JP2022068435A - Vibration type drive device and drive method - Google Patents

Vibration type drive device and drive method Download PDF

Info

Publication number
JP2022068435A
JP2022068435A JP2020177104A JP2020177104A JP2022068435A JP 2022068435 A JP2022068435 A JP 2022068435A JP 2020177104 A JP2020177104 A JP 2020177104A JP 2020177104 A JP2020177104 A JP 2020177104A JP 2022068435 A JP2022068435 A JP 2022068435A
Authority
JP
Japan
Prior art keywords
frequency
vibrating body
drive device
signal
vibrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020177104A
Other languages
Japanese (ja)
Inventor
健一 片岡
Kenichi Kataoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2020177104A priority Critical patent/JP2022068435A/en
Priority to EP21882819.2A priority patent/EP4236058A1/en
Priority to PCT/JP2021/038594 priority patent/WO2022085678A1/en
Publication of JP2022068435A publication Critical patent/JP2022068435A/en
Priority to US18/304,184 priority patent/US20230268848A1/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

To detect the presence or absence of disconnection or the number of disconnections of a vibration body in a vibration body unit in which a plurality of vibration bodies are connected.SOLUTION: A vibration type drive device includes a control unit that outputs a command signal, a drive unit that outputs a drive signal on the basis of the command signal, a vibration body unit in which two or more vibration bodies that vibrate on the basis of the drive signal are connected, and current detecting means that detects a current signal flowing through the vibration body unit, and the control unit determines the presence or absence of the breakage of wiring connected to the vibration body on the basis of the current signal flowing through the vibration body unit corresponding to the harmonic of a fundamental wave by using the current signal flowing through the vibration body unit corresponding to the drive frequency range of the vibration body unit as the fundamental wave.SELECTED DRAWING: Figure 1

Description

超音波振動を利用したアクチュエータの駆動装置に関するものである。 It relates to a drive device for an actuator using ultrasonic vibration.

電気-機械エネルギー変換素子(圧電素子、電歪素子等)によって加振される振動体を使った振動型アクチュエータにおいて、印加電圧を計測して振動体の断線等の不具合を検知する方法は知られている。例えば特許文献1にはインダクタを介して振動体に印加する交流電圧の高周波成分の発生の検出によって断線を検知する例が示されている。又特許文献2では昇圧用のトランスの特性によって変化する印加電圧の周波数特性のピーク特性のQ値やピーク周波数の変化の検出によって断線を検知する例が示されている。特許文献1のように単体の振動体の場合、断線による印加電圧の変化が大きく、高周波成分の発生によって断線の発生を検知できる。しかしインダクタ素子が並列接続された複数の振動体の直列接続や、複数のトランスの2次側に並列に振動体を接続し各トランスの1次側を直列に接続した直列接続型の振動体装置は、1つの振動体が断線しても直列接続の両端の印加電圧の波形変化は少ない。駆動周波数より高い周波数領域に現れる高周波成分は周波数によって増加したり減少したりするため、単純に高周波成分が発生したからと言って断線の有無を判定出来なかった。また断線した振動体の数を知ることも出来なかった。 In a vibration type actuator using a vibrating body that is vibrated by an electric-mechanical energy conversion element (piezoelectric element, electric strain element, etc.), a method of measuring the applied voltage to detect a defect such as disconnection of the vibrating body is known. ing. For example, Patent Document 1 shows an example in which disconnection is detected by detecting the generation of a high frequency component of an AC voltage applied to a vibrating body via an inductor. Further, Patent Document 2 shows an example in which disconnection is detected by detecting the Q value of the peak characteristic of the frequency characteristic of the applied voltage that changes depending on the characteristic of the transformer for boosting and the change of the peak frequency. In the case of a single vibrating body as in Patent Document 1, the change in the applied voltage due to the disconnection is large, and the occurrence of the disconnection can be detected by the generation of the high frequency component. However, a series connection type vibrating body device in which a plurality of vibrating bodies in which inductor elements are connected in parallel are connected in series, or a vibrating body is connected in parallel to the secondary side of a plurality of transformers and the primary side of each transformer is connected in series. In, even if one vibrating body is disconnected, the waveform change of the applied voltage across the series connection is small. Since the high frequency component appearing in the frequency region higher than the drive frequency increases or decreases depending on the frequency, it was not possible to determine the presence or absence of disconnection simply because the high frequency component was generated. Also, it was not possible to know the number of vibrating bodies that were broken.

また特許文献2のようにトランスの2次側の周波数特性を利用して印加電圧の周波数特性のピーク特性に着目し、ピーク周波数やQ値を検出する方法を用いれば、個々の振動体の不具合を検知する事が出来る。しかし上記直列接続型の振動体装置においては、すべての振動体に印加される交流電圧を検出する必要があり、不具合箇所を検知する事が出来る反面回路規模が大きくなる欠点があった。また、高周波域での周波数掃引や疑似乱数を用いたピーク周波数及びQ値の検出を、通常の駆動電圧を印加している最中に別途高周波電圧を重畳して独立に行うと速度変動や異音の原因になりやすいという問題があった。 Further, if a method of detecting the peak frequency and the Q value by paying attention to the peak characteristic of the frequency characteristic of the applied voltage by utilizing the frequency characteristic of the secondary side of the transformer as in Patent Document 2, a defect of each vibrating body is used. Can be detected. However, in the above-mentioned series connection type vibrating body device, it is necessary to detect the AC voltage applied to all the vibrating bodies, and it is possible to detect the defective part, but there is a drawback that the circuit scale becomes large. In addition, if frequency sweeping in the high frequency range and detection of peak frequency and Q value using pseudo-random numbers are performed independently by superimposing a high frequency voltage separately while applying a normal drive voltage, speed fluctuations and differences will occur. There was a problem that it was easy to cause sound.

複数の振動体を連ねる振動型ユニットにおいては、複数の振動体の内、1個の振動体の断線が発生したとしても他の振動体へ印加電圧は供給され、ある程度駆動出来るので断線しても駆動を継続できるという性質を持つ。しかし、断線した状態では他の振動体の負担が重くなる為、性能劣化が加速的に進む可能性があるという問題があった。 In a vibrating unit in which a plurality of vibrating bodies are connected, even if one of the vibrating bodies is disconnected, the applied voltage is supplied to the other vibrating bodies and can be driven to some extent, so even if the disconnection occurs. It has the property of being able to continue driving. However, there is a problem that the performance deterioration may accelerate because the load on other vibrating bodies becomes heavy in the disconnected state.

特許第5716624Patent No. 5716624 特開2018-78769JP-A-2018-78769

本発明は上記課題に鑑み、複数の振動体を連ねる振動体ユニットにおいて、振動体の断線の有無又は断線数を検出することを目的とする。 In view of the above problems, it is an object of the present invention to detect the presence or absence of disconnection or the number of disconnections of the vibrating body in the vibrating body unit in which a plurality of vibrating bodies are connected.

上記課題を解決する振動型駆動装置は、指令信号を出力する制御部と、前記指令信号に基づき駆動信号を出力する駆動部と、前記駆動信号に基づき振動する2つ以上の振動体が連なる振動体ユニットと、前記振動体ユニットに流れる電流信号を検知する電流検知手段を備え、前記制御部は、前記振動体ユニットの駆動周波数の範囲に対応する前記振動体ユニットに流れる電流信号を基本波として、前記基本波の高調波に相当する前記振動体ユニットに流れる電流信号に基づいて前記振動体に連結する配線の断線の有無を判定するものである。 The vibration type drive device that solves the above problems is a vibration in which a control unit that outputs a command signal, a drive unit that outputs a drive signal based on the command signal, and two or more vibrating bodies that vibrate based on the drive signal are connected. The body unit and the current detecting means for detecting the current signal flowing through the vibrating body unit are provided, and the control unit uses the current signal flowing through the vibrating body unit corresponding to the drive frequency range of the vibrating body unit as a fundamental wave. Based on the current signal flowing through the vibrating body unit corresponding to the harmonic of the fundamental wave, it is determined whether or not the wiring connected to the vibrating body is broken.

また上記課題を解決する振動型駆動装置の制御方法は、制御部が指令信号を駆動部へ出力し、前記指令信号に基づき前記駆動部が出力した駆動信号によって2つ以上の振動体が連なる振動体ユニットが振動するとともに、前記制御部は、前記振動体ユニットの駆動周波数の範囲に対応する前記振動体ユニットに流れる電流信号を基本波として、前記基本波の高調波に相当する前記振動体ユニットに流れる電流信号に基づいて前記振動体に連結する配線の断線の有無を判定するものである。 Further, in the control method of the vibration type drive device that solves the above-mentioned problems, the control unit outputs a command signal to the drive unit, and the drive signal output by the drive unit based on the command signal causes vibration in which two or more vibrating bodies are connected. As the body unit vibrates, the control unit uses the current signal flowing through the vibrating body unit corresponding to the drive frequency range of the vibrating body unit as a fundamental wave, and the control unit corresponds to the harmonic of the fundamental wave. Based on the current signal flowing through the vibrator, it is determined whether or not the wiring connected to the vibrating body is broken.

本発明によれば、複数の振動体を連ねる振動型ユニットを有する振動型駆動装置において通常の動作の起動時の周波数掃引の際に振動体の断線の有無又は断線数を検知可能となる。また起動動作中に断線が検出可能なので周辺機構への断線の影響を少なくすることが出来る。 According to the present invention, in a vibrating type drive device having a vibrating type unit in which a plurality of vibrating bodies are connected, it is possible to detect the presence or absence of disconnection or the number of disconnections of the vibrating body at the time of frequency sweep at the start of normal operation. Moreover, since the disconnection can be detected during the startup operation, the influence of the disconnection on the peripheral mechanism can be reduced.

第1の実施例の振動型アクチュエータの駆動回路の第1の例を示す図The figure which shows the 1st example of the drive circuit of the vibration type actuator of 1st Embodiment 振動型アクチュエータの構造の第1の例を示す図The figure which shows the 1st example of the structure of the vibration type actuator. 振動型アクチュエータ内の電気的接続を示す図Diagram showing electrical connections within a vibrating actuator 第1の実施例のCPU15の動作例を示すフローチャートA flowchart showing an operation example of the CPU 15 of the first embodiment. 第1の実施例の断線時の流入電流振幅の周波数特性変化の第1の例を示す図The figure which shows the 1st example of the frequency characteristic change of the inflow current amplitude at the time of disconnection of the 1st Example. 第1の実施例のCPU15の起動動作の例を示すフローチャートA flowchart showing an example of the startup operation of the CPU 15 of the first embodiment. 第1の実施例の振動型アクチュエータの駆動回路の第2の例を示す図The figure which shows the 2nd example of the drive circuit of the vibration type actuator of 1st Example. 第1の実施例の断線時の流入電流振幅の周波数特性変化の第2の例を示す図The figure which shows the 2nd example of the frequency characteristic change of the inflow current amplitude at the time of disconnection of the 1st Example. 第1の実施例の振動型アクチュエータの駆動回路の第3の例を示す図The figure which shows the 3rd example of the drive circuit of the vibration type actuator of 1st Example. 第1の実施例の断線時の流入電流振幅の周波数特性変化の第3の例を示す図The figure which shows the 3rd example of the frequency characteristic change of the inflow current amplitude at the time of disconnection of the 1st Example. 第2の実施例の断線時の流入電流振幅の周波数特性変化の例を示す図The figure which shows the example of the frequency characteristic change of the inflow current amplitude at the time of disconnection of the 2nd Example. 第2の実施例のCPU15の起動動作の例を示すフローチャートA flowchart showing an example of the startup operation of the CPU 15 of the second embodiment. 第3の実施例の振動型アクチュエータの振動体の構成を示す図The figure which shows the structure of the vibrating body of the vibrating type actuator of 3rd Example. 第3の実施例の振動体の振動モードを示す図The figure which shows the vibration mode of the vibrating body of 3rd Example 第3の実施例の振動型アクチュエータの構成例を示す図The figure which shows the structural example of the vibration type actuator of 3rd Example. 第3の実施例の振動型アクチュエータの駆動回路の例を示す図The figure which shows the example of the drive circuit of the vibration type actuator of 3rd Example. 第3の実施例の断線時の流入電流振幅の周波数特性変化の第1の例を示す図The figure which shows the 1st example of the frequency characteristic change of the inflow current amplitude at the time of disconnection of the 3rd Example. 第3の実施例のCPU15の動作の例を示すフローチャートA flowchart showing an example of the operation of the CPU 15 of the third embodiment. 第3の実施例のCPU15の起動動作の第1と第2の例を示すフローチャートA flowchart showing the first and second examples of the boot operation of the CPU 15 of the third embodiment. 第3の実施例の断線時の流入電流振幅の周波数特性変化の第2の例を示す図The figure which shows the 2nd example of the frequency characteristic change of the inflow current amplitude at the time of disconnection of the 3rd Example. 第3の実施例のCPU15の起動動作の第3の例を示すフローチャートA flowchart showing a third example of the startup operation of the CPU 15 of the third embodiment.

本発明を実施するための形態の一例は、指令信号を出力する制御部と、指令信号に基づき駆動信号を出力する駆動部と、駆動信号に基づき振動する2つ以上の振動体が連なる振動体ユニットを備えている。さらには、振動体ユニットに流れる電流信号を検知する電流検知手段を備えている。制御部は、振動体ユニットの駆動周波数の範囲に対応する振動体ユニットに流れる電流信号を基本波として、基本波の高調波に相当する振動体ユニットに流れる電流信号に基づいて振動体に連結する配線の断線の有無を判定するものである。 An example of an embodiment for carrying out the present invention is a vibrating body in which a control unit that outputs a command signal, a drive unit that outputs a drive signal based on the command signal, and two or more vibrating bodies that vibrate based on the drive signal are connected. Equipped with a unit. Further, it is provided with a current detecting means for detecting a current signal flowing through the vibrating body unit. The control unit connects the current signal flowing through the vibrating body unit corresponding to the drive frequency range of the vibrating body unit to the vibrating body based on the current signal flowing through the vibrating body unit corresponding to the harmonic of the fundamental wave. It determines whether or not the wiring is broken.

また本発明を実施するための形態の他の一例は、以下のような制御方法である。 Another example of the embodiment for carrying out the present invention is the following control method.

すなわち、制御部が指令信号を駆動部へ出力し、指令信号に基づき駆動部が出力した駆動信号によって2つ以上の振動体が連なる振動体ユニットが振動する。それとともに、制御部は、振動体ユニットの駆動周波数の範囲に対応する振動体ユニットに流れる電流信号を基本波として、基本波の高調波に相当する振動体ユニットに流れる電流信号に基づいて振動体に連結する配線の断線の有無を判定するものである。 That is, the control unit outputs a command signal to the drive unit, and the drive signal output by the drive unit based on the command signal vibrates the vibrating body unit in which two or more vibrating bodies are connected. At the same time, the control unit uses the current signal flowing through the vibrating body unit corresponding to the drive frequency range of the vibrating body unit as the fundamental wave, and the vibrating body based on the current signal flowing through the vibrating body unit corresponding to the harmonic of the fundamental wave. This is to determine whether or not the wiring connected to the wire is broken.

以下、図面を参照しつつ詳述する。 Hereinafter, the details will be described with reference to the drawings.

図1は第1の実施例の振動型アクチュエータの駆動回路を示す図である。1、2、3は振動体、5、6、7は1次側を直列に接続したトランス、16、17、18はマッチング調整用コンデンサである。トランス5、6、7の2次側に振動体1、2、3とマッチング調整用コンデンサ16、17、18をそれぞれ並列に接続しており、点線で囲った部分は振動体ユニットとしての振動型アクチュエータ10の内部回路を示している。 FIG. 1 is a diagram showing a drive circuit of the vibration type actuator of the first embodiment. Reference numerals 1, 2, and 3 are vibrating bodies, 5, 6, and 7 are transformers in which the primary side is connected in series, and 16, 17, and 18 are matching adjusting capacitors. Vibrators 1, 2, and 3 and matching adjustment capacitors 16, 17, and 18 are connected in parallel on the secondary side of transformers 5, 6 and 7, respectively, and the part surrounded by the dotted line is a vibration type as a vibrating body unit. The internal circuit of the actuator 10 is shown.

各振動体に並列に接続されたトランスの2次側コイルのインダクタンス値は、振動型アクチュエータ10の共振周波数に近い所定の周波数でマッチングされている。即ち、マッチング周波数をF、上記振動体に接合された圧電素子の制動容量値をC、マッチング調整用コンデンサの静電容量をC、トランスの2次側コイルのインダクタンス値をLとすると、これらの関係は数式1で表される。 The inductance value of the secondary coil of the transformer connected in parallel to each vibrating body is matched at a predetermined frequency close to the resonance frequency of the vibrating actuator 10. That is, the matching frequency is F 0 , the braking capacitance value of the piezoelectric element bonded to the vibrating body is C 0 , the capacitance of the matching adjusting capacitor is C 1 , and the inductance value of the secondary coil of the transformer is L 0 . Then, these relationships are expressed by Equation 1.

Figure 2022068435000002
12は周波数指令に応じた駆動信号としてのパルス信号を出力する矩形電圧発生手段であり、これは駆動部として機能し、インダクタとコンデンサの直列回路で構成される波形整形手段11を介して駆動電圧を振動型アクチュエータ10に出力している。すなわち複数のトランスの1次側は、この駆動信号が印加されるように構成されている。
Figure 2022068435000002
Reference numeral 12 denotes a rectangular voltage generating means for outputting a pulse signal as a drive signal in response to a frequency command, which functions as a drive unit and drives the drive voltage via a waveform shaping means 11 composed of a series circuit of an inductor and a capacitor. Is output to the vibration type actuator 10. That is, the primary side of the plurality of transformers is configured so that this drive signal is applied.

13は振動型アクチュエータ10に流れる電流を計測する為の抵抗であり、これは電流検知手段として機能し、振動体1、2、3の振動速度に比例した電圧を出力する。 Reference numeral 13 is a resistor for measuring the current flowing through the vibrating actuator 10, which functions as a current detecting means and outputs a voltage proportional to the vibrating speed of the vibrating bodies 1, 2, and 3.

尚、振動体の振動変位は正確にはこの振動速度を時間で積分した値に比例するが、振動速度の振幅は概ね振動振幅に比例するので以下の実施例では振動速度信号の振幅を制御することで振動型アクチュエータ10の振動振幅を制御している。 The vibration displacement of the vibrating body is accurately proportional to the value obtained by integrating this vibration speed with time, but since the amplitude of the vibration speed is generally proportional to the vibration amplitude, the amplitude of the vibration speed signal is controlled in the following embodiment. This controls the vibration amplitude of the vibration type actuator 10.

14はA/D変換器、15は公知のCPUである。A/D変換器14は抵抗13で検出された電流信号をCPU15に入力している。CPU15は電流信号の基本波の振幅(以下電流信号の基本波の振幅を振動振幅と言う)を求め、振動振幅と不図示の指令手段からの速度指令に基づいて矩形電圧発生手段12に周波数指令及びパルス幅指令を出力している。 Reference numeral 14 is an A / D converter, and reference numeral 15 is a known CPU. The A / D converter 14 inputs the current signal detected by the resistor 13 to the CPU 15. The CPU 15 obtains the amplitude of the fundamental wave of the current signal (hereinafter, the amplitude of the fundamental wave of the current signal is referred to as vibration amplitude), and gives a frequency command to the rectangular voltage generating means 12 based on the vibration amplitude and the speed command from the command means (not shown). And the pulse width command is output.

図1に例示した振動体ユニットとしての振動型アクチュエータ10は、1次側が直列に接続された複数のトランスの2次側にそれぞれ並列に振動体を接続した構成であり、複数のトランスの1次側は、前記駆動信号が印加されるように構成されている。加えて、矩形電圧生成手段と振動体ユニットとの間に挿入される波形整形手段を備えている。 The vibrating actuator 10 as the vibrating body unit exemplified in FIG. 1 has a configuration in which a vibrating body is connected in parallel to the secondary side of a plurality of transformers whose primary side is connected in series, and the primary side of the plurality of transformers is connected in parallel. The side is configured so that the drive signal is applied. In addition, it is provided with a waveform shaping means inserted between the rectangular voltage generating means and the vibrating body unit.

このように、2つ以上の振動体が連なって振動体ユニットとしての振動型アクチュエータ10が構成されており、制御部としてのCPU15が発する共通の指令信号により、振動体がそれぞれ駆動するように構成されている。 In this way, the vibrating actuator 10 as a vibrating body unit is configured by connecting two or more vibrating bodies in a row, and the vibrating bodies are configured to be driven by a common command signal issued by the CPU 15 as a control unit. Has been done.

ここで本実施例の振動型アクチュエータの第1の例を示す。図2は3つの振動体を円柱シャフトの外周に接触させ、円柱シャフトを回転させる振動型アクチュエータの構造を示す図である。1、2、3は縦方向(矢印の方向)に振動する振動体で4は円柱シャフトである。本実施例では振動体1、2、3は円柱シャフト4の円周に120°毎に略均等に配置されている。振動体1、2、3を加振して縦方向の振動を励起することによって円柱シャフト4は時計周りに回転する。円柱シャフトは2つ以上の振動体が連なる振動体ユニットに接する共通の接触体に相当し、振動体1,2,3の駆動により発生した合力の方向に振動体に対して相対移動する。 Here, a first example of the vibration type actuator of this embodiment is shown. FIG. 2 is a diagram showing a structure of a vibrating actuator that rotates a cylindrical shaft by bringing three vibrating bodies into contact with the outer circumference of the cylindrical shaft. 1, 2, and 3 are vibrating bodies that vibrate in the vertical direction (direction of the arrow), and 4 is a cylindrical shaft. In this embodiment, the vibrating bodies 1, 2, and 3 are arranged substantially evenly at intervals of 120 ° on the circumference of the cylindrical shaft 4. The cylindrical shaft 4 rotates clockwise by exciting the vibrations 1, 2, and 3 in the vertical direction. The cylindrical shaft corresponds to a common contact body in contact with a vibrating body unit in which two or more vibrating bodies are connected, and moves relative to the vibrating body in the direction of the resultant force generated by driving the vibrating bodies 1, 2, and 3.

また振動体1、2、3は弾性体に圧電素子を接合したもので、圧電素子に交流電圧を印加することで弾性体に矢印方向の振動が励起される。 Further, the vibrating bodies 1, 2 and 3 have a piezoelectric element bonded to the elastic body, and the vibration in the arrow direction is excited to the elastic body by applying an AC voltage to the piezoelectric element.

図3は振動型アクチュエータ10内の電気的接続を示す図である。5、6、7はトランスで、トランス5、6、7の2次側コイルは不図示のマッチング調整用コンデンサと共に振動体1、2、3に並列に接続されている。8は振動型アクチュエータ10に駆動電圧を供給する為のコネクタで、トランス5、6、7の1次側コイルの直列接続の両端が接続されている。9はドーナツ状の中空ケースで、上記振動体が収められ、これらが一体となり複数の振動体が連なった振動型アクチュエータ10を構成している。 FIG. 3 is a diagram showing an electrical connection in the vibrating actuator 10. Reference numerals 5, 6 and 7 are transformers, and the secondary coils of the transformers 5, 6 and 7 are connected in parallel to the vibrating bodies 1, 2 and 3 together with a matching adjusting capacitor (not shown). Reference numeral 8 is a connector for supplying a drive voltage to the vibration type actuator 10, and both ends of the series connection of the primary coil of the transformers 5, 6 and 7 are connected. Reference numeral 9 denotes a donut-shaped hollow case in which the vibrating body is housed, and these are integrated to form a vibrating actuator 10 in which a plurality of vibrating bodies are connected.

また、振動体1、2、3はケース9の円柱シャフト4を通す中空円筒部に、120°毎に円柱シャフト4に加圧接触される突出部を持ち、不図示のバネ構造を含む支持部材によって一定の加圧力で円柱シャフト4に押し当てられている。 Further, the vibrating bodies 1, 2, and 3 have a protruding portion that is pressure-contacted with the cylindrical shaft 4 at every 120 ° in the hollow cylindrical portion through which the cylindrical shaft 4 of the case 9 is passed, and the support member includes a spring structure (not shown). It is pressed against the cylindrical shaft 4 with a constant pressure.

本実施形態にかかる振動型駆動装置の制御方法は、以下のものである。すなわち、制御部が指令信号を駆動部へ出力し、指令信号に基づき駆動部が出力した駆動信号によって2つ以上の振動体が連なる振動体ユニットが振動する。それとともに、制御部は、振動体ユニットの駆動周波数の範囲に対応する振動体ユニットに流れる電流信号を基本波として、基本波の高調波に相当する振動体ユニットに流れる電流信号に基づいて振動体に連結する配線の断線の有無を判定するものである。 The control method of the vibration type drive device according to this embodiment is as follows. That is, the control unit outputs a command signal to the drive unit, and the drive signal output by the drive unit based on the command signal vibrates the vibrating body unit in which two or more vibrating bodies are connected. At the same time, the control unit uses the current signal flowing through the vibrating body unit corresponding to the drive frequency range of the vibrating body unit as the fundamental wave, and the vibrating body based on the current signal flowing through the vibrating body unit corresponding to the harmonic of the fundamental wave. This is to determine whether or not the wiring connected to the wire is broken.

CPU15の動作について図4のフローチャートを用いて説明する。不図示の指令手段から速度指令Vsが入力されるとCPU15は起動動作を開始する。起動動作の詳細説明は別途行うが、起動動作では矩形電圧発生手段12へ周波数指令Frq、パルス幅指令PW_Cを出力して振動型アクチュエータ10に駆動電圧を印加し、断線判定によって断線判定結果Errを出力している。断線判定結果Errが1ならばパルス幅指令PW_Cを0として終了、断線判定結果Errが0なら振動型アクチュエータ10の振動振幅制御を行う。 The operation of the CPU 15 will be described with reference to the flowchart of FIG. When the speed command Vs is input from the command means (not shown), the CPU 15 starts the startup operation. The details of the start-up operation will be described separately, but in the start-up operation, the frequency command Frq and the pulse width command PW_C are output to the rectangular voltage generating means 12, the drive voltage is applied to the vibrating actuator 10, and the disconnection determination result Err is obtained by the disconnection determination. It is outputting. If the disconnection determination result Err is 1, the pulse width command PW_C is set to 0, and if the disconnection determination result Err is 0, the vibration amplitude of the vibration type actuator 10 is controlled.

振動振幅制御は、速度指令入力Vsに対応する振動振幅指令Amp_Cを決定し、以下に説明する動作を速度指令Vsが0になるまで繰り返し実行する。高調波振幅計測ルーチンは上記電流信号の高調波の振幅を計測すると共に基本波の振幅(振動振幅)Amp(1)を計測している。具体的には、最初にA/D変換器14で入力した時系列の信号からバンドパスフィルタで所望の次数の波形を抽出すると共に基本波成分の波形も抽出する。そして、それぞれの成分ごとに最大値、最小値や実効値等から振幅を求めている。 In the vibration amplitude control, the vibration amplitude command Amp_C corresponding to the speed command input Vs is determined, and the operation described below is repeatedly executed until the speed command Vs becomes 0. The harmonic amplitude measurement routine measures the amplitude of the harmonic of the current signal and also measures the amplitude (vibration amplitude) Amp (1) of the fundamental wave. Specifically, a waveform of a desired order is extracted from the time-series signal first input by the A / D converter 14 with a bandpass filter, and a waveform of a fundamental wave component is also extracted. Then, the amplitude is obtained from the maximum value, the minimum value, the effective value, and the like for each component.

バンドパスフィルタの通過帯域は少なくともパルス信号の2次及び3次の高調波のいずれか一方を含んでいてもよい。 The pass band of the bandpass filter may include at least one of the second and third harmonics of the pulse signal.

また、振動型駆動装置は電流信号の基本波の成分をカットするハイパスフィルタ又は前記基本波に対する特定の次数の高調波を検出するバンドパスフィルタのいずれかを有する構成をとってもよい。 Further, the vibration type drive device may have a configuration having either a high-pass filter that cuts the component of the fundamental wave of the current signal or a band-pass filter that detects harmonics of a specific order with respect to the fundamental wave.

次に、振動振幅指令Amp_Cと基本波の振幅(振動振幅)Amp(1)の比較を行う。そして振動振幅指令Amp_Cより振動振幅Amp(1)が大きい場合には周波数を所定量上げ、振動振指令より小さい場合には周波数を所定量下げる周波数操作を行う。これによって基本波の振幅(振動振幅)Amp(1)は振動振幅指令Amp_Cに近付いていく。この際、周波数指令Frqが最高周波数Frq_maxを超えたら周波数指令を最大周波数Frq_maxに制限する。もし、周波数指令Frqが最低周波数Frq_minを超えたら基本波の振幅(振動振幅)Amp(1)が振動振幅指令Amp_Cに到達しなかったとして断線有と判定する。そして断線判定結果Errを1に、パルス幅指令PW_Cを0として終了する。 Next, the vibration amplitude command Amp_C and the fundamental wave amplitude (vibration amplitude) Amp (1) are compared. Then, when the vibration amplitude Amp (1) is larger than the vibration amplitude command Amp_C, the frequency is increased by a predetermined amount, and when it is smaller than the vibration vibration command, the frequency is decreased by a predetermined amount. As a result, the amplitude (vibration amplitude) Amp (1) of the fundamental wave approaches the vibration amplitude command Amp_C. At this time, if the frequency command Frq exceeds the maximum frequency Frq_max, the frequency command is limited to the maximum frequency Frq_max. If the frequency command Frq exceeds the minimum frequency Frq_min, it is determined that there is a disconnection because the amplitude (vibration amplitude) Amp (1) of the fundamental wave does not reach the vibration amplitude command Amp_C. Then, the disconnection determination result Err is set to 1, and the pulse width command PW_C is set to 0.

基本波の振幅(振動振幅)Amp(1)が振動振幅指令Amp_Cと一致した場合や周波数指令Frqが最低周波数Frq_minを超えなかった場合には、再度速度指令Vsを入力して速度指令Vsが0になるまで振動振幅制御動作を繰り返し実行する。そして振動振幅制御の実行中に速度指令Vsが0になったら、パルス幅指令PW_Cを0として振動振幅制御を終了する。 If the amplitude (vibration amplitude) Amp (1) of the fundamental wave matches the vibration amplitude command Amp_C, or if the frequency command Frq does not exceed the minimum frequency Frq_min, the speed command Vs is input again and the speed command Vs becomes 0. The vibration amplitude control operation is repeatedly executed until becomes. When the velocity command Vs becomes 0 during the execution of the vibration amplitude control, the pulse width command PW_C is set to 0 and the vibration amplitude control is terminated.

次に起動動作について説明する。図5は振動型アクチュエータ10の振動体の断線の数によって変化する振動型アクチュエータ10に流入する電流の周波数特性を示す図である。 Next, the startup operation will be described. FIG. 5 is a diagram showing the frequency characteristics of the current flowing into the vibrating actuator 10 that changes depending on the number of disconnections of the vibrating body of the vibrating actuator 10.

本実施形態における振動型アクチュエータ10の駆動周波数の範囲は概ね93kHzから98kHzの間である。 The range of the drive frequency of the vibration type actuator 10 in the present embodiment is approximately between 93 kHz and 98 kHz.

実線が断線無し、破線が1つの振動体が断線、一点鎖線が2つの振動体が断線、点線が全て断線した場合である。振動型アクチュエータ10の駆動周波数の範囲に対応する周波数であるFは電流振幅の谷の周波数付近の周波数である。また、周波数Fでパルス信号を生成した場合、これは振動体ユニットとしての振動型アクチュエータ10に流れる基本波としての電流信号に相当する。周波数Fの2次の高調波の周波数がF、3次の高調波の周波数がFである。本実施例では断線するとFの近傍に共振特性が現れていることがわかる。また上記マッチング周波数FはF付近の周波数に設定される。 The solid line is the case where there is no disconnection, the broken line is the case where one vibrating body is broken, the alternate long and short dash line is the case where the two vibrating bodies are broken, and the dotted line is all broken. F1, which is a frequency corresponding to the range of the drive frequency of the vibration type actuator 10 , is a frequency near the frequency of the valley of the current amplitude. Further, when a pulse signal is generated at a frequency F 1 , this corresponds to a current signal as a fundamental wave flowing through the vibrating actuator 10 as a vibrating body unit. The frequency of the second harmonic of frequency F1 is F2 , and the frequency of the third harmonic is F3. In this embodiment, it can be seen that the resonance characteristic appears in the vicinity of F3 when the wire is broken. Further, the matching frequency F 0 is set to a frequency near F 1 .

図6はCPU15の起動動作の第1の例のフローチャートである。起動動作がスタートすると矩形電圧発生手段12への周波数指令Frqを周波数Frq0に、パルス幅指令PW_Cを駆動パルス幅PW0に設定してパルス信号を生成し、振動型アクチュエータ10に駆動電圧を印加する。そして断線判定の判定結果Errを0に設定し、断線判定動作を開始する。 FIG. 6 is a flowchart of a first example of the startup operation of the CPU 15. When the start-up operation is started, the frequency command Frq to the rectangular voltage generating means 12 is set to the frequency Frq0, the pulse width command PW_C is set to the drive pulse width PW0, a pulse signal is generated, and the drive voltage is applied to the vibration type actuator 10. Then, the determination result Err of the disconnection determination is set to 0, and the disconnection determination operation is started.

断線判定は周波数指令Frqを高周波側(Frq0)から低周波側へ掃引し、周波数がFになるまで繰り返し行われる。 The disconnection determination is repeated by sweeping the frequency command Frq from the high frequency side (Frq0) to the low frequency side until the frequency becomes F1.

断線判定は高調波振幅計算ルーチンで検出した3次波形の振幅Amp(3)を用いて行う。起動時の3次高調波の周波数Frq03は周波数Frq0の3倍の周波数で、図5に示すようにFrq03が断線時に発生する共振特性の谷の底付近(320kHz付近)又はそれ以上の周波数になるように設定されている。断線した場合には、3次波形の振幅Amp(3)が周波数の掃引中に共振特性の谷の周波数付近で大きな変化をしたり、所定振幅Amp0より低い値となったりするので、これを検出したら断線判定Errを1として終了する。断線が無い場合にはそのまま周波数の掃引をFまで継続し断線判定の動作を繰り返す。 The disconnection determination is performed using the amplitude Amp (3) of the third-order waveform detected by the harmonic amplitude calculation routine. The frequency Frq03 of the third harmonic at startup is three times the frequency Frq0, and as shown in FIG. 5, the frequency is near the bottom of the valley of the resonance characteristic generated when Frq03 is disconnected (near 320 kHz) or higher. Is set to. If the wire is broken, the amplitude Amp (3) of the third-order waveform may change significantly near the frequency of the valley of the resonance characteristic or become a value lower than the predetermined amplitude Amp0 during frequency sweep, so this is detected. Then, the disconnection determination Err is set to 1 and the process ends. If there is no disconnection, the frequency sweep is continued until F1 and the disconnection determination operation is repeated.

尚、断線した時の共振周特性の谷の底(320kHz付近)の周波数は、起動時の周波数Frq0から周波数Fまでの掃引時間、周波数掃引の速度や、基本波成分の電流の大きさの制約等から決定される。この周波数はマッチング調整用コンデンサの静電容量値Cを調整することで任意に設定可能である。すなわちマッチング調整用コンデンサの静電容量値は断線時に振動体ユニットに流れる電流の周波数特性に現れる共振特性の谷の底の周波数と断線無しの場合の起動周波数の整数倍の周波数を近接されるように構成されている。 The frequency at the bottom of the valley of the resonance peripheral characteristics (around 320 kHz) when the wire is broken is the sweep time from the frequency Frq0 to the frequency F1 at the start, the frequency sweep speed, and the magnitude of the current of the fundamental wave component. Determined from restrictions, etc. This frequency can be arbitrarily set by adjusting the capacitance value C 1 of the matching adjusting capacitor. That is, the capacitance value of the matching adjustment capacitor should be close to the frequency at the bottom of the valley of the resonance characteristic that appears in the frequency characteristic of the current flowing through the vibrating body unit at the time of disconnection and the frequency that is an integral multiple of the starting frequency when there is no disconnection. It is configured in.

この場合、整数倍は2または3倍であると周波数掃引の範囲が大きくならずに良い精度で断線を検出するにあたりより望ましい。 In this case, it is more desirable that the integer multiple is 2 or 3 times in order to detect the disconnection with good accuracy without increasing the frequency sweep range.

図7は振動型アクチュエータの駆動回路の第2の例である。図1の振動型アクチュエータの駆動回路との違いは、インダクタとコンデンサの直列回路である波形整形手段11をインダクタだけの波形整形手段19に変更したことである。図8は図7の駆動回路の振動型アクチュエータ10の振動体の断線の数によって変化する振動型アクチュエータ10に流入する電流の周波数特性の例を示す図である。波形整形手段19に直流カットの為のコンデンサが無い為に、図5の特性と比較して低周波域の電流振幅が増加している。実線が断線無し、破線が1つの振動体が断線、一点鎖線が2つの振動体が断線、点線が全て断線した場合である。Fは電流振幅の谷の周波数付近の周波数で、周波数Fでパルス信号を生成した場合の2次の高調波の周波数がF、3次の高調波の周波数がFである。 FIG. 7 is a second example of the drive circuit of the vibration type actuator. The difference from the drive circuit of the vibration type actuator of FIG. 1 is that the waveform shaping means 11 which is a series circuit of the inductor and the capacitor is changed to the waveform shaping means 19 having only the inductor. FIG. 8 is a diagram showing an example of the frequency characteristics of the current flowing into the vibrating actuator 10 that changes depending on the number of disconnections of the vibrating body of the vibrating actuator 10 of the drive circuit of FIG. 7. Since the waveform shaping means 19 does not have a capacitor for cutting DC, the current amplitude in the low frequency region is increased as compared with the characteristics of FIG. The solid line is the case where there is no disconnection, the broken line is the case where one vibrating body is broken, the alternate long and short dash line is the case where the two vibrating bodies are broken, and the dotted line is all broken. F 1 is a frequency near the frequency of the valley of the current amplitude, and the frequency of the second harmonic when the pulse signal is generated at the frequency F 1 is F 2 , and the frequency of the third harmonic is F 3 .

波形整形手段はあるほうがより望ましいが必須ではない。 It is more desirable, but not essential, to have a waveform shaping means.

図5の特性と同様に、断線するとFの近傍に電流の共振特性が現れている。また上記説明と同様に周波数Frq0の3倍の周波数Frq03が断線時に発生する共振特性の谷の底付近(320kHz付近)又はそれ以上の周波数になるように設定されている。各部の動作の説明は上記説明と同じなので説明を省略する。 Similar to the characteristics of FIG. 5, when the wire is broken , the resonance characteristics of the current appear in the vicinity of F3. Further, as in the above description, the frequency Frq03, which is three times the frequency Frq0, is set to be near the bottom of the valley of the resonance characteristic (near 320 kHz) generated at the time of disconnection or higher. Since the description of the operation of each part is the same as the above description, the description thereof will be omitted.

図9は振動型アクチュエータの構成が異なる場合の例で振動型アクチュエータの駆動回路の第3の例を示す図である。上記例では振動体1、2、3と並列にトランス5、6、7とマッチング調整用コンデンサ16、17、18が接続されていたが、本例では振動体1、2、3にインダクタ20、21、22、マッチング調整用コンデンサ16、17、18が並列に接続されている。また振動体1、2、3は直列に接続され、インダクタ20、21、22とマッチング調整用コンデンサ16、17、18がそれぞれに並列に接続され、これらが振動体ユニットとしての振動型アクチュエータ23を構成している。本実施形態の基本的な構成は、並列に接続された1セットのインダクタとコンデンサと振動体が、を直列に複数セットが連なる振動体ユニットを備える点にある。 FIG. 9 is a diagram showing a third example of the drive circuit of the vibration type actuator in the case where the configuration of the vibration type actuator is different. In the above example, the transformers 5, 6 and 7 and the matching adjusting capacitors 16, 17 and 18 are connected in parallel with the vibrating bodies 1, 2 and 3, but in this example, the inductor 20 and the inductor 20 are connected to the vibrating bodies 1, 2 and 3. 21, 22, and matching adjusting capacitors 16, 17, and 18 are connected in parallel. Further, the vibrating bodies 1, 2 and 3 are connected in series, and the inductors 20, 21 and 22 and the matching adjusting capacitors 16, 17 and 18 are connected in parallel, respectively, and these form a vibrating actuator 23 as a vibrating body unit. It is composed. The basic configuration of the present embodiment is to include a set of inductors, capacitors, and a vibrating body connected in parallel, and a vibrating body unit in which a plurality of sets are connected in series.

図10は振動型アクチュエータ23の振動体の接続が断線した時の振動型アクチュエータ23に流入する電流の周波数特性の第1の例を示している。上記説明と同様に矩形電圧発生手段12が正弦波を出力したと仮定して周波数を掃引し流入電流の振幅を測定したものである。 FIG. 10 shows a first example of the frequency characteristics of the current flowing into the vibrating actuator 23 when the connection of the vibrating body of the vibrating actuator 23 is broken. Similar to the above description, the frequency is swept and the amplitude of the inflow current is measured on the assumption that the rectangular voltage generating means 12 outputs a sine wave.

実線が断線無し、破線が1つの振動体が断線、一点鎖線が2つの振動体が断線、点線が全て断線した場合である。Fは電流振幅の谷の周波数付近の周波数で、周波数Fでパルス信号を生成した場合の2次の高調波の周波数がF、3次の高調波の周波数がFである。図5、図8の特性と同様に、断線するとFの近傍に電流の共振特性が現れている。また上記説明と同様に周波数Frq0の3倍の周波数Frq03が断線時に発生する共振特性の谷の底付近(320kHz付近)又はそれ以上の周波数になるように設定されており、上記例と同様に図6の起動動作によって断線を検知している。 The solid line is the case where there is no disconnection, the broken line is the case where one vibrating body is broken, the alternate long and short dash line is the case where the two vibrating bodies are broken, and the dotted line is all broken. F 1 is a frequency near the frequency of the valley of the current amplitude, and the frequency of the second harmonic when the pulse signal is generated at the frequency F 1 is F 2 , and the frequency of the third harmonic is F 3 . Similar to the characteristics of FIGS. 5 and 8, when the wire is broken , the resonance characteristic of the current appears in the vicinity of F3. Further, as in the above description, the frequency Frq03, which is three times the frequency Frq0, is set to be near the bottom of the valley of the resonance characteristic (near 320 kHz) generated at the time of disconnection, or higher. The disconnection is detected by the activation operation of 6.

また、振動体1、2、3は弾性体に圧電素子を接合したものとしたが、圧電体のみでも良い。上記説明では駆動電圧として矩形電圧発生手段12の出力であるパルス信号を用いたが他の波形でも良い。三角波、鋸波、公知のD級アンプの出力であるPWM変調波であっても5次以下の比較的低次の高調波を多く含む波形であれば、高調波の電流を検出でき、断線の有無や断線数の判定は可能である。なお波形整形手段はあるほうがより望ましいが必須ではなく直接に信号処理してもよい。 Further, although the vibrating bodies 1, 2 and 3 are made by joining a piezoelectric element to an elastic body, only the piezoelectric body may be used. In the above description, the pulse signal which is the output of the rectangular voltage generating means 12 is used as the driving voltage, but other waveforms may be used. Even if it is a triangular wave, a sawtooth wave, or a PWM modulated wave that is the output of a known class D amplifier, if the waveform contains many relatively low-order harmonics of the 5th or lower order, the harmonic current can be detected and the disconnection can occur. It is possible to determine the presence or absence and the number of disconnections. It is more desirable to have a waveform shaping means, but it is not essential and signal processing may be performed directly.

図11は振動型アクチュエータ23の振動体の接続が断線した時の振動型アクチュエータ23に流入する電流の周波数特性の第2の例を示している。図10の特性とはマッチング調整用コンデンサの値を調整して上記パルス信号の3次の高調波の周波数Fを断線時に発生する共振特性の谷の底付近(294kHz付近)の周波数に設定した部分が異なっている。振動型アクチュエータの駆動回路の構成は図9と同様であるがCPU15の動作が異なっている。 FIG. 11 shows a second example of the frequency characteristics of the current flowing into the vibrating actuator 23 when the connection of the vibrating body of the vibrating actuator 23 is broken. What is the characteristic of FIG. 10? By adjusting the value of the matching adjusting capacitor, the frequency F3 of the third harmonic of the pulse signal is set to the frequency near the bottom of the valley of the resonance characteristic generated at the time of disconnection (near 294 kHz). The parts are different. The configuration of the drive circuit of the vibration type actuator is the same as that in FIG. 9, but the operation of the CPU 15 is different.

以下にCPU15の動作について説明する。図12はCPU15の起動動作のフローチャートの第2の例である。起動動作がスタートすると矩形電圧発生手段12への周波数指令Frqを周波数Fに、パルス幅指令PW_Cを駆動パルス幅PW0に設定してパルス信号を生成し、振動型アクチュエータ10に駆動電圧を印加する。そして振幅指令Amp_Cを初期振幅Amp1に設定し、断線判定の判定結果Errを0に設定し、断線判定動作を開始する。 The operation of the CPU 15 will be described below. FIG. 12 is a second example of a flowchart of the startup operation of the CPU 15. When the start-up operation starts, the frequency command Frq to the rectangular voltage generating means 12 is set to the frequency F1, the pulse width command PW_C is set to the drive pulse width PW0, a pulse signal is generated, and the drive voltage is applied to the vibration type actuator 10. .. Then, the amplitude command Amp_C is set to the initial amplitude Amp1, the determination result Err of the disconnection determination is set to 0, and the disconnection determination operation is started.

断線判定は周波数指令Frqを高周波側(F)から低周波側へ掃引し、基本波の振幅(振動振幅)Amp(1)が振幅指令Amp_C以上になるまで繰り返し行われる。 The disconnection determination is performed repeatedly until the frequency command Frq is swept from the high frequency side (F 1 ) to the low frequency side and the amplitude (vibration amplitude) Amp (1) of the fundamental wave becomes equal to or higher than the amplitude command Amp_C.

断線判定は高調波振幅計算ルーチンで検出した3次波形の振幅Amp(3)を用いて行う。起動時の3次高調波の周波数Fは周波数Fの3倍の周波数で、図11に示すようにFが断線時に発生する共振特性の谷の底付近(294kHz付近)の周波数になるように設定されている。断線した場合には、3次波形の振幅Amp(3)が周波数の掃引中に共振特性の谷の周波数付近で大きな変化をしたり、所定振幅Amp0より低い値となったりするので、これを検出したら断線判定Errを1として終了する。また周波数Frqが最低周波数Frq_min以下となった場合も断線判定Errを1として終了する。断線が無い場合にはそのまま周波数の掃引を継続し断線判定の動作を繰り返す。 The disconnection determination is performed using the amplitude Amp (3) of the third-order waveform detected by the harmonic amplitude calculation routine. The frequency F 3 of the third harmonic at startup is three times the frequency F 1 , and as shown in FIG. 11, the frequency near the bottom of the valley of the resonance characteristic generated when F 3 is disconnected (near 294 kHz). Is set to. If the wire is broken, the amplitude Amp (3) of the third-order waveform may change significantly near the frequency of the valley of the resonance characteristic or become a value lower than the predetermined amplitude Amp0 during frequency sweep, so this is detected. Then, the disconnection determination Err is set to 1 and the process ends. Also, when the frequency Frq becomes the lowest frequency Frq_min or less, the disconnection determination Err is set to 1 and the process ends. If there is no disconnection, the frequency sweep is continued and the disconnection determination operation is repeated.

ここで、上記マッチング周波数FをFと等しくなるようにトランスの2次側コイルのインダクタンス値Lを設定すると数式1は数式2となる。 Here, if the inductance value L 0 of the secondary coil of the transformer is set so that the matching frequency F 0 becomes equal to F 1 , Equation 1 becomes Equation 2.

Figure 2022068435000003
また、断線時に発生する共振特性と合わせたい高調波の次数をNとした場合のマッチング調整用コンデンサの静電容量値C周波数Fの関係は数式3であらわすことが出来る。
Figure 2022068435000003
Further, the relationship between the capacitance value C 1 frequency F 1 of the matching adjustment capacitor when the order of the harmonics to be matched with the resonance characteristic generated at the time of disconnection is N can be expressed by Equation 3.

Figure 2022068435000004
すると、数式2と数式3より制動容量値Cと静電容量値Cの関係は数式4であらわすことが出来る。
Figure 2022068435000004
Then, from Equation 2 and Equation 3, the relationship between the braking capacitance value C 0 and the capacitance value C 1 can be expressed by Equation 4.

Figure 2022068435000005
第1の実施例では起動時の周波数が基本波の電流振幅の谷の周波数より高い周波数Frq0から周波数を掃引するため起動初期の電流振幅が大きくなり、それが効率を低下させていた。これに対して実施例2では周波数Fから周波数の掃引を開始するので従来の駆動と同等の効率にて起動動作を実行出来、断線の検出も可能である。
Figure 2022068435000005
In the first embodiment, the frequency at the time of starting is swept from the frequency Frq0 higher than the frequency of the valley of the current amplitude of the fundamental wave, so that the current amplitude at the initial stage of starting becomes large, which reduces the efficiency. On the other hand, in the second embodiment, since the frequency sweep is started from the frequency F1, the start - up operation can be executed with the same efficiency as the conventional drive, and the disconnection can be detected.

また実施例1及び実施例2では起動時の周波数Frq0に対して3倍の周波数Frq03と断線時に発生する共振特性の谷の底付近(320kHz付近)を近接させた。しかし、上記パルス信号にある程度以上の比率で含まれる高調波の次数であれば、その次数と同じ倍率の周波数(高調波の次数が5次であれば周波数Frq0の5倍の周波数)と断線時に発生する共振特性の谷の底付近の周波数を近接させても良い。パルス幅がデューティ50%であれば偶数次の高調波がほとんど無いがパルス幅が狭くなると偶数次の高調波が増えてくる。パルス幅が狭いのであれば周波数Frq0の2倍の周波数やそれ以上の偶数倍の周波数としても良い。 Further, in Examples 1 and 2, the frequency Frq03, which is three times the frequency Frq0 at the time of starting, and the vicinity of the bottom of the valley of the resonance characteristic generated at the time of disconnection (near 320 kHz) are brought close to each other. However, if the order of the harmonics contained in the pulse signal is at a certain ratio or higher, the frequency has the same magnification as the order (if the order of the harmonics is the fifth order, the frequency is five times the frequency Frq0) and the wire is disconnected. The frequencies near the bottom of the valley of the generated resonance characteristic may be brought close to each other. If the pulse width is 50% duty, there are almost no even-order harmonics, but if the pulse width becomes narrower, even-order harmonics increase. If the pulse width is narrow, the frequency may be twice the frequency Frq0 or even a higher frequency.

図13は実施例3で用いる振動体の構成を示す図である。図13(a)の48は導電性材料で作られた矩形状の矩形状で、表面に接触体に接触する突起が2つ設けられている。49は振動体48の一部をなし、これを加振する為の圧電体である。図13(b)は圧電体49に設けられた電極を示しており、電極30、31間は電気的に絶縁され、位相が独立して変化する2つの交流電圧が印加される。圧電体49の裏面は全面が電極となっており、電極30、31の一部に設けられた不図示のビアを介して表面から通電出来るように構成されている。 FIG. 13 is a diagram showing a configuration of a vibrating body used in the third embodiment. FIG. 48 in FIG. 13A is a rectangular shape made of a conductive material, and has two protrusions on the surface that come into contact with the contact body. 49 is a part of the vibrating body 48 and is a piezoelectric body for vibrating the vibrating body 48. FIG. 13B shows an electrode provided on the piezoelectric body 49, and two AC voltages whose phases change independently are applied to the electrodes 30 and 31 which are electrically insulated from each other. The entire back surface of the piezoelectric body 49 is an electrode, and is configured to be energized from the front surface through vias (not shown) provided on a part of the electrodes 30 and 31.

図14は振動体48の振動モードを示す図である。図14(a)は、上記電極30と電極31に同相の交流電圧を印加した際に励起される振動モード(突き上げ振動モード)の振動形態で、図14(b)は逆相の交流電圧を印加した際に励起される振動モード(送り振動モード)の振動形態である。 FIG. 14 is a diagram showing a vibration mode of the vibrating body 48. FIG. 14A shows a vibration mode (push-up vibration mode) excited when an AC voltage of the same phase is applied to the electrodes 30 and 31, and FIG. 14B shows an AC voltage of the opposite phase. It is a vibration form of a vibration mode (feed vibration mode) that is excited when applied.

即ち、印加する交流電圧の位相差を0°とすると、図14(a)のモードが励起され、位相差を180°とすると、図14(b)のモードが励起される。また、交流電圧の位相差を0°と180°の間(実際には0°から120°程度が使用される)にすると両方の振動モードが同時に励起され、振動体48に設けられた突起に加圧接触された接触体が振動体48の長方形の長手方向に移動する。 That is, when the phase difference of the applied AC voltage is 0 °, the mode of FIG. 14 (a) is excited, and when the phase difference is 180 °, the mode of FIG. 14 (b) is excited. Further, when the phase difference of the AC voltage is set between 0 ° and 180 ° (actually, about 0 ° to 120 ° is used), both vibration modes are excited at the same time, and the protrusions provided on the vibrating body 48 are excited. The contact body in pressure contact moves in the longitudinal direction of the rectangle of the vibrating body 48.

図15は本実施例の直動型の振動型アクチュエータの構成を示す図で、上下に振動体36、37の突起部を互いに向い合せに配置したものである。また、同様に直線上に振動体38まで振動体を上下ペアで5セット配置し、合計10個の振動体で上下方向から共通の接触体50を挟み矢印の方向に移動するよう構成したものである。 FIG. 15 is a diagram showing the configuration of the direct-acting vibration type actuator of this embodiment, in which the protrusions of the vibrating bodies 36 and 37 are arranged vertically facing each other. Similarly, 5 sets of vibrating bodies are arranged in pairs up and down up to the vibrating body 38 on a straight line, and a total of 10 vibrating bodies are configured to sandwich a common contact body 50 from the vertical direction and move in the direction of the arrow. be.

図16は第3の実施例の振動型アクチュエータの駆動回路を示す図である。上記実施例の振動型アクチュエータの振動体の数が3個で駆動電圧の相数が1であったが、本実施例では振動体の数が10個で2相の駆動電圧で駆動する。10個の振動体36、37、…、38は不図示の導電性の弾性体がグランド電位に接続されている。 FIG. 16 is a diagram showing a drive circuit of the vibration type actuator of the third embodiment. In the above embodiment, the number of vibrating bodies of the vibrating actuator is three and the number of phases of the driving voltage is one, but in this embodiment, the number of vibrating bodies is ten and the driving voltage is two phases. In the ten vibrating bodies 36, 37, ..., 38, a conductive elastic body (not shown) is connected to the ground potential.

振動体36には圧電体49に設けられた電極30、31がトランス32、33にマッチング調整用コンデンサ34、35と共にそれぞれ並列に接続されている。トランス32の1次側には9個のトランス43、…、44の1次側が直列に接続され、各トランスの2次側にはマッチング調整用コンデンサと共に振動体37、…、38の9個の振動体がそれぞれ並列に接続されている。また、トランス33の1次側には同様に9個のトランス45、…、46が直列に接続され、各トランスの2次側にはマッチング調整用コンデンサと共に振動体37、…、38の9個の振動体がそれぞれ並列に接続されている。そして、これら振動体、マッチング調整用コンデンサ、トランスからなる直列に接続された10組のユニットで振動型アクチュエータ47を構成している。 Electrodes 30 and 31 provided in the piezoelectric body 49 are connected to the transformers 32 and 33 in parallel with the matching adjusting capacitors 34 and 35, respectively, in the vibrating body 36. Nine transformers 43, ..., 44 are connected in series to the primary side of the transformer 32, and nine vibrating bodies 37, ..., 38 are connected to the secondary side of each transformer together with a matching adjusting capacitor. The vibrating bodies are connected in parallel. Similarly, nine transformers 45, ..., 46 are connected in series on the primary side of the transformer 33, and nine vibrating bodies 37, ..., 38 are connected to the secondary side of each transformer together with a matching adjusting capacitor. The vibrating bodies of are connected in parallel. The vibration type actuator 47 is composed of 10 sets of units connected in series including these vibrating bodies, a matching adjusting capacitor, and a transformer.

40は2相のパルス信号を出力する矩形電圧発生手段であり、インダクタとコンデンサの直列回路で構成される波形整形手段11、39を介して駆動電圧を振動型アクチュエータ47に印加している。41及び42は振動型アクチュエータ47に流れる2相の電流をそれぞれ計測する為の抵抗で、振動体36、37、…、38の振動速度に比例した電圧を検出している。 Reference numeral 40 denotes a rectangular voltage generating means for outputting a two-phase pulse signal, and a driving voltage is applied to the vibration type actuator 47 via the waveform shaping means 11 and 39 composed of a series circuit of an inductor and a capacitor. 41 and 42 are resistors for measuring the two-phase currents flowing through the vibrating actuator 47, respectively, and detect voltages proportional to the vibration speeds of the vibrating bodies 36, 37, ..., 38.

24は抵抗41、42で検出された電流を加算した信号の基本波の振幅(振動振幅)Amp(1)、2次の高調波の振幅Amp(2)及び3次の高調波の振幅Amp(3)を出力する為の振幅検出手段である。基本波の振幅(振動振幅)Amp(1)は振動体36、37、…、38の突き上げ振動モードの振動振幅を示しており、CPU15に入力される。CPU15は不図示の指令手段からの位置指令、振幅検出手段24からの基本波の振幅(振動振幅)Amp(1)と3次の高調波の振幅Amp(3)に基づいて位置指令、パルス幅指令、周波数指令を決定し、出力している。パルス幅指令及び周波数指令は矩形電圧発生手段40に入力され、出力する2相のパルス信号の周波数とパルス幅を設定している。CPU15の動作の詳細な説明は後述する。27は接触体50の位置を検出する為の公知のリニアエンコーダであり、28はCPU15からの位置指令とリニアエンコーダ27が出力する位置信号の差を出力する位置比較手段である。29は位置比較手段28の出力に応じて矩形電圧発生手段40に位相差指令を出力する位置制御手段であり、上記2相のパルス信号の位相差を設定して接触体50の移動方向と速度を制御している。 24 is the amplitude (vibration amplitude) Amp (1) of the fundamental wave of the signal obtained by adding the currents detected by the resistors 41 and 42, the amplitude Amp (2) of the second harmonic, and the amplitude Amp (2) of the third harmonic. It is an amplitude detecting means for outputting 3). The amplitude (vibration amplitude) Amp (1) of the fundamental wave indicates the vibration amplitude of the push-up vibration mode of the vibrating bodies 36, 37, ..., 38, and is input to the CPU 15. The CPU 15 has a position command from a command means (not shown), a position command based on the amplitude (vibration amplitude) Amp (1) of the fundamental wave from the amplitude detection means 24, and the amplitude Amp (3) of the third harmonic, and the pulse width. The command and frequency command are determined and output. The pulse width command and the frequency command are input to the rectangular voltage generating means 40, and the frequency and the pulse width of the two-phase pulse signal to be output are set. A detailed description of the operation of the CPU 15 will be described later. Reference numeral 27 is a known linear encoder for detecting the position of the contact body 50, and 28 is a position comparison means for outputting the difference between the position command from the CPU 15 and the position signal output by the linear encoder 27. Reference numeral 29 denotes a position control means for outputting a phase difference command to the rectangular voltage generation means 40 according to the output of the position comparison means 28, and setting the phase difference of the two-phase pulse signals to move the moving direction and speed of the contact body 50. Is in control.

図17は図16の振動型アクチュエータ47の振動体が断線した時の振動型アクチュエータ47に流入する電流の周波数特性の第1の例を示している。矩形電圧発生手段40が正弦波を出力したと仮定して周波数を掃引し流入電流の振幅を測定したものである。実線が断線無し、破線が1つの振動体が断線、一点鎖線が2つの振動体が断線、点線が全て断線した場合である。Fは電流振幅の谷の周波数付近の周波数で、周波数Fでパルス信号を生成した場合の2次の高調波の周波数がF、3次の高調波の周波数がFである。 FIG. 17 shows a first example of the frequency characteristics of the current flowing into the vibrating actuator 47 when the vibrating body of the vibrating actuator 47 of FIG. 16 is disconnected. It is assumed that the rectangular voltage generating means 40 outputs a sine wave, the frequency is swept, and the amplitude of the inflow current is measured. The solid line is the case where there is no disconnection, the broken line is the case where one vibrating body is broken, the alternate long and short dash line is the case where the two vibrating bodies are broken, and the dotted line is all broken. F 1 is a frequency near the frequency of the valley of the current amplitude, and the frequency of the second harmonic when the pulse signal is generated at the frequency F 1 is F 2 , and the frequency of the third harmonic is F 3 .

本実施例では実施例2と同様にパルス信号の3次の高調波の周波数Fを断線時に発生する共振特性の谷の底(316kHz付近)より若干低めの周波数に設定している。CPU15の動作は実施例2と同様に図12の動作で断線の有無を判定することも可能であるが、本実施例では断線数を検出する例について説明する。 In this embodiment, as in the second embodiment, the frequency F3 of the third harmonic of the pulse signal is set to a frequency slightly lower than the bottom of the valley of the resonance characteristic (near 316 kHz) generated at the time of disconnection. As for the operation of the CPU 15, it is possible to determine the presence or absence of disconnection by the operation of FIG. 12 as in the second embodiment, but in this embodiment, an example of detecting the number of disconnections will be described.

図18は実施例3のCPU15の動作を示すフローチャートである。断線結果によって振動型アクチュエータ47の異なる駆動シーケンスを実行するCPU15の動作の例を示すフローチャートである。接触体50の位置制御動作のシーケンスを示しており、断線の数(M)によって異なる動作シーケンスを選択している。以下フローチャートを用いて各動作シーケンスについて説明する。位置制御動作は不図示の指令手段から新たな位置指令POS_Cが入力されると開始する。最初にそれまでに発生した振動子の断線数Mを確認する。断線数Mが2以上なら断線状態表示用LEDを赤に点灯して位置制御動作を終了する。断線数Mが1以下なら、振動型アクチュエータ47の起動動作を行う。起動動作では、矩形電圧発生手段40にパルス幅指令PW_Cを与え、所定のパルス幅で所定周波数範囲の周波数の掃引を行い、断線数Mの判定を行う。断線数Mが0であれば断線状態表示用LEDを緑に点灯し、断線数Mが1なら断線状態表示用LEDを黄に点灯し、断線数Nが2ならば断線状態表示用LEDを橙に点灯して位置制御動作を実行する。断線数が2より多い場合には断線状態表示用LEDを赤に点灯してパルス幅指令PW_Cを0にし、振動振幅指令AMP_Cも0にして位置制御動作を終了する。 FIG. 18 is a flowchart showing the operation of the CPU 15 of the third embodiment. It is a flowchart which shows the example of the operation of the CPU 15 which executes a different drive sequence of the vibration type actuator 47 depending on the disconnection result. The sequence of the position control operation of the contact body 50 is shown, and different operation sequences are selected depending on the number of disconnections (M). Each operation sequence will be described below using a flowchart. The position control operation starts when a new position command POS_C is input from a command means (not shown). First, the number of disconnections M of the oscillator that has occurred so far is confirmed. If the number of disconnections M is 2 or more, the LED for displaying the disconnection status is lit in red to end the position control operation. If the number of disconnections M is 1 or less, the vibration type actuator 47 is activated. In the start-up operation, the pulse width command PW_C is given to the rectangular voltage generating means 40, the frequency in the predetermined frequency range is swept with the predetermined pulse width, and the number of disconnection M is determined. If the number of disconnections M is 0, the LED for displaying the disconnection status is lit in green, if the number of disconnections M is 1, the LED for displaying the disconnection status is lit in yellow, and if the number of disconnections N is 2, the LED for displaying the disconnection status is orange. Lights up to execute the position control operation. When the number of disconnections is more than 2, the LED for displaying the disconnection state is turned on in red, the pulse width command PW_C is set to 0, and the vibration amplitude command AMP_C is also set to 0 to end the position control operation.

ここまでで位置制御動作が終了しなかったら位置指令POS_Cの設定を行い、振幅指令AMP_Cを所定の振幅AMP0に設定し、駆動タイマーTを0に初期化して位置制御動作を開始する。CPU15は位置制御動作の間は一定時間(T1)の間、振動振幅制御を行う。T1の値は位置指令による移動距離に応じて設定する事が出来る。振動振幅制御ルーチンでは振幅指令AMP_Cと基本波の振幅(振動振幅)Amp(1)を比較した結果に基づいて上記パルス信号の周波数を制御している。振幅指令AMP_Cの方が大きい場合には周波数Frqを低周波側に所定周波数下げ、逆であれば周波数Frqを高周波側に所定周波数上げる事で基本波の振幅(振動振幅)Amp(1)を一定に保っている。そして駆動タイマーTがT1になるまで振動振幅制御を繰り返し、駆動タイマーTがT1になったらパルス幅指令PW_Cを0にし、振動振幅指令AMP_Cも0にして位置制御動作を終了する。 If the position control operation is not completed up to this point, the position command POS_C is set, the amplitude command AMP_C is set to the predetermined amplitude AMP0, the drive timer T is initialized to 0, and the position control operation is started. The CPU 15 controls the vibration amplitude for a certain period of time (T1) during the position control operation. The value of T1 can be set according to the moving distance according to the position command. In the vibration amplitude control routine, the frequency of the pulse signal is controlled based on the result of comparing the amplitude command AMP_C and the amplitude (vibration amplitude) Amp (1) of the fundamental wave. If the amplitude command AMP_C is larger, the frequency Frq is lowered to the low frequency side by a predetermined frequency, and if it is the opposite, the frequency Frq is raised to the high frequency side by a predetermined frequency to keep the amplitude (vibration amplitude) Amp (1) of the fundamental wave constant. I keep it in. Then, the vibration amplitude control is repeated until the drive timer T becomes T1, and when the drive timer T becomes T1, the pulse width command PW_C is set to 0, the vibration amplitude command AMP_C is also set to 0, and the position control operation is terminated.

振動型アクチュエータ47のように振動体ユニットを複数直列に接続した振動型アクチュエータはいくつかの振動体が断線しても駆動を継続可能な場合もあるので、アプリケーションによっては駆動を継続する場合もある。また、断線数が少なくても駆動を継続すると周辺機構にダメージが蓄積していくので、駆動を継続する場合でも累積駆動時間が一定以上になったら駆動禁止にする等の対応をする場合もある。 A vibrating actuator in which a plurality of vibrating body units are connected in series, such as the vibrating actuator 47, may be able to continue driving even if some vibrating bodies are disconnected, so that driving may be continued depending on the application. .. In addition, even if the number of disconnections is small, damage will accumulate in the peripheral mechanism if driving is continued, so even if driving is continued, if the cumulative driving time exceeds a certain level, driving may be prohibited. ..

図19は実施例3のCPU15の起動動作のフローチャートの第1と第2の例を示している。図19(a)はパルス信号の基本波の振幅(振動振幅)Amp(1)を用いて断線数を検出する場合、図19(b)はパルス信号の3次の高調波の振幅Amp(3)を用いて断線数を検出する場合を示している。以下にそれぞれの動作を比較しながら説明する。 FIG. 19 shows the first and second examples of the flowchart of the startup operation of the CPU 15 of the third embodiment. FIG. 19 (a) shows the amplitude (vibration amplitude) of the fundamental wave of the pulse signal, and when the number of disconnections is detected using Amp (1), FIG. 19 (b) shows the amplitude of the third harmonic of the pulse signal, Amp (3). ) Is used to detect the number of disconnections. The following will be described while comparing each operation.

最初に図19(a)、(b)のどちらの動作も周波数指令Frqを電流振幅の谷の周波数付近の周波数F(98kHz付近)より高く断線が無い場合のピーク周波数(130kHz付近)より高い周波数Frq1に設定する。パルス幅指令PW_CはPW0に設定する。PW0は矩形電圧発生手段40がデューティ50%のパルス信号を出力する値であり、パルス幅を設定することで矩形電圧発生手段40はパルス信号を出力する。 First, in both operations of FIGS. 19 (a) and 19 (b), the frequency command Frq is higher than the frequency F 1 (near 98 kHz) near the frequency of the valley of the current amplitude and higher than the peak frequency (near 130 kHz) when there is no disconnection. Set the frequency to Frq1. The pulse width command PW_C is set to PW0. PW0 is a value at which the rectangular voltage generating means 40 outputs a pulse signal having a duty of 50%, and the rectangular voltage generating means 40 outputs a pulse signal by setting the pulse width.

断線数の判定は周波数指令Frqを高周波側(Frq1)から低周波側へ掃引し、周波数がFになるまで繰り返し行われる。その際3次の高調波の振幅の検出の為の掃引は周波数Frq1の3倍の周波数Frq13からパルス信号の3次の高調波の周波数Fに向けて周波数掃引が行われる。 The determination of the number of disconnections is repeated by sweeping the frequency command Frq from the high frequency side (Frq1) to the low frequency side until the frequency becomes F1. At that time, the sweep for detecting the amplitude of the third harmonic is performed from the frequency Frq13, which is three times the frequency Frq1, toward the frequency F3 of the third harmonic of the pulse signal.

最初にそれぞれ断線数Mの検出に用いる電流振幅を入力する。そして周波数を掃引しながらそれぞれの検出に用いる電流振幅にピーク特性(図17の振幅特性の山の頂点)が検出されるまで周波数掃引を行う。図19(a)では基本波の振幅(振動振幅)Amp(1)、図19(b)では3次の高調波の振幅Amp(3)にピーク特性が検出されたら、ピーク特性の周波数と断線数Mの関係を示すテーブルを用いて断線数Mを決定する。断線数Mが決定された場合には断線数の判定を終了し周波数指令Frqを周波数Fに設定して終了する。断線数Mが決まらないまま周波数指令Frqが周波数Fに到達した場合には図19(a)の場合には駆動回路又は振動型アクチュエータ47が故障している事を示している。その場合はパルス幅指令PW_C=0として矩形電圧発生手段40のパルス信号出力を停止し、エラーフラグErrを1として終了している。また図19(b)の場合には断線数Mが決まらないまま周波数指令Frqが周波数Fに到達した場合、断線数M=0として起動動作を終了する。 First, the current amplitude used for detecting the number of disconnection M is input. Then, while sweeping the frequency, the frequency is swept until the peak characteristic (the peak of the peak of the amplitude characteristic in FIG. 17) is detected in the current amplitude used for each detection. If a peak characteristic is detected in the amplitude (vibration amplitude) Amp (1) of the fundamental wave in FIG. 19 (a) and the amplitude Amp (3) of the third harmonic in FIG. 19 (b), the frequency and disconnection of the peak characteristic are detected. The number of disconnections M is determined using a table showing the relationship of the number M. When the number of disconnections M is determined, the determination of the number of disconnections ends, the frequency command Frq is set to the frequency F1, and the process ends. When the frequency command Frq reaches the frequency F1 without determining the number of disconnections M, the case shown in FIG. 19A indicates that the drive circuit or the vibration type actuator 47 is out of order. In that case, the pulse width command PW_C = 0 is set, the pulse signal output of the rectangular voltage generating means 40 is stopped, and the error flag Err is set to 1. Further, in the case of FIG. 19B, when the frequency command Frq reaches the frequency F1 without determining the number of disconnection M, the start-up operation is terminated with the number of disconnection M = 0.

図20は振動型アクチュエータ47の振動体が断線した時の振動型アクチュエータ47に流入する電流の周波数特性の第2の例を示している。矩形電圧発生手段40が正弦波を出力したと仮定して周波数を掃引し流入電流の振幅を測定したものである。実線が断線無し、破線が1つの振動体が断線、一点鎖線が2つの振動体が断線、点線が全て断線した場合である。Fは電流振幅の谷の周波数付近の周波数で、周波数Fでパルス信号を生成した場合の2次の高調波の周波数がF、3次の高調波の周波数がFである。図17の特性が断線時に発生する共振特性の谷の底の周波数をパルス信号の3次の高調波の周波数F付近に設定したのに対して、図20の特性は2次の高調波の周波数F付近に設定している点が異なっている。 FIG. 20 shows a second example of the frequency characteristics of the current flowing into the vibrating actuator 47 when the vibrating body of the vibrating actuator 47 is disconnected. It is assumed that the rectangular voltage generating means 40 outputs a sine wave, the frequency is swept, and the amplitude of the inflow current is measured. The solid line is the case where there is no disconnection, the broken line is the case where one vibrating body is broken, the alternate long and short dash line is the case where the two vibrating bodies are broken, and the dotted line is all broken. F 1 is a frequency near the frequency of the valley of the current amplitude, and the frequency of the second harmonic when the pulse signal is generated at the frequency F 1 is F 2 , and the frequency of the third harmonic is F 3 . In the characteristic of FIG. 17, the frequency at the bottom of the valley of the resonance characteristic generated at the time of disconnection is set near the frequency F3 of the third harmonic of the pulse signal, whereas the characteristic of FIG. 20 is that of the second harmonic. The difference is that it is set near the frequency F2.

本例では断線時に発生する共振特性の谷の底の周波数をパルス信号の2次の高調波の周波数F付近とする為に、マッチング調整用コンデンサの静電容量値Cを制動容量値Cの約3分の1に設定している。 In this example, since the frequency at the bottom of the valley of the resonance characteristic generated at the time of disconnection is close to the frequency F 2 of the second harmonic of the pulse signal, the capacitance value C 1 of the matching adjustment capacitor is set to the braking capacitance value C. It is set to about 1/3 of 0 .

また、パルス信号のデューティが50%の状態で断線数Mを検出する為の周波数掃引を行うと、ピーク特性の付近で大きな電流が流れる為、駆動回路の電流容量を大きくしなければならないという問題がある。その為回路コストの上昇や駆動効率が低下する。その為本実施例では断線数Mを検出する為の起動動作の間だけパルス信号のデューティを小さくすることでこの問題を回避している。パルス幅のデューティが50%の際には2次の高調波がほとんど無いがパルス幅を小さくすることで2次の高調波の割合が増え、これを用いて断線の判定を行っている。 In addition, if frequency sweep is performed to detect the number of disconnections M when the duty of the pulse signal is 50%, a large current flows near the peak characteristics, so the current capacity of the drive circuit must be increased. There is. Therefore, the circuit cost increases and the drive efficiency decreases. Therefore, in this embodiment, this problem is avoided by reducing the duty of the pulse signal only during the start-up operation for detecting the number of disconnection M. When the duty of the pulse width is 50%, there is almost no second-order harmonic, but by reducing the pulse width, the ratio of the second-order harmonics increases, and the disconnection is determined using this.

図21は実施例3の起動動作のPU15の起動動作のフローチャートの第3の例を示している。 FIG. 21 shows a third example of the flowchart of the activation operation of the PU 15 of the activation operation of the third embodiment.

断線数の判定に2次の高調波の振幅Amp(2)を用いていること、起動動作の間パルス幅指令PW_CをPW0の4分の1にしている他は図19(b)と同じである。ここでは2次の高調波の振幅Amp(2)を用いた例を示したが、図19(a)と同様に基本波を用いて断線数Mを判定する事も可能である。 Same as FIG. 19 (b) except that the amplitude Amp (2) of the second harmonic is used to determine the number of disconnections and the pulse width command PW_C is set to 1/4 of PW0 during the start-up operation. be. Here, an example using the amplitude Amp (2) of the second harmonic is shown, but it is also possible to determine the number of disconnection M using the fundamental wave as in FIG. 19 (a).

また上記実施例1乃至実施例3の説明では振動体には圧電体が接合されているとしたが、振動体自体を圧電体で構築しても良い。また圧電体は積層圧電体であっても良い。 Further, in the description of Examples 1 to 3, it is assumed that the piezoelectric body is bonded to the vibrating body, but the vibrating body itself may be constructed of the piezoelectric body. Further, the piezoelectric body may be a laminated piezoelectric body.

このように矩形電圧生成手段の出力するパルス信号を所定のパルス幅に設定し、振動体ユニットに流れる1相以上の電流のいずれかの相の信号又はいくつかの相の信号を加算した電流信号の基本波成分の振幅が所定振幅に達するまで周波数掃引を行うものである。 In this way, the pulse signal output by the rectangular voltage generating means is set to a predetermined pulse width, and a current signal obtained by adding one or more phase signals of one or more phases of current flowing through the vibrating body unit. The frequency is swept until the amplitude of the fundamental wave component of is reached a predetermined amplitude.

本願発明の振動型駆動知はさまざまな機器に利用可能である。 The vibration type drive knowledge of the present invention can be used for various devices.

1、2、3、36、37、38、48 振動体
4 円柱シャフト
5、6、7、32、33、43、44、45、46 トランス
10、23、47 振動型アクチュエータ
11、19、39 波形整形手段
12、40 矩形電圧発生手段
13、41、42 抵抗
14 A/D変換器
15 CPU
16、17、18、34、35 マッチング調整用コンデンサ
20、21、22 インダクタ
24 振幅検出手段
27 リニアエンコーダ
28 位置比較手段
29 位置制御手段
49 圧電体
50 接触体

1, 2, 3, 36, 37, 38, 48 Vibrating body 4 Cylindrical shaft 5, 6, 7, 32, 33, 43, 44, 45, 46 Transformer 10, 23, 47 Vibration type actuator 11, 19, 39 Waveform Shaping means 12, 40 Rectangular voltage generating means 13, 41, 42 Resistance 14 A / D converter 15 CPU
16, 17, 18, 34, 35 Matching adjustment capacitor 20, 21, 22 Inductor 24 Amplitude detection means 27 Linear encoder 28 Position comparison means 29 Position control means 49 Piezoelectric body 50 Contact

Claims (25)

指令信号を出力する制御部と、
前記指令信号に基づき駆動信号を出力する駆動部と、
前記駆動信号に基づき振動する2つ以上の振動体が連なる振動体ユニットと、
前記振動体ユニットに流れる電流信号を検知する電流検知手段を備え、
前記制御部は、前記振動体ユニットの駆動周波数の範囲に対応する前記振動体ユニットに流れる電流信号を基本波として、前記基本波の高調波に相当する前記振動体ユニットに流れる電流信号に基づいて前記振動体に連結する配線の断線の有無を判定する振動型駆動装置。
A control unit that outputs a command signal and
A drive unit that outputs a drive signal based on the command signal,
A vibrating body unit in which two or more vibrating bodies vibrating based on the drive signal are connected,
A current detecting means for detecting a current signal flowing through the vibrating body unit is provided.
The control unit uses a current signal flowing through the vibrating body unit corresponding to the range of the drive frequency of the vibrating body unit as a fundamental wave, and based on a current signal flowing through the vibrating body unit corresponding to a harmonic of the fundamental wave. A vibration type drive device that determines whether or not the wiring connected to the vibrating body is broken.
1次側が直列に接続された複数のトランスの2次側にそれぞれ並列にコンデンサと振動体を接続した振動体ユニットを備え、前記複数のトランスの1次側は、前記駆動信号が印加されるように構成されており、
前記駆動部は、所定の電圧と周波数を有するパルス信号を生成する矩形電圧生成手段と、前記矩形電圧生成手段と前記振動体ユニットとの間に挿入される波形整形手段を備え、
前記振動型駆動装置は、前記振動型駆動装置の起動動作の際に前記パルス信号の周波数を掃引し、前記パルス信号の高調波に相当する電流信号を検知する請求項1記載の振動型駆動装置。
A vibrating body unit in which a capacitor and a vibrating body are connected in parallel is provided on the secondary side of a plurality of transformers in which the primary side is connected in series, and the driving signal is applied to the primary side of the plurality of transformers. Is configured in
The drive unit includes a rectangular voltage generating means for generating a pulse signal having a predetermined voltage and frequency, and a waveform shaping means inserted between the rectangular voltage generating means and the vibrating body unit.
The vibration type drive device according to claim 1, wherein the vibration type drive device sweeps the frequency of the pulse signal at the time of starting operation of the vibration type drive device, and detects a current signal corresponding to a harmonic of the pulse signal. ..
並列に接続された1セットのインダクタとコンデンサと振動体が、を直列に複数セットが連なる振動体ユニットを備え、
前記駆動部は所定の電圧と周波数を有するパルス信号を生成する矩形電圧生成手段と、前記矩形電圧生成手段と前記振動体ユニットとの間に挿入される波形整形手段と、を備え
前記振動型駆動装置は、前記振動型駆動装置の起動動作の際に前記パルス信号の周波数を掃引し、前記パルス信号の高調波に相当する電流信号を検知する請求項1記載の振動型駆動装置。
A set of inductors, capacitors, and vibrators connected in parallel are equipped with a vibrating body unit in which multiple sets are connected in series.
The drive unit includes a rectangular voltage generating means for generating a pulse signal having a predetermined voltage and frequency, and a waveform shaping means inserted between the rectangular voltage generating means and the vibrating body unit, and the vibration type driving unit is provided. The vibration type drive device according to claim 1, wherein the device sweeps the frequency of the pulse signal at the time of starting operation of the vibration type drive device and detects a current signal corresponding to a harmonic of the pulse signal.
前記電流信号の前記基本波の成分をカットするハイパスフィルタ又は前記基本波に対する特定の次数の高調波を検出するバンドパスフィルタのいずれかを含む請求項1乃至3のいずれか1項に記載の振動型駆動装置。 The vibration according to any one of claims 1 to 3, comprising either a high-pass filter that cuts the component of the fundamental wave of the current signal or a bandpass filter that detects harmonics of a specific order with respect to the fundamental wave. Type drive device. 前記バンドパスフィルタの通過帯域は少なくともパルス信号の2次及び3次の高調波のいずれか一方を含む請求項4記載の振動型駆動装置。 The vibration type drive device according to claim 4, wherein the pass band of the bandpass filter includes at least one of the second and third harmonics of the pulse signal. 前記コンデンサの静電容量値は、断線時に前記振動体ユニットに流れる電流の周波数特性に現れる共振特性の谷の底の周波数と断線無しの場合の起動周波数の整数倍の周波数を近接するように構成されている請求項2または3記載の振動型駆動装置。 The capacitance value of the capacitor is configured so that the frequency at the bottom of the valley of the resonance characteristic that appears in the frequency characteristic of the current flowing through the vibrating body unit at the time of disconnection and the frequency that is an integral multiple of the starting frequency when there is no disconnection are close to each other. The vibration type drive device according to claim 2 or 3. 前記整数倍は2または3倍である請求項6記載の振動型駆動装置。 The vibration type drive device according to claim 6, wherein the integer multiple is 2 or 3 times. 前記矩形電圧生成手段の出力するパルス信号を所定のパルス幅に設定し、周波数を所定周波数から所定の周波数まで周波数の掃引を行う請求項2または3記載の振動型駆動装置。 The vibration type drive device according to claim 2 or 3, wherein the pulse signal output by the rectangular voltage generating means is set to a predetermined pulse width, and the frequency is swept from a predetermined frequency to a predetermined frequency. 前記矩形電圧生成手段の出力するパルス信号を所定のパルス幅に設定し、前記振動体ユニットに流れる1相以上の電流のいずれかの相の信号又はいくつかの相の信号を加算した前記電流信号の基本波成分の振幅が所定振幅に達するまで周波数の掃引を行う請求項2または3記載の振動型駆動装置。 The pulse signal output by the rectangular voltage generating means is set to a predetermined pulse width, and the current signal obtained by adding the signal of one or more phases of the current of one or more phases flowing through the vibrating body unit or the signal of some phases. The vibration type drive device according to claim 2 or 3, wherein the frequency is swept until the amplitude of the fundamental wave component of the above reaches a predetermined amplitude. 前記制御は、いずれかの相の信号又はいくつかの相を加算した信号の高調波の振幅を出力し、前記振幅が所定値より小さい場合に断線有りと判定する請求項1乃至9のいずれか1項に記載の振動型駆動装置。 The control outputs the amplitude of the harmonic of the signal of any phase or the signal obtained by adding some phases, and if the amplitude is smaller than a predetermined value, it is determined that there is a disconnection. The vibration type drive device according to item 1. 前記制御は、いずれかの相の信号又はいくつかの相を加算した信号の高調波の振幅の変化率を出力し、断線判定手段は前記振幅の変化率の大きさが所定値より大きい場合に断線有りと判定する請求項1乃至9のいずれか1項に記載の振動型駆動装置。 The control outputs the rate of change in the amplitude of the harmonics of the signal of either phase or the signal obtained by adding several phases, and the disconnection determining means measures the case where the magnitude of the rate of change of the amplitude is larger than a predetermined value. The vibration type drive device according to any one of claims 1 to 9, wherein it is determined that there is a disconnection. 前記制御は、いずれかの相の信号又はいくつかの相を加算した電流信号の高調波の振幅の最大値とその際の周波数を出力し、断線判定手段は前記最大値が所定の値より大きい場合に断線有りと判定すると共に、前記周波数によって断線数を判定する請求項1乃至9のいずれか1項に記載の振動型駆動装置。 The control outputs the maximum value of the harmonic amplitude of the signal of either phase or the current signal obtained by adding several phases and the frequency at that time, and the disconnection determining means has the maximum value larger than a predetermined value. The vibration type drive device according to any one of claims 1 to 9, wherein it is determined that there is a disconnection in some cases, and the number of disconnections is determined by the frequency. 前記振動型駆動装置の起動動作の際における前記パルス信号のパルス幅は、前記振動型駆動装置の通常の駆動時のパルス幅より小さいパルス幅とする請求項2または3に記載の振動型駆動装置。 The vibration type drive device according to claim 2 or 3, wherein the pulse width of the pulse signal at the time of starting operation of the vibration type drive device is a pulse width smaller than the pulse width at the time of normal driving of the vibration type drive device. .. 前記パルス信号の基本波の電流振幅に基づき前記振動体に連結する配線の断線数を判定する請求項2記載の振動型駆動装置。 The vibration type drive device according to claim 2, wherein the number of broken wires of the wiring connected to the vibrating body is determined based on the current amplitude of the fundamental wave of the pulse signal. 前記駆動信号の掃引を開始する際の周波数は前記振動体の共振周波数より高く振動体の断線の無い時の前記振動体ユニットに流れる電流の周波数特性のピークの周波数より高い周波数である請求項14に記載の振動型駆動装置。 Claim 14 that the frequency at which the sweep of the drive signal is started is higher than the resonance frequency of the vibrating body and higher than the frequency of the peak frequency characteristic of the frequency characteristic of the current flowing through the vibrating body unit when there is no disconnection of the vibrating body. The vibration type drive device described in. 前記パルス信号の高調波成分をカットするローパスフィルタ又は前記パルス信号の基本波を検出するバンドパスフィルタのいずれかを含む請求項14または15に記載の振動型駆動装置。 The vibration type drive device according to claim 14 or 15, which comprises either a low-pass filter that cuts a harmonic component of the pulse signal or a bandpass filter that detects a fundamental wave of the pulse signal. 前記起動動作のいずれかの相の信号又はいくつかの相を加算した信号の基本波の振幅の最大値とその際の周波数を出力し、前記周波数によって断線数を判定する請求項14乃至16のいずれか1項に記載の振動型駆動装置。 22. The vibration type drive device according to any one item. 前記起動動作の前記パルス信号のパルス幅は、通常の駆動時のパルス幅より小さいパルス幅とする請求項14乃至16のいずれか1項に記載の振動型駆動装置。 The vibration type drive device according to any one of claims 14 to 16, wherein the pulse width of the pulse signal in the activation operation is smaller than the pulse width at the time of normal driving. 前記振動体ユニットに接する共通の接触体を有する請求項1乃至18のいずれか1項記載の振動型駆動装置。 The vibrating drive device according to any one of claims 1 to 18, which has a common contact body in contact with the vibrating body unit. 前記接触体は円柱シャフトであり、前記円柱シャフトの円周に略均等に配置された3つの振動体を備えている請求項19に記載の振動型駆動装置。 The vibrating drive device according to claim 19, wherein the contact body is a cylindrical shaft and includes three vibrating bodies arranged substantially evenly on the circumference of the cylindrical shaft. 前記接触体および前記振動体を収める中空ケースをさらに備える請求項19または20に記載の振動型駆動装置。 The vibrating drive device according to claim 19 or 20, further comprising a hollow case for accommodating the contact body and the vibrating body. 前記振動体は2つの突起を有する矩形状の弾性体と、圧電体を備える請求項1乃至21のいずれか1項記載の振動型駆動装置。 The vibrating drive device according to any one of claims 1 to 21, wherein the vibrating body includes a rectangular elastic body having two protrusions and a piezoelectric body. 制御部が指令信号を駆動部へ出力し、前記指令信号に基づき前記駆動部が出力した駆動信号によって2つ以上の振動体が連なる振動体ユニットが振動するとともに、
前記制御部は、前記振動体ユニットの駆動周波数の範囲に対応する前記振動体ユニットに流れる電流信号を基本波として、前記基本波の高調波に相当する前記振動体ユニットに流れる電流信号に基づいて前記振動体に連結する配線の断線の有無を判定する振動型駆動装置の制御方法。
The control unit outputs a command signal to the drive unit, and the drive signal output by the drive unit based on the command signal vibrates the vibrating body unit in which two or more vibrating bodies are connected.
The control unit uses a current signal flowing through the vibrating body unit corresponding to the range of the drive frequency of the vibrating body unit as a fundamental wave, and is based on a current signal flowing through the vibrating body unit corresponding to a harmonic of the fundamental wave. A method for controlling a vibration type drive device for determining the presence or absence of disconnection of wiring connected to the vibrating body.
前記振動体ユニットは、1次側が直列に接続された複数のトランスの2次側にそれぞれ並列に振動体が接続され、前記複数のトランスの1次側は、前記駆動信号が印加されるように構成されており、
前記駆動部は所定の電圧と周波数を有するパルス信号を生成する矩形電圧生成手段と、前記矩形電圧生成手段と前記振動体ユニットとの間に挿入される波形整形手段を備える請求項23記載の振動型駆動装置の制御方法。
In the vibrating body unit, a vibrating body is connected in parallel to each of the secondary sides of a plurality of transformers to which the primary side is connected in series, and the driving signal is applied to the primary side of the plurality of transformers. It is composed and
23. The vibration according to claim 23, wherein the driving unit includes a rectangular voltage generating means for generating a pulse signal having a predetermined voltage and frequency, and a waveform shaping means inserted between the rectangular voltage generating means and the vibrating body unit. Control method of type drive device.
前記振動体ユニットは並列に接続された1セットのインダクタとコンデンサと振動体が、直列に複数セットが連なるように構成されており、
前記駆動部は所定の電圧と周波数を有するパルス信号を生成する矩形電圧生成手段と、前記矩形電圧生成手段と前記振動体ユニットとの間に挿入される波形整形手段を備える請求項23記載の振動型駆動装置の制御方法。

The vibrating body unit is configured such that a set of inductors, capacitors, and vibrating bodies connected in parallel are connected in series.
23. The vibration according to claim 23, wherein the driving unit includes a rectangular voltage generating means for generating a pulse signal having a predetermined voltage and frequency, and a waveform shaping means inserted between the rectangular voltage generating means and the vibrating body unit. Control method of type drive device.

JP2020177104A 2020-10-22 2020-10-22 Vibration type drive device and drive method Pending JP2022068435A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020177104A JP2022068435A (en) 2020-10-22 2020-10-22 Vibration type drive device and drive method
EP21882819.2A EP4236058A1 (en) 2020-10-22 2021-10-19 Vibration-type drive apparatus and method for driving vibration-type drive apparatus
PCT/JP2021/038594 WO2022085678A1 (en) 2020-10-22 2021-10-19 Vibration-type drive apparatus and method for driving vibration-type drive apparatus
US18/304,184 US20230268848A1 (en) 2020-10-22 2023-04-20 Vibration-type drive apparatus, and drive method for vibration-type drive apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020177104A JP2022068435A (en) 2020-10-22 2020-10-22 Vibration type drive device and drive method

Publications (1)

Publication Number Publication Date
JP2022068435A true JP2022068435A (en) 2022-05-10

Family

ID=81460073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020177104A Pending JP2022068435A (en) 2020-10-22 2020-10-22 Vibration type drive device and drive method

Country Status (1)

Country Link
JP (1) JP2022068435A (en)

Similar Documents

Publication Publication Date Title
JP2006217716A (en) Ultrasonic actuator driving unit and ultrasonic actuator driving method
CN102025339B (en) Piezoelectric actuator driver circuit
WO2010048594A2 (en) System and method of driving ultrasonic transducers
JP4088665B2 (en) Ultrasonic wave generation method and apparatus
JP2022068435A (en) Vibration type drive device and drive method
JP5351024B2 (en) DC high voltage power supply
JP2995788B2 (en) Ultrasonic motor drive circuit
WO2022085678A1 (en) Vibration-type drive apparatus and method for driving vibration-type drive apparatus
JP2018078769A (en) Control method for vibration type actuator, vibration type drive device and electronic apparatus
JP5833658B2 (en) Method and apparatus for electrically exciting an actuator for an ultrasonic motor
JP4110153B2 (en) Drive device for vibration actuator and drive method for vibration actuator
JP2022068434A (en) Vibration type drive device and drive method thereof
JP2548248B2 (en) Ultrasonic motor controller
JP2654525B2 (en) Converter using magnetostrictive electrostrictive mutual conversion element
JP4765405B2 (en) Ultrasonic motor drive device
JP4559384B2 (en) Vibrating transfer device
JP5716624B2 (en) Ultrasonic motor drive device
JP2990729B2 (en) Ultrasonic motor drive
JP2020162260A (en) Vibration type actuator and drive device of the same
KR100703205B1 (en) An apparatus for controling the driving of piezoelectric ultrasonic motor
US11326544B2 (en) Sensorless control device for DC fuel pump
JPH1197758A (en) Piezoelectric transducer driving circuit
JP2691970B2 (en) Ultrasonic motor control circuit
JPH09285150A (en) Drive unit for ultrasonic motor
JP2020182329A (en) Vibration actuator and drive device of the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20201105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230615

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20231213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240402