JP2022068434A - Vibration type drive device and drive method thereof - Google Patents

Vibration type drive device and drive method thereof Download PDF

Info

Publication number
JP2022068434A
JP2022068434A JP2020177103A JP2020177103A JP2022068434A JP 2022068434 A JP2022068434 A JP 2022068434A JP 2020177103 A JP2020177103 A JP 2020177103A JP 2020177103 A JP2020177103 A JP 2020177103A JP 2022068434 A JP2022068434 A JP 2022068434A
Authority
JP
Japan
Prior art keywords
vibrating
waveform
vibrating body
drive device
disconnection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020177103A
Other languages
Japanese (ja)
Inventor
健一 片岡
Kenichi Kataoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2020177103A priority Critical patent/JP2022068434A/en
Priority to EP21882819.2A priority patent/EP4236058A1/en
Priority to PCT/JP2021/038594 priority patent/WO2022085678A1/en
Publication of JP2022068434A publication Critical patent/JP2022068434A/en
Priority to US18/304,184 priority patent/US20230268848A1/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

To detect the disconnection or the number of disconnections of a vibration body of a vibration type actuator in which a plurality of vibration bodies are connected.SOLUTION: A vibration type drive device includes a control unit that outputs a command signal, a drive unit that outputs a drive signal on the basis of the command signal, a vibration body unit in which two or more vibration bodies that vibrate on the basis of the drive signal are connected, drive signal analysis means that analyzes the drive signal and outputs the analysis result, and determination means that determine the presence or absence of the breakage of a wiring connected to the vibration body on the basis of the analysis result.SELECTED DRAWING: Figure 1

Description

超音波振動を利用したアクチュエータの駆動装置に関するものである。 It relates to a drive device for an actuator using ultrasonic vibration.

電気-機械エネルギー変換素子(圧電素子、電歪素子等)によって加振される振動体を使った振動型アクチュエータにおいて、印加電圧を計測して振動体の断線等の不具合を検知する方法は知られている。例えば特許文献1にはインダクタを介して振動体に印加する交流電圧の高周波成分の発生の検出によって断線を検知する例が示されている。又特許文献2には昇圧用のトランスの特性によって変化する印加電圧の周波数特性のピーク特性のQ値やピーク周波数の変化の検出によって断線を検知する例が示されている。 In a vibration type actuator using a vibrating body that is vibrated by an electric-mechanical energy conversion element (piezoelectric element, electric strain element, etc.), a method of measuring the applied voltage to detect a defect such as disconnection of the vibrating body is known. ing. For example, Patent Document 1 shows an example in which disconnection is detected by detecting the generation of a high frequency component of an AC voltage applied to a vibrating body via an inductor. Further, Patent Document 2 shows an example in which disconnection is detected by detecting the Q value of the peak characteristic of the frequency characteristic of the applied voltage that changes depending on the characteristic of the transformer for boosting and the change of the peak frequency.

特許文献1のように単体の振動体の場合、断線による印加電圧の変化が大きく、高周波成分の発生によって断線の発生を検知できる。しかし、インダクタ素子と振動体とが並列接続された振動体ユニットを直列に複数接続したものや、複数のトランスの2次側にそれぞれ並列に振動体を接続し各トランスの1次側を直列に接続した直列接続型の振動体装置においては以下の問題がある。 In the case of a single vibrating body as in Patent Document 1, the change in the applied voltage due to the disconnection is large, and the occurrence of the disconnection can be detected by the generation of the high frequency component. However, a plurality of vibrating body units in which an inductor element and a vibrating body are connected in parallel are connected in series, or a vibrating body is connected in parallel to the secondary side of a plurality of transformers and the primary side of each transformer is connected in series. The connected series-connected vibrating body device has the following problems.

すなわち、1つの振動体が断線しても直列接続の両端にかかる印加電圧の波形変化は少ない上、駆動周波数より高い周波数領域に現れる高周波成分は周波数によって増加したり減少したりする。そのため、単純に高周波成分が発生したからと言って断線の有無を判定出来なかった。 That is, even if one vibrating body is disconnected, the waveform change of the applied voltage applied to both ends of the series connection is small, and the high frequency component appearing in the frequency region higher than the drive frequency increases or decreases depending on the frequency. Therefore, it was not possible to determine the presence or absence of disconnection simply because a high frequency component was generated.

また特許文献2のようにトランスの2次側の周波数特性を利用して印加電圧の周波数特性のピーク特性に着目し、ピーク周波数やQ値を検出する方法を用いれば、個々の振動体の不具合を検知する事が出来る。しかし、上述したような直列接続型の振動体装置においては、すべての振動体に印加される交流電圧を検出する必要があり、不具合箇所を検知する事が出来る反面回路規模が大きくなる欠点があった。また、高周波域での周波数掃引や疑似乱数を用いたピーク周波数及びQ値の検出は、通常の駆動電圧を印加している最中に別途高周波電圧を重畳して独立に行うと速度変動や異音の原因になりやすいという問題があった。複数の振動体を連ねる振動型ユニットにおいては、複数の振動体の内、1個の振動体の断線が発生したとしても他の振動体へ印加電圧は供給され、ある程度駆動出来るので断線しても駆動を継続できるという性質を持つ。しかし、断線した状態では他の振動体の負担が重くなる為、性能劣化が加速的に進む可能性があるという問題があった。 Further, if a method of detecting the peak frequency and the Q value by paying attention to the peak characteristic of the frequency characteristic of the applied voltage by utilizing the frequency characteristic of the secondary side of the transformer as in Patent Document 2, a defect of each vibrating body is used. Can be detected. However, in the series-connected vibrating body device as described above, it is necessary to detect the AC voltage applied to all the vibrating bodies, and while it is possible to detect the defective part, there is a drawback that the circuit scale becomes large. rice field. In addition, frequency sweeping in the high frequency range and detection of peak frequency and Q value using pseudo-random numbers are performed independently by superimposing a high frequency voltage separately while applying a normal drive voltage, resulting in speed fluctuations and differences. There was a problem that it was easy to cause noise. In a vibrating unit in which a plurality of vibrating bodies are connected, even if one of the vibrating bodies is disconnected, the applied voltage is supplied to the other vibrating bodies and can be driven to some extent, so even if the disconnection occurs. It has the property of being able to continue driving. However, there is a problem that the performance deterioration may accelerate because the load on other vibrating bodies becomes heavy in the disconnected state.

特許第5716624Patent No. 5716624 特開2018-78769JP-A-2018-78769

本発明は上記課題に鑑み、複数の振動体を連ねる振動体ユニットにおいて、駆動中に振動体の断線を検出することを目的とする。 In view of the above problems, it is an object of the present invention to detect disconnection of a vibrating body during driving in a vibrating body unit in which a plurality of vibrating bodies are connected.

上記課題を解決するための振動型駆動装置は、指令信号を出力する制御部と、前記指令信号に基づき駆動信号を出力する駆動部と、前記駆動信号に基づき振動する2つ以上の振動体が連なる振動体ユニットと、前記駆動信号を分析して分析結果を出力する駆動信号分析手段と、前記分析結果に基づき前記振動体に連結する配線の断線の有無を判定する判定手段を備える。 The vibration type drive device for solving the above problems includes a control unit that outputs a command signal, a drive unit that outputs a drive signal based on the command signal, and two or more vibrating bodies that vibrate based on the drive signal. It includes a series of vibrating body units, a driving signal analysis means that analyzes the driving signal and outputs an analysis result, and a determination means for determining whether or not the wiring connected to the vibrating body is broken based on the analysis result.

本発明によれば、複数の振動体を連ねる振動型ユニットを有する振動型駆動装置において通常の駆動中に振動体の断線を検知可能となる。また通常駆動中に断線が発生しても、いち早く断線の状況に応じた駆動制御の実施が可能なので周辺機構や使用ユーザへの断線の影響を少なくすることが出来る。 According to the present invention, it is possible to detect a disconnection of a vibrating body during normal driving in a vibrating type driving device having a vibrating type unit in which a plurality of vibrating bodies are connected. Further, even if a disconnection occurs during normal driving, the drive control can be quickly performed according to the disconnection situation, so that the influence of the disconnection on the peripheral mechanism and the user can be reduced.

第1の実施例の振動型アクチュエータの駆動回路の第1の例を示す図The figure which shows the 1st example of the drive circuit of the vibration type actuator of 1st Embodiment 振動型アクチュエータの構造の第1の例を示す図The figure which shows the 1st example of the structure of the vibration type actuator. 振動型アクチュエータ内の電気的接続を示す図Diagram showing electrical connections within a vibrating actuator 第1の実施例の断線時の駆動電圧振幅の周波数特性変化の第1の例を示す図The figure which shows the 1st example of the frequency characteristic change of the drive voltage amplitude at the time of disconnection of the 1st Example. 第1の実施例の断線時の駆動電圧波形の変化を示す図The figure which shows the change of the drive voltage waveform at the time of disconnection of 1st Example 第1の実施例のデューティ50%のパルス信号で駆動した際の分析結果の第1の例を示す図The figure which shows the 1st example of the analysis result when it was driven by the pulse signal of the duty 50% of the 1st Example. 第1の実施例のデューティ38%のパルス信号で駆動した際の分析結果の第1の例を示す図The figure which shows the 1st example of the analysis result at the time of driving with the pulse signal of the duty 38% of 1st Example. 第1の実施例のデューティ50%のパルス信号で駆動した際の断線数と分析結果の関係の第1の例を示す図The figure which shows the 1st example of the relationship between the number of disconnections and the analysis result at the time of driving with the pulse signal of the duty 50% of 1st Example. 第1の実施例のデューティ38%のパルス信号で駆動した際の断線数と分析結果の関係の第1の例を示す図The figure which shows the 1st example of the relationship between the number of disconnections and the analysis result at the time of driving with the pulse signal of the duty 38% of 1st Example. 第1の実施例の振動型アクチュエータの駆動回路の第2の例を示す図The figure which shows the 2nd example of the drive circuit of the vibration type actuator of 1st Example. 第1の実施例の断線時の駆動電圧振幅の周波数特性変化の第2の例を示す図The figure which shows the 2nd example of the frequency characteristic change of the drive voltage amplitude at the time of disconnection of the 1st Example. 第1の実施例のデューティ50%のパルス信号で駆動した際の分析結果の第2の例を示す図The figure which shows the 2nd example of the analysis result at the time of driving with the pulse signal of the duty 50% of 1st Example. 第1の実施例の振動型アクチュエータの駆動回路の第3の例を示す図The figure which shows the 3rd example of the drive circuit of the vibration type actuator of 1st Example. 第1の実施例の断線時の駆動電圧振幅の周波数特性変化の第3の例を示す図The figure which shows the 3rd example of the frequency characteristic change of the drive voltage amplitude at the time of disconnection of the 1st Example. 第1の実施例のデューティ50%のパルス信号で駆動した際の分析結果の第3の例を示す図The figure which shows the 3rd example of the analysis result at the time of driving with the pulse signal of the duty 50% of 1st Example. 第1の実施例のデューティ38%のパルス信号で駆動した際の分析結果の第2の例を示す図The figure which shows the 2nd example of the analysis result at the time of driving with the pulse signal of the duty 38% of 1st Example. 第2の実施例の振動型アクチュエータの駆動回路の第1の例を示す図The figure which shows the 1st example of the drive circuit of the vibration type actuator of 2nd Example 第2の実施例の断線時の駆動電圧振幅の周波数特性変化の例を示す図The figure which shows the example of the frequency characteristic change of the drive voltage amplitude at the time of disconnection of the 2nd Example. 第2の実施例の断線時の駆動電圧波形の変化の例を示す図The figure which shows the example of the change of the drive voltage waveform at the time of disconnection of the 2nd Example. 第2の実施例のデューティ50%のパルス信号で駆動した際の分析結果の例を示す図The figure which shows the example of the analysis result when it was driven by the pulse signal of the duty 50% of the 2nd Example. 第2の実施例の振動型アクチュエータの駆動回路の第2の例を示す図The figure which shows the 2nd example of the drive circuit of the vibration type actuator of 2nd Example 第3の実施例の振動型アクチュエータの振動体の構成を示す図The figure which shows the structure of the vibrating body of the vibrating type actuator of 3rd Example. 第3の実施例の振動体の振動モードを示す図The figure which shows the vibration mode of the vibrating body of 3rd Example 第3の実施例の振動型アクチュエータの構成例を示す図The figure which shows the structural example of the vibration type actuator of 3rd Example. 第3の実施例の振動型アクチュエータの駆動回路を示す図The figure which shows the drive circuit of the vibration type actuator of 3rd Embodiment 第3の実施例の断線時の駆動電圧振幅の周波数特性変化の例を示す図The figure which shows the example of the frequency characteristic change of the drive voltage amplitude at the time of disconnection of the 3rd Example. 第3の実施例の断線時の駆動電圧波形の変化を示す図The figure which shows the change of the drive voltage waveform at the time of disconnection of the 3rd Example. 第3の実施例のデューティ50%のパルス信号で駆動した際の分析結果の例を示す図The figure which shows the example of the analysis result when it was driven by the pulse signal of the duty 50% of the 3rd Example. 第3の実施例のCPU15の動作例を示すフローチャートA flowchart showing an operation example of the CPU 15 of the third embodiment. 第3の実施例のCPU15の波形分析、断線判定、振動振幅制御の動作例を示すフローチャートA flowchart showing an operation example of waveform analysis, disconnection determination, and vibration amplitude control of the CPU 15 of the third embodiment. 第4の実施例の振動型アクチュエータの駆動回路を示す図The figure which shows the drive circuit of the vibration type actuator of 4th Embodiment 第4の実施例の断線時の駆動電流の周波数特性変化の例を示す図The figure which shows the example of the frequency characteristic change of the drive current at the time of disconnection of the 4th Example. 第4の実施例のデューティ50%のパルス信号で駆動した際の分析結果の例を示す図The figure which shows the example of the analysis result when it was driven by the pulse signal of the duty 50% of the 4th Example. 第4の実施例のCPU15の波形分析、断線判定、振動振幅制御の動作例を示すフローチャートA flowchart showing an operation example of waveform analysis, disconnection determination, and vibration amplitude control of the CPU 15 of the fourth embodiment.

本発明を実施するための形態の一例は、指令信号を出力する制御部と、指令信号に基づき駆動信号を出力する駆動部と、駆動信号に基づき振動する2つ以上の振動体が連なる振動体ユニットを備えている。さらには、駆動信号を分析して分析結果を出力する駆動信号分析手段と、分析結果に基づき前記振動体に連結する配線の断線の有無を判定する判定手段を備える振動型駆動装置である。 An example of an embodiment for carrying out the present invention is a vibrating body in which a control unit that outputs a command signal, a drive unit that outputs a drive signal based on the command signal, and two or more vibrating bodies that vibrate based on the drive signal are connected. Equipped with a unit. Further, it is a vibration type drive device including a drive signal analysis means that analyzes a drive signal and outputs an analysis result, and a determination means that determines whether or not the wiring connected to the vibrating body is broken based on the analysis result.

本発明を実施するための形態の他の一例は、以下のような制御方法である。すなわち制御部が指令信号を駆動部へ出力し、前記指令信号に基づき駆動部が出力した駆動信号によって2つ以上の振動体が連なる振動体ユニットが振動する。それとともに、前記駆動信号を分析して分析結果を出力し、前記分析結果に基づき前記振動体に連結する配線の断線の有無を判定する振動型駆動装置の制御方法である。 Another example of the embodiment for carrying out the present invention is the following control method. That is, the control unit outputs a command signal to the drive unit, and the drive signal output by the drive unit based on the command signal vibrates the vibrating body unit in which two or more vibrating bodies are connected. At the same time, it is a control method of a vibration type drive device that analyzes the drive signal, outputs the analysis result, and determines whether or not the wiring connected to the vibrating body is broken based on the analysis result.

当該構成によって、複数の振動体を連ねる振動型アクチュエータにおいて通常の駆動中に振動体の断線を検知することができる。以下、図面を参照しつつ詳述する。 With this configuration, it is possible to detect a disconnection of a vibrating body during normal driving in a vibrating actuator in which a plurality of vibrating bodies are connected. Hereinafter, the details will be described with reference to the drawings.

図1は第1の実施例の振動型アクチュエータの駆動回路を示す図である。1、2、3は振動体、5、6、7は1次側のインダクタを直列に接続したトランスであり、トランス5、6、7の2次側に振動体1、2、3をそれぞれ並列に接続した点線で囲った部分は振動体ユニットとしての振動型アクチュエータ10の内部回路を示している。各振動体に並列に接続されたトランスの2次側コイルのインダクタンス値は、振動型アクチュエータ10の共振周波数に近い所定の周波数でマッチングされている。 FIG. 1 is a diagram showing a drive circuit of the vibration type actuator of the first embodiment. Reference numerals 1, 2, and 3 are transformers in which a vibrating element, 5, 6, and 7 are connected in series with an inductor on the primary side, and vibrating bodies 1, 2, and 3 are arranged in parallel on the secondary side of transformers 5, 6, and 7, respectively. The portion surrounded by the dotted line connected to the above shows the internal circuit of the vibrating actuator 10 as the vibrating body unit. The inductance value of the secondary coil of the transformer connected in parallel to each vibrating body is matched at a predetermined frequency close to the resonance frequency of the vibrating actuator 10.

即ち、マッチング周波数をF、制動容量値をC、トランスの2次側コイルのインダクタンス値をLとすると、これらの関係は数式1で表される。 That is, assuming that the matching frequency is F 0 , the braking capacitance value is C 0 , and the inductance value of the secondary coil of the transformer is L 0 , these relationships are expressed by Equation 1.

Figure 2022068434000002
12は周波数指令に応じたパルス信号を出力する矩形電圧生成手段であり、インダクタとコンデンサの直列回路で構成される波形整形手段11を介して駆動電圧を振動型アクチュエータ10に出力している。13は振動型アクチュエータ10に流れる電流を計測する為の抵抗で、振動体1、2、3の振動速度に比例した電圧を出力する。したがって振動型アクチュエータ10の全体を代表した電圧の値を抵抗13の出力から検出できる。
Figure 2022068434000002
Reference numeral 12 denotes a rectangular voltage generating means that outputs a pulse signal according to a frequency command, and outputs a drive voltage to the vibration type actuator 10 via a waveform shaping means 11 composed of a series circuit of an inductor and a capacitor. Reference numeral 13 is a resistance for measuring the current flowing through the vibrating actuator 10, and outputs a voltage proportional to the vibrating speed of the vibrating bodies 1, 2, and 3. Therefore, the value of the voltage representing the entire vibration type actuator 10 can be detected from the output of the resistor 13.

尚、振動体の振幅は正確にはこの振動速度を時間で積分した値に比例するが、振動速度の振幅は概ね振動振幅に比例するので以下の実施例では振動速度信号の振幅を制御することで振動振幅を制御している。 The amplitude of the vibrating body is accurately proportional to the value obtained by integrating this vibration velocity with time, but since the amplitude of the vibration velocity is generally proportional to the vibration amplitude, the amplitude of the vibration velocity signal is controlled in the following embodiment. The vibration amplitude is controlled by.

14は抵抗13で検出された振動速度信号の振幅を検出する為の振幅検出手段、15は不図示の指令手段からの指令に応じて振動型アクチュエータ10の振動振幅指令を出力する公知のCPUである。16は振動振幅指令と振幅検出手段14の出力を比較する振幅比較手段、17は振幅比較手段16の出力に応じて矩形電圧生成手段12に対して周波数指令を出力する振幅制御手段である。18は振動型アクチュエータ10の駆動電圧の波形を分析する駆動信号分析手段であって、制御部であるCPU15は駆動信号分析手段18の波形分析結果に応じてON-OFF指令等の指令信号を出力する。この指令信号に基づき、駆動部は駆動信号を2つ以上の振動体が連なる振動体ユニットに出力する。 14 is an amplitude detecting means for detecting the amplitude of the vibration velocity signal detected by the resistor 13, and 15 is a known CPU that outputs a vibration amplitude command of the vibration type actuator 10 in response to a command from a command means (not shown). be. Reference numeral 16 is an amplitude comparing means for comparing the vibration amplitude command and the output of the amplitude detecting means 14, and 17 is an amplitude controlling means for outputting a frequency command to the rectangular voltage generating means 12 according to the output of the amplitude comparing means 16. Reference numeral 18 is a drive signal analysis means for analyzing the waveform of the drive voltage of the vibration type actuator 10, and the CPU 15 as a control unit outputs a command signal such as an ON-OFF command according to the waveform analysis result of the drive signal analysis means 18. do. Based on this command signal, the drive unit outputs the drive signal to the vibrating body unit in which two or more vibrating bodies are connected.

制御部であるCPU15はON-OFF指令等の指令信号を、駆動部である矩形電圧生成手段12に出力し、振動型アクチュエータ10の駆動・停止等の動作を制御している。 The CPU 15, which is a control unit, outputs a command signal such as an ON-OFF command to a rectangular voltage generating means 12 which is a drive unit, and controls operations such as driving and stopping of the vibration type actuator 10.

図1に例示した振動体ユニットは、1次側が直列に接続された複数のトランスの2次側にそれぞれ並列に振動体を接続した構成であり、複数のトランスの1次側は、前記駆動信号が印加されるように構成されている。加えて、矩形電圧生成手段と振動体ユニットとの間に挿入される波形整形手段を備えている。 The vibrating body unit illustrated in FIG. 1 has a configuration in which a vibrating body is connected in parallel to each of the secondary sides of a plurality of transformers whose primary side is connected in series, and the primary side of the plurality of transformers is the drive signal. Is configured to be applied. In addition, it is provided with a waveform shaping means inserted between the rectangular voltage generating means and the vibrating body unit.

このように、2つ以上の振動体が連なって振動体ユニットとしての振動型アクチュエータ10が構成されており、制御部としてのCPU15が発する共通の指令信号により、振動体がそれぞれ駆動するように構成されている。 In this way, the vibrating actuator 10 as a vibrating body unit is configured by connecting two or more vibrating bodies in a row, and the vibrating bodies are configured to be driven by a common command signal issued by the CPU 15 as a control unit. Has been done.

ここで本実施例の振動型アクチュエータの第1の例を示す。図2は3つの振動体を円柱シャフトの外周に接触させ、円柱シャフトを回転させる振動型アクチュエータの構造を示す図である。1、2、3は縦方向(矢印の方向)に振動する振動体で4は円柱シャフトである。本実施例では振動体1、2、3は円柱シャフト4の円周に120°毎に略均等に配置されている。振動体1、2、3を加振して縦方向の振動を励起することによって円柱シャフト4は時計周りに回転する。円柱シャフトは2つ以上の振動体が連なる振動体ユニットに接する共通の接触体に相当し、振動体1,2,3の駆動により発生した合力の方向に振動体に対して相対移動する。 Here, a first example of the vibration type actuator of this embodiment is shown. FIG. 2 is a diagram showing a structure of a vibrating actuator that rotates a cylindrical shaft by bringing three vibrating bodies into contact with the outer circumference of the cylindrical shaft. 1, 2, and 3 are vibrating bodies that vibrate in the vertical direction (direction of the arrow), and 4 is a cylindrical shaft. In this embodiment, the vibrating bodies 1, 2, and 3 are arranged substantially evenly at intervals of 120 ° on the circumference of the cylindrical shaft 4. The cylindrical shaft 4 rotates clockwise by exciting the vibrations 1, 2, and 3 in the vertical direction. The cylindrical shaft corresponds to a common contact body in contact with a vibrating body unit in which two or more vibrating bodies are connected, and moves relative to the vibrating body in the direction of the resultant force generated by driving the vibrating bodies 1, 2, and 3.

図3は振動型アクチュエータ10内の電気的接続を示す図である。5、6、7はトランスで、トランス5、6、7の2次側コイルが振動体1、2、3に接合された圧電体に並列に接続されている。8は振動型アクチュエータ10に交流電圧を入力する為のコネクタで、トランス5、6、7の1次側コイルを直列接続し、その両端が接続されている。9はドーナツ状の中空ケースで、上記振動体が収められ、これらが一体となり複数の振動体が連なった振動型アクチュエータ10を構成している。 FIG. 3 is a diagram showing an electrical connection in the vibrating actuator 10. Reference numerals 5, 6 and 7 are transformers, and the secondary coils of the transformers 5, 6 and 7 are connected in parallel to the piezoelectric bodies bonded to the vibrating bodies 1, 2 and 3. Reference numeral 8 is a connector for inputting an AC voltage to the vibrating actuator 10, in which the primary coils of the transformers 5, 6 and 7 are connected in series, and both ends thereof are connected. Reference numeral 9 denotes a donut-shaped hollow case in which the vibrating body is housed, and these are integrated to form a vibrating actuator 10 in which a plurality of vibrating bodies are connected.

また、振動体1、2、3はケース9の円柱シャフト4を通す中空円筒部に、120°毎に円柱シャフト4に加圧接触される突出部を持ち、不図示のバネ構造を含む支持部材によって一定の加圧力で円柱シャフト4に押し当てられている。次にCPU15の動作について説明する。CPU15は不図示の指令手段からの速度指令に応じて速度指令に対応する振動振幅のテーブルを元に振動振幅に関連する指令信号を出力する。駆動中に定期的に駆動信号分析手段18の分析結果をモニタし、分析結果が所定の範囲外であれば振動体1、2、3のいずれかが断線したと判定し、振動振幅指令を0にして振動型アクチュエータを停止する。さらには停止と共に不図示の指令手段に断線発生を知らせるように動作してもよい。 Further, the vibrating bodies 1, 2, and 3 have a protruding portion that is pressure-contacted with the cylindrical shaft 4 at every 120 ° in the hollow cylindrical portion through which the cylindrical shaft 4 of the case 9 is passed, and the support member includes a spring structure (not shown). It is pressed against the cylindrical shaft 4 with a constant pressure. Next, the operation of the CPU 15 will be described. The CPU 15 outputs a command signal related to the vibration amplitude based on a table of vibration amplitude corresponding to the speed command in response to a speed command from a command means (not shown). During driving, the analysis result of the drive signal analysis means 18 is periodically monitored, and if the analysis result is out of the predetermined range, it is determined that any of the vibrating bodies 1, 2 and 3 is disconnected, and the vibration amplitude command is set to 0. And stop the vibration type actuator. Further, it may operate so as to notify the command means (not shown) of the occurrence of disconnection at the same time as stopping.

次に駆動信号分析手段18の動作について説明する。図4は振動型アクチュエータ10の振動体の接続が断線した時の駆動電圧振幅の周波数特性の変化を示している。矩形電圧生成手段12が、正弦波状の電圧信号である駆動信号を出力したと仮定して周波数を掃引し駆動電圧の振幅を測定したものである。本実施形態における振動型アクチュエータ10の駆動周波数の範囲は概ね93kHzから98kHzの間である。 Next, the operation of the drive signal analysis means 18 will be described. FIG. 4 shows a change in the frequency characteristic of the drive voltage amplitude when the connection of the vibrating body of the vibrating actuator 10 is disconnected. It is assumed that the rectangular voltage generating means 12 outputs a drive signal which is a sinusoidal voltage signal, the frequency is swept, and the amplitude of the drive voltage is measured. The range of the drive frequency of the vibration type actuator 10 in the present embodiment is approximately between 93 kHz and 98 kHz.

図4中、実線が断線無し、破線が振動体の1つに連結する配線が断線、一点鎖線が2つの振動体のそれぞれに連結する配線が断線、点線が全ての振動体のそれぞれに連結する配線が断線した場合である。図4中、Fは通常駆動で用いる周波数範囲内のある駆動電圧波形の基本波の周波数、Fはその2次の高調波の周波数、Fはその3次の高調波の周波数を示している。図4の各次数の電圧振幅を比較すると、断線の数によって次数間の振幅の比が異なり波形が変化している事がわかる。また駆動電圧の3次の高調波の周波数Fが断線無しの時の周波数特性の谷の最下点の周波数(310kHz付近)の近傍である為、3次の高調波の振幅が断線時に大きく変化しているため断線時の波形変化を大きくしている。 In FIG. 4, the solid line is no disconnection, the broken line is the wiring connected to one of the vibrating bodies, the alternate long and short dash line is the wiring connected to each of the two vibrating bodies, and the dotted line is connected to each of all the vibrating bodies. This is the case when the wiring is broken. In FIG. 4, F 1 indicates the frequency of the fundamental wave of a driving voltage waveform within the frequency range used for normal driving, F 2 indicates the frequency of the second harmonic, and F 3 indicates the frequency of the third harmonic. ing. Comparing the voltage amplitudes of each order in FIG. 4, it can be seen that the ratio of the amplitudes between the orders differs depending on the number of disconnections and the waveform changes. Moreover, since the frequency F3 of the third harmonic of the drive voltage is near the frequency (around 310 kHz) of the lowest point of the valley of the frequency characteristic when there is no disconnection, the amplitude of the third harmonic is large at the time of disconnection. Since it is changing, the waveform change at the time of disconnection is increased.

図5に駆動電圧の波形の変化を示す。図5(a)は矩形電圧生成手段12がデューティ50%のパルス信号を出力した場合、図5(b)は矩形電圧生成手段12がデューティ38%のパルス信号を出力した場合を示している。実線が断線無し、破線が1つの振動体が断線、一点鎖線が2つの振動体が断線、点線が全て断線した場合である。 FIG. 5 shows changes in the waveform of the drive voltage. FIG. 5A shows a case where the rectangular voltage generating means 12 outputs a pulse signal having a duty of 50%, and FIG. 5B shows a case where the rectangular voltage generating means 12 outputs a pulse signal having a duty of 38%. The solid line is the case where there is no disconnection, the broken line is the case where one vibrating body is broken, the alternate long and short dash line is the case where the two vibrating bodies are broken, and the dotted line is all broken.

図5(a)、図5(b)とも断線が発生すると滑らかな波形の一部が急峻に変化し、矩形波が重畳している様子がよくわかる。また断線の数が増えると急峻な波形が大きくなる一方で振幅は小さくなっており、重畳される矩形波成分の割合が増加していることがわかる。 In both FIGS. 5 (a) and 5 (b), when a disconnection occurs, a part of the smooth waveform changes sharply, and it can be clearly seen that the rectangular wave is superimposed. Further, as the number of disconnections increases, the steep waveform becomes larger while the amplitude becomes smaller, and it can be seen that the ratio of the superimposed rectangular wave component increases.

図6は矩形電圧生成手段12の出力するパルス信号のデューティが50%の時の駆動信号分析手段18の波形分析結果の例を示している。図6(a)、(b)は駆動電圧の周波数を変えて駆動電圧の「絶対値の平均値」と実効値を元に計算したグラフである。図6(a)は波形率(「絶対値の平均値」/実効値)、図6(b)は実効値―「絶対値の平均値」の結果である。 FIG. 6 shows an example of the waveform analysis result of the drive signal analysis means 18 when the duty of the pulse signal output by the rectangular voltage generation means 12 is 50%. 6 (a) and 6 (b) are graphs calculated based on the "average value of absolute values" and the effective value of the drive voltage by changing the frequency of the drive voltage. FIG. 6A is the result of the waveform ratio (“average value of absolute value” / effective value), and FIG. 6B is the result of effective value- “average value of absolute value”.

交流信号の実効値は矩形波に近いほど交流信号の「絶対値の平均値」に近づいていくので、断線数の増加によって重畳される矩形波成分が増加すると波形率は1に近づいてゆき、実効値―「絶対値の平均値」は減少している。 The closer the effective value of the AC signal is to the square wave, the closer it is to the "mean value of the absolute value" of the AC signal. Efficient value-The "mean value of absolute values" is decreasing.

このように分析する波形は、駆動電圧の周波数に対する駆動電圧の絶対値の平均値の波形、あるいは駆動電圧の周波数に対する駆動電圧の実効値の波形であってもよい。 The waveform analyzed in this way may be a waveform of an average value of the absolute values of the drive voltage with respect to the frequency of the drive voltage, or a waveform of an effective value of the drive voltage with respect to the frequency of the drive voltage.

図6(c)、(d)は駆動電圧の高調波の振幅から計算したグラフである。図6(c)は高周波成分の度合いを評価する為の全高調波歪率(基本波以外の高周波成分(高調波成分)の振幅を基本波の振幅で割った値)、図6(d)は3次の高調波の振幅を基本波の振幅で割った値を示すグラフである。基本波や高調波の振幅の計測方法としては、公知のFFT(高速フーリエ変換)を用いる方法の他以下の方法がある。すなわち、ローパスフィルタを使って基本波と高周波成分(高調波成分)を分離してそれぞれの振幅を計測する方法、バンドパスフィルタで特定の次数の高調波を抜き出して振幅を計測する方法等がある。また、本実施例では駆動信号分析手段18を使って波形の分析を行ったが、不図示のA/D変換器を用いて駆動電圧の時系列波形をCPU15に読み込み、FFT等の演算を用いて波形分析を行っても良い。その場合、A/D変換器で入力する前にローパスフィルタで5次以上の高調波を減衰させてから入力することで、A/D変換器のサンプリング周波数を下げることが出来る。波形の変化には3次以下の高調波の影響が大きいので、3次の高調波を検出するのに十分なサンプリング周波数(例えば基本波の12倍以上の周波数)でサンプリングするのが望ましい。このように、駆動電圧の周波数に対する3次の高調波の振幅と基本波の振幅の波形から分析してもよい。 6 (c) and 6 (d) are graphs calculated from the amplitude of the harmonics of the drive voltage. FIG. 6 (c) shows the total harmonic distortion rate (value obtained by dividing the amplitude of the high frequency component (harmonic component) other than the fundamental wave by the amplitude of the fundamental wave) for evaluating the degree of the high frequency component, FIG. 6 (d). Is a graph showing the value obtained by dividing the amplitude of the third harmonic by the amplitude of the fundamental wave. As a method for measuring the amplitude of a fundamental wave or a harmonic, there are the following methods in addition to the method using a known FFT (Fast Fourier Transform). That is, there are a method of separating the fundamental wave and the high frequency component (harmonic component) using a low-pass filter and measuring the amplitude of each, and a method of extracting a harmonic of a specific order with a bandpass filter and measuring the amplitude. .. Further, in this embodiment, the waveform is analyzed by using the drive signal analysis means 18, but the time-series waveform of the drive voltage is read into the CPU 15 by using an A / D converter (not shown), and the calculation such as FFT is used. Waveform analysis may be performed. In that case, the sampling frequency of the A / D converter can be lowered by attenuating the fifth-order or higher harmonics with a low-pass filter before inputting with the A / D converter. Since the influence of harmonics of the third order or lower is large on the change of the waveform, it is desirable to sample at a sampling frequency sufficient to detect the third harmonic (for example, a frequency 12 times or more the fundamental wave). In this way, analysis may be performed from the waveforms of the amplitude of the third harmonic and the amplitude of the fundamental wave with respect to the frequency of the drive voltage.

図4の駆動電圧振幅の周波数特性より矩形波の2次以上の高調波成分は断線によってほぼ増加しているので、高調波歪率及び3次高調波(F近傍の周波数)の振幅を基本波(F近傍の周波数)の振幅で割った値は断線数が増えるに従って増加している。 From the frequency characteristics of the drive voltage amplitude in Fig. 4, the harmonic components of the second and higher orders of the square wave are almost increased due to disconnection, so the harmonic distortion rate and the amplitude of the third harmonic (frequency near F 3 ) are the basics. The value divided by the amplitude of the wave (frequency near F1) increases as the number of disconnections increases.

断線の有無を判定する閾値を図6(a)、(b)、(c)、(d)のそれぞれのグラフに長鎖線で示した。この閾値を用いれば各波形分析計算の結果から94kHzから97kHzまでのどの周波数で駆動中であっても、断線の有無の判定が可能である。 The threshold value for determining the presence or absence of disconnection is shown by a long chain line in each graph of FIGS. 6 (a), (b), (c), and (d). By using this threshold value, it is possible to determine the presence or absence of disconnection from the result of each waveform analysis calculation regardless of the frequency from 94 kHz to 97 kHz during driving.

図7は矩形電圧生成手段12の出力するパルス信号のデューティが38%の時の駆動信号分析手段18の波形分析結果の例を示している。図7(a)、(b)は駆動電圧の周波数を変えて駆動電圧の「絶対値の平均値」と実効値を元に計算したグラフである。図7(a)は波形率(「絶対値の平均値」/実効値)、図7(b)は実効値―「絶対値の平均値」の結果である。図7(c)、(d)は駆動電圧の高調波の振幅から計算したグラフである。図7(c)は全高調波歪率(基本波以外の高周波成分(高調波成分)の振幅を基本波の振幅で割った値)、図7(d)は3次の高調波の振幅を基本波の振幅で割った値を示すグラフである。 FIG. 7 shows an example of the waveform analysis result of the drive signal analysis means 18 when the duty of the pulse signal output by the rectangular voltage generation means 12 is 38%. 7 (a) and 7 (b) are graphs calculated based on the "average value of absolute values" and the effective value of the drive voltage by changing the frequency of the drive voltage. FIG. 7A is the result of the waveform ratio (“average value of absolute value” / effective value), and FIG. 7B is the result of effective value- “average value of absolute value”. 7 (c) and 7 (d) are graphs calculated from the amplitude of the harmonics of the drive voltage. FIG. 7 (c) shows the total harmonic distortion rate (value obtained by dividing the amplitude of high-frequency components (harmonic components) other than the fundamental wave by the amplitude of the fundamental wave), and FIG. 7 (d) shows the amplitude of the third-order harmonic. It is a graph which shows the value divided by the amplitude of the fundamental wave.

図7(a)、(b)の分析結果は断線によって増加又は減少方向に一様に変化しているが、断線0と断線1の結果が近接しており、間に閾値を設けても断線判定の信頼性が低い。図7(c)、(d)の分析結果は断線0と断線1の間隙が十分あるので断線の有無の判定が比較的容易である。 The analysis results of FIGS. 7A and 7B change uniformly in the increasing or decreasing direction due to the disconnection, but the results of the disconnection 0 and the disconnection 1 are close to each other, and even if a threshold value is set between them, the disconnection occurs. The reliability of the judgment is low. In the analysis results of FIGS. 7 (c) and 7 (d), since there is a sufficient gap between the disconnection 0 and the disconnection 1, it is relatively easy to determine the presence or absence of the disconnection.

図8は図6を基に矩形電圧生成手段12の出力するパルス信号のデューティが50%の時の周波数を所定周波数に固定した時の断線個数に対する分析結果の変化を示したグラフである。図8(a)は波形率、図8(b)は実効値―「絶対値の平均値」、図8(c)は全高調波歪率、図8(d)は3次の高調波の振幅を基本波の振幅で割った値を示すグラフである。94kHzから97kHzの周波数範囲において概ね図8の様に断線の数によって各値が一様に変化しているので、断線の数を求める事も可能である。 FIG. 8 is a graph showing a change in the analysis result with respect to the number of disconnections when the frequency when the duty of the pulse signal output by the rectangular voltage generating means 12 is 50% is fixed to a predetermined frequency based on FIG. 8 (a) is the waveform factor, FIG. 8 (b) is the effective value- "mean value of absolute value", FIG. 8 (c) is the total harmonic distortion, and FIG. 8 (d) is the third harmonic. It is a graph which shows the value which divided the amplitude by the amplitude of a fundamental wave. Since each value changes uniformly depending on the number of disconnections in the frequency range of 94 kHz to 97 kHz as shown in FIG. 8, it is also possible to obtain the number of disconnections.

図9は図7を基に矩形電圧生成手段12の出力するパルス信号のデューティが38%の時の周波数を所定周波数に固定した時の断線個数に対する分析結果の変化を示したグラフである。図9(a)は波形率、図9(b)は実効値―「絶対値の平均値」、図9(c)は全高調波歪率、図9(d)は3次の高調波の振幅を基本波の振幅で割った値を示すグラフである。 FIG. 9 is a graph showing changes in the analysis result with respect to the number of disconnections when the frequency when the duty of the pulse signal output by the rectangular voltage generating means 12 is 38% is fixed to a predetermined frequency based on FIG. 7. 9 (a) is the waveform factor, FIG. 9 (b) is the effective value- "mean value of absolute value", FIG. 9 (c) is the total harmonic distortion, and FIG. 9 (d) is the third harmonic. It is a graph which shows the value which divided the amplitude by the amplitude of a fundamental wave.

図7の説明と同様に図9(a)、(b)の分析結果は断線によって増加又は減少方向に一様に変化しているが、断線数間の結果が近接しており、断線の数を求めても誤差が大きくなる可能性がある。図9(c)、(d)の分析結果は断線0と断線1の間隙が十分あるのでデューティ50%の場合と同様に断線の数を求める事が可能である。 Similar to the explanation of FIG. 7, the analysis results of FIGS. 9A and 9B change uniformly in the increasing or decreasing direction due to the disconnection, but the results between the number of disconnections are close to each other and the number of disconnections. There is a possibility that the error will be large even if it is calculated. Since the analysis results of FIGS. 9 (c) and 9 (d) have a sufficient gap between the disconnection 0 and the disconnection 1, the number of disconnections can be obtained in the same manner as in the case of the duty of 50%.

この様にデューティ50%とデューティ38%の分析結果に大きな違いが発生するのは、パルス信号の2次と3次の高調波の振幅比が異なるからである。図4の駆動電圧振幅の周波数特性は2次と3次の高調波の周波数周辺で断線による特性変化が大きいため、パルス信号の2次と3次の高調波の振幅比の違いが分析結果の違いに影響している。このように駆動条件(デューティや駆動周波数)によって分析結果が変わるので駆動条件が変化するアプリケーションに於いては、駆動条件によって波形分析方法切り替える事は有効である。 The reason why there is a big difference between the analysis results of the duty 50% and the duty 38% is that the amplitude ratios of the second and third harmonics of the pulse signal are different. Since the frequency characteristics of the drive voltage amplitude in FIG. 4 have a large change in characteristics due to disconnection around the frequencies of the second and third harmonics, the difference in the amplitude ratio of the second and third harmonics of the pulse signal is the analysis result. Affecting the difference. Since the analysis result changes depending on the driving conditions (duty and driving frequency) in this way, it is effective to switch the waveform analysis method depending on the driving conditions in the application in which the driving conditions change.

図10は図1の振動型アクチュエータの駆動回路の波形整形手段11をインダクタだけの波形整形手段19に変えた場合の構成を示している。CPU15の動作は上記例と変わらないが、振動型アクチュエータ10の振動体が断線した時の駆動電圧の振幅の周波数特性の変化が異なるので、駆動信号分析手段18の分析結果が異なっている。 FIG. 10 shows a configuration in which the waveform shaping means 11 of the drive circuit of the vibration type actuator of FIG. 1 is changed to the waveform shaping means 19 having only an inductor. The operation of the CPU 15 is the same as that of the above example, but the change in the frequency characteristic of the amplitude of the drive voltage when the vibrating body of the vibrating actuator 10 is disconnected is different, so that the analysis result of the drive signal analysis means 18 is different.

図11は図10の振動型アクチュエータの駆動回路における振動型アクチュエータ10の振動体の接続が断線した時の駆動電圧の振幅の周波数特性の変化を示す図である。 FIG. 11 is a diagram showing changes in the frequency characteristics of the amplitude of the drive voltage when the connection of the vibrating body of the vibrating actuator 10 in the driving circuit of the vibrating actuator 10 of FIG. 10 is disconnected.

波形整形手段に直流カットの為のコンデンサが無い為に、図4の特性と比較して低周波域の駆動電圧振幅の周波数特性が増加している。 Since the waveform shaping means does not have a capacitor for cutting DC, the frequency characteristic of the drive voltage amplitude in the low frequency region is increased as compared with the characteristic of FIG.

図12は矩形電圧生成手段12の出力するパルス信号のデューティが50%の時の駆動信号分析手段18による駆動電圧の波形分析結果の例を示している。図12(a)は波形率、図12(b)は実効値―「絶対値の平均値」、図12(c)は全高調波歪率(基本波以外の高調波成分の振幅を基本波の振幅で割った値)、図12(d)は3次の高調波の振幅を基本波の振幅で割った値を示すグラフである。図11のグラフにおいて全て断線した断線3以外の特性は高周波域(F以上の周波数)での振幅変化が少ない。それに対して周波数が90kHzから100kHzに近づくほど振幅が大きくなっている為、基本波(F近傍)の周波数が100kHzに近いほど断線による波形の変化が少なくなっている。その為図12(a)、(c)、(d)の分析結果は周波数が高いほど断線0、断線1、断線2の変化が少なくなっている。 FIG. 12 shows an example of the waveform analysis result of the drive voltage by the drive signal analysis means 18 when the duty of the pulse signal output by the rectangular voltage generation means 12 is 50%. FIG. 12 (a) shows the waveform factor, FIG. 12 (b) shows the effective value- "the average value of the absolute values", and FIG. 12 (c) shows the total harmonic distortion (the amplitude of the harmonic component other than the fundamental wave is the fundamental wave). (Value divided by the amplitude of), FIG. 12 (d) is a graph showing the value obtained by dividing the amplitude of the third harmonic by the amplitude of the fundamental wave. In the graph of FIG. 11, the characteristics other than the disconnection 3 in which all the wires are disconnected have little change in amplitude in the high frequency region (frequency of F2 or higher). On the other hand, since the amplitude increases as the frequency approaches 100 kHz from 90 kHz, the change in the waveform due to disconnection decreases as the frequency of the fundamental wave (near F1) approaches 100 kHz. Therefore, in the analysis results of FIGS. 12A, 12C, and 12D, the higher the frequency, the smaller the changes in disconnection 0, disconnection 1, and disconnection 2.

図12の各分析結果は97kHz近傍で断線による変化が少なくなっているが、それぞれ断線の数によって各値が一様に変化している。したがって、あらかじめ断線によって発生する駆動電圧の振幅の特性を計測し、各分析結果を周波数毎の比較テーブルとして用意しておくことで断線の有無や断線の数を求める事が可能である。 In each analysis result of FIG. 12, the change due to the disconnection is small near 97 kHz, but each value changes uniformly depending on the number of disconnections. Therefore, it is possible to determine the presence or absence of disconnection and the number of disconnections by measuring the characteristics of the amplitude of the drive voltage generated by the disconnection in advance and preparing each analysis result as a comparison table for each frequency.

図13は振動型アクチュエータの構成が異なる場合の例で振動型アクチュエータの駆動回路の第3の例を示す図である。上記例では振動体1、2、3と並列にトランス5、6、7が接続され振動型アクチュエータ10を構成していた。本例では振動体1、2、3にインダクタ20、21、22が並列に接続されると共に振動体1、2、3は直列に接続され、振動体ユニットとしての振動型アクチュエータ23を構成している。すなわち並列に接続された一対のインダクタと振動体が、直列に複数対が連なる前記振動体ユニットを構成している。 FIG. 13 is a diagram showing a third example of the drive circuit of the vibration type actuator in the case where the configuration of the vibration type actuator is different. In the above example, the transformers 5, 6 and 7 are connected in parallel with the vibrating bodies 1, 2 and 3 to form the vibrating actuator 10. In this example, the inductors 20, 21, and 22 are connected in parallel to the vibrating bodies 1, 2, and 3, and the vibrating bodies 1, 2, and 3 are connected in series to form a vibrating actuator 23 as a vibrating body unit. There is. That is, a pair of inductors and a vibrating body connected in parallel form the vibrating body unit in which a plurality of pairs are connected in series.

各部の動作は上記例と同様なので駆動信号分析手段18の動作についてのみ説明する。 Since the operation of each part is the same as the above example, only the operation of the drive signal analysis means 18 will be described.

図14は振動型アクチュエータ23の振動体の接続が断線した時の駆動電圧の振幅の周波数特性の変化を示している。上記説明と同様に矩形電圧生成手段12が正弦波を出力したと仮定して周波数を掃引し駆動電圧の振幅を測定したものである。 FIG. 14 shows a change in the frequency characteristic of the amplitude of the drive voltage when the connection of the vibrating body of the vibrating actuator 23 is disconnected. Similar to the above description, the frequency is swept and the amplitude of the drive voltage is measured on the assumption that the rectangular voltage generation means 12 outputs a sine wave.

実線が断線無し、破線が1つの振動体が断線、一点鎖線が2つの振動体が断線、点線が全て断線した場合である。Fは通常駆動で使用するある駆動電圧波形の基本波の周波数、Fは2次の高調波の周波数、Fは3次の高調波の周波数を示している。 The solid line is the case where there is no disconnection, the broken line is the case where one vibrating body is broken, the alternate long and short dash line is the case where the two vibrating bodies are broken, and the dotted line is all broken. F 1 indicates the frequency of the fundamental wave of a certain drive voltage waveform used in normal driving, F 2 indicates the frequency of the second harmonic, and F 3 indicates the frequency of the third harmonic.

図15は矩形電圧生成手段12の出力するパルス信号のデューティが50%の時の駆動信号分析手段18の波形分析結果の例を示している。図15(a)は波形率、図15(b)は実効値―「絶対値の平均値」、図15(c)は全高調波歪率(基本波以外の高調波成分の振幅を基本波の振幅で割った値)、図15(d)は3次の高調波の振幅を基本波の振幅で割った値を示すグラフである。各分析結果とも断線0と断線1の間隙が大きいので断線の有無の判定は容易である。各グラフの長鎖線は断線判定のための閾値である。 FIG. 15 shows an example of the waveform analysis result of the drive signal analysis means 18 when the duty of the pulse signal output by the rectangular voltage generation means 12 is 50%. FIG. 15 (a) shows the waveform factor, FIG. 15 (b) shows the effective value- "the average value of the absolute values", and FIG. 15 (c) shows the total harmonic distortion (the amplitude of the harmonic component other than the fundamental wave is the fundamental wave). (Value divided by the amplitude of), FIG. 15 (d) is a graph showing the value obtained by dividing the amplitude of the third harmonic by the amplitude of the fundamental wave. Since the gap between the disconnection 0 and the disconnection 1 is large in each analysis result, it is easy to determine the presence or absence of the disconnection. The long chain line in each graph is a threshold value for determining the disconnection.

図16は矩形電圧生成手段12の出力するパルス信号のデューティが38%の時の駆動信号分析手段18による駆動電圧の波形分析結果の例を示している。図16(a)は波形率、図16(b)は実効値―「絶対値の平均値」、図16(c)は全高調波歪率(基本波以外の高調波成分の振幅を基本波の振幅で割った値)、図16(d)は3次の高調波の振幅を基本波の振幅で割った値を示すグラフである。図16(c)の全高調波歪率以外の特性は断線数間の間隙が狭くなった以外は図15のデューティ50%の場合と同じで断線の有無の判定が容易である。しかし、図16(c)の全高調波歪率は図15(c)と比較して断線0と断線1の順番が入れ替わっている。全高調波歪率が減少するということは基本波成分に対して相対的に高周波成分が減少する事を示しており、図16(c)の特性は断線1によって駆動電圧の高周波成分が減少している事を示している。従って図16(c)の全高調波歪率を用いて断線の有無を判定するには図の2つの長鎖線の様に大小2つの閾値が必要である。また図16のどの分析手法でも94kHzから97kHzの範囲内で断線数間のグラフの交差は無いので、あらかじめ断線による駆動電圧波形の分析結果を比較テーブルとして作成しておき、それに基づいて判定すれば断線の判定が可能である。 FIG. 16 shows an example of the waveform analysis result of the drive voltage by the drive signal analysis means 18 when the duty of the pulse signal output by the rectangular voltage generation means 12 is 38%. 16 (a) is the waveform factor, FIG. 16 (b) is the effective value- "average value of absolute values", and FIG. 16 (c) is the total harmonic distortion (amplitude of harmonic components other than the fundamental wave is the fundamental wave). 16 (d) is a graph showing the value obtained by dividing the amplitude of the third harmonic by the amplitude of the fundamental wave. The characteristics other than the total harmonic distortion in FIG. 16C are the same as in the case of the duty of 50% in FIG. 15 except that the gap between the number of disconnections is narrowed, and it is easy to determine the presence or absence of the disconnection. However, in the total harmonic distortion factor of FIG. 16 (c), the order of disconnection 0 and disconnection 1 is interchanged as compared with FIG. 15 (c). The decrease in the total harmonic distortion indicates that the high frequency component decreases relative to the fundamental wave component, and the characteristic of FIG. 16C shows that the high frequency component of the drive voltage decreases due to the disconnection 1. It shows that it is. Therefore, in order to determine the presence or absence of disconnection using the total harmonic distortion factor in FIG. 16 (c), two threshold values, large and small, are required as in the two long chain lines in the figure. Further, since there is no graph intersection between the number of disconnections within the range of 94 kHz to 97 kHz in any of the analysis methods of FIG. 16, if the analysis result of the drive voltage waveform due to the disconnection is prepared in advance as a comparison table and the judgment is made based on the analysis result. It is possible to determine the disconnection.

上記説明にて異なる回路、異なるデューティ、異なる駆動周波数では断線による駆動電圧波形への影響が異なる事を示した。図16の説明では、断線した場合でも高周波成分が減少する場合があり、駆動条件によっては単純に高周波成分の有無だけでは断線の判定が出来ない事を示した。また、あらかじめ断線による駆動電圧波形の分析結果を比較テーブルとして作成しておけば周波数指令と分析結果と比較テーブルを用い、それに基づいて判定すれば断線の判定が可能である事を示した。 In the above description, it was shown that different circuits, different duties, and different drive frequencies have different effects on the drive voltage waveform due to disconnection. In the explanation of FIG. 16, it is shown that the high frequency component may decrease even when the wire is broken, and the disconnection cannot be determined simply by the presence or absence of the high frequency component depending on the driving conditions. It was also shown that if the analysis result of the drive voltage waveform due to the disconnection is prepared in advance as a comparison table, the frequency command, the analysis result and the comparison table are used, and if the judgment is made based on the frequency command, the disconnection can be determined.

また、上記説明では4つの波形分析手法の例を用いて断線の判定方法を説明したが波形によって出力が変化する演算手法や測定方法であれば使用することが可能である。例えば断線によって急峻な波形が現れ、断線数によって大きさが変化するので、単位時間あたりの駆動電圧の変化の最大値を用いても良い。また特定の次数の高調波振幅によって断線を判定することも可能である。 Further, in the above description, the method for determining the disconnection has been described using the examples of the four waveform analysis methods, but any arithmetic method or measurement method whose output changes depending on the waveform can be used. For example, a steep waveform appears due to disconnection, and the magnitude changes depending on the number of disconnections. Therefore, the maximum value of the change in the drive voltage per unit time may be used. It is also possible to determine the disconnection based on the harmonic amplitude of a specific order.

尚、上記説明では駆動電圧として矩形電圧生成手段12の出力であるパルス信号を用いたが他の波形でも良い。三角波、鋸波、公知のD級アンプの出力であるPWM変調波であっても5次以下の比較的低次の高調波を多く含む波形であれば、断線による波形変化が比較的大きい為、断線の検知に利用可能である。 In the above description, the pulse signal which is the output of the rectangular voltage generation means 12 is used as the drive voltage, but other waveforms may be used. Even if it is a triangular wave, a sawtooth wave, or a PWM modulated wave that is the output of a known class D amplifier, if the waveform contains many relatively low-order harmonics of the 5th or lower order, the waveform change due to disconnection is relatively large. It can be used to detect disconnection.

このように駆動信号分析手段は波形整形手段の出力電圧又は出力電流の波形を分析し、波形率、高調波歪率、実効値と絶対値の平均値との差、高調波振幅のいずれかに応じた値を検出するとよい。なお波形整形手段はあるほうがより望ましいが必須ではなく直接に信号処理してもよい。 In this way, the drive signal analysis means analyzes the waveform of the output voltage or output current of the waveform shaping means, and determines the waveform factor, the harmonic distortion factor, the difference between the effective value and the average value of the absolute value, and the harmonic amplitude. It is good to detect the corresponding value. It is more desirable to have a waveform shaping means, but it is not essential and signal processing may be performed directly.

図17は第2の実施例の振動型アクチュエータの駆動回路を示す図である。上記実施例の振動型アクチュエータは振動体1、2、3とトランス5、6、7が並列に接続されていたが、本実施例ではマッチング調整用コンデンサ24、25、26が並列に追加接続されている。各部の動作は実施例1と同じなので説明は省略し、駆動電圧波形の分析及び断線の判定について説明する。 FIG. 17 is a diagram showing a drive circuit of the vibration type actuator of the second embodiment. In the vibration type actuator of the above embodiment, the vibrating bodies 1, 2, 3 and the transformers 5, 6 and 7 are connected in parallel, but in this embodiment, the matching adjusting capacitors 24, 25 and 26 are additionally connected in parallel. ing. Since the operation of each part is the same as that of the first embodiment, the description thereof will be omitted, and the analysis of the drive voltage waveform and the determination of the disconnection will be described.

各振動体に並列に接続されたコンデンサはマッチング周波数調整用のコンデンサで、その静電容量値Cは、マッチング周波数をF、制動容量値をC、トランスの2次側コイルのインダクタンス値をLとすると、これらの関係は数式2で表される。 The capacitor connected in parallel to each vibrating body is a capacitor for adjusting the matching frequency, and its capacitance value C 1 is F 0 for the matching frequency, C 0 for the braking capacitance value, and the inductance value of the secondary coil of the transformer. Is L 0 , and these relationships are expressed by Equation 2.

Figure 2022068434000003
トランスの2次側コイルのインダクタンス値Lや制動容量値Cの値はバラツキが大きいので、マッチング調整用コンデンサ(静電容量値C)を並列に接続することでマッチング周波数Fを揃えるようにしている。
Figure 2022068434000003
Since the values of the inductance value L 0 and the braking capacitance value C 0 of the secondary coil of the transformer vary widely, the matching frequency F 0 is made uniform by connecting a matching adjustment capacitor (capacitance value C 1 ) in parallel. I am doing it.

次に、振動体が断線した場合の駆動電圧波形について上記実施例との違いについて説明する。回路構成としては、上記実施例では振動体の接続が断線すると振動体に並列に接続されたトランス又はインダクタに並列に接続された静電容量成分が無くなるのに対して、本実施例ではマッチング調整用のコンデンサの接続が残る。そのため、断線によってトランスとマッチング調整用コンデンサとの並列共振系が現れ、駆動電圧波形にその影響が現れる。 Next, the difference between the drive voltage waveform and the above embodiment when the vibrating body is disconnected will be described. As for the circuit configuration, in the above embodiment, when the connection of the vibrating body is broken, the capacitance component connected in parallel to the transformer or the inductor connected in parallel to the vibrating body disappears, whereas in this embodiment, the matching adjustment is performed. The capacitor connection for is left. Therefore, a parallel resonance system of the transformer and the matching adjusting capacitor appears due to the disconnection, and the influence appears on the drive voltage waveform.

図18は図17の振動型アクチュエータ27の振動体の接続が断線した時の駆動電圧の振幅の周波数特性の変化を示している。矩形電圧生成手段12が正弦波を出力したと仮定して周波数を掃引し駆動電圧の振幅を測定したものである。 FIG. 18 shows a change in the frequency characteristic of the amplitude of the drive voltage when the connection of the vibrating body of the vibrating actuator 27 of FIG. 17 is disconnected. The frequency is swept and the amplitude of the drive voltage is measured on the assumption that the rectangular voltage generating means 12 outputs a sine wave.

実線が断線無し、破線が1つの振動体が断線、一点鎖線が2つの振動体が断線、点線が全て断線した場合である。Fは通常駆動で用いるある駆動電圧波形の基本波の周波数、Fは2次の高調波の周波数、Fは3次の高調波の周波数、Fは4次の高調波の周波数を示している。3次の高調波の周波数Fと4次の高調波の周波数Fの間のピーク特性は振動体の断線によって生じたマッチング調整用コンデンサとトランスの並列共振の影響である。また駆動電圧の3次の高調波の周波数Fが断線無しの時の周波数特性の谷の最下点の周波数(310kHz付近)の近傍である為、3次の高調波の振幅が断線時に大きく変化しているため断線時の波形変化を大きくしている。 The solid line is the case where there is no disconnection, the broken line is the case where one vibrating body is broken, the alternate long and short dash line is the case where the two vibrating bodies are broken, and the dotted line is all broken. F 1 is the frequency of the fundamental wave of a certain drive voltage waveform used in normal driving, F 2 is the frequency of the second harmonic, F 3 is the frequency of the third harmonic, and F 4 is the frequency of the fourth harmonic. Shows. The peak characteristic between the frequency F3 of the third harmonic and the frequency F4 of the fourth harmonic is the effect of the parallel resonance of the matching adjusting capacitor and the transformer caused by the disconnection of the vibrating body. Moreover, since the frequency F3 of the third harmonic of the drive voltage is near the frequency (around 310 kHz) of the lowest point of the valley of the frequency characteristic when there is no disconnection, the amplitude of the third harmonic is large at the time of disconnection. Since it is changing, the waveform change at the time of disconnection is increased.

図19は矩形電圧生成手段12がデューティ50%のパルス信号を出力した場合の駆動電圧波形を示している。実線が断線無し、破線が1つの振動体が断線、一点鎖線が2つの振動体が断線、点線が全て断線した場合である。断線が発生すると断線の数の増加に応じて正弦波が矩形波に近付いていることがわかる。 FIG. 19 shows a drive voltage waveform when the rectangular voltage generating means 12 outputs a pulse signal having a duty of 50%. The solid line is the case where there is no disconnection, the broken line is the case where one vibrating body is broken, the alternate long and short dash line is the case where the two vibrating bodies are broken, and the dotted line is all broken. It can be seen that when a disconnection occurs, the sine wave approaches a rectangular wave as the number of disconnections increases.

図20は矩形電圧生成手段12の出力するパルス信号のデューティが50%の時の駆動信号分析手段18による駆動電圧の波形分析結果の例を示している。図20(a)は波形率、図20(b)は実効値―「絶対値の平均値」、図20(c)は全高調波歪率(基本波以外の高調波成分の振幅を基本波の振幅で割った値)、図20(d)は3次の高調波の振幅を基本波の振幅で割った値を示すグラフである。図20のすべての波形分析結果において断線0と断線1間の間隙が広く断線の有無の判定が容易である。図20の長鎖線は振動型アクチュエータ27の駆動中に断線の有無を判定する為の閾値を示している。このように間隙が広くなった理由は図18の駆動電圧振幅の周波数特性がマッチング調整用コンデンサとトランスの並列共振の影響で3次の高調波(F)付近での断線の有無による変化が大きいからである。このようにマッチング調整用コンデンサとトランスによる並列共振の周波数をパルス信号の低次の高調波の付近に設定する事で、断線の有無の判定を容易にすることが出来る。 FIG. 20 shows an example of the waveform analysis result of the drive voltage by the drive signal analysis means 18 when the duty of the pulse signal output by the rectangular voltage generation means 12 is 50%. FIG. 20 (a) shows the waveform factor, FIG. 20 (b) shows the effective value- "the average value of the absolute values", and FIG. 20 (c) shows the total harmonic distortion (the amplitude of the harmonic component other than the fundamental wave is the fundamental wave). (Value divided by the amplitude of), FIG. 20 (d) is a graph showing the value obtained by dividing the amplitude of the third harmonic by the amplitude of the fundamental wave. In all the waveform analysis results of FIG. 20, the gap between the disconnection 0 and the disconnection 1 is wide, and it is easy to determine the presence or absence of the disconnection. The long chain line in FIG. 20 shows a threshold value for determining the presence or absence of disconnection during driving of the vibrating actuator 27. The reason why the gap is widened is that the frequency characteristic of the drive voltage amplitude in FIG. 18 changes due to the presence or absence of disconnection near the third harmonic (F 3 ) due to the influence of the parallel resonance of the matching adjustment capacitor and the transformer. Because it is big. By setting the frequency of parallel resonance by the matching adjustment capacitor and the transformer in the vicinity of the low-order harmonics of the pulse signal in this way, it is possible to easily determine the presence or absence of disconnection.

また上記実施例と同様にあらかじめ断線によって発生する駆動電圧の振幅の特性を計測して分析結果の比較テーブルを作成しておくことで、振動型アクチュエータ27の駆動中に分析結果と比較テーブルを用いて断線の有無や断線数を判定することが可能である。 Further, as in the above embodiment, by measuring the characteristics of the amplitude of the drive voltage generated by the disconnection in advance and creating a comparison table of the analysis results, the analysis results and the comparison table can be used while the vibration type actuator 27 is being driven. It is possible to determine the presence or absence of disconnection and the number of disconnections.

図21は第2の実施例の振動型アクチュエータの駆動回路の第2の例を示す図である。図17に示した例では振動体1、2、3にトランス5、6、7とマッチング調整用コンデンサ24、25、26が並列に接続しているのに対し、振動体1、2、3にインダクタ20、21、22とマッチング調整用コンデンサ24、25、26が並列接続している。マッチング調整用コンデンサ24、25、26はインダクタ20、21、22と隣接して不図示の回路基板上に実装され、振動体1、2、3はこの回路基板とはコネクタを介してフレキシブル基板で接続される。フレキシブル基板が屈曲を繰り返す用途や折り曲げる用途ではフレキシブル基板の断線のリスクが高くなる。 FIG. 21 is a diagram showing a second example of the drive circuit of the vibration type actuator of the second embodiment. In the example shown in FIG. 17, the transformers 5, 6 and 7 and the matching adjusting capacitors 24, 25 and 26 are connected in parallel to the vibrating bodies 1, 2 and 3, whereas the vibrating bodies 1, 2 and 3 are connected in parallel. The inductors 20, 21 and 22 and the matching adjusting capacitors 24, 25 and 26 are connected in parallel. The matching adjustment capacitors 24, 25, and 26 are mounted on a circuit board (not shown) adjacent to the inductors 20, 21, and 22, and the vibrating bodies 1, 2, and 3 are flexible boards connected to the circuit board via a connector. Be connected. The risk of disconnection of the flexible substrate increases in applications where the flexible substrate is repeatedly bent or bent.

マッチング調整用コンデンサの静電容量値Cは、マッチング周波数をF、制動容量値をC、インダクタのインダクタンス値をLとすると、これらの関係は数式2で表される。振動体1、2、3、インダクタ20、21、22及びマッチング調整用コンデンサ24、25、26、の並直列回路は振動型アクチュエータ28を構成しており、矩形電圧生成手段12のパルス信号が波形整形手段11を介して印加される。振動型アクチュエータ28に流れる電流は抵抗13で電圧信号に変換され、振幅検出手段14に入力されている。各部の動作は実施例1と同じなので説明は省略する。 Assuming that the matching frequency is F 0 , the braking capacitance value is C 0 , and the inductor inductance value is L 0 , the capacitance value C 1 of the matching adjusting capacitor is expressed by Equation 2. The parallel series circuit of the vibrating bodies 1, 2, 3 and the inductors 20, 21, 22 and the matching adjusting capacitors 24, 25, 26 constitutes the vibrating actuator 28, and the pulse signal of the rectangular voltage generating means 12 has a waveform. It is applied via the shaping means 11. The current flowing through the vibration type actuator 28 is converted into a voltage signal by the resistance 13 and input to the amplitude detecting means 14. Since the operation of each part is the same as that of the first embodiment, the description thereof will be omitted.

また直列に接続する振動体の数が増えると、製造時にコネクタの差し込み不良等のリスクも増加する。差し込み不良も断線の一種であり、接触不良から完全にコネクタが脱落(断線)するまでの間で分析結果が断線0から断線1の状態に変化していく。その変化の過程で分析結果が閾値をよぎり、コネクタの差し込み不良等も検出することが可能である。 In addition, as the number of vibrating bodies connected in series increases, the risk of poor connector insertion during manufacturing also increases. Poor insertion is also a type of disconnection, and the analysis result changes from disconnection 0 to disconnection 1 during the period from poor contact to complete disconnection (disconnection) of the connector. In the process of the change, the analysis result crosses the threshold value, and it is possible to detect a connector insertion failure or the like.

また、上記説明では4つの波形分析手法を用いて説明したが波形によって出力が変化する方法であれば使用することが可能である。 Further, in the above description, the four waveform analysis methods have been used, but any method can be used as long as the output changes depending on the waveform.

尚、上記説明では駆動電圧として矩形電圧生成手段12の出力であるパルス信号を用いたが他の波形でも良い。三角波、鋸波、公知のD級アンプの出力であるPWM変調波であっても5次以下の比較的低次の高調波を多く含む波形であれば、断線による波形変化が比較的大きい為、断線の検知に利用可能である。 In the above description, the pulse signal which is the output of the rectangular voltage generation means 12 is used as the drive voltage, but other waveforms may be used. Even if it is a triangular wave, a sawtooth wave, or a PWM modulated wave that is the output of a known class D amplifier, if the waveform contains many relatively low-order harmonics of the 5th or lower order, the waveform change due to disconnection is relatively large. It can be used to detect disconnection.

図22は実施例3で用いる振動体の構成を示す図である。図22(a)の48は導電性材料で作られた矩形状の弾性体で、表面に接触体に接触する突起が2つ設けられている。49は弾性体48の一部をなし、これを加振する為の圧電体である。図22(b)は圧電体49に設けられた電極を示しており、電極31、32間は電気的に絶縁され、位相が独立して変化する2つの交流電圧が印加される。圧電体49の裏面は全面が電極となっており、電極31、32の一部に設けられた不図示のビアを介して表面から通電出来るように構成されている。 FIG. 22 is a diagram showing the configuration of the vibrating body used in the third embodiment. FIG. 48 in FIG. 22A is a rectangular elastic body made of a conductive material, and has two protrusions on the surface that come into contact with the contact body. 49 is a part of the elastic body 48, and is a piezoelectric body for vibrating the elastic body 48. FIG. 22B shows an electrode provided on the piezoelectric body 49, and the electrodes 31 and 32 are electrically insulated from each other, and two AC voltages whose phases change independently are applied. The entire back surface of the piezoelectric body 49 is an electrode, and is configured to be energized from the front surface through vias (not shown) provided on a part of the electrodes 31 and 32.

図23は弾性体48の振動モードを示す図である。図23(a)は、上記電極31と電極32に同相の交流電圧を印加した際に励起される振動モード(突き上げ振動モード)の振動形態で、図23(b)は逆相の交流電圧を印加した際に励起される振動モード(送り振動モード)の振動形態である。 FIG. 23 is a diagram showing a vibration mode of the elastic body 48. FIG. 23 (a) shows a vibration mode (push-up vibration mode) excited when an AC voltage of the same phase is applied to the electrodes 31 and 32, and FIG. 23 (b) shows an AC voltage of the opposite phase. It is a vibration form of a vibration mode (feed vibration mode) that is excited when applied.

即ち、印加する交流電圧の位相差を0°とすると、図23(a)のモードが励起され、位相差を180°とすると、図23(b)のモードが励起される。また、交流電圧の位相差を0°と180°の間(実際には0°から120°程度が使用される)にすると両方の振動モードが同時に励起され、弾性体48に設けられた突起に加圧接触された接触体が弾性体48の長方形の長手方向に移動する。 That is, when the phase difference of the applied AC voltage is 0 °, the mode of FIG. 23 (a) is excited, and when the phase difference is 180 °, the mode of FIG. 23 (b) is excited. Further, when the phase difference of the AC voltage is set between 0 ° and 180 ° (actually, about 0 ° to 120 ° is used), both vibration modes are excited at the same time, and the protrusions provided on the elastic body 48 are excited. The contact body in pressure contact moves in the longitudinal direction of the rectangle of the elastic body 48.

図24は本実施例の直動型の振動型アクチュエータの構成を示す図である。具体的には、上下に振動体36、37の突起部を互いに向い合せに配置し、同様に直線上に振動体38まで振動体を上下ペアで5セット配置し、合計10個の振動体で上下方向から共通の接触体50を挟み矢印の方向に移動するよう構成したものである。 FIG. 24 is a diagram showing a configuration of a direct-acting vibration type actuator of this embodiment. Specifically, the protrusions of the vibrating bodies 36 and 37 are arranged vertically facing each other, and similarly, 5 sets of vibrating bodies are arranged in pairs up and down up to the vibrating body 38 on a straight line, for a total of 10 vibrating bodies. It is configured to sandwich the common contact body 50 from the vertical direction and move in the direction of the arrow.

図25は第3の実施例の振動型アクチュエータの駆動回路を示す図である。第1及び第2の実施例の振動型アクチュエータの振動体の数が3個で駆動電圧の相数が1であったが、本実施例では振動体の数が10個で2相の駆動電圧で駆動する。10個の振動体36、37、…、38は不図示の導電性の弾性体がグランド電位に接続されている。 FIG. 25 is a diagram showing a drive circuit of the vibration type actuator of the third embodiment. The number of vibrating bodies of the vibrating actuators of the first and second embodiments was three and the number of phases of the driving voltage was one, but in this embodiment, the number of vibrating bodies is ten and the driving voltage of two phases. Driven by. In the ten vibrating bodies 36, 37, ..., 38, a conductive elastic body (not shown) is connected to the ground potential.

振動体36には圧電体49に設けられた電極30、31が設けられトランス32、33にマッチング調整用コンデンサ34、35と共にそれぞれ並列に接続されている。トランス32の1次側にはトランス52、…、53の9個のトランスの1次側が直列に接続され、トランス52、…、53の2次側それぞれに振動体37、…、38の9個の振動体の一方の電極が並列接続されている。またトランス33の1次側には同様に9個のトランス54、…、55の1次側が直列に接続され、トランス54、…、55の2次側それぞれに振動体37、…、38の9個の振動体の他方の電極が並列接続されている。また10個の振動体36、37、…、38にはトランスと共に並列にマッチング調整用コンデンサが接続され、これら振動体、マッチング調整用コンデンサ、トランスからなる直列に接続された10組のユニットで振動型アクチュエータ51を構成している。 The vibrating body 36 is provided with electrodes 30 and 31 provided on the piezoelectric body 49, and is connected to the transformers 32 and 33 together with the matching adjusting capacitors 34 and 35 in parallel, respectively. The primary side of the nine transformers 52, ..., 53 is connected in series to the primary side of the transformer 32, and the nine vibrating bodies 37, ..., 38 are connected to the secondary sides of the transformers 52, ..., 53, respectively. One electrode of the vibrating body is connected in parallel. Similarly, nine transformers 54, ..., 55 are connected in series to the primary side of the transformer 33, and the vibrating bodies 37, ..., 38 9 are connected to the secondary sides of the transformers 54, ..., 55, respectively. The other electrodes of the vibrating bodies are connected in parallel. Further, a matching adjusting capacitor is connected in parallel with a transformer to the 10 vibrating bodies 36, 37, ..., 38, and vibration is performed by 10 sets of units connected in series including these vibrating bodies, a matching adjusting capacitor, and a transformer. It constitutes a type actuator 51.

40は2相のパルス信号を出力する矩形電圧生成手段であり、インダクタとコンデンサの直列回路で構成される波形整形手段11、39を介して駆動電圧を振動型アクチュエータ51に印加している。41及び42は振動型アクチュエータ51に流れる2相の電流をそれぞれ計測する為の抵抗で、振動体36、37、…、38の振動速度に比例した電圧を検出している。 Reference numeral 40 denotes a rectangular voltage generating means for outputting a two-phase pulse signal, and a driving voltage is applied to the vibration type actuator 51 via the waveform shaping means 11 and 39 composed of a series circuit of an inductor and a capacitor. 41 and 42 are resistors for measuring the two-phase currents flowing through the vibrating actuator 51, respectively, and detect voltages proportional to the vibration speeds of the vibrating bodies 36, 37, ..., 38.

43は抵抗41、42で検出された振動速度を検出する為のA/D変換器で、CPU15に2相の電流信号(CurA、CurB)を時系列データとして入力している。CPU15は不図示の指令手段からの位置指令、A/D変換器43からの2相の電流信号、後述する駆動信号分析手段47の分析結果に基づいて位置指令、パルス幅指令、周波数指令を決定し、出力している。パルス幅指令及び周波数指令は矩形電圧生成手段40に入力され、出力する2相のパルス信号の周波数とパルス幅を設定している。CPU15の動作の詳細な説明は後述する。 Reference numeral 43 denotes an A / D converter for detecting the vibration speed detected by the resistors 41 and 42, and a two-phase current signal (CurA, CurB) is input to the CPU 15 as time series data. The CPU 15 determines a position command, a pulse width command, and a frequency command based on a position command from a command means (not shown), a two-phase current signal from the A / D converter 43, and an analysis result of a drive signal analysis means 47 described later. And output. The pulse width command and the frequency command are input to the rectangular voltage generating means 40, and the frequency and the pulse width of the two-phase pulse signal to be output are set. A detailed description of the operation of the CPU 15 will be described later.

45は共通の接触体50の位置を検出する為の公知のリニアエンコーダであり、46はCPU15からの位置指令とリニアエンコーダ45が出力する位置信号の差を出力する位置比較手段である。44は位置比較手段46の出力に応じて矩形電圧生成手段40に位相差指令を出力する位置制御手段であり、上記2相のパルス信号の位相差を設定して接触体50の移動方向と速度を制御している。47は振動型アクチュエータ51の2相の駆動電圧の波形を分析する駆動信号分析手段であって、2相の駆動電圧の波形分析をそれぞれ行い、分析結果を出力している。 Reference numeral 45 is a known linear encoder for detecting the position of the common contact body 50, and 46 is a position comparison means for outputting the difference between the position command from the CPU 15 and the position signal output by the linear encoder 45. Reference numeral 44 denotes a position control means for outputting a phase difference command to the rectangular voltage generation means 40 according to the output of the position comparison means 46, and setting the phase difference of the two-phase pulse signals to move the moving direction and speed of the contact body 50. Is in control. Reference numeral 47 denotes a drive signal analysis means for analyzing the waveform of the two-phase drive voltage of the vibration type actuator 51, performing waveform analysis of the two-phase drive voltage and outputting the analysis result.

図26は図25の振動型アクチュエータ51の振動体の接続が断線した時の駆動電圧の振幅の周波数特性の変化を示している。矩形電圧生成手段40が正弦波を出力したと仮定して周波数を掃引し駆動電圧の振幅を測定したものである。実線が断線無し、点線が断線数1から10までの特性を示している。Fは通常駆動中のある駆動電圧の基本波の周波数、F、F、F、Fは2次から5次までの高調波の周波数示している。図26の各高調波次数の周波数の電圧振幅を比較すると、断線の数によって次数間の振幅の比が異なっており波形が変化する事がわかる。特に3次の高調波の周波数(F)付近は断線の有無による駆動電圧振幅の変化が大きい事を示している。また駆動電圧の3次の高調波の周波数Fが断線無しの時の周波数特性の谷の最下点の周波数(290kHz付近)の近傍である為、3次の高調波の振幅が断線時に大きく変化しているため断線時の波形変化を大きくしている。 FIG. 26 shows a change in the frequency characteristic of the amplitude of the drive voltage when the connection of the vibrating body of the vibrating actuator 51 of FIG. 25 is disconnected. The frequency is swept and the amplitude of the drive voltage is measured on the assumption that the rectangular voltage generating means 40 outputs a sine wave. The solid line shows the characteristics without disconnection, and the dotted line shows the characteristics with the number of disconnections from 1 to 10. F 1 indicates the frequency of the fundamental wave of a certain drive voltage during normal driving, and F 2 , F 3 , F 4 , and F 5 indicate the frequencies of harmonics from the second order to the fifth order. Comparing the voltage amplitudes of the frequencies of each harmonic order in FIG. 26, it can be seen that the ratio of the amplitudes between the orders differs depending on the number of disconnections, and the waveform changes. In particular, it is shown that the change in the drive voltage amplitude is large depending on the presence or absence of disconnection near the frequency (F 3 ) of the third harmonic. Further, since the frequency F3 of the third harmonic of the drive voltage is near the frequency (near 290 kHz) of the lowest point of the valley of the frequency characteristic when there is no disconnection, the amplitude of the third harmonic is large at the time of disconnection. Since it is changing, the waveform change at the time of disconnection is increased.

図27に駆動電圧の波形の変化を示す。実線が断線無し、破線が1つの振動体が断線、一点鎖線が2つの振動体が断線、点線が全て断線した場合である。断線が発生すると正弦波の頂点がつぶれ、断線の数の増加に応じて正弦波が矩形波に近付いていることがわかる。 FIG. 27 shows the change in the waveform of the drive voltage. The solid line is the case where there is no disconnection, the broken line is the case where one vibrating body is broken, the alternate long and short dash line is the case where the two vibrating bodies are broken, and the dotted line is all broken. It can be seen that when a disconnection occurs, the apex of the sine wave collapses, and the sine wave approaches a square wave as the number of disconnections increases.

図28は矩形電圧生成手段40の出力するパルス信号のデューティが50%の時の駆動信号分析手段47による駆動電圧の波形分析結果の例を示している。図28(a)は波形率(絶対値の平均値/実効値)、図28(b)は実効値―(絶対値の平均値)、図28(c)は全高調波歪率、図28(d)は3次の高調波の振幅を基本波の振幅で割った値である。 FIG. 28 shows an example of the waveform analysis result of the drive voltage by the drive signal analysis means 47 when the duty of the pulse signal output by the rectangular voltage generation means 40 is 50%. 28 (a) shows the waveform factor (mean value / effective value of absolute value), FIG. 28 (b) shows the effective value- (mean value of absolute value), and FIG. 28 (c) shows the total harmonic distortion factor. (D) is a value obtained by dividing the amplitude of the third-order harmonic by the amplitude of the fundamental wave.

図28のすべての波形分析結果において断線0と断線1間の間隙が広く断線の有無の判定が容易である。図28の長鎖線は振動型アクチュエータ51の駆動中に断線の有無を判定する為の閾値を示している。10個の振動体の1つが断線しただけであっても十分断線の有無を判定可能であることがわかる。 In all the waveform analysis results of FIG. 28, the gap between the disconnection 0 and the disconnection 1 is wide, and it is easy to determine the presence or absence of the disconnection. The long chain line in FIG. 28 shows a threshold value for determining the presence or absence of disconnection during driving of the vibrating actuator 51. It can be seen that the presence or absence of disconnection can be sufficiently determined even if only one of the 10 vibrating bodies is disconnected.

ではここでCPU15の詳細な動作についてフローチャートを用いて説明する。CPU15はA/D変換器43からの2相の電流信号に基づく振動振幅制御と、駆動信号分析手段47の波形分析結果に基づく振動型アクチュエータ51の駆動・停止等の動作の制御を行っている。まず波形分析結果に基づく振動型アクチュエータ51の駆動・停止等の動作について説明する。 Here, the detailed operation of the CPU 15 will be described with reference to the flowchart. The CPU 15 controls the vibration amplitude control based on the two-phase current signal from the A / D converter 43, and controls the operation such as driving / stopping of the vibration type actuator 51 based on the waveform analysis result of the drive signal analysis means 47. .. First, operations such as driving and stopping of the vibration type actuator 51 based on the waveform analysis result will be described.

本実施形態にかかる振動型駆動装置の制御方法は、以下のものである。すなわち制御部が指令信号を駆動部へ出力し、駆動部が出力した駆動信号によって2つ以上の振動体が連なる振動体ユニットが振動する。それとともに、駆動信号を分析して分析結果を出力し、分析結果に基づき振動体に連結する配線の断線の有無を判定するものである。 The control method of the vibration type drive device according to this embodiment is as follows. That is, the control unit outputs a command signal to the drive unit, and the drive signal output by the drive unit vibrates the vibrating body unit in which two or more vibrating bodies are connected. At the same time, the drive signal is analyzed, the analysis result is output, and based on the analysis result, it is determined whether or not the wiring connected to the vibrating body is broken.

図29は断線結果によって振動型アクチュエータ51の異なる駆動シーケンスを実行するCPU15の動作の例を示すフローチャートである。接触体50の位置制御動作のシーケンスを示しており、断線の数(N)によって異なる動作シーケンスを選択しており、フローチャートを用いて各動作シーケンスについて説明する。位置制御動作は不図示の指令手段から新たな位置指令POS_Cが入力されると開始する。最初にそれまでに発生した振動子の断線数Nを確認する。断線数Nが2以上なら断線状態表示用LEDを赤に点灯して位置制御動作を終了する。断線数Nが1以下なら、振動型アクチュエータ51に印加する駆動電圧を生成する為に、パルス幅指令PW_Cを所定のパルス幅PW0に、周波数指令Frqを初期周波数Fに設定する。そして振幅指令AMP_Cを所定の振幅AMP0に設定し、駆動タイマーTを0に初期化する。すると矩形電圧生成手段40からパルス信号が出力され、振動型アクチュエータ51の移動が開始する。次に波形分析、断線判定、振動振幅制御を行う。振動振幅制御の詳細については後述する。断線判定によって決定した断線数Nが0であれば断線状態表示用LEDを緑に点灯し、そのまま駆動タイマーTがT1になるか断線数Nが1以上になるまで波形分析、断線判定、振動振幅制御を繰り返す。その間に不図示の指令手段から位置指令POS_Cが更新されれば駆動タイマーTを0に初期化して駆動タイマーTがT1になるまで波形分析、断線判定、振動振幅制御を繰り返す。駆動タイマーTがT1になったらパルス幅指令PW_Cを0にし、振動振幅指令AMP_Cも0にして位置制御動作を終了する。 FIG. 29 is a flowchart showing an example of the operation of the CPU 15 that executes different drive sequences of the vibration type actuator 51 depending on the disconnection result. The sequence of the position control operation of the contact body 50 is shown, different operation sequences are selected depending on the number of disconnections (N), and each operation sequence will be described with reference to a flowchart. The position control operation starts when a new position command POS_C is input from a command means (not shown). First, check the number of disconnection N of the oscillator that has occurred so far. If the number of disconnections N is 2 or more, the LED for displaying the disconnection status is lit in red to end the position control operation. If the number of disconnections N is 1 or less, the pulse width command PW_C is set to the predetermined pulse width PW0 and the frequency command Frq is set to the initial frequency F0 in order to generate the drive voltage applied to the vibrating actuator 51. Then, the amplitude command AMP_C is set to a predetermined amplitude AMP0, and the drive timer T is initialized to 0. Then, a pulse signal is output from the rectangular voltage generating means 40, and the vibration type actuator 51 starts moving. Next, waveform analysis, disconnection determination, and vibration amplitude control are performed. The details of vibration amplitude control will be described later. If the number of disconnections N determined by the disconnection determination is 0, the LED for displaying the disconnection status is lit in green, and waveform analysis, disconnection determination, and vibration amplitude are performed until the drive timer T becomes T1 or the disconnection number N becomes 1 or more. Repeat control. During that time, if the position command POS_C is updated from the command means (not shown), the drive timer T is initialized to 0, and waveform analysis, disconnection determination, and vibration amplitude control are repeated until the drive timer T becomes T1. When the drive timer T becomes T1, the pulse width command PW_C is set to 0, the vibration amplitude command AMP_C is also set to 0, and the position control operation is terminated.

この駆動タイマーTがT1になるまでの間に断線数Nが1以上になったら断線数Nによって異なる動作が実行される。断線数Nが1なら断線状態表示用LEDを黄に点灯して断線数Nが0の時と同じ動作を継続する。断線数Nが2ならば断線状態表示用LEDを橙に点灯し、位置指令POS_Cの更新は行わないが駆動タイマーTがT1になるまで断線数Nが0の場合と同じ動作が継続される。断線数Nが3以上なら断線状態表示用LEDを赤に点灯してパルス幅指令PW_Cを0にし、振動振幅指令AMP_Cも0にして位置制御動作を終了する。 If the number of disconnections N becomes 1 or more before the drive timer T becomes T1, different operations are executed depending on the number of disconnections N. If the number of disconnections N is 1, the LED for displaying the disconnection status is turned on in yellow, and the same operation as when the number of disconnections N is 0 is continued. If the number of disconnections N is 2, the LED for displaying the disconnection status is lit in orange, and the position command POS_C is not updated, but the same operation as when the number of disconnections N is 0 is continued until the drive timer T reaches T1. If the number of disconnections N is 3 or more, the LED for displaying the disconnection state is turned on in red, the pulse width command PW_C is set to 0, and the vibration amplitude command AMP_C is also set to 0 to end the position control operation.

振動型アクチュエータ51のように振動体ユニットを複数直列に接続した振動型アクチュエータはいくつかの振動体が断線しても駆動を継続可能な場合もあるので、アプリケーションによっては駆動を継続する場合もある。また、断線数が少なくても駆動を継続すると周辺機構にダメージが蓄積していくので、駆動を継続する場合でも累積駆動時間が一定以上になったら駆動禁止にする等の対応をする場合もある。 A vibrating actuator such as the vibrating actuator 51 in which a plurality of vibrating body units are connected in series may be able to continue driving even if some vibrating bodies are disconnected, so that driving may be continued depending on the application. .. In addition, even if the number of disconnections is small, damage will accumulate in the peripheral mechanism if driving is continued, so even if driving is continued, if the cumulative driving time exceeds a certain level, driving may be prohibited. ..

次に波形分析、断線判定、振動振幅制御の動作について説明する。 Next, the operations of waveform analysis, disconnection determination, and vibration amplitude control will be described.

図30は波形分析、断線判定、振動振幅制御動作のフローチャートである。最初に割り込み処理によって別途A/D変換器43から入力された2相の時系列の電流信号CurA(t)とCurB(t)を加算して信号Cur(t)を生成する。これは振動体の突き上げ振動モードの振動速度(振動振幅)に相当する。次にローパスフィルタ演算によって1次(基本波)の信号を抽出して1次の振幅Amp(1)を求める。次に駆動信号分析手段47から入力された図28の分析手法に基づく分析結果(例えば波形率)から2相それぞれの断線数を求め合計の断線数Nを求める。次に振動振幅指令Amp_Cと1次の振幅Amp(1)を比較してAmp(1)がAmp_Cより小さいなら周波数指令FrqからdFだけ周波数を低く設定する。Amp(1)がAmp_Cより大きいなら周波数指令FrqにdFだけ周波数を高く設定する。また周波数指令は最小周波数Frq_minと最大周波数Frq_max内に収まるように制限される。 FIG. 30 is a flowchart of waveform analysis, disconnection determination, and vibration amplitude control operation. First, the two-phase time-series current signals CurA (t) and CurB (t) separately input from the A / D converter 43 by interrupt processing are added to generate the signal Cur (t). This corresponds to the vibration velocity (vibration amplitude) of the push-up vibration mode of the vibrating body. Next, a first-order (fundamental wave) signal is extracted by a low-pass filter operation to obtain a first-order amplitude Amp (1). Next, the number of breaks in each of the two phases is obtained from the analysis result (for example, waveform ratio) based on the analysis method of FIG. 28 input from the drive signal analysis means 47, and the total number of breaks N is obtained. Next, the vibration amplitude command Amp_C and the first-order amplitude Amp (1) are compared, and if Amp (1) is smaller than Amp_C, the frequency is set lower by dF from the frequency command Frq. If Amp (1) is larger than Amp_C, the frequency is set higher by dF in the frequency command Frq. Further, the frequency command is limited to be within the minimum frequency Frq_min and the maximum frequency Frq_max.

この様にして振動型アクチュエータ51の突き上げ振動モードの振動振幅は振動振幅指令Amp_Cに制御され、接触体50と振動体間の接触状態を所望の状態に保っている。尚、本実施例では2相の駆動電圧の波形分析を個別に行っているが、駆動電圧を加算した信号を元に波形分析しても良い。 In this way, the vibration amplitude of the push-up vibration mode of the vibration type actuator 51 is controlled by the vibration amplitude command Amp_C, and the contact state between the contact body 50 and the vibrating body is maintained in a desired state. In this embodiment, the waveform analysis of the two-phase drive voltage is performed individually, but the waveform analysis may be performed based on the signal to which the drive voltage is added.

また、上記説明では4つの波形分析手法を用いて説明したが波形によって出力が変化する方法であれば使用することが可能である。 Further, in the above description, the four waveform analysis methods have been used, but any method can be used as long as the output changes depending on the waveform.

尚、上記説明では駆動電圧として矩形電圧生成手段12の出力であるパルス信号を用いたが他の波形でも良い。三角波、鋸波、公知のD級アンプの出力であるPWM変調波であっても5次以下の比較的低次の高調波を多く含む波形であれば、断線による波形変化が比較的大きい為、断線の検知に利用可能である。 In the above description, the pulse signal which is the output of the rectangular voltage generation means 12 is used as the drive voltage, but other waveforms may be used. Even if it is a triangular wave, a sawtooth wave, or a PWM modulated wave that is the output of a known class D amplifier, if the waveform contains many relatively low-order harmonics of the 5th or lower order, the waveform change due to disconnection is relatively large. It can be used to detect disconnection.

上記実施例は駆動電圧の波形を分析する事で振動型アクチュエータの振動体の断線を検知したが、振動型アクチュエータへの流入電流の波形を分析する事でも断線を検知可能である。図31は図25の振動型アクチュエータの駆動回路の駆動信号分析手段47を駆動電圧ではなく抵抗41、42の端子電圧(振動型アクチュエータへの流入電流)の波形を分析するように変更したものである。各部の動作の説明は実施例3と同じなので説明は省略し、波形分析動作について説明する。 In the above embodiment, the disconnection of the vibrating body of the vibrating actuator is detected by analyzing the waveform of the drive voltage, but the disconnection can also be detected by analyzing the waveform of the inflow current to the vibrating actuator. In FIG. 31, the drive signal analysis means 47 of the drive circuit of the vibration type actuator of FIG. 25 is modified so as to analyze the waveform of the terminal voltage (inflow current to the vibration type actuator) of the resistors 41 and 42 instead of the drive voltage. be. Since the description of the operation of each part is the same as that of the third embodiment, the description is omitted and the waveform analysis operation will be described.

図32は図31の振動型アクチュエータ51の振動体の接続が断線した時の抵抗41又は抵抗42の端子電圧(振動型アクチュエータへの流入電流)の振幅の周波数特性の変化を示している。実線が断線無し、点線が断線数1から10までの特性を示している。Fは通常駆動中のある駆動電圧波形の基本波の周波数、F、F、F、Fは2次から5次までの高調波の周波数示している。図32の各高調波次数の周波数の流入電流の振幅を比較すると、断線の数によって次数間の振幅の比が異なり波形が変化している事がわかる。特に3次の高調波の周波数(F)付近は断線の有無による流入電流振幅の変化が大きい事を示している。図26の駆動電圧振幅の特性と比較して特徴的なのが310kHz付近の断線の数によらずに一致する負のピーク特性である。これは振動体と並列に接続したトランスの2次側とマッチング調整用コンデンサによる並列共振によって生じている。 FIG. 32 shows a change in the frequency characteristic of the amplitude of the terminal voltage (current flowing into the vibrating actuator) of the resistor 41 or the resistor 42 when the connection of the vibrating body of the vibrating actuator 51 of FIG. 31 is disconnected. The solid line shows the characteristics without disconnection, and the dotted line shows the characteristics with the number of disconnections from 1 to 10. F 1 indicates the frequency of the fundamental wave of a certain drive voltage waveform during normal driving, and F 2 , F 3 , F 4 , and F 5 indicate the frequencies of harmonics from the second order to the fifth order. Comparing the amplitudes of the inflow currents at the frequencies of each harmonic order in FIG. 32, it can be seen that the amplitude ratio between the orders differs depending on the number of disconnections and the waveform changes. In particular, it is shown that the change in the inflow current amplitude is large depending on the presence or absence of disconnection near the frequency (F 3 ) of the third harmonic. Compared with the characteristics of the drive voltage amplitude in FIG. 26, the characteristic is the negative peak characteristic that matches regardless of the number of disconnections near 310 kHz. This is caused by the parallel resonance of the secondary side of the transformer connected in parallel with the vibrating body and the matching adjusting capacitor.

図33は矩形電圧生成手段40の出力するパルス信号のデューティが50%の時の駆動信号分析手段47による振動型アクチュエータ51への流入電流の波形分析結果の例を示している。図33(a)は波形率(絶対値の平均値/実効値)、図33(b)は実効値―(絶対値の平均値)、図33(c)は全高調波歪率、図33(d)は3次の高調波の振幅を基本波の振幅で割った値である。 FIG. 33 shows an example of the waveform analysis result of the inflow current to the vibration type actuator 51 by the drive signal analysis means 47 when the duty of the pulse signal output by the rectangular voltage generation means 40 is 50%. 33 (a) is the waveform factor (mean value / effective value of absolute value), FIG. 33 (b) is the effective value- (mean value of absolute value), FIG. 33 (c) is the total harmonic distortion factor, and FIG. 33. (D) is a value obtained by dividing the amplitude of the third-order harmonic by the amplitude of the fundamental wave.

図33のすべての波形分析結果において断線0と断線1間の断線の有無の判定は可能であるが、分析結果が周波数によって値が大きく変化するので、駆動周波数によって断線判定の閾値を変える必要がある。あらかじめ断線によって発生する振動型アクチュエータへの流入電流の振幅の特性を計測して分析結果の比較テーブルを作成しておく事が必要である。そうすることで上記実施例と同様に振動型アクチュエータ51の駆動中に分析結果と比較テーブルを用いて断線の有無や断線数を判定することが出来る。 Although it is possible to determine the presence or absence of disconnection between disconnection 0 and disconnection 1 in all the waveform analysis results of FIG. 33, the value of the analysis result changes greatly depending on the frequency, so it is necessary to change the threshold value for disconnection determination depending on the drive frequency. be. It is necessary to measure the characteristics of the amplitude of the inflow current to the vibrating actuator generated by the disconnection in advance and create a comparison table of the analysis results. By doing so, it is possible to determine the presence or absence of disconnection and the number of disconnections by using the analysis result and the comparison table while driving the vibration type actuator 51 as in the above embodiment.

断線結果に応じて異なるシーケンスで駆動・停止を制御するCPU15の動作は図29のフローチャートに従っており、上記説明と同じなので説明は省略する。 The operation of the CPU 15 that controls drive / stop in different sequences according to the disconnection result follows the flowchart of FIG. 29 and is the same as the above description, so the description thereof will be omitted.

次に波形分析、断線判定、振動振幅制御の動作について説明する。図34は波形分析、断線判定、振動振幅制御動作のフローチャートである。最初に割り込み処理によって別途A/D変換器43から入力された2相の時系列の電流信号CurA(t)とCurB(t)を加算して信号Cur(t)を生成する。これは振動体の突き上げ振動モードの振動速度(振動振幅)に相当する。次にバンドパスフィルタ演算によって1次(基本波)と3次の高調波信号を抽出して1次の振幅Amp(1)と3次の振幅Amp(3)を求める。次にAmp(3)/Amp(1)を求め、周波数指令Frqとあらかじめ求めてあった図31(d)の関係から断線数Nを求める。次に振動振幅指令Amp_Cと1次の振幅Amp(1)を比較してAmp(1)がAmp_Cより小さいなら周波数指令FrqからdFだけ周波数を低く設定する。Amp(1)がAmp_Cより大きいなら周波数指令FrqにdFだけ周波数を高く設定する。また周波数指令は最小周波数Frq_minと最大周波数Frq_max内に収まるように制限される。この様にして振動型アクチュエータ51の突き上げ振動モードの振動振幅は振動振幅指令Amp_Cに制御される。 Next, the operations of waveform analysis, disconnection determination, and vibration amplitude control will be described. FIG. 34 is a flowchart of waveform analysis, disconnection determination, and vibration amplitude control operation. First, the two-phase time-series current signals CurA (t) and CurB (t) separately input from the A / D converter 43 by interrupt processing are added to generate the signal Cur (t). This corresponds to the vibration velocity (vibration amplitude) of the push-up vibration mode of the vibrating body. Next, the first-order (fundamental wave) and third-order harmonic signals are extracted by bandpass filter calculation to obtain the first-order amplitude Amp (1) and the third-order amplitude Amp (3). Next, Amp (3) / Amp (1) is obtained, and the number of disconnections N is obtained from the relationship between the frequency command Frq and FIG. 31 (d) obtained in advance. Next, the vibration amplitude command Amp_C and the first-order amplitude Amp (1) are compared, and if Amp (1) is smaller than Amp_C, the frequency is set lower by dF from the frequency command Frq. If Amp (1) is larger than Amp_C, the frequency is set higher by dF in the frequency command Frq. Further, the frequency command is limited to be within the minimum frequency Frq_min and the maximum frequency Frq_max. In this way, the vibration amplitude of the push-up vibration mode of the vibration type actuator 51 is controlled by the vibration amplitude command Amp_C.

このように本実施例は振動振幅の制御と断線分析の両方とも振動型アクチュエータ51に流れる電流信号を用いているので回路規模を小さくすることが出来る。 As described above, in this embodiment, since the current signal flowing through the vibration type actuator 51 is used for both the vibration amplitude control and the disconnection analysis, the circuit scale can be reduced.

このように前記分析結果は、駆動電圧の波形あるいは前記振動体ユニットに流入する電流の波形を分析した結果である。 As described above, the analysis result is the result of analyzing the waveform of the drive voltage or the waveform of the current flowing into the vibrating body unit.

また、上記説明では4つの波形分析手法を用いて説明したが波形によって出力が変化する方法であれば使用することが可能である。 Further, in the above description, the four waveform analysis methods have been used, but any method can be used as long as the output changes depending on the waveform.

また上記説明では振動体には圧電体が接合されているとしたが、振動体自体を圧電体で構築しても良い。また圧電体は積層圧電体であっても良い。 Further, in the above description, it is assumed that the piezoelectric body is bonded to the vibrating body, but the vibrating body itself may be constructed of the piezoelectric body. Further, the piezoelectric body may be a laminated piezoelectric body.

上記の振動型駆動装置はさまざまな機器へと適用可能である。 The above-mentioned vibration type drive device can be applied to various devices.

1、2、3、36、37、38、48 振動体
4 円柱シャフト
5、6、7、32、33、52、53、54、55 トランス
10、23、27、28、51 振動型アクチュエータ
11、19 波形整形手段
12、40 矩形電圧生成手段
13、41、42 抵抗
14 振幅検出手段
15 CPU
16 振幅比較手段
17 振幅制御手段
18、39、47 駆動信号分析手段
20、21、22 インダクタ
24、25、26、34、35 マッチング調整用コンデンサ
43 A/D変換器
44 位置制御手段
46 位置比較手段
49 圧電体
50 共通の接触体

1, 2, 3, 36, 37, 38, 48 Vibrating body 4 Cylindrical shaft 5, 6, 7, 32, 33, 52, 53, 54, 55 Transformer 10, 23, 27, 28, 51 Vibration type actuator 11, 19 Waveform shaping means 12, 40 Rectangular voltage generating means 13, 41, 42 Resistance 14 Vibration detecting means 15 CPU
16 Amplitude comparison means 17 Amplitude control means 18, 39, 47 Drive signal analysis means 20, 21, 22 Inductors 24, 25, 26, 34, 35 Matching adjustment capacitors 43 A / D converter 44 Position control means 46 Position comparison means 49 Piezoelectric body 50 Common contact body

Claims (22)

指令信号を出力する制御部と、
前記指令信号に基づき駆動信号を出力する駆動部と、
前記駆動信号に基づき振動する2つ以上の振動体が連なる振動体ユニットと、
前記駆動信号を分析して分析結果を出力する駆動信号分析手段と、前記分析結果に基づき前記振動体に連結する配線の断線の有無を判定する判定手段を備える振動型駆動装置。
A control unit that outputs a command signal and
A drive unit that outputs a drive signal based on the command signal,
A vibrating body unit in which two or more vibrating bodies vibrating based on the drive signal are connected,
A vibration type drive device including a drive signal analysis means that analyzes the drive signal and outputs an analysis result, and a determination means that determines whether or not the wiring connected to the vibrating body is broken based on the analysis result.
1次側が直列に接続された複数のトランスの2次側にそれぞれ並列に振動体を接続した前記振動体ユニットを備え、前記複数のトランスの1次側は、前記駆動信号が印加されるように構成されており、
前記駆動部は所定の電圧と周波数を有するパルス信号を生成する矩形電圧生成手段と、前記矩形電圧生成手段と前記振動体ユニットとの間に挿入される波形整形手段を備える請求項1記載の振動型駆動装置。
The primary side is provided with the vibrating body unit in which a vibrating body is connected in parallel to the secondary side of a plurality of transformers connected in series, and the driving signal is applied to the primary side of the plurality of transformers. It is composed and
The vibration according to claim 1, wherein the driving unit includes a rectangular voltage generating means for generating a pulse signal having a predetermined voltage and frequency, and a waveform shaping means inserted between the rectangular voltage generating means and the vibrating body unit. Type drive device.
並列に接続された一対のインダクタと振動体が、直列に複数対が連なる前記振動体ユニットを備え、
前記駆動部は所定の電圧と周波数を有するパルス信号を生成する矩形電圧生成手段と、前記矩形電圧生成手段と前記振動体ユニットとの間に挿入される波形整形手段を備える請求項1記載の振動型駆動装置。
A pair of inductors and a vibrating body connected in parallel are provided with the vibrating body unit in which a plurality of pairs are connected in series.
The vibration according to claim 1, wherein the driving unit includes a rectangular voltage generating means for generating a pulse signal having a predetermined voltage and frequency, and a waveform shaping means inserted between the rectangular voltage generating means and the vibrating body unit. Type drive device.
前記駆動信号分析手段は前記波形整形手段の出力電圧又は出力電流の波形を分析し、波形率、高調波歪率、実効値と絶対値の平均値との差、高調波振幅のいずれかに応じた値を検出する事を特徴とする請求項2または3に記載の振動型駆動装置。 The drive signal analysis means analyzes the waveform of the output voltage or output current of the waveform shaping means, and responds to any of the waveform rate, the harmonic distortion rate, the difference between the effective value and the average value of the absolute value, and the harmonic amplitude. The vibration type drive device according to claim 2 or 3, wherein the value is detected. 前記駆動信号の高調波の周波数が、前記振動体が断線していない状態において波形整形手段の出力電圧又は出力電流の周波数特性の谷の最下点の近傍であるよう構成されている請求項2乃至4のいずれか1項記載の振動型駆動装置。 2. The vibration type drive device according to any one of 4 to 4. 前記波形整形手段はインダクタとコンデンサの直列回路又はインダクタである請求項2乃至5のいずれか1項記載の振動型駆動装置。 The vibration type drive device according to any one of claims 2 to 5, wherein the waveform shaping means is a series circuit of an inductor and a capacitor or an inductor. 前記インダクタに対し、さらに並列にコンデンサを接続したことを特徴とする請求項2記載の振動型駆動装置。 The vibration type drive device according to claim 2, wherein a capacitor is further connected in parallel with the inductor. 前記トランスの2次側に並列にコンデンサを接続した請求項3記載の振動型駆動装置。 The vibration type drive device according to claim 3, wherein a capacitor is connected in parallel on the secondary side of the transformer. 前記判定手段は所定の閾値によって断線の有無を判定する請求項1乃至8のいずれか1項記載の振動型駆動装置。 The vibration type drive device according to any one of claims 1 to 8, wherein the determination means determines the presence or absence of disconnection by a predetermined threshold value. 前記判定手段はあらかじめ断線数に応じて得られる分析結果のテーブルに基づいて断線の数を判定する請求項1乃至8のいずれか1項記載の振動型駆動装置。 The vibration type drive device according to any one of claims 1 to 8, wherein the determination means determines the number of disconnections based on a table of analysis results obtained in advance according to the number of disconnections. 前記振動体ユニットに接する共通の接触体を有する請求項1乃至9のいずれか1項記載の振動型駆動装置。 The vibration type drive device according to any one of claims 1 to 9, which has a common contact body in contact with the vibrating body unit. 前記接触体は円柱シャフトであり、前記円柱シャフトの円周に略均等に配置された3つの振動体を備えている請求項11に記載の振動型駆動装置。 The vibrating drive device according to claim 11, wherein the contact body is a cylindrical shaft and includes three vibrating bodies arranged substantially evenly on the circumference of the cylindrical shaft. 前記接触体および前記振動体を収める中空ケースをさらに備える請求項11または12に記載の振動型駆動装置。 The vibrating drive device according to claim 11 or 12, further comprising a hollow case for accommodating the contact body and the vibrating body. 前記振動体は2つの突起を有する矩形状の弾性体と、圧電体を備える請求項1乃至13のいずれか1項記載の振動型駆動装置 The vibrating drive device according to any one of claims 1 to 13, wherein the vibrating body includes a rectangular elastic body having two protrusions and a piezoelectric body. 制御部が指令信号を駆動部へ出力し、前記指令信号に基づき前記駆動部が出力した駆動信号によって2つ以上の振動体が連なる振動体ユニットが振動するとともに、前記駆動信号を分析して分析結果を出力し、前記分析結果に基づき前記振動体に連結する配線の断線の有無を判定する振動型駆動装置の制御方法。 The control unit outputs a command signal to the drive unit, and the vibrating body unit in which two or more vibrating bodies are connected vibrates by the drive signal output by the drive unit based on the command signal, and the drive signal is analyzed and analyzed. A control method for a vibrating drive device that outputs a result and determines whether or not the wiring connected to the vibrating body is broken based on the analysis result. 前記振動体ユニットは、1次側が直列に接続された複数のトランスの2次側にそれぞれ並列に振動体が接続され、前記複数のトランスの1次側は、前記駆動信号が印加されるように構成されており、
前記駆動部は所定の電圧と周波数を有するパルス信号を生成する矩形電圧生成手段と、前記矩形電圧生成手段と前記振動体ユニットとの間に挿入される波形整形手段を備える請求項15記載の振動型駆動装置の制御方法。
In the vibrating body unit, a vibrating body is connected in parallel to each of the secondary sides of a plurality of transformers to which the primary side is connected in series, and the driving signal is applied to the primary side of the plurality of transformers. It is composed and
The vibration according to claim 15, wherein the driving unit includes a rectangular voltage generating means for generating a pulse signal having a predetermined voltage and frequency, and a waveform shaping means inserted between the rectangular voltage generating means and the vibrating body unit. Control method of type drive device.
前記振動体ユニットは並列に接続された一対のインダクタと振動体が、直列に複数対が連なるように構成されており、
前記駆動部は所定の電圧と周波数を有するパルス信号を生成する矩形電圧生成手段と、前記矩形電圧生成手段と前記振動体ユニットとの間に挿入される波形整形手段を備える請求項15記載の振動型駆動装置の制御方法。
The vibrating body unit is configured such that a pair of inductors connected in parallel and a vibrating body are connected in series in a plurality of pairs.
The vibration according to claim 15, wherein the driving unit includes a rectangular voltage generating means for generating a pulse signal having a predetermined voltage and frequency, and a waveform shaping means inserted between the rectangular voltage generating means and the vibrating body unit. Control method of type drive device.
前記振動体のうち、前記振動体に連結する配線の断線の数に応じて異なる駆動シーケンスを実行する請求項15乃至17のいずれか1項に記載の振動型駆動装置の制御方法。 The control method for a vibration-type drive device according to any one of claims 15 to 17, wherein a different drive sequence is executed depending on the number of broken wires of the wiring connected to the vibrating body. 前記断線の数に応じて断線状態表示用LEDを点灯する請求項18に記載の振動型駆動装置の制御方法。 The control method for a vibration type drive device according to claim 18, wherein the LED for displaying the disconnection state is turned on according to the number of disconnections. 前記分析結果は、前記駆動信号としての、駆動電圧の波形あるいは前記振動体ユニットに流入する電流の波形を分析した結果である請求項15乃至19のいずれか1項に記載の振動型駆動装置の制御方法。 The vibration type drive device according to any one of claims 15 to 19, wherein the analysis result is the result of analyzing the waveform of the drive voltage or the waveform of the current flowing into the vibrating body unit as the drive signal. Control method. 前記波形は、前記駆動電圧の周波数に対する前記駆動電圧の絶対値の平均値の波形、あるいは前記駆動電圧の周波数に対する前記駆動電圧の実効値の波形である請求項20に記載の振動型駆動装置の制御方法。 The vibration type drive device according to claim 20, wherein the waveform is a waveform of an average value of the absolute values of the drive voltage with respect to the frequency of the drive voltage, or a waveform of an effective value of the drive voltage with respect to the frequency of the drive voltage. Control method. 前記波形は、前記駆動電圧の周波数に対する3次の高調波の振幅と基本波の振幅の波形である請求項20に記載の振動型駆動装置の制御方法。

The control method for a vibration-type drive device according to claim 20, wherein the waveform is a waveform of a third-order harmonic amplitude and a fundamental wave amplitude with respect to the frequency of the drive voltage.

JP2020177103A 2020-10-22 2020-10-22 Vibration type drive device and drive method thereof Pending JP2022068434A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020177103A JP2022068434A (en) 2020-10-22 2020-10-22 Vibration type drive device and drive method thereof
EP21882819.2A EP4236058A1 (en) 2020-10-22 2021-10-19 Vibration-type drive apparatus and method for driving vibration-type drive apparatus
PCT/JP2021/038594 WO2022085678A1 (en) 2020-10-22 2021-10-19 Vibration-type drive apparatus and method for driving vibration-type drive apparatus
US18/304,184 US20230268848A1 (en) 2020-10-22 2023-04-20 Vibration-type drive apparatus, and drive method for vibration-type drive apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020177103A JP2022068434A (en) 2020-10-22 2020-10-22 Vibration type drive device and drive method thereof

Publications (1)

Publication Number Publication Date
JP2022068434A true JP2022068434A (en) 2022-05-10

Family

ID=81460082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020177103A Pending JP2022068434A (en) 2020-10-22 2020-10-22 Vibration type drive device and drive method thereof

Country Status (1)

Country Link
JP (1) JP2022068434A (en)

Similar Documents

Publication Publication Date Title
JP5475793B2 (en) System and method for driving an ultrasonic transducer
CN102025339B (en) Piezoelectric actuator driver circuit
JP2006217716A (en) Ultrasonic actuator driving unit and ultrasonic actuator driving method
JP5473579B2 (en) Control device for capacitive electromechanical transducer and control method for capacitive electromechanical transducer
CN106449966B (en) A kind of piezoelectric sensing device and application
CN107764346B (en) Method for operating a magnetic-inductive flow meter and magnetic-inductive flow meter
RU2529598C1 (en) Electromagnetic flow meter and method to control measurement of fluid media flow
JP2022068434A (en) Vibration type drive device and drive method thereof
WO2022085678A1 (en) Vibration-type drive apparatus and method for driving vibration-type drive apparatus
CN101552571B (en) Phase current detector
CN1621782A (en) Method of operating a measuring apparatus
CN116952293A (en) Application performance test method of PZT-based flexible piezoelectric sensor
JP2016095227A (en) Physical quantity detection device and physical quantity detection method
JP2022068435A (en) Vibration type drive device and drive method
JP5716624B2 (en) Ultrasonic motor drive device
CN113358990B (en) Oscillatory wave test system
JP5545258B2 (en) Temperature measuring device
Vogelsberger et al. Insulation health state monitoring of traction machines based on online switching transient exploitation
Xinyi et al. Large-signal impedance measurements of piezoelectric ultrasonic transducers
JP2022069736A (en) Vibration type drive device
JP2021505909A (en) Load impedance tester and measurement method
Almgotir et al. Harmonics elimination for DC/DC power supply based on piezoelectric filters
JP7122740B2 (en) CONNECTION STATE DETERMINATION DEVICE AND CONNECTION STATE DETERMINATION METHOD
CN110337596A (en) Sensor device with the sensor for being detected by sound wave performing environment
Grabs Do Fast-Switching-Inverters endanger the Motor-Insulation System? Laboratory Tests

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20201105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230615

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20231213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240402