates with retardation layers obtained in Examples and Comparative Examples have no ultraviolet absorption function. Reflector using acrylic adhesive (trade name "DMS-X42" manufactured by Toray Films Co., Ltd .; reflectance 86%, reflection hue without polarizing plate a * =-0.22, b * = 0.32) A measurement sample was prepared by pasting on top. At this time, the polarizing plate with a retardation layer was attached such that the retardation layer side faced the reflection plate. The measurement sample was measured by the SCE method using a spectrocolorimeter (CM-2600d manufactured by Konica Minolta), and the values of a * and b * were substituted into √ (a * 2 + b * 2 ). , The front reflection hue was determined.
(8) Elastic Modulus The film to be measured is formed into a tensile test dumbbell having a parallel part width of 10 mm and a length of 40 mm based on JIS K6734: 2000, and a tensile test is performed according to JIS K7161: 1994 to determine the tensile elastic modulus. I asked. Here, the length direction usually coincides with the stretching direction of the polarizing film.
[実施例1]
1.偏光膜の作製
 熱可塑性樹脂基材として、長尺状で、吸水率0.75%、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用いた。樹脂基材の片面に、コロナ処理を施した。
 ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマーZ410」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加して水に溶解し、PVA水溶液(塗布液)を調製した。
 樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み8μmのPVA系樹脂層を形成し、積層体を作製した。
 得られた積層体を、130℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.4倍に自由端一軸延伸した(空中補助延伸処理)。
 次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光膜の単体透過率(Ts)および波長210nmにおける単位吸光度が所望の値となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
 次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4.0重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
 その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
 その後、90℃に保たれたオーブン中で乾燥しながら、表面温度が75℃に保たれたSUS製の加熱ロールに約2秒接触させた(乾燥収縮処理)。乾燥収縮処理による積層体の幅方向の収縮率は2.5%であった。
 このようにして、樹脂基材上に厚み3.4μmの偏光膜を形成した。
[Example 1]
1. Preparation of Polarizing Film As the thermoplastic resin substrate, an amorphous isophthalic copolymer polyethylene terephthalate film (thickness: 100 μm) having a long shape, a water absorption of 0.75% and a Tg of about 75 ° C. was used. Corona treatment was applied to one surface of the resin substrate.
Polyvinyl alcohol (polymerization degree: 4200, saponification degree: 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosephimmer Z410") in a ratio of 9: 1 100 weight of PVA-based resin To 13 parts by weight, 13 parts by weight of potassium iodide was added and dissolved in water to prepare a PVA aqueous solution (coating solution).
The PVA aqueous solution was applied to the corona-treated surface of the resin substrate and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 8 μm, and a laminate was prepared.
The obtained laminated body was uniaxially stretched 2.4 times in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds in an oven at 130 ° C. (in-air auxiliary stretching treatment).
Next, the laminated body was immersed in an insolubilizing bath having a liquid temperature of 40 ° C. (boric acid aqueous solution obtained by mixing 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
Then, a dyeing bath having a liquid temperature of 30 ° C. (an iodine aqueous solution obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water) was added to the finally obtained polarizing film. Immersion was carried out for 60 seconds while adjusting the concentration so that the simple substance transmittance (Ts) and the unit absorbance at a wavelength of 210 nm were desired values (dyeing treatment).
Then, it was immersed for 30 seconds in a crosslinking bath at a liquid temperature of 40 ° C. (boric acid aqueous solution obtained by mixing 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with 100 parts by weight of water). (Crosslinking treatment).
Then, while the laminate was immersed in an aqueous boric acid solution (boric acid concentration 4.0% by weight) having a liquid temperature of 70 ° C., the total draw ratio was 5.5 in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds. Uniaxial stretching was performed so as to double the length (underwater stretching treatment).
After that, the laminate was immersed in a cleaning bath having a liquid temperature of 20 ° C. (an aqueous solution obtained by mixing 4 parts by weight of potassium iodide with 100 parts by weight of water) (cleaning treatment).
Then, while being dried in an oven kept at 90 ° C., it was brought into contact with a SUS heating roll whose surface temperature was kept at 75 ° C. for about 2 seconds (dry shrinkage treatment). The shrinkage ratio in the width direction of the laminate due to the dry shrinkage treatment was 2.5%.
In this way, a polarizing film having a thickness of 3.4 μm was formed on the resin base material.
2.偏光板の作製
 上記で得られた偏光膜の表面(樹脂基材とは反対側の面)に、保護層としてハードコート層(屈折率1.53)付シクロオレフィン系フィルム(厚み:28μm、弾性率:2100MPa)を、紫外線硬化型接着剤を介して貼り合せた。具体的には、硬化型接着剤の総厚みが1.0μmになるように塗工し、ロール機を使用して貼り合わせた。その後、UV光線を保護層側から照射して接着剤を硬化させた。次いで、両端部をスリットした後に、樹脂基材を剥離し、保護層/接着層/偏光膜の構成を有する長尺状の偏光板(幅:1300mm)を得た。偏光膜の単体透過率は43.5%であり、波長210nmにおける単位吸光度は0.45であり、A470/A600は0.76であり、直交b値は-3.6であった。
2. Production of Polarizing Plate On the surface of the polarizing film obtained above (the surface opposite to the resin substrate), a cycloolefin film with a hard coat layer (refractive index 1.53) as a protective layer (thickness: 28 μm, elasticity Rate: 2100 MPa) were bonded via an ultraviolet curable adhesive. Specifically, the curable adhesive was applied so that the total thickness was 1.0 μm, and the curable adhesive was pasted using a roll machine. Then, UV rays were irradiated from the protective layer side to cure the adhesive. Next, after slitting both ends, the resin substrate was peeled off to obtain a long-sized polarizing plate (width: 1300 mm) having a structure of protective layer / adhesive layer / polarizing film. The single transmittance of the polarizing film was 43.5%, the unit absorbance at a wavelength of 210 nm was 0.45, A 470 / A 600 was 0.76, and the orthogonal b value was -3.6.
3.位相差層を構成する位相差フィルムの作製
3-1.ポリエステルカーボネート系樹脂の重合
 撹拌翼および100℃に制御された還流冷却器を具備した縦型反応器2器からなるバッチ重合装置を用いて重合を行った。ビス[9-(2-フェノキシカルボニルエチル)フルオレン-9-イル]メタン29.60質量部(0.046mol)、イソソルビド(ISB)29.21質量部(0.200mol)、スピログリコール(SPG)42.28質量部(0.139mol)、ジフェニルカーボネート(DPC)63.77質量部(0.298mol)及び触媒として酢酸カルシウム1水和物1.19×10-2質量部(6.78×10-5mol)を仕込んだ。反応器内を減圧窒素置換した後、熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温開始40分後に内温を220℃に到達させ、この温度を保持するように制御すると同時に減圧を開始し、220℃に到達してから90分で13.3kPaにした。重合反応とともに副生するフェノール蒸気を100℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を反応器に戻し、凝縮しないフェノール蒸気は45℃の凝縮器に導いて回収した。第1反応器に窒素を導入して一旦大気圧まで復圧させた後、第1反応器内のオリゴマー化された反応液を第2反応器に移した。次いで、第2反応器内の昇温および減圧を開始して、50分で内温240℃、圧力0.2kPaにした。その後、所定の攪拌動力となるまで重合を進行させた。所定動力に到達した時点で反応器に窒素を導入して復圧し、生成したポリエステルカーボネート系樹脂を水中に押し出し、ストランドをカッティングしてペレットを得た。
3. Preparation of retardation film constituting retardation layer 3-1. Polymerization of Polyester Carbonate Resin Polymerization was carried out using a batch polymerization apparatus comprising two vertical reactors equipped with a stirring blade and a reflux condenser controlled to 100 ° C. Bis [9- (2-phenoxycarbonylethyl) fluoren-9-yl] methane 29.60 parts by mass (0.046 mol), isosorbide (ISB) 29.21 parts by mass (0.200 mol), spiroglycol (SPG) 42 .28 parts by mass (0.139 mol), diphenyl carbonate (DPC) 63.77 parts by mass (0.298 mol) and calcium acetate monohydrate as a catalyst 1.19 × 10 −2 parts by mass (6.78 × 10 −) 5 mol) was charged. After the inside of the reactor was replaced with nitrogen under reduced pressure, heating was performed with a heating medium, and stirring was started when the internal temperature reached 100 ° C. After 40 minutes from the start of temperature increase, the internal temperature was made to reach 220 ° C., the temperature was controlled so as to be kept at the same time, and the depressurization was started at the same time. Phenol vapor produced as a by-product with the polymerization reaction was introduced into a reflux condenser at 100 ° C., a monomer component slightly contained in the phenol vapor was returned to the reactor, and uncondensed phenol vapor was introduced into a condenser at 45 ° C. and recovered. After introducing nitrogen into the first reactor to restore the pressure to atmospheric pressure once, the oligomerized reaction liquid in the first reactor was transferred to the second reactor. Next, the temperature rise and pressure reduction in the second reactor were started, and the internal temperature was set to 240 ° C. and the pressure was set to 0.2 kPa in 50 minutes. Then, the polymerization was allowed to proceed until a predetermined stirring power was obtained. When the predetermined power was reached, nitrogen was introduced into the reactor to restore the pressure, the produced polyester carbonate resin was extruded into water, and the strands were cut to obtain pellets.
3-2.位相差フィルムの作製
 得られたポリエステルカーボネート系樹脂(ペレット)を80℃で5時間真空乾燥をした後、単軸押出機(東芝機械社製、シリンダー設定温度:250℃)、Tダイ(幅200mm、設定温度:250℃)、チルロール(設定温度:120~130℃)および巻取機を備えたフィルム製膜装置を用いて、厚み130μmの長尺状の樹脂フィルムを作製した。得られた長尺状の樹脂フィルムを、所定の位相差が得られるように調整しながら延伸し、厚み48μmの位相差フィルムを得た。延伸条件は、幅方向に、延伸温度143℃、延伸倍率2.8倍であった。得られた位相差フィルムのRe(550)は141nmであり、Re(450)/Re(550)は0.86であり、Nz係数は1.12であった。
3-2. Preparation of retardation film The obtained polyester carbonate-based resin (pellet) was vacuum dried at 80 ° C for 5 hours, then a single-screw extruder (Toshiba Kikai Co., Ltd., cylinder setting temperature: 250 ° C), T-die (width 200 mm). , Setting temperature: 250 ° C.), a chill roll (setting temperature: 120 to 130 ° C.) and a film forming apparatus equipped with a winder were used to prepare a long resin film having a thickness of 130 μm. The obtained long resin film was stretched while being adjusted so as to obtain a predetermined retardation to obtain a retardation film having a thickness of 48 μm. The stretching conditions were a stretching temperature of 143 ° C. and a stretching ratio of 2.8 times in the width direction. The Re (550) of the obtained retardation film was 141 nm, the Re (450) / Re (550) was 0.86, and the Nz coefficient was 1.12.
4.位相差層付偏光板の作製
 上記2.で得られた偏光板の偏光膜表面に、上記3.で得られた位相差フィルムを、アクリル系粘着剤(厚み5μm)を介して貼り合わせた。このとき、偏光膜の吸収軸と位相差フィルムの遅相軸とが45°の角度をなすようにして貼り合わせた。このようにして、保護層/接着層/偏光膜/粘着剤層/位相差層の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは85μmであった。得られた位相差層付偏光板を上記(5)~(6)の評価に供した。結果を表1に示す。
4. Preparation of Polarizing Plate with Retardation Layer 2. On the surface of the polarizing film of the polarizing plate obtained in step 3, above. The retardation film obtained in (1) was attached via an acrylic pressure-sensitive adhesive (thickness 5 μm). At this time, they were laminated so that the absorption axis of the polarizing film and the slow axis of the retardation film formed an angle of 45 °. In this way, a polarizing plate with a retardation layer having a structure of protective layer / adhesive layer / polarizing film / adhesive layer / retarder was obtained. The total thickness of the obtained polarizing plate with a retardation layer was 85 μm. The obtained polarizing plate with a retardation layer was subjected to the above evaluations (5) to (6). The results are shown in Table 1.
[実施例2-1]
1.偏光膜の作製
 PVA水溶液(塗布液)の塗布厚みを13μmに変更して得られる偏光膜の厚みを4.6μmとしたこと、および、染色浴の濃度を調整して偏光膜の単体透過率(Ts)が43.0%となるようにしたこと以外は実施例1と同様にして、樹脂基材上に偏光膜を形成した。
[Example 2-1]
1. Preparation of Polarizing Film The thickness of the polarizing film obtained by changing the coating thickness of the PVA aqueous solution (coating liquid) to 13 μm was set to 4.6 μm, and the concentration of the dyeing bath was adjusted to obtain the single transmittance of the polarizing film ( A polarizing film was formed on the resin substrate in the same manner as in Example 1 except that Ts) was set to 43.0%.
2.偏光板の作製
 上記1.で得られた偏光膜を用いたこと以外は実施例1と同様にして、保護層/接着層/偏光膜の構成を有する偏光板を作製した。偏光板(実質的には、偏光膜)の単体透過率は43.0%であり、偏光度は99.995%であった。さらに、波長210nmにおける単位吸光度は0.70であり、A470/A600は0.87であり、直交b値は-3.0であった。
2. Preparation of polarizing plate 1. A polarizing plate having a structure of protective layer / adhesive layer / polarizing film was prepared in the same manner as in Example 1 except that the polarizing film obtained in (2) was used. The single transmittance of the polarizing plate (essentially, the polarizing film) was 43.0%, and the polarization degree was 99.995%. Furthermore, the unit absorbance at a wavelength of 210 nm was 0.70, A 470 / A 600 was 0.87, and the orthogonal b value was −3.0.
3.位相差フィルムの作製
 実施例1と同様にして得られた厚み130μmの長尺状のポリエステルカーボネート樹脂フィルムを、所定の位相差が得られるように調整しながら幅方向に延伸し、厚み48μmの位相差フィルムを得た。得られた位相差フィルムのRe(550)は144nmであった。
3. Production of Retardation Film A long polyester carbonate resin film having a thickness of 130 μm obtained in the same manner as in Example 1 was stretched in the width direction while adjusting so as to obtain a predetermined retardation, and a thickness of 48 μm was measured. A phase difference film was obtained. The Re (550) of the obtained retardation film was 144 nm.
4.位相差層付偏光板の作製
 実施例1と同様にして、上記2.で得られた偏光板の偏光膜の表面に上記3.で得られた位相差フィルムを貼り合わせ、保護層/接着層/偏光子/粘着剤層/位相差層の構成を有する位相差層付偏光板を作製した。得られた位相差層付偏光板の総厚みは87μmであった。得られた位相差層付偏光板を上記(5)~(7)の評価に供した。結果を表1に示す。
4. Production of Polarizing Plate with Retardation Layer In the same manner as in Example 1, the above 2. On the surface of the polarizing film of the polarizing plate obtained in 3. above. The retardation film obtained in (1) was attached to prepare a polarizing plate with a retardation layer having a constitution of protective layer / adhesive layer / polarizer / adhesive layer / retardation layer. The total thickness of the obtained polarizing plate with a retardation layer was 87 μm. The obtained polarizing plate with a retardation layer was subjected to the above evaluations (5) to (7). The results are shown in Table 1.
[実施例2-2]
1.偏光膜の作製
 染色浴の濃度を調整して偏光膜の単体透過率(Ts)が44.0%となるようにしたこと以外は実施例2-1と同様にして、樹脂基材上に偏光膜を形成した。
[Example 2-2]
1. Production of Polarizing Film Polarizing on a resin substrate was performed in the same manner as in Example 2-1 except that the concentration of the dyeing bath was adjusted so that the single transmittance (Ts) of the polarizing film was 44.0%. A film was formed.
2.偏光板の作製
 上記1.で得られた偏光膜を用いたこと以外は実施例1と同様にして、保護層/接着層/偏光膜の構成を有する偏光板を作製した。偏光板(実質的には、偏光膜)の単体透過率は44.0%であり、偏光度は99.96%であった。さらに、波長210nmにおける単位吸光度は0.50であり、A470/A600は0.87であり、直交b値は-5.0であった。
2. Preparation of polarizing plate 1. A polarizing plate having a structure of protective layer / adhesive layer / polarizing film was prepared in the same manner as in Example 1 except that the polarizing film obtained in (2) was used. The single transmittance of the polarizing plate (substantially, the polarizing film) was 44.0%, and the polarization degree was 99.96%. Furthermore, the unit absorbance at a wavelength of 210 nm was 0.50, A 470 / A 600 was 0.87, and the orthogonal b value was −5.0.
3.位相差層付偏光板の作製
 実施例1と同様にして、上記2.で得られた偏光板の偏光膜の表面に実施例2-1と同様にして得た位相差フィルムを貼り合わせ、保護層/接着層/偏光子/粘着剤層/位相差層の構成を有する位相差層付偏光板を作製した。得られた位相差層付偏光板の総厚みは87μmであった。得られた位相差層付偏光板を実施例2-1と同様の評価に供した。結果を表1に示す。
3. Production of Polarizing Plate with Retardation Layer In the same manner as in Example 1, the above 2. The retardation film obtained in the same manner as in Example 2-1 is attached to the surface of the polarizing film of the polarizing plate obtained in the above to have a constitution of protective layer / adhesive layer / polarizer / adhesive layer / retardation layer. A polarizing plate with a retardation layer was produced. The total thickness of the obtained polarizing plate with a retardation layer was 87 μm. The obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 2-1. The results are shown in Table 1.
[実施例3-1]
1.偏光膜の作製
 実施例2-1と同様にして樹脂基材上に厚み4.6μmの偏光膜を形成した。
[Example 3-1]
1. Production of Polarizing Film A polarizing film having a thickness of 4.6 μm was formed on the resin substrate in the same manner as in Example 2-1.
2.偏光板の作製
 上記1.で得られた偏光膜を用いたこと、および、保護層としてハードコート層付トリアセチルセルロース(TAC)フィルム(ハードコート層厚み7μm、TAC厚み25μm、弾性率:3600MPa)を用いたこと以外は実施例1と同様にして、保護層/接着層/偏光膜の構成を有する偏光板を作製した。
2. Preparation of polarizing plate 1. Except that the polarizing film obtained in 1. was used and that a triacetyl cellulose (TAC) film with a hard coat layer (hard coat layer thickness 7 μm, TAC thickness 25 μm, elastic modulus: 3600 MPa) was used as a protective layer. In the same manner as in Example 1, a polarizing plate having a structure of protective layer / adhesive layer / polarizing film was produced.
3.位相差層を構成する位相差フィルムの作製
 PMMAを0.7質量部溶融混錬したこと以外は実施例1と同様にして得たポリエステルカーボネート系樹脂(ペレット)を80℃で5時間真空乾燥をした後、単軸押出機(東芝機械社製、シリンダー設定温度:250℃)、Tダイ(幅200mm、設定温度:250℃)、チルロール(設定温度:120~130℃)および巻取機を備えたフィルム製膜装置を用いて、厚み105μmの長尺状の樹脂フィルムを作製した。得られた長尺状の樹脂フィルムを、所定の位相差が得られるように調整しながら138℃で、幅方向に2.8倍延伸し、厚み38μmの位相差フィルムを得た。得られた位相差フィルムのRe(550)は144nmであり、Re(450)/Re(550)は0.86であった。
3. Preparation of Retardation Film Constituting Retardation Layer Polyester carbonate resin (pellet) obtained in the same manner as in Example 1 except that 0.7 part by mass of PMMA was melt-kneaded was vacuum dried at 80 ° C. for 5 hours. After that, it is equipped with a single-screw extruder (Toshiba Machinery Co., Ltd., cylinder setting temperature: 250 ° C), T-die (width 200 mm, setting temperature: 250 ° C), chill roll (setting temperature: 120-130 ° C), and winder. Using the film forming apparatus, a long resin film having a thickness of 105 μm was produced. The obtained long resin film was stretched 2.8 times in the width direction at 138 ° C. while adjusting so as to obtain a predetermined retardation to obtain a retardation film having a thickness of 38 μm. The Re (550) of the obtained retardation film was 144 nm, and the Re (450) / Re (550) was 0.86.
4.位相差層付偏光板の作製
 上記2.で得られた偏光板の偏光膜表面に、上記3.で得られた位相差フィルムを、アクリル系粘着剤(厚み5μm)を介して貼り合わせた。このとき、偏光膜の吸収軸と位相差フィルムの遅相軸とが45°の角度をなすようにして貼り合わせた。このようにして、保護層/接着層/偏光膜/粘着剤層/位相差層の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは81μmであった。得られた位相差層付偏光板を実施例2-1と同様の評価に供した。結果を表1に示す。
4. Preparation of Polarizing Plate with Retardation Layer 2. On the surface of the polarizing film of the polarizing plate obtained in step 3, above. The retardation film obtained in (1) was attached via an acrylic pressure-sensitive adhesive (thickness 5 μm). At this time, they were laminated so that the absorption axis of the polarizing film and the slow axis of the retardation film formed an angle of 45 °. In this way, a polarizing plate with a retardation layer having a structure of protective layer / adhesive layer / polarizing film / adhesive layer / retarder was obtained. The total thickness of the obtained polarizing plate with a retardation layer was 81 μm. The obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 2-1. The results are shown in Table 1.
[実施例3-2]
 実施例3-1と同様にして得られた厚み105μmの長尺状のポリエステルカーボネート樹脂フィルムを、所定の位相差が得られるように調整しながら幅方向に延伸し、厚み38μmの位相差フィルムを得た。得られた位相差フィルムのRe(550)は140nmであった。
 上記位相差フィルムを位相差層として用いたこと以外は実施例3-1と同様にして、保護層/接着層/偏光膜/粘着剤層/位相差層の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは81μmであった。得られた位相差層付偏光板を実施例2-1と同様の評価に供した。結果を表1に示す。
[Example 3-2]
A long polyester carbonate resin film having a thickness of 105 μm obtained in the same manner as in Example 3-1 was stretched in the width direction while adjusting so as to obtain a predetermined retardation to obtain a retardation film having a thickness of 38 μm. Obtained. The Re (550) of the obtained retardation film was 140 nm.
A polarizing plate with a retardation layer having a constitution of protective layer / adhesive layer / polarizing film / adhesive layer / retardation layer in the same manner as in Example 3-1 except that the above retardation film was used as a retardation layer. Got The total thickness of the obtained polarizing plate with a retardation layer was 81 μm. The obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 2-1. The results are shown in Table 1.
[実施例3-3]
 実施例3-1と同様にして得られた厚み105μmの長尺状のポリエステルカーボネート樹脂フィルムを、所定の位相差が得られるように調整しながら幅方向に延伸し、厚み38μmの位相差フィルムを得た。得られた位相差フィルムのRe(550)は149nmであった。
 上記位相差フィルムを位相差層として用いたこと以外は実施例3-1と同様にして、保護層/接着層/偏光膜/粘着剤層/位相差層の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは81μmであった。得られた位相差層付偏光板を実施例2-1と同様の評価に供した。結果を表1に示す。
[Example 3-3]
A long polyester carbonate resin film having a thickness of 105 μm obtained in the same manner as in Example 3-1 was stretched in the width direction while adjusting so as to obtain a predetermined retardation to obtain a retardation film having a thickness of 38 μm. Obtained. The Re (550) of the obtained retardation film was 149 nm.
A polarizing plate with a retardation layer having a constitution of protective layer / adhesive layer / polarizing film / adhesive layer / retardation layer in the same manner as in Example 3-1 except that the above retardation film was used as a retardation layer. Got The total thickness of the obtained polarizing plate with a retardation layer was 81 μm. The obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 2-1. The results are shown in Table 1.
[実施例4-1]
1.偏光膜の作製
 実施例2-2と同様にして、樹脂基材上に厚み4.6μmの偏光膜を形成した。
[Example 4-1]
1. Production of Polarizing Film A polarizing film having a thickness of 4.6 μm was formed on the resin substrate in the same manner as in Example 2-2.
2.偏光板の作製
 上記1.で得られた偏光膜を用いたこと以外は実施例3-1と同様にして、保護層/接着層/偏光膜の構成を有する偏光板を作製した。
2. Preparation of polarizing plate 1. A polarizing plate having a structure of protective layer / adhesive layer / polarizing film was produced in the same manner as in Example 3-1 except that the polarizing film obtained in step 1 was used.
3.位相差層付偏光板の作製
 実施例3-1と同様にして作製した位相差フィルムを、上記2.で得られた偏光板の偏光膜表面に実施例3-1と同様にして貼り合わせた。このようにして、保護層/接着層/偏光膜/粘着剤層/位相差層の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは81μmであった。得られた位相差層付偏光板を実施例2-1と同様の評価に供した。結果を表1に示す。
3. Production of Polarizing Plate with Retardation Layer A retardation film produced in the same manner as in Example 3-1 was prepared as in 2. It was attached to the surface of the polarizing film of the polarizing plate obtained in the same manner as in Example 3-1. In this way, a polarizing plate with a retardation layer having a structure of protective layer / adhesive layer / polarizing film / adhesive layer / retarder was obtained. The total thickness of the obtained polarizing plate with a retardation layer was 81 μm. The obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 2-1. The results are shown in Table 1.
[実施例4-2]
1.偏光膜の作製
 実施例2-2と同様にして、樹脂基材上に厚み4.6μmの偏光膜を形成した。
[Example 4-2]
1. Production of Polarizing Film A polarizing film having a thickness of 4.6 μm was formed on the resin substrate in the same manner as in Example 2-2.
2.偏光板の作製
 上記1.で得られた偏光膜を用いたこと以外は実施例3-1と同様にして、保護層/接着層/偏光膜の構成を有する偏光板を作製した。
2. Preparation of polarizing plate 1. A polarizing plate having a structure of protective layer / adhesive layer / polarizing film was produced in the same manner as in Example 3-1 except that the polarizing film obtained in step 1 was used.
3.位相差層付偏光板の作製
 実施例3-2と同様にして作製した位相差フィルムを、上記2.で得られた偏光板の偏光膜表面に実施例3-1と同様にして貼り合わせた。このようにして、保護層/接着層/偏光膜/粘着剤層/位相差層の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは81μmであった。得られた位相差層付偏光板を実施例2-1と同様の評価に供した。結果を表1に示す。
3. Production of Polarizing Plate with Retardation Layer A retardation film produced in the same manner as in Example 3-2 was prepared as in 2. It was attached to the surface of the polarizing film of the polarizing plate obtained in the same manner as in Example 3-1. In this way, a polarizing plate with a retardation layer having a structure of protective layer / adhesive layer / polarizing film / adhesive layer / retarder was obtained. The total thickness of the obtained polarizing plate with a retardation layer was 81 μm. The obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 2-1. The results are shown in Table 1.
[実施例5]
 実施例1と同様にして得られたポリカーボネート樹脂フィルムを、特開2014-194483号公報の実施例2に準じた方法で斜め延伸し、厚み58μmの位相差フィルムを得た。得られた位相差フィルムのRe(550)は144nmであり、Re(450)/Re(550)は0.86であり、Nz係数は1.21であり、配向角(遅相軸の方向)は長尺方向に対し45°であった。この位相差フィルムと実施例2-2の偏光板とをアクリル系粘着剤(厚み5μm)を介してロールトゥロールにより積層し、保護層/接着層/偏光膜/粘着剤層/位相差層の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは97μmであった。得られた位相差層付偏光板を実施例2-1と同様の評価に供した。結果を表1に示す。
[Example 5]
The polycarbonate resin film obtained in the same manner as in Example 1 was obliquely stretched by a method according to Example 2 in JP-A-2014-194483 to obtain a retardation film having a thickness of 58 μm. The Re (550) of the obtained retardation film was 144 nm, the Re (450) / Re (550) was 0.86, the Nz coefficient was 1.21, and the orientation angle (the direction of the slow axis). Was 45 ° with respect to the longitudinal direction. This retardation film and the polarizing plate of Example 2-2 were laminated by a roll-to-roll method with an acrylic pressure-sensitive adhesive (thickness 5 μm) interposed between the protective layer / adhesive layer / polarizing film / adhesive layer / retardation layer. A polarizing plate with a retardation layer having the constitution was obtained. The total thickness of the obtained polarizing plate with a retardation layer was 97 μm. The obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 2-1. The results are shown in Table 1.
[比較例1]
1.偏光子の作製
 平均重合度が2,400、ケン化度が99.9モル%、厚みが30μmであるポリビニルアルコール系樹脂フィルムを用意した。ポリビニルアルコールフィルムを、周速比の異なるロール間で、20℃の膨潤浴(水浴)中に30秒間浸漬して膨潤しながら搬送方向に2.4倍に延伸し(膨潤工程)、続いて、30℃の染色浴(ヨウ素濃度が0.03重量%、ヨウ化カリウム濃度が0.3重量%である水溶液)中で最終延伸後の単体透過率が所望の値となるように浸漬して染色しながら元のポリビニルアルコールフィルム(搬送方向に全く延伸していないポリビニルアルコールフィルム)を基準にして搬送方向に3.7倍に延伸した(染色工程)。この時の浸漬時間は約60秒であった。次いで、染色したポリビニルアルコールフィルムを、40℃の架橋浴(ホウ酸濃度が3.0重量%、ヨウ化カリウム濃度が3.0重量%である水溶液)中で浸漬しながら元のポリビニルアルコールフィルムを基準にして搬送方向に4.2倍まで延伸した(架橋工程)。さらに、得られたポリビニルアルコールフィルムを、64℃の延伸浴(ホウ酸濃度が4.0重量%、ヨウ化カリウム濃度が5.0重量%である水溶液)中で50秒間浸漬して元のポリビニルアルコールフィルムを基準にして搬送方向に6.0倍まで延伸した(延伸工程)後、20℃の洗浄浴(ヨウ化カリウム濃度が3.0重量%である水溶液)中で5秒間浸漬した(洗浄工程)。洗浄したポリビニルアルコールフィルムを、30℃で2分間乾燥して偏光子(厚み12μm)を作製した。
[Comparative Example 1]
1. Production of Polarizer A polyvinyl alcohol-based resin film having an average polymerization degree of 2,400, a saponification degree of 99.9 mol% and a thickness of 30 μm was prepared. The polyvinyl alcohol film was dipped in a swelling bath (water bath) at 20 ° C. for 30 seconds between rolls having different peripheral speed ratios and stretched 2.4 times in the transport direction while swelling (swelling step). Dyeing is performed by dipping in a dyeing bath at 30 ° C (an aqueous solution having an iodine concentration of 0.03% by weight and a potassium iodide concentration of 0.3% by weight) so that the single transmittance after the final stretching becomes a desired value. On the other hand, the original polyvinyl alcohol film (polyvinyl alcohol film which was not stretched at all in the transport direction) was stretched 3.7 times in the transport direction (dyeing step). The immersion time at this time was about 60 seconds. Then, while dipping the dyed polyvinyl alcohol film in a crosslinking bath at 40 ° C. (an aqueous solution having a boric acid concentration of 3.0 wt% and a potassium iodide concentration of 3.0 wt%), the original polyvinyl alcohol film was immersed. It was stretched to 4.2 times in the transport direction based on the standard (crosslinking step). Further, the obtained polyvinyl alcohol film was immersed in a stretching bath at 64 ° C. (an aqueous solution having a boric acid concentration of 4.0% by weight and a potassium iodide concentration of 5.0% by weight) for 50 seconds to obtain the original polyvinyl alcohol. After being stretched to 6.0 times in the transport direction based on the alcohol film (stretching step), it was immersed in a washing bath at 20 ° C. (aqueous solution having a potassium iodide concentration of 3.0% by weight) for 5 seconds (washing). Process). The washed polyvinyl alcohol film was dried at 30 ° C. for 2 minutes to prepare a polarizer (thickness 12 μm).
2.偏光板の作製
 接着剤として、アセトアセチル基を含有するポリビニルアルコール樹脂(平均重合度が1,200、ケン化度が98.5モル%、アセトアセチル化度が5モル%)とメチロールメラミンとを含有する水溶液を用いた。この接着剤を接着剤層の厚みが0.1μmとなるように用いて、上記で得られた偏光子の一方の面にハードコート層付トリアセチルセルロース(TAC)フィルム(ハードコート層厚み7μm、TAC厚み25μm、弾性率:3600MPa)を、偏光子の他方の面に厚みが25μmのTACフィルムをロール貼合機で貼り合わせた後、オーブン内で加熱乾燥(温度が60℃、時間が5分間)させて、保護層1(厚み32μm)/接着層/偏光子/接着層/保護層2の構成を有する偏光板を作製した。
2. Preparation of Polarizing Plate As an adhesive, a polyvinyl alcohol resin containing an acetoacetyl group (average polymerization degree: 1,200, saponification degree: 98.5 mol%, acetoacetylation degree: 5 mol%) and methylolmelamine were used. The containing aqueous solution was used. This adhesive was used so that the thickness of the adhesive layer was 0.1 μm, and a triacetyl cellulose (TAC) film with a hard coat layer (hard coat layer thickness 7 μm, on one surface of the polarizer obtained above) A TAC film having a thickness of 25 μm and an elastic modulus of 3600 MPa was attached to the other surface of the polarizer with a TAC film having a thickness of 25 μm by a roll laminating machine, and then dried by heating in an oven (temperature: 60 ° C., time: 5 minutes). Then, a polarizing plate having a structure of protective layer 1 (thickness 32 μm) / adhesive layer / polarizer / adhesive layer / protective layer 2 was prepared.
3.位相差層付偏光板の作製
 上記2.で得られた偏光板の保護層2の表面に、実施例1と同様にして位相差フィルムを貼り合わせ、保護層1/接着層/偏光子/接着層/保護層2/粘着剤層/位相差層の構成を有する位相差層付偏光板を作製した。得られた位相差層付偏光板の総厚みは122μmであった。得られた位相差層付偏光板を実施例2-1と同様の評価に供した。
3. Preparation of Polarizing Plate with Retardation Layer 2. A retardation film was attached to the surface of the protective layer 2 of the polarizing plate obtained in 1. in the same manner as in Example 1, and protective layer 1 / adhesive layer / polarizer / adhesive layer / protective layer 2 / adhesive layer / position A polarizing plate with a retardation layer having a constitution of a retardation layer was produced. The total thickness of the obtained polarizing plate with a retardation layer was 122 μm. The obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 2-1.
[比較例2]
1.偏光子の作製
 比較例1と同様にして、偏光子(厚み12μm)を作製した。
[Comparative Example 2]
1. Production of Polarizer A polarizer (thickness: 12 μm) was produced in the same manner as in Comparative Example 1.
2.偏光板の作製
 比較例1と同様にして、保護層1(厚み32μm)/接着層/偏光子/接着層/保護層2(厚み25μm)の構成を有する偏光板を作製した。
2. Production of Polarizing Plate In the same manner as in Comparative Example 1, a polarizing plate having a constitution of protective layer 1 (thickness 32 μm) / adhesive layer / polarizer / adhesive layer / protective layer 2 (thickness 25 μm) was produced.
3.位相差層を構成する第1の配向固化層および第2の配向固化層の作製
 ネマチック液晶相を示す重合性液晶(BASF社製:商品名「Paliocolor LC242」、下記式で表される)10gと、当該重合性液晶化合物に対する光重合開始剤(BASF社製:商品名「イルガキュア907」)3gとを、トルエン40gに溶解して、液晶組成物(塗工液)を調製した。
Figure JPOXMLDOC01-appb-C000001
 ポリエチレンテレフタレート(PET)フィルム(厚み38μm)表面を、ラビング布を用いてラビングし、配向処理を施した。配向処理の方向は、偏光板に貼り合わせる際に偏光子の吸収軸の方向に対して視認側から見て15°方向となるようにした。この配向処理表面に、上記液晶塗工液をバーコーターにより塗工し、90℃で2分間加熱乾燥することによって液晶化合物を配向させた。このようにして形成された液晶層に、メタルハライドランプを用いて1mJ/cmの光を照射し、当該液晶層を硬化させることによって、PETフィルム上に液晶配向固化層Aを形成した。液晶配向固化層Aの厚みは2.5μm、面内位相差Re(550)は270nmであった。さらに、液晶配向固化層Aは、nx>ny=nzの屈折率分布を有していた。
 塗工厚みを変更したこと、および、配向処理方向を偏光子の吸収軸の方向に対して視認側から見て75°方向となるようにしたこと以外は上記と同様にして、PETフィルム上に液晶配向固化層Bを形成した。液晶配向固化層Bの厚みは1.5μm、面内位相差Re(550)は140nmであった。さらに、液晶配向固化層Bは、nx>ny=nzの屈折率分布を有していた。また、液晶配向固化層AおよびBのRe(450)/Re(550)は1.11であった。
3. Preparation of First Alignment Solidification Layer and Second Alignment Solidification Layer Constituting Retardation Layer 10 g of a polymerizable liquid crystal exhibiting a nematic liquid crystal phase (manufactured by BASF: trade name “Paliocolor LC242”, represented by the following formula): A liquid crystal composition (coating liquid) was prepared by dissolving 3 g of a photopolymerization initiator (manufactured by BASF: trade name “Irgacure 907”) for the polymerizable liquid crystal compound in 40 g of toluene.
Figure JPOXMLDOC01-appb-C000001
The surface of the polyethylene terephthalate (PET) film (thickness 38 μm) was rubbed with a rubbing cloth for orientation treatment. The direction of the orientation treatment was set to be 15 ° with respect to the direction of the absorption axis of the polarizer when it was attached to the polarizing plate, as viewed from the viewing side. The liquid crystal coating liquid was applied to the surface of the alignment treatment by a bar coater, and the liquid crystal compound was aligned by heating and drying at 90 ° C. for 2 minutes. The liquid crystal layer thus formed was irradiated with light of 1 mJ / cm 2 using a metal halide lamp to cure the liquid crystal layer, thereby forming a liquid crystal alignment solidified layer A on the PET film. The thickness of the liquid crystal alignment fixed layer A was 2.5 μm, and the in-plane retardation Re (550) was 270 nm. Further, the liquid crystal alignment fixed layer A had a refractive index distribution of nx> ny = nz.
On the PET film in the same manner as above except that the coating thickness was changed and the orientation treatment direction was set to be the direction of 75 ° with respect to the absorption axis direction of the polarizer when viewed from the viewing side. A liquid crystal alignment fixed layer B was formed. The thickness of the liquid crystal alignment fixed layer B was 1.5 μm, and the in-plane retardation Re (550) was 140 nm. Furthermore, the liquid crystal alignment fixed layer B had the refractive index distribution of nx> ny = nz. Further, Re (450) / Re (550) of the liquid crystal alignment fixed layers A and B was 1.11.
4.位相差層付偏光板の作製
 上記2.で得られた偏光板の保護層2側の表面に、上記3.で得られた液晶配向固化層Aおよび液晶配向固化層Bをこの順に転写した。このとき、偏光子の吸収軸と配向固化層Aの遅相軸とのなす角度が15°、偏光子の吸収軸と配向固化層Bの遅相軸とのなす角度が75°になるようにして転写(貼り合わせ)を行った。なお、それぞれの転写(貼り合わせ)は、紫外線硬化型接着剤(厚み1μm)を介して行った。このようにして、保護層1/接着層/偏光子/接着層/保護層2/接着層/位相差層(第1の配向固化層/接着層/第2の配向固化層)の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは75μmであった。得られた位相差層付偏光板を実施例2-1と同様の評価に供した。結果を表1に示す。
4. Preparation of Polarizing Plate with Retardation Layer 2. On the protective layer 2 side surface of the polarizing plate obtained in above, the above 3. The liquid crystal alignment solidified layer A and the liquid crystal alignment solidified layer B obtained in 1. were transferred in this order. At this time, the angle between the absorption axis of the polarizer and the slow axis of the alignment solidification layer A is 15 °, and the angle between the absorption axis of the polarizer and the slow axis of the alignment solidification layer B is 75 °. Transfer (bonding) was performed. In addition, each transfer (bonding) was performed through an ultraviolet curable adhesive (thickness 1 μm). In this way, the constitution of protective layer 1 / adhesive layer / polarizer / adhesive layer / protective layer 2 / adhesive layer / retardation layer (first orientation solidification layer / adhesion layer / second orientation solidification layer) is provided. A polarizing plate with a retardation layer was obtained. The total thickness of the obtained polarizing plate with a retardation layer was 75 μm. The obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 2-1. The results are shown in Table 1.
[比較例3]
1.偏光膜の作製
 実施例2-1と同様にして、樹脂基材上に厚み4.6μmの偏光膜を形成した。
[Comparative Example 3]
1. Production of Polarizing Film A polarizing film having a thickness of 4.6 μm was formed on the resin substrate in the same manner as in Example 2-1.
2.偏光板の作製
 上記で得られた偏光膜の表面(樹脂基材とは反対側の面)に、保護層としてアクリル系フィルム(表面屈折率1.50、20μm)を、紫外線硬化型接着剤を介して貼り合せた。具体的には、硬化型接着剤の総厚みが1.0μmになるように塗工し、ロール機を使用して貼り合わせた。その後、UV光線を保護層側から照射して接着剤を硬化させた。次いで、両端部をスリットした後に、樹脂基材を剥離し、保護層/接着層/偏光膜の構成を有する長尺状の偏光板(幅:1300mm)を得た。
2. Preparation of Polarizing Plate An acrylic film (surface refractive index 1.50, 20 μm) as a protective layer was provided on the surface of the polarizing film obtained above (the surface opposite to the resin substrate) with an ultraviolet curable adhesive. Pasted through. Specifically, the curable adhesive was applied so that the total thickness was 1.0 μm, and the curable adhesive was pasted using a roll machine. Then, UV rays were irradiated from the protective layer side to cure the adhesive. Next, after slitting both ends, the resin substrate was peeled off to obtain a long-sized polarizing plate (width: 1300 mm) having a structure of protective layer / adhesive layer / polarizing film.
3.位相差層付偏光板の作製
 比較例2と同様にして、上記2.で得られた偏光板の偏光膜表面に、比較例2と同様にして得られた液晶配向固化層Aおよび液晶配向固化層Bをこの順に転写した。このようにして、保護層/接着層/偏光膜/接着層/位相差層(第1の配向固化層/接着層/第2の配向固化層)の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは32μmであった。得られた位相差層付偏光板を実施例2-1と同様の評価に供した。結果を表1に示す。
3. Production of Polarizing Plate with Retardation Layer The same as in 2. The liquid crystal alignment fixed layer A and the liquid crystal alignment fixed layer B obtained in the same manner as in Comparative Example 2 were transferred in this order to the polarizing film surface of the polarizing plate obtained in the above. In this way, a polarizing plate with a retardation layer having a structure of protective layer / adhesive layer / polarizing film / adhesive layer / retardation layer (first alignment solidified layer / adhesive layer / second alignment solidified layer) is obtained. It was The total thickness of the obtained polarizing plate with a retardation layer was 32 μm. The obtained polarizing plate with a retardation layer was subjected to the same evaluations as in Example 2-1. The results are shown in Table 1.
[比較例4]
 PVA水溶液(塗布液)にヨウ化カリウムを添加しなかったこと、PVA水溶液(塗布液)を変更して得られる偏光膜の厚みを3.3μmとしたこと、乾燥収縮処理において加熱ロールを用いず幅方向の収縮率を0.1%以下としたこと、および、染色浴の濃度を調整して偏光膜の単体透過率を調整したこと以外は実施例1と同様にして、偏光膜および偏光板を作製した。偏光板(実質的には、偏光膜)の単体透過率は43.4%であり、波長210nmにおける単位吸光度は1.32であった。この偏光板を用いたこと以外は実施例1と同様にして位相差層付偏光板を作製した。
[Comparative Example 4]
No potassium iodide was added to the PVA aqueous solution (coating solution), the thickness of the polarizing film obtained by changing the PVA aqueous solution (coating solution) was 3.3 μm, and no heating roll was used in the drying shrinkage treatment. A polarizing film and a polarizing plate were prepared in the same manner as in Example 1 except that the shrinkage in the width direction was set to 0.1% or less, and the single transmittance of the polarizing film was adjusted by adjusting the concentration of the dyeing bath. Was produced. The single transmittance of the polarizing plate (substantially, the polarizing film) was 43.4%, and the unit absorbance at a wavelength of 210 nm was 1.32. A polarizing plate with a retardation layer was produced in the same manner as in Example 1 except that this polarizing plate was used.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[評価]
 実施例1と比較例1、2および4とを比較すると明らかなように、所定の方法で作製された偏光膜は薄型でありながら、優れた光学特性を示す。このような偏光膜を用いることにより、薄型で、優れた光学特性を有し、かつ、加熱試験後の反りが顕著に抑制された(結果として、取扱い性に優れた)位相差層付偏光板が得られることがわかる。また、ポリカーボネート系樹脂(ポリエステルカーボネート系樹脂を含む)フィルムから構成される位相差層と組み合わせて用いることにより、優れた反射色相が得られ得ることがわかる。加えて、ポリカーボネート系樹脂の40μm以下まで薄くし、位相差層付偏光板の総厚みを85μm以下とし、さらに、弾性率が3000MPa以上の基材、好ましくはTACフィルムを保護層として用いることにより、折り曲げ特性がさらに向上し得る。一方、比較例3の位相差層付偏光板は、薄型で、優れた光学特性を有し、かつ、加熱試験後の反りが顕著に抑制されているものの、反射色相が大きく、表示特性の点で満足のいくものではなかった。
[Evaluation]
As is clear from the comparison between Example 1 and Comparative Examples 1, 2 and 4, the polarizing film produced by the predetermined method shows excellent optical characteristics while being thin. By using such a polarizing film, a polarizing plate with a retardation layer, which is thin, has excellent optical characteristics, and is significantly suppressed in warpage after a heating test (as a result, is excellent in handleability) It can be seen that Moreover, it is understood that an excellent reflection hue can be obtained by using in combination with a retardation layer composed of a polycarbonate resin (including a polyester carbonate resin) film. In addition, by reducing the thickness of the polycarbonate resin to 40 μm or less, the total thickness of the polarizing plate with a retardation layer to 85 μm or less, and further using a substrate having an elastic modulus of 3000 MPa or more, preferably a TAC film as a protective layer, The folding characteristics can be further improved. On the other hand, the polarizing plate with a retardation layer of Comparative Example 3 is thin, has excellent optical characteristics, and is significantly suppressed in warpage after a heating test, but has a large reflective hue and has a display characteristic. I was not satisfied with it.
 本発明の位相差層付偏光板は、液晶表示装置、有機EL表示装置および無機EL表示装置用の円偏光板として好適に用いられる。 The polarizing plate with a retardation layer of the present invention is suitably used as a circular polarizing plate for liquid crystal display devices, organic EL display devices and inorganic EL display devices.
 10   偏光板
 11   偏光膜
 12   第1の保護層
 13   第2の保護層
 20   位相差層
100   位相差層付偏光板
101   位相差層付偏光板
Reference Signs List 10 polarizing plate 11 polarizing film 12 first protective layer 13 second protective layer 20 retardation layer 100 retardation layer-attached polarizing plate 101 retardation layer-attached polarizing plate

Claims (17)

  1.  偏光膜と該偏光膜の少なくとも一方の側に保護層とを含む偏光板と、位相差層と、を有し、
     該偏光膜が、二色性物質を含むポリビニルアルコール系樹脂フィルムで構成され、その厚みが8μm以下であり、波長210nmにおける厚み1μmあたりの直交吸光度が1.00以下であり、
     該位相差層のRe(550)が100nm~190nmであり、Re(450)/Re(550)が0.8以上1未満であり、
     該位相差層の遅相軸と該偏光膜の吸収軸とのなす角度が40°~50°である、
     位相差層付偏光板。
    A polarizing plate including a polarizing film and a protective layer on at least one side of the polarizing film, and a retardation layer,
    The polarizing film is composed of a polyvinyl alcohol-based resin film containing a dichroic material, the thickness thereof is 8 μm or less, and the orthogonal absorbance per 1 μm of thickness at a wavelength of 210 nm is 1.00 or less,
    Re (550) of the retardation layer is 100 nm to 190 nm, Re (450) / Re (550) is 0.8 or more and less than 1,
    The angle formed by the slow axis of the retardation layer and the absorption axis of the polarizing film is 40 ° to 50 °,
    Polarizing plate with retardation layer.
  2.  前記保護層が、弾性率が3000MPa以上である基材から構成される、請求項1に記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to claim 1, wherein the protective layer is composed of a base material having an elastic modulus of 3000 MPa or more.
  3.  総厚みが、90μm以下であり、
     正面反射色相が、3.5以下であり、
     前記保護層が、弾性率が3000MPa以上である樹脂フィルムから構成される、請求項1または2に記載の位相差層付偏光板。
    The total thickness is 90 μm or less,
    The front reflection hue is 3.5 or less,
    The polarizing plate with a retardation layer according to claim 1, wherein the protective layer is composed of a resin film having an elastic modulus of 3000 MPa or more.
  4.  前記保護層が、トリアセチルセルロース系樹脂フィルムから構成される、請求項1から3のいずれかに記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to any one of claims 1 to 3, wherein the protective layer is made of a triacetyl cellulose resin film.
  5.  前記偏光板が、前記偏光膜と前記偏光膜の一方の側のみに配置された前記保護層とを含み、
     前記位相差層が、粘着剤層を介して前記偏光膜に貼り合わされている、請求項1から4のいずれかに記載の位相差層付偏光板。
    The polarizing plate includes the polarizing film and the protective layer disposed only on one side of the polarizing film,
    The polarizing plate with a retardation layer according to claim 1, wherein the retardation layer is attached to the polarizing film via an adhesive layer.
  6.  前記位相差層が、ポリカーボネート系樹脂フィルムから構成される、請求項1から5のいずれかに記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to any one of claims 1 to 5, wherein the retardation layer is composed of a polycarbonate resin film.
  7.  前記位相差層が、40μm以下の厚みを有するポリカーボネート系樹脂フィルムから構成される、請求項1から6のいずれかに記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to claim 1, wherein the retardation layer is composed of a polycarbonate resin film having a thickness of 40 μm or less.
  8.  前記偏光膜の波長470nmにおける直交吸光度A470と波長600nmにおける直交吸光度A600との比(A470/A600)が0.7~2.00である、請求項1から7のいずれかに記載の位相差層付偏光板。 8. The ratio (A 470 / A 600 ) of the orthogonal absorbance A 470 at a wavelength of 470 nm and the orthogonal absorbance A 600 at a wavelength of 600 nm of the polarizing film (A 470 / A 600 ) is 0.7 to 2.00. Polarizing plate with retardation layer.
  9.  前記偏光膜の直交b値が-10より大きく+10以下である、請求項1から8のいずれかに記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to any one of claims 1 to 8, wherein the orthogonal b value of the polarizing film is more than -10 and +10 or less.
  10.  前記偏光膜のヨウ素濃度が3.0重量%以上である、請求項1から9のいずれかに記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to any one of claims 1 to 9, wherein the iodine concentration of the polarizing film is 3.0% by weight or more.
  11.  前記偏光膜の単体透過率が42.5%以上である、請求項1から10のいずれかに記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to claim 1, wherein the single transmittance of the polarizing film is 42.5% or more.
  12.  前記位相差層の外側に別の位相差層をさらに有し、該別の位相差層の屈折率特性がnz>nx=nyの関係を示す、請求項1から11のいずれかに記載の位相差層付偏光板。 The position according to any one of claims 1 to 11, further comprising another retardation layer outside the retardation layer, and the refractive index characteristics of the another retardation layer exhibit a relationship of nz> nx = ny. Polarizing plate with retardation layer.
  13.  前記位相差層の外側に導電層または導電層付等方性基材をさらに有する、請求項1から12のいずれかに記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to any one of claims 1 to 12, further comprising a conductive layer or an isotropic substrate with a conductive layer outside the retardation layer.
  14.  長尺状であり、
     前記偏光膜が長尺方向に吸収軸を有し、
     前記位相差層が、長尺方向に対して40°~50°の角度をなす方向に遅相軸を有する斜め延伸フィルムである、
     請求項1から13のいずれかに記載の位相差層付偏光板。
    Long shape,
    The polarizing film has an absorption axis in the longitudinal direction,
    The retardation layer is an obliquely stretched film having a slow axis in a direction forming an angle of 40 ° to 50 ° with respect to the lengthwise direction,
    The polarizing plate with a retardation layer according to any one of claims 1 to 13.
  15.  ロール状に巻回されている、請求項14に記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to claim 14, which is wound in a roll shape.
  16.  請求項1から13のいずれかに記載の位相差層付偏光板を備える、画像表示装置。 An image display device comprising the polarizing plate with a retardation layer according to any one of claims 1 to 13.
  17.  有機エレクトロルミネセンス表示装置または無機エレクトロルミネセンス表示装置である、請求項16に記載の画像表示装置。 The image display device according to claim 16, which is an organic electroluminescence display device or an inorganic electroluminescence display device.
PCT/JP2019/039580 2018-10-15 2019-10-08 Polarizing plate with phase difference layer, and image display device using this WO2020080173A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217011104A KR102526025B1 (en) 2018-10-15 2019-10-08 Polarizing plate with retardation layer and image display device using the same
CN201980067863.1A CN112840251B (en) 2018-10-15 2019-10-08 Polarizing plate with phase difference layer and image display device using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018194002 2018-10-15
JP2018-194002 2018-10-15
JP2019183610A JP6890162B2 (en) 2018-10-15 2019-10-04 Polarizing plate with retardation layer and image display device using it
JP2019-183610 2019-10-04

Publications (1)

Publication Number Publication Date
WO2020080173A1 true WO2020080173A1 (en) 2020-04-23

Family

ID=70283092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039580 WO2020080173A1 (en) 2018-10-15 2019-10-08 Polarizing plate with phase difference layer, and image display device using this

Country Status (1)

Country Link
WO (1) WO2020080173A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156311A1 (en) * 2013-03-26 2014-10-02 Jx日鉱日石エネルギー株式会社 Laminate polarization plate and organic el element
JP2015036729A (en) * 2013-08-12 2015-02-23 日東電工株式会社 Polarizing film, optical functional film laminate including polarizing film, manufacturing method of optical film laminate including polarizing film, and organic el display device having polarizing film
WO2015137514A1 (en) * 2014-03-14 2015-09-17 日東電工株式会社 Laminate, stretched laminate, method for manufacturing stretched laminate, method for manufacturing polarizing-film-containing optical-film laminate using same, and polarizing film
JP2016148830A (en) * 2015-07-22 2016-08-18 住友化学株式会社 Polarization film and polarizing plate comprising the same
JP2016173564A (en) * 2015-03-16 2016-09-29 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Polarizer manufacturing method
WO2018135360A1 (en) * 2017-01-19 2018-07-26 日東電工株式会社 Film laminate for touch panel
WO2019054276A1 (en) * 2017-09-13 2019-03-21 日東電工株式会社 Polarizing film, polarizing plate, and method for manufacturing polarizing film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156311A1 (en) * 2013-03-26 2014-10-02 Jx日鉱日石エネルギー株式会社 Laminate polarization plate and organic el element
JP2015036729A (en) * 2013-08-12 2015-02-23 日東電工株式会社 Polarizing film, optical functional film laminate including polarizing film, manufacturing method of optical film laminate including polarizing film, and organic el display device having polarizing film
WO2015137514A1 (en) * 2014-03-14 2015-09-17 日東電工株式会社 Laminate, stretched laminate, method for manufacturing stretched laminate, method for manufacturing polarizing-film-containing optical-film laminate using same, and polarizing film
JP2016173564A (en) * 2015-03-16 2016-09-29 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Polarizer manufacturing method
JP2016148830A (en) * 2015-07-22 2016-08-18 住友化学株式会社 Polarization film and polarizing plate comprising the same
WO2018135360A1 (en) * 2017-01-19 2018-07-26 日東電工株式会社 Film laminate for touch panel
WO2019054276A1 (en) * 2017-09-13 2019-03-21 日東電工株式会社 Polarizing film, polarizing plate, and method for manufacturing polarizing film

Similar Documents

Publication Publication Date Title
JP7355583B2 (en) Polarizing plate with retardation layer and image display device using the same
JP6890160B2 (en) Polarizing plate with retardation layer and image display device using it
JP6999059B2 (en) Polarizing plate with retardation layer and image display device using it
JP2020064278A (en) Polarizing plate with phase difference layer and image display device using the same
JP7355582B2 (en) Polarizing plate with retardation layer and image display device using the same
JP2020064277A (en) Polarizing plate with phase difference layer and image display device using the same
JP2020064274A (en) Polarizing plate with phase difference layer and image display device using the same
JP2020064280A (en) Polarizing plate with phase difference layer and image display device using the same
JP2020064279A (en) Polarizing plate with phase difference layer and image display device using the same
JP6890162B2 (en) Polarizing plate with retardation layer and image display device using it
JP7355584B2 (en) Polarizing plate with retardation layer and image display device using the same
JP7348799B2 (en) Manufacturing method of polarizing plate with retardation layer
WO2020080184A1 (en) Polarizing plate having phase difference layer and image display device using same
WO2020080183A1 (en) Polarizing plate equipped with phase retardation layer and image display apparatus employing same
JP2020115227A (en) Polarizing plate with retardation layer and image display using the same
JP2020064276A (en) Polarizing plate with phase difference layer and image display device using the same
WO2020080173A1 (en) Polarizing plate with phase difference layer, and image display device using this
WO2020080172A1 (en) Polarizing plate with phase difference layer, and image display device using this
WO2020080171A1 (en) Polarizing plate with phase difference layer, and image display device using this
JP7355587B2 (en) Polarizing plate with retardation layer and image display device using the same
JP7355586B2 (en) Polarizing plate with retardation layer and image display device using the same
JP7355585B2 (en) Polarizing plate with retardation layer and image display device using the same
WO2020080182A1 (en) Polarizing plate equipped with phase retardation layer and image display apparatus employing same
WO2020080188A1 (en) Polarizing plate with retardation layer and image display device using same
WO2020080185A1 (en) Polarizing plate with retardation layer and image display device using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19872454

Country of ref document: EP

Kind code of ref document: A1