JP2022069736A - Vibration type drive device - Google Patents

Vibration type drive device Download PDF

Info

Publication number
JP2022069736A
JP2022069736A JP2020178549A JP2020178549A JP2022069736A JP 2022069736 A JP2022069736 A JP 2022069736A JP 2020178549 A JP2020178549 A JP 2020178549A JP 2020178549 A JP2020178549 A JP 2020178549A JP 2022069736 A JP2022069736 A JP 2022069736A
Authority
JP
Japan
Prior art keywords
drive device
vibration
applied voltage
vibrating
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020178549A
Other languages
Japanese (ja)
Inventor
健一 片岡
Kenichi Kataoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2020178549A priority Critical patent/JP2022069736A/en
Priority to EP21882819.2A priority patent/EP4236058A1/en
Priority to PCT/JP2021/038594 priority patent/WO2022085678A1/en
Publication of JP2022069736A publication Critical patent/JP2022069736A/en
Priority to US18/304,184 priority patent/US20230268848A1/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

To solve a problem in which, conventionally, in a vibration type drive device provided with a vibration unit in which a plurality of vibration bodies are connected, it is possible to detect the degree of deterioration of each of the vibration body, and it is difficult to grasp an appropriate maintenance time.SOLUTION: A vibration type drive device includes a control unit that outputs a command signal, a drive unit that outputs a drive signal on the basis of the command signal, and a vibration body unit in which two or more vibration bodies that vibrate on the basis of the drive signal are connected, and further includes a voltage detection unit that detects an individual applied voltage in the vibration body, and the control unit determines the driving state of the vibration body on the basis of the applied voltage.SELECTED DRAWING: Figure 1

Description

超音波振動を利用した振動型駆動装置に関するものである。 It relates to a vibration type drive device using ultrasonic vibration.

電気-機械エネルギー変換素子(圧電素子、電歪素子等)によって加振される複数の振動体を使った振動型アクチュエータにおいて、個々の振動体の振動を検出して振動体の不具合を検知する方法は知られている。例えば特許文献1には複数の振動体を並列に接続して同一の印加電圧で駆動し、振動体それぞれに設けられた振動検出用電極からの信号を検出して振動体の不具合を検知する例が示されている。 A method of detecting a defect in a vibrating body by detecting the vibration of each vibrating body in a vibrating actuator using a plurality of vibrating bodies vibrated by an electric-mechanical energy conversion element (piezoelectric element, electro-distortion element, etc.). Is known. For example, in Patent Document 1, a plurality of vibrating bodies are connected in parallel and driven by the same applied voltage, and a signal from a vibration detecting electrode provided for each vibrating body is detected to detect a defect of the vibrating body. It is shown.

特許文献1のように振動体を複数並列に接続した振動型アクチュエータの場合は、振動体の振動状態をそれぞれ検出することで個々の振動体の駆動効率の低下等の劣化の度合いをある程度検知することが出来る。しかし、振動体を複数直列に接続した振動型アクチュエータの場合は、振動体が多少劣化しても各振動体間の振動振幅のバランスが変化しないように印加電圧振幅が調整されるため劣化の検知が難しい。 In the case of a vibrating actuator in which a plurality of vibrating bodies are connected in parallel as in Patent Document 1, the degree of deterioration such as a decrease in driving efficiency of each vibrating body is detected to some extent by detecting the vibrating state of each vibrating body. Can be done. However, in the case of a vibrating actuator in which a plurality of vibrating bodies are connected in series, the applied voltage amplitude is adjusted so that the balance of the vibrating amplitude between the vibrating bodies does not change even if the vibrating body deteriorates to some extent, so that deterioration is detected. Is difficult.

複数の振動体を連ねる振動型ユニットにおいては、複数の振動体の内、1個の振動体の断線が発生したとしても他の振動体へ印加電圧は供給され、ある程度駆動出来るので断線しても駆動を継続できるという性質を持つ。とくに直列接続系では、振動体と移動体間の加圧力や負荷条件が個々の振動体間で大きく変化しても負荷の大きかったり共振周波数の離れた振動体には印加電圧の振幅が大きくなるよう調整される特性をもつ。そのため、各振動体の振動振幅が揃うので移動体に効率良く駆動力を伝達することが可能である。 In a vibrating unit in which a plurality of vibrating bodies are connected, even if one of the vibrating bodies is disconnected, the applied voltage is supplied to the other vibrating bodies and can be driven to some extent, so even if the disconnection occurs. It has the property of being able to continue driving. Especially in a series connection system, even if the pressing force and load conditions between the vibrating body and the moving body change greatly between the individual vibrating bodies, the amplitude of the applied voltage becomes large for the vibrating bodies with a large load or a distant resonance frequency. Has the property of being adjusted. Therefore, since the vibration amplitudes of the vibrating bodies are the same, it is possible to efficiently transmit the driving force to the moving body.

しかし、振動体の負荷が変化したり振動子の特性変化によって振動体間の印加電圧振幅の差が大きくなり、圧電素子が劣化のペースを速める可能性があった。 However, there is a possibility that the piezoelectric element accelerates the pace of deterioration due to a large difference in the applied voltage amplitude between the vibrating bodies due to a change in the load of the vibrating body or a change in the characteristics of the vibrator.

特許第6651937号Patent No. 6651937

複数の振動体を連ねる振動型ユニットを備えた振動型駆動装置においては、個々の振動体の劣化の度合いを検知することができ、適切なメンテナンス時期の把握することは困難であった。 In a vibrating drive device equipped with a vibrating unit in which a plurality of vibrating bodies are connected, it is possible to detect the degree of deterioration of each vibrating body, and it is difficult to grasp an appropriate maintenance time.

上記課題を解決する振動型駆動装置は、指令信号を出力する制御部と、前記指令信号に基づき駆動信号を出力する駆動部と、前記駆動信号に基づき振動する2つ以上の振動体が連なる振動体ユニットと、前記振動体における個別の印加電圧を検出する電圧検出部、を備え、前記制御部は前記印加電圧に基づいて振動体の駆動状態を判定するものである。 The vibration type drive device that solves the above problems is a vibration in which a control unit that outputs a command signal, a drive unit that outputs a drive signal based on the command signal, and two or more vibrating bodies that vibrate based on the drive signal are connected. It includes a body unit and a voltage detection unit that detects an individual applied voltage in the vibrating body, and the control unit determines a driving state of the vibrating body based on the applied voltage.

本発明によれば、複数の振動体を連ねる振動型ユニットを有する振動型駆動装置において、個々の振動体の劣化の度合いを検知することが出来、適切なメンテナンス時期の把握が出来、周辺機構への影響等を少なくすることが出来る。 According to the present invention, in a vibrating drive device having a vibrating unit in which a plurality of vibrating bodies are connected, the degree of deterioration of each vibrating body can be detected, an appropriate maintenance time can be grasped, and a peripheral mechanism can be used. It is possible to reduce the influence of.

第1の実施例の振動型アクチュエータの駆動回路の第1の例を示す図The figure which shows the 1st example of the drive circuit of the vibration type actuator of 1st Embodiment 電圧振幅検出手段の回路例を示す図The figure which shows the circuit example of the voltage amplitude detection means 振動型アクチュエータの構造の第1の例を示す図The figure which shows the 1st example of the structure of the vibration type actuator. 第1の実施例のCPU15の動作例を示すフローチャートA flowchart showing an operation example of the CPU 15 of the first embodiment. 第1の実施例の駆動電圧判定動作を示すフローチャートFlow chart showing the drive voltage determination operation of the first embodiment 第1の実施例の振動型アクチュエータの駆動回路の第2の例を示す図The figure which shows the 2nd example of the drive circuit of the vibration type actuator of 1st Example. 第1の実施例の振動型アクチュエータの駆動回路の第3の例を示す図The figure which shows the 3rd example of the drive circuit of the vibration type actuator of 1st Example. 第2の実施例の振動型アクチュエータの駆動回路の第1の例を示す図The figure which shows the 1st example of the drive circuit of the vibration type actuator of 2nd Example 最大値検出手段の回路例を示す図The figure which shows the circuit example of the maximum value detecting means 第2の実施例の振動型アクチュエータの駆動回路の第2の例を示す図The figure which shows the 2nd example of the drive circuit of the vibration type actuator of 2nd Example 第2の実施例のCPU15の動作例を示すフローチャートA flowchart showing an operation example of the CPU 15 of the second embodiment. 第2の実施例の振動型アクチュエータの駆動回路の第3の例を示す図The figure which shows the 3rd example of the drive circuit of the vibration type actuator of 2nd Example

本発明を実施するための形態の一例は、指令信号を出力する制御部と、指令信号に基づき駆動信号を出力する駆動部と、駆動信号に基づき振動する2つ以上の振動体が連なる振動体ユニットを有するものである。加えて、振動体における個別の印加電圧を検出する電圧検出部、を備え、制御部は前記印加電圧に基づいて振動体の駆動状態を判定する振動型駆動装置である。以下、図面を参照しつつ詳述する。 An example of an embodiment for carrying out the present invention is a vibrating body in which a control unit that outputs a command signal, a drive unit that outputs a drive signal based on the command signal, and two or more vibrating bodies that vibrate based on the drive signal are connected. It has a unit. In addition, it includes a voltage detection unit that detects an individual applied voltage in the vibrating body, and the control unit is a vibration type driving device that determines the driving state of the vibrating body based on the applied voltage. Hereinafter, the details will be described with reference to the drawings.

図1は第1の実施例の振動型アクチュエータの駆動回路の第1の例を示す図である。1、2、3は振動体、5、6、7は1次側を直列に接続したトランスである。12は後述するCPU15からの周波数指令に応じたパルス信号を出力する矩形電圧発生手段であり、インダクタとコンデンサの直列回路で構成される波形整形手段11を介して駆動電圧をトランス5、6、7の直列回路に印加している。すなわち等価的に並列に接続された一対のインダクタと振動体とみなす事が出来るトランスと振動体の並列回路が、直列に複数対が連なる前記振動体ユニットを構成している。 FIG. 1 is a diagram showing a first example of a drive circuit of a vibration type actuator of the first embodiment. Reference numerals 1, 2, and 3 are vibrating bodies, and 5, 6, and 7 are transformers in which the primary side is connected in series. Reference numeral 12 is a rectangular voltage generating means for outputting a pulse signal according to a frequency command from the CPU 15 described later, and the drive voltage is transferred to the transformers 5, 6 and 7 via the waveform shaping means 11 composed of a series circuit of the inductor and the capacitor. It is applied to the series circuit of. That is, a pair of inductors connected in parallel and a parallel circuit of a transformer and a vibrating body, which can be regarded as a vibrating body, constitute the vibrating body unit in which a plurality of pairs are connected in series.

13はトランス5、6、7の1次側に流れる電流を計測するための抵抗で、振動体1、2、3の振動速度に略比例した電圧を出力する。尚、振動体の振動変位は正確にはこの振動速度を時間で積分した値に比例するが、振動速度の振幅は概ね振動振幅に比例するので以下の実施例では振動速度信号の振幅を制御することで振動体ユニットとしての振動型アクチュエータ10の振動振幅を制御している。 Reference numeral 13 is a resistance for measuring the current flowing on the primary side of the transformers 5, 6 and 7, and outputs a voltage substantially proportional to the vibration speed of the vibrating bodies 1, 2 and 3. The vibration displacement of the vibrating body is accurately proportional to the value obtained by integrating the vibration speed with time, but since the vibration speed amplitude is generally proportional to the vibration amplitude, the vibration speed signal amplitude is controlled in the following embodiment. This controls the vibration amplitude of the vibrating actuator 10 as the vibrating body unit.

16、17、18は振動体1、2、3に印加される電圧の振幅を検出するための電圧振幅検出手段、14はA/D変換器、15は公知のCPUである。図2に電圧振幅検出手段の回路例を示す。ダイオード29で入力電圧V1を半波整流し、抵抗23とコンデンサ24で平滑して電圧振幅VAMP(1)を求めている。A/D変換器14は抵抗13及び電圧振幅検出手段16、17、18の出力信号を制御部であるCPU15に入力している。CPU15はこれらの入力情報を基に、電流信号の基本波の振幅の検出と振動型アクチュエータ10の駆動状態の判定を行う。そして、駆動部である矩形電圧発生手段12に指令信号である周波数指令及びパルス幅指令を出力し、振動型アクチュエータ10の動作を制御している。 16 and 17 and 18 are voltage amplitude detecting means for detecting the amplitude of the voltage applied to the vibrating bodies 1, 2 and 3, 14 is an A / D converter, and 15 is a known CPU. FIG. 2 shows a circuit example of the voltage amplitude detecting means. The input voltage V1 is half-wave rectified by the diode 29 and smoothed by the resistor 23 and the capacitor 24 to obtain the voltage amplitude VAMP (1). The A / D converter 14 inputs the output signals of the resistance 13 and the voltage amplitude detecting means 16, 17 and 18 to the CPU 15 which is a control unit. Based on these input information, the CPU 15 detects the amplitude of the fundamental wave of the current signal and determines the driving state of the vibration type actuator 10. Then, a frequency command and a pulse width command, which are command signals, are output to the rectangular voltage generating means 12 which is a driving unit, and the operation of the vibration type actuator 10 is controlled.

ここで本実施例の振動型アクチュエータの例を示す。図3は3つの振動体を円柱シャフトの外周に接触させ、円柱シャフトを回転させる振動型アクチュエータの構造を示す図である。1、2、3は縦方向(矢印の方向)に振動する振動体で4は円柱シャフトである。振動体1、2、3は円柱シャフト4の円周に120°毎に略均等に配置されている。振動体1、2、3を加振して縦方向(矢印の方向)の振動を励起することによって円柱シャフト4は時計周りに回転する。また振動体1、2、3は弾性体に圧電素子を接合したもので、圧電素子に交流電圧を印加することで弾性体に矢印方向の振動が励起される。 Here, an example of the vibration type actuator of this embodiment is shown. FIG. 3 is a diagram showing a structure of a vibrating actuator that rotates a cylindrical shaft by bringing three vibrating bodies into contact with the outer circumference of the cylindrical shaft. 1, 2, and 3 are vibrating bodies that vibrate in the vertical direction (direction of the arrow), and 4 is a cylindrical shaft. The vibrating bodies 1, 2, and 3 are arranged substantially evenly at intervals of 120 ° on the circumference of the cylindrical shaft 4. The cylindrical shaft 4 rotates clockwise by exciting the vibrations in the vertical direction (direction of the arrow) by vibrating the vibrating bodies 1, 2, and 3. Further, the vibrating bodies 1, 2 and 3 have a piezoelectric element bonded to the elastic body, and the vibration in the arrow direction is excited to the elastic body by applying an AC voltage to the piezoelectric element.

円柱シャフトは2つ以上の振動体が連なる振動体ユニットに接する共通の接触体に相当し、振動体1,2,3の駆動により発生した合力の方向に振動体に対して相対移動する。 The cylindrical shaft corresponds to a common contact body in contact with a vibrating body unit in which two or more vibrating bodies are connected, and moves relative to the vibrating body in the direction of the resultant force generated by driving the vibrating bodies 1, 2, and 3.

次にCPU15の動作について図4、図5のフローチャートを用いて説明する。まず図4の動作について説明する。CPU15は最初に前回の動作時の駆動状態判定値としての判定レベルHLを確認する。前回の判定レベルHLが2より小さい場合は、あらかじめ決められている電流振幅指令Amp_C、パルス幅指令PW_C、駆動周波数指令Frqを初期値に設定する。判定レベルHLが2以上なら、パルス幅指令PW_Cを0に設定して終了する。 Next, the operation of the CPU 15 will be described with reference to the flowcharts of FIGS. 4 and 5. First, the operation of FIG. 4 will be described. The CPU 15 first confirms the determination level HL as the drive state determination value at the time of the previous operation. When the previous determination level HL is smaller than 2, the predetermined current amplitude command Amp_C, pulse width command PW_C, and drive frequency command Frq are set as initial values. If the determination level HL is 2 or more, the pulse width command PW_C is set to 0 and the process ends.

パルス幅指令PW_C及び周波数指令Frqは矩形電圧発生手段12に伝えられ、矩形電圧発生手段12から駆動信号であるパルス信号が出力され、振動体ユニットである振動型アクチュエータ10に駆動電圧が印加される。このように、2つ以上の振動体が連なって振動体ユニットとしての振動型アクチュエータ10が構成されており、制御部としてのCPU15が発する共通の指令信号により、振動体がそれぞれ駆動するように構成されている。 The pulse width command PW_C and the frequency command Frq are transmitted to the rectangular voltage generating means 12, a pulse signal which is a driving signal is output from the rectangular voltage generating means 12, and a driving voltage is applied to the vibrating actuator 10 which is a vibrating body unit. .. In this way, the vibrating actuator 10 as a vibrating body unit is configured by connecting two or more vibrating bodies in a row, and the vibrating bodies are configured to be driven by a common command signal issued by the CPU 15 as a control unit. Has been done.

次に電流振幅検出を行い、フィルタ処理によって電流の基本波成分の振幅Amp(1)を検出する。そして、基本波の振幅Amp(1)が電流振幅指令Amp_Cを超えるまで駆動周波数指令Frqを低周波方向に一定のレートdFで掃引していく。基本波の振幅Amp(1)が電流振幅指令Amp_Cを超えたら、駆動電圧判定ルーチンで駆動電圧判定処理を行い、駆動状態判定値としての駆動電圧判定レベルHLを求める。駆動電圧判定処理の動作については後述する。駆動電圧判定レベルHLが2より大きいなら、パルス幅指令PW_Cを0にして終了する。駆動電圧判定レベルHLが2以下なら動作を継続し、不図示の指令手段からの停止指令が入力されるまで駆動周波数Frqを制御しつつ駆動電圧判定を繰り返す。不図示の指令手段から停止指令が入力されると、パルス幅指令PW_Cを0として動作を終了する。次に図5を用いて駆動電圧判定動作について説明する。本実施例では振動体1、2、3の印加電圧振幅を順に検出し、それぞれの電圧振幅VAMP(N)(N=1~3の整数)と所定の値VAMP0との差である電圧振幅評価値VD(N)を求め、VD(N)の値を分析して駆動電圧判定を行っている。電圧振幅評価値VD(N)の分析方法は、例えばVD(N)のN=1~3の合計によって振幅レベルVDLを求め、あらかじめ決められた変換テーブルHL_Tを基にVDLに対応する判定レベルHLを決める方法がある。前記合計の大きさが大きいほど判定レベルHLが大きくなる。他の例としては、電圧振幅評価値VD(N)のN=1~3を個々に所定の値と比較し、何個の電圧振幅評価値VD(N)が所定の値より大きいかを求め、これを判定レベルHLとする方法がある。又上記例では印加電圧振幅VAMP(N)を所定の値VAMP0と比較したが、振動体毎に決められたVAMP0(N)と比較してもよい。例えば初期の電圧振幅に対して一定の倍率をかけた値をVAMP(N)として設定すれば、印加電圧の経時変化によって劣化を判定することが出来る。また印加電圧振幅VAMP(N)のバラツキ度合いによっても劣化(悪化)を判定することが出来る。例えばVAMP(N)の最大値と最小値の差、標準偏差、分散等を求めこれらが一定の値を超える量に応じて駆動状態判定値としての判定レベルHLを決める事が出来る。 Next, the current amplitude is detected, and the amplitude Amp (1) of the fundamental wave component of the current is detected by filtering. Then, the drive frequency command Frq is swept in the low frequency direction at a constant rate dF until the amplitude Amp (1) of the fundamental wave exceeds the current amplitude command Amp_C. When the amplitude Amp (1) of the fundamental wave exceeds the current amplitude command Amp_C, the drive voltage determination process is performed by the drive voltage determination routine to obtain the drive voltage determination level HL as the drive state determination value. The operation of the drive voltage determination process will be described later. If the drive voltage determination level HL is larger than 2, the pulse width command PW_C is set to 0 and the process ends. If the drive voltage determination level HL is 2 or less, the operation is continued, and the drive voltage determination is repeated while controlling the drive frequency Frq until a stop command from a command means (not shown) is input. When a stop command is input from a command means (not shown), the operation is terminated with the pulse width command PW_C set to 0. Next, the drive voltage determination operation will be described with reference to FIG. In this embodiment, the applied voltage amplitudes of the vibrating bodies 1, 2 and 3 are detected in order, and the voltage amplitude evaluation which is the difference between each voltage amplitude VAMP (N) (an integer of N = 1 to 3) and a predetermined value VAMP0. The value VD (N) is obtained, and the value of VD (N) is analyzed to determine the drive voltage. In the analysis method of the voltage amplitude evaluation value VD (N), for example, the amplitude level VDL is obtained by the sum of N = 1 to 3 of VD (N), and the determination level HL corresponding to the VLD is obtained based on the predetermined conversion table HL_T. There is a way to decide. The larger the total size, the larger the determination level HL. As another example, N = 1 to 3 of the voltage amplitude evaluation value VD (N) are individually compared with a predetermined value, and how many voltage amplitude evaluation values VD (N) are larger than the predetermined value are obtained. , There is a method of setting this as the determination level HL. Further, in the above example, the applied voltage amplitude VAMP (N) is compared with a predetermined value VAMP0, but it may be compared with VAMP0 (N) determined for each vibrating body. For example, if a value obtained by multiplying the initial voltage amplitude by a certain magnification is set as VAMP (N), deterioration can be determined by the change over time of the applied voltage. Deterioration (deterioration) can also be determined by the degree of variation in the applied voltage amplitude VAMP (N). For example, the difference between the maximum value and the minimum value of VAMP (N), the standard deviation, the variance, and the like can be obtained, and the determination level HL as the drive state determination value can be determined according to the amount of these exceeding a certain value.

判定レベルHLが決定したら判定レベルに応じて駆動電圧判定結果表示用LEDを異なる色で点灯する。判定レベルHL=0なら緑、HL=1なら橙、HL=2以上なら赤に点灯する。 When the determination level HL is determined, the drive voltage determination result display LED is lit in a different color according to the determination level. When the judgment level HL = 0, it lights up in green, when HL = 1, it lights up in orange, and when HL = 2 or more, it lights up in red.

図6は本実施例の振動型アクチュエータの駆動回路の第2の例を示す図である。図1の回路では、電圧振幅検出手段16、17、18は振動体1、2、3の印加電圧振幅を検出したが、図6の回路ではトランス5、6、7の1次側の電圧振幅を検出している。電圧振幅検出手段16、17、18の出力に対してトランス5、6、7の巻線比をかけることで振動体1、2、3への印加電圧の振幅を推定している。CPU15の動作は印加電圧の振幅にこの推定値を用いる以外は上記説明の動作と同じなので説明を省略する。 FIG. 6 is a diagram showing a second example of the drive circuit of the vibration type actuator of this embodiment. In the circuit of FIG. 1, the voltage amplitude detecting means 16, 17, and 18 detected the applied voltage amplitude of the vibrating bodies 1, 2, and 3, but in the circuit of FIG. 6, the voltage amplitude on the primary side of the transformers 5, 6, and 7. Is being detected. The amplitude of the applied voltage to the vibrating bodies 1, 2, and 3 is estimated by multiplying the outputs of the voltage amplitude detecting means 16, 17, and 18 by the winding ratios of the transformers 5, 6, and 7. Since the operation of the CPU 15 is the same as the operation described above except that this estimated value is used for the amplitude of the applied voltage, the description thereof will be omitted.

図7は本実施例の振動型アクチュエータの駆動回路の第3の例を示す図である。図1の回路ではトランスの2次側に振動体1、2、3が接続されていたが、図7の回路では振動体1、2、3が直列に接続され、振動体1、2、3にはそれぞれインダクタ20、21、22が並列接続され振動型アクチュエータ28を構成している。そして、矩形電圧発生手段12の出力信号が波形整形手段11を介して振動体1、2、3の直列回路に印加されている。振動体1、2、3にはそれぞれ電圧振幅検出手段16、17、18が接続され、上記第1及び第2の回路と同様にA/D変換器14を介して各振動体の印加電圧の振幅をCPU15に入力している。CPU15の動作や他の回路の構成及び動作は上記説明と同じなので説明を省略する。 FIG. 7 is a diagram showing a third example of the drive circuit of the vibration type actuator of this embodiment. In the circuit of FIG. 1, the vibrating bodies 1, 2, and 3 were connected to the secondary side of the transformer, but in the circuit of FIG. 7, the vibrating bodies 1, 2, and 3 are connected in series, and the vibrating bodies 1, 2, and 3 are connected. Inductors 20, 21, and 22 are connected in parallel to each of the vibration type actuators 28. Then, the output signal of the rectangular voltage generating means 12 is applied to the series circuit of the vibrating bodies 1, 2, and 3 via the waveform shaping means 11. Voltage amplitude detecting means 16, 17, and 18 are connected to the vibrating bodies 1, 2, and 3, respectively, and the voltage applied to each vibrating body is measured via the A / D converter 14 in the same manner as in the first and second circuits. The amplitude is input to the CPU 15. Since the operation of the CPU 15 and the configuration and operation of other circuits are the same as those described above, the description thereof will be omitted.

また上記例では振動型アクチュエータの駆動電圧は1相であったが複数相の駆動電圧で駆動する振動型アクチュエータであっても同様である。相毎に電圧振幅の判定レベルHLを求める方法や、全ての相の電圧振幅を一括して判定レベルHLを求める方法がある。 Further, in the above example, the drive voltage of the vibration type actuator is one phase, but the same applies to the vibration type actuator driven by the drive voltage of a plurality of phases. There is a method of obtaining the determination level HL of the voltage amplitude for each phase, and a method of obtaining the determination level HL of the voltage amplitudes of all the phases at once.

又本実施例では振動体を3個直列に接続したが、2個又は3個以上でも個々の振動体への印加電圧の振幅を検出する電圧振幅検出手段を設けることで上記説明と同様の事が可能である。 Further, in this embodiment, three vibrating bodies are connected in series, but the same as the above description can be obtained by providing a voltage amplitude detecting means for detecting the amplitude of the applied voltage to each vibrating body even if two or three or more vibrating bodies are connected in series. Is possible.

図8は第2の実施例の振動型アクチュエータの駆動回路の第1の例を示す図である。第1の実施例では電圧振幅検出手段16、17、18の出力をそれぞれA/D変換器14でCPU15に入力したが、本実施例では電圧振幅検出手段16、17、18の出力の最大値を検出してからA/D変換器14で入力している。19は最大値検出手段で、電圧振幅検出手段16、17、18の出力電圧の最大値を出力している。図9は最大値検出手段の回路例を示す図である。29、30、31はダイオードで、全てのカソードを接続して抵抗23でグランドに接続しており、抵抗23の端子電圧には電圧振幅検出手段16、17、18の出力電圧の最大値に応じた値が出力される。 FIG. 8 is a diagram showing a first example of the drive circuit of the vibration type actuator of the second embodiment. In the first embodiment, the outputs of the voltage amplitude detecting means 16, 17, and 18 are input to the CPU 15 by the A / D converter 14, respectively, but in this embodiment, the maximum value of the outputs of the voltage amplitude detecting means 16, 17, and 18 is obtained. Is detected and then input by the A / D converter 14. Reference numeral 19 is a maximum value detecting means, which outputs the maximum value of the output voltage of the voltage amplitude detecting means 16, 17, and 18. FIG. 9 is a diagram showing a circuit example of the maximum value detecting means. 29, 30 and 31 are diodes, all cathodes are connected and connected to the ground with a resistor 23, and the terminal voltage of the resistor 23 depends on the maximum value of the output voltage of the voltage amplitude detecting means 16, 17 and 18. Value is output.

図10は第2の実施例の振動型アクチュエータの駆動回路の第2の例を示す図である。図8の例では電圧振幅検出手段の後にダイオード29、30、31を接続したが、図10の例では振動体1、2、3に直接ダイオード29、30、31を接続している。又振動体1、2、3は一方の端子をグランドに接続しており、ダイオード29、30、31の全てのカソードを接続し、抵抗23とコンデンサ24の並列回路に接続している。この様に接続することで抵抗23の両端には振動体1、2、3の印加電圧の最大値VMAXが出力される。 FIG. 10 is a diagram showing a second example of the drive circuit of the vibration type actuator of the second embodiment. In the example of FIG. 8, the diodes 29, 30, and 31 are connected after the voltage amplitude detecting means, but in the example of FIG. 10, the diodes 29, 30, and 31 are directly connected to the vibrating bodies 1, 2, and 3. Further, the vibrating bodies 1, 2 and 3 have one terminal connected to the ground, all the cathodes of the diodes 29, 30 and 31 are connected, and are connected to the parallel circuit of the resistor 23 and the capacitor 24. By connecting in this way, the maximum value VMAX of the applied voltage of the vibrating bodies 1, 2 and 3 is output to both ends of the resistance 23.

図11は本実施例のCPU15の動作を示すフローチャートである。基本的には実施例1と同じだが、駆動電圧の判定動作が異なっている。実施例1ではCPU15で振動体1、2、3の電圧振幅をそれぞれ検出してから最大値を求めていたが、本実施例では振動体1、2、3の印加電圧の最大値VMAXを直接A/D変換器14で入力している。判定レベルHLは変換テーブルHL_Tを用い、印加電圧の最大値VMAXに対して判定レベルHLを求めている。判定レベルHLの求め方の他の例としては、VMAXから所定の値を引いてから所定値をかける方法や、あらかじめVMAXの範囲毎に判定レベルを決めておく方法等がある。又図9及び図10の回路ではダイオード29、30、31のカソードを接続したが、ダイオードの向きを逆にしてアノードを接続しても良い。その場合には抵抗23には振動体1、2、3の印加電圧の最小値が出力される。これは概ね上記印加電圧の最大値VMAXの符号を反転した値であるので、A/D変換器14で入力した値の符号を反転すれば上記説明と同じ判定が可能である。 FIG. 11 is a flowchart showing the operation of the CPU 15 of this embodiment. It is basically the same as in the first embodiment, but the drive voltage determination operation is different. In the first embodiment, the maximum value is obtained after the CPU 15 detects the voltage amplitudes of the vibrating bodies 1, 2 and 3, respectively, but in this embodiment, the maximum value VMAX of the applied voltage of the vibrating bodies 1, 2 and 3 is directly obtained. It is input by the A / D converter 14. The determination level HL uses the conversion table HL_T to obtain the determination level HL with respect to the maximum value VMAX of the applied voltage. As another example of how to obtain the determination level HL, there are a method of subtracting a predetermined value from VMAX and then multiplying the predetermined value, a method of predetermining the determination level for each VMAX range, and the like. Further, although the cathodes of the diodes 29, 30 and 31 are connected in the circuit of FIGS. 9 and 10, the anode may be connected by reversing the direction of the diode. In that case, the minimum value of the applied voltage of the vibrating bodies 1, 2, and 3 is output to the resistance 23. Since this is a value obtained by inverting the sign of the maximum value VMAX of the applied voltage, the same determination as described above can be made by inverting the sign of the value input by the A / D converter 14.

図12は第2の実施例の駆動回路の第3の例を示す図である。上記例との違いはトランス5、6、7の1次側に電圧制限素子が接続されている事である。電圧制限素子の例としてはツェナーダイオードやバリスタ等がある。ツェナーダイオードを用いる場合には印加電圧が交流なので、向きを逆にしたツェナーダイオードを直列に接続する。25、26、27はバリスタである。トランス5、6、7の1次側に接続しているが、バリスタ等の電圧制限素子はトランス5、6、7の2次側に並列に接続しても良い。 FIG. 12 is a diagram showing a third example of the drive circuit of the second embodiment. The difference from the above example is that the voltage limiting element is connected to the primary side of the transformers 5, 6 and 7. Examples of voltage limiting elements include Zener diodes and varistor. When using a Zener diode, the applied voltage is alternating current, so connect the Zener diodes in the opposite directions in series. 25, 26 and 27 are varistor. Although it is connected to the primary side of the transformers 5, 6 and 7, a voltage limiting element such as a varistor may be connected in parallel to the secondary side of the transformers 5, 6 and 7.

上記の振動型駆動装置はさまざまな機器に適用可能である。 The above vibration type drive device can be applied to various devices.

1、2、3 振動体
4 円柱シャフト
5、6、7 トランス
10、28 振動型アクチュエータ
11 波形整形手段
12 矩形電圧発生手段
13、23 抵抗
14 A/D変換器
15 CPU
16、17、18 電圧振幅検出手段
19 最大値検出手段
20、21、22 インダクタ
24 コンデンサ
25、26,27 バリスタ
29、30、31 ダイオード

1, 2, 3 Vibrators 4 Cylindrical shafts 5, 6, 7 Transformers 10, 28 Vibrating actuators 11 Waveform shaping means 12 Rectangular voltage generating means 13, 23 Resistance 14 A / D converter 15 CPU
16, 17, 18 Voltage amplitude detection means 19 Maximum value detection means 20, 21, 22 Inductor 24 Capacitor 25, 26, 27 Varistor 29, 30, 31 Diode

Claims (16)

指令信号を出力する制御部と、
前記指令信号に基づき駆動信号を出力する駆動部と、
前記駆動信号に基づき振動する2つ以上の振動体が連なる振動体ユニットと、
前記振動体における個別の印加電圧を検出する電圧検出部、を備え、
前記制御部は前記印加電圧に基づいて振動体の駆動状態を判定する振動型駆動装置。
A control unit that outputs a command signal and
A drive unit that outputs a drive signal based on the command signal,
A vibrating body unit in which two or more vibrating bodies vibrating based on the drive signal are connected,
A voltage detection unit for detecting an individual applied voltage in the vibrating body is provided.
The control unit is a vibration type drive device that determines a drive state of a vibrating body based on the applied voltage.
1次側が直列に接続された複数のトランスの2次側にそれぞれ並列に振動体を接続した前記振動体ユニットを備え、前記複数のトランスの1次側は、前記駆動信号が印加されるように構成されている請求項1記載の振動型駆動装置。 The vibrating body unit in which a vibrating body is connected in parallel to the secondary side of a plurality of transformers in which the primary side is connected in series is provided, and the driving signal is applied to the primary side of the plurality of transformers. The vibration type drive device according to claim 1. 並列に接続された一対のインダクタと振動体が、直列に複数対が連なる前記振動体ユニットを備える請求項1記載の振動型駆動装置。 The vibration type drive device according to claim 1, further comprising the vibrating body unit in which a pair of inductors and a vibrating body connected in parallel are connected in series in a plurality of pairs. 個別の前記印加電圧の最大値又は最小値の少なくとも一方を検出する請求項1乃至3のいずれか1項に記載の振動型駆動装置。 The vibration type drive device according to any one of claims 1 to 3, wherein at least one of the maximum value and the minimum value of the applied voltage is detected individually. 前記印加電圧の振幅の最大値又は最小値のいずれか、又は前記印加電圧の経時変化に基づいて前記振動状態を判定する請求項1乃至3のいずれか1項に記載の振動型駆動装置。 The vibration type drive device according to any one of claims 1 to 3, wherein the vibration state is determined based on either the maximum value or the minimum value of the amplitude of the applied voltage or the change with time of the applied voltage. 前記印加電圧の振幅の最大値と最小値の差、標準偏差、分散に基づいて前記振動状態を判定する請求項1乃至3のいずれか1項に記載の振動型駆動装置。 The vibration type drive device according to any one of claims 1 to 3, wherein the vibration state is determined based on the difference between the maximum value and the minimum value of the amplitude of the applied voltage, the standard deviation, and the dispersion. 前記印加電圧の振幅はダイオードで検出する請求項5または6に記載の振動型駆動装置。 The vibration type drive device according to claim 5 or 6, wherein the amplitude of the applied voltage is detected by a diode. 前記印加電圧を、前記トランスの1次側の電圧振幅を検出してトランスの巻線比に応じて前記印加電圧の振幅を推定することで検出する請求項3に記載の振動型駆動装置。 The vibration type drive device according to claim 3, wherein the applied voltage is detected by detecting the voltage amplitude on the primary side of the transformer and estimating the amplitude of the applied voltage according to the winding ratio of the transformer. 個別の前記印加電圧の最大値又は最小値が所定値を超えた値、又は個別の前記印加電圧に応じた値を駆動状態判定値とし、これが大きいほど駆動状態が悪化したと判定する請求項1乃至8のいずれか1項に記載の振動型駆動装置。 Claim 1 in which a value in which the maximum value or the minimum value of the individual applied voltage exceeds a predetermined value or a value corresponding to the individual applied voltage is set as a drive state determination value, and it is determined that the larger the value is, the worse the drive state is. The vibration type drive device according to any one of 8 to 8. 所定の値を超えた個別の前記印加電圧の値又は個別の前記印加電圧に応じた値を駆動状態判定値とし、この値が大きいほど駆動状態が悪化したと判定する請求項1乃至8のいずれか1項に記載の振動型駆動装置。 Any of claims 1 to 8, wherein the individual applied voltage value exceeding a predetermined value or the value corresponding to the individual applied voltage is set as the drive state determination value, and it is determined that the larger this value is, the worse the drive state is. The vibration type drive device according to item 1. 個別の前記印加電圧の前記駆動状態判定値の合計に基づいて振動型アクチュエータの動作を制御する請求項9または10に記載の振動型駆動装置。 The vibration-type drive device according to claim 9 or 10, wherein the operation of the vibration-type actuator is controlled based on the sum of the drive state determination values of the individual applied voltages. 前記駆動状態判定値が所定値を超えた数に基づいて振動型アクチュエータの動作を制御する請求項9または10に記載の振動型駆動装置。 The vibration-type drive device according to claim 9 or 10, wherein the operation of the vibration-type actuator is controlled based on the number of the drive state determination values exceeding a predetermined value. 複数の前記振動体それぞれに前記印加電圧の振幅を制限する制限手段を並列に接続されている請求項2または3に記載の振動型駆動装置。 The vibrating drive device according to claim 2 or 3, wherein limiting means for limiting the amplitude of the applied voltage are connected in parallel to each of the plurality of vibrating bodies. 前記トランスの個々の1次側に電圧振幅を制限する制限手段が並列に接続されている請求項2に記載の振動型駆動装置。 The vibration type drive device according to claim 2, wherein limiting means for limiting the voltage amplitude are connected in parallel to each primary side of the transformer. 前記振動体ユニットに接する共通の接触体を有する請求項1乃至14のいずれか1項記載の振動型駆動装置 The vibration type drive device according to any one of claims 1 to 14, which has a common contact body in contact with the vibrating body unit. 前記接触体は円柱シャフトであり、前記円柱シャフトの円周に略均等に配置された3つの振動体を備えている請求項11に記載の振動型駆動装置。

The vibrating drive device according to claim 11, wherein the contact body is a cylindrical shaft and includes three vibrating bodies arranged substantially evenly on the circumference of the cylindrical shaft.

JP2020178549A 2020-10-22 2020-10-26 Vibration type drive device Pending JP2022069736A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020178549A JP2022069736A (en) 2020-10-26 2020-10-26 Vibration type drive device
EP21882819.2A EP4236058A1 (en) 2020-10-22 2021-10-19 Vibration-type drive apparatus and method for driving vibration-type drive apparatus
PCT/JP2021/038594 WO2022085678A1 (en) 2020-10-22 2021-10-19 Vibration-type drive apparatus and method for driving vibration-type drive apparatus
US18/304,184 US20230268848A1 (en) 2020-10-22 2023-04-20 Vibration-type drive apparatus, and drive method for vibration-type drive apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020178549A JP2022069736A (en) 2020-10-26 2020-10-26 Vibration type drive device

Publications (1)

Publication Number Publication Date
JP2022069736A true JP2022069736A (en) 2022-05-12

Family

ID=81534428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020178549A Pending JP2022069736A (en) 2020-10-22 2020-10-26 Vibration type drive device

Country Status (1)

Country Link
JP (1) JP2022069736A (en)

Similar Documents

Publication Publication Date Title
JP5475793B2 (en) System and method for driving an ultrasonic transducer
Raza et al. Speed Control of DC Motor by using PWM
JP2022069736A (en) Vibration type drive device
CN102735944B (en) Direct-current motor armature inductance detection circuit
JP4328600B2 (en) Current detection circuit and current detection method
JP6021055B2 (en) Ultrasonic sensor
JP2009284635A (en) Drive system
KR101936381B1 (en) Method for testing back-EMF detection function of a vibration motor driving IC and device for the same
KR101905425B1 (en) Voltage and current phase difference sensing apparatus and voltage and current phase difference sensing method
JP5073580B2 (en) Signal amplification device
WO2015125539A1 (en) Power transmission system
WO2022085678A1 (en) Vibration-type drive apparatus and method for driving vibration-type drive apparatus
CN110545926B (en) Ultrasonic machine tool comprising two ultrasonic probes and method for operating the same
JP7297489B2 (en) Vibration type actuator and driving device for vibration type actuator
JP3855625B2 (en) Piezoelectric driver
JP2022068434A (en) Vibration type drive device and drive method thereof
JP4795761B2 (en) DC power supply
CN110646018A (en) High-frequency current source Wheatstone bridge detection circuit realized by low-speed operational amplifier
TWI481826B (en) Optimized phase modulation level detection tuning fork
JP2018067980A (en) Drive circuit, vibration type actuator having the same and device
KR100735270B1 (en) Piezoelectric transformer driving apparatus
CN108809198A (en) For the method for pressure inverter in control and it include the middle system for pressing inverter
SU191234A1 (en) CONVERTER VOLTAGE CONVERTER TO AC VARIABLE
JP2020182329A (en) Vibration actuator and drive device of the same
CN115917951A (en) Measuring device for a transducer and transducer arrangement

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20201105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230615

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20231213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240402