JP2022069261A - 磁気センサアセンブリとこれを備えたカメラモジュール - Google Patents

磁気センサアセンブリとこれを備えたカメラモジュール Download PDF

Info

Publication number
JP2022069261A
JP2022069261A JP2020178346A JP2020178346A JP2022069261A JP 2022069261 A JP2022069261 A JP 2022069261A JP 2020178346 A JP2020178346 A JP 2020178346A JP 2020178346 A JP2020178346 A JP 2020178346A JP 2022069261 A JP2022069261 A JP 2022069261A
Authority
JP
Japan
Prior art keywords
magnetic sensor
magnet
magnets
sensor assembly
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020178346A
Other languages
English (en)
Other versions
JP7287375B2 (ja
Inventor
健太郎 原田
Kentaro Harada
剛 梅原
Takeshi Umehara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2020178346A priority Critical patent/JP7287375B2/ja
Priority to US17/502,724 priority patent/US11561079B2/en
Priority to CN202111234917.4A priority patent/CN114487949A/zh
Publication of JP2022069261A publication Critical patent/JP2022069261A/ja
Application granted granted Critical
Publication of JP7287375B2 publication Critical patent/JP7287375B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • G01R33/072Constructional adaptation of the sensor to specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/091Constructional adaptation of the sensor to specific applications
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B5/04Vertical adjustment of lens; Rising fronts
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0015Movement of one or more optical elements for control of motion blur by displacing one or more optical elements normal to the optical axis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils

Abstract

【課題】簡易な構成で、可動部の固定部に対する位置関係と回転方向を検出する。【解決手段】磁気センサアセンブリ1は、第1~第3の磁気センサ13A~13Cを含む第1の部材10と、第1~第3の磁石22A~22Cを含む第2の部材20と、を有する。第2の部材20は3次元直交座標系101において、第1の部材10に対してX、Y方向への相対移動とZ軸周りの相対回転が可能である。第1~第3の磁気センサ13A~13Cは各々Z方向に第1~第3の磁石22A~22Cと対向している。第1~第3の磁気センサ13A~13Cの出力は単調変化する。第1の磁気センサ13Aの出力変化と第2の磁気センサ13Bの出力変化は互いに異なる。第1~第3の磁石22A~22Cは各々、第1~第3の直線L1~L3上にある。第1の直線L1とX軸とがなす角度と、第2の直線L2とX軸とがなす角度と、第3の直線L3とY軸とがなす角度は同じである。【選択図】図2

Description

本発明は磁気センサアセンブリとこれを備えたカメラモジュールに関し、特に磁気センサアセンブリの構成に関する。
様々な用途で、固定部に対する可動部の相対位置を検出する磁気センサアセンブリが用いられている。特許文献1には、カメラモジュールに適用される像ぶれ補正装置が開示されている。撮像素子を備える可動部に複数のホール素子が設けられ、カメラボディにホール素子と対向する磁石が設けられている。可動部のカメラボディに対する直交2方向の移動量と、当該2方向と直交する軸の周りの回転角度が、複数のホール素子の出力変化量から求められる。
特開2006-94185号公報
特許文献1に記載された像ぶれ補正装置では、ホール素子が磁石に対してどちらの方向に回転しても、素子出力の変化量が同じとなる。従って、可動部の回転方向を検出するためには別の手段が必要となる。
本発明は、簡易な構成で、可動部の固定部に対する位置関係と回転方向を検出することができる磁気センサアセンブリを提供することを目的とする。
本発明の磁気センサアセンブリは、第1~第3の磁気センサを含む第1の部材と、第1~第3の磁石を含む第2の部材と、を有する。第2の部材は3次元直交座標系101において、第1の部材に対してX、Y方向への相対移動とZ軸周りの相対回転が可能である。第1~第3の磁気センサは各々Z方向に第1~第3の磁石と対向している。第1の磁気センサの出力は、第1の磁気センサの第1の磁石に対するX方向の相対変位に応じて単調変化し、第2の磁気センサの出力は、第2の磁気センサの第2の磁石に対するX方向の相対変位に応じて単調変化し、第3の磁気センサの出力は、第3の磁気センサの第3の磁石に対するY方向の相対変位に応じて単調変化する。第2の部材が第1の部材に対してX方向、Y方向に相対変位し、Z軸周りに相対回転したときの第1の磁気センサの出力変化と第2の磁気センサの出力変化は互いに異なる。第1~第3の磁石は各々、所定のX-Y平面の原点を一端とする第1~第3の直線上にある。第1の直線とX軸とがなす第1の角度と、第2の直線とX軸とがなす第2の角度と、第3の直線とY軸とがなす第3の角度は同じである。
本発明によれば、簡易な構成で、可動部の固定部に対する位置関係と回転方向を検出することができる磁気センサアセンブリを提供することができる。
本発明の磁気センサアセンブリを備えたカメラモジュールの概念図である。 図1に示す磁気センサアセンブリの平面図である。 図1に示す磁気センサアセンブリの部分断面図である。 第1の実施形態とその変形例の磁気センサアセンブリの平面図である。 第1の実施形態の他の変形例の磁気センサアセンブリの平面図である。 第1の実施形態の他の変形例の磁気センサアセンブリの平面図である。 比較例の磁気センサアセンブリの平面図である。 第2の実施形態の磁気センサアセンブリの平面図である。 第2の実施形態の変形例の磁気センサアセンブリの平面図である。 第3の実施形態の磁気センサアセンブリの平面図である。 第4の実施形態の磁気センサアセンブリの平面図である。 その他の変形例を説明する図である。 その他の変形例を説明する図である。 その他の変形例を説明する図である。
図面を参照して、本発明のいくつかの実施形態に係る磁気センサアセンブリについて説明する。以下の実施形態において、X方向、Y方向、Z方向は3次元直交座標系101で定義される互いに直交する3方向である。X方向とY方向は後述のレンズの光軸と直交し、Z方向はレンズの光軸と平行である。なお、図中X、Y、Z方向の矢印の示す向きを+X方向、+Y方向、+Z方向、これらと反対側の方向を-X方向、-Y方向、-Z方向ということがある。
(第1の実施形態)
図1は、第1の実施形態に係る磁気センサアセンブリ1を備えたカメラモジュール100の概略斜視図である。カメラモジュール100は携帯電話の本体に装着されるが、カメラ専用機のカメラボディに装着されてもよい。カメラモジュール100は携帯電話の本体に固定された第1の部材10を有している。第1の部材10は3次元直交座標系101に対して固定されている。第1の部材10は、基板11、撮像素子12、第1~第3の磁気センサ13A~13C、第1のコイル(図示せず)などを含む。撮像素子12はCMOS(Complementary metal-oxide-semiconductor)などで構成される。撮像素子12と第1~第3の磁気センサ13A~13Cは基板11に搭載されている。基板11は、撮像素子12を外部と接続する電気配線部材14と接続されている。
カメラモジュール100は3次元直交座標系101を移動可能な第2の部材20を有している。第2の部材20は、矩形形状の筐体21と、筐体21に固定された第1~第3の磁石22A~22Cと、を有している。第2の部材20は3次元直交座標系101において、第1の部材10に対してX、Y方向への相対移動(並進運動)とZ軸周りの相対回転が可能である。筐体21の内側(内部)にはZ方向からみて円形のレンズ31が収容され、筐体21はレンズ31を取り囲んでいる。レンズ31は、筐体21に対してZ方向に相対移動可能に、筐体21に支持されている。レンズ31は、第2の部材20とは独立して移動可能な可動部材(第3の部材30)の一部を構成する。レンズ31の周囲に第2のコイル(図示せず)が配置されている。第2のコイルに通電すると、第2のコイルと第1~第3の磁石22A~22Cとの間に生ずるローレンツ力によって、レンズ31が筐体21に対しZ方向に相対移動可能に駆動される。これによって、オートフォーカス機能が実行される。また、第1のコイルに通電すると、第1のコイルと第1~第3の磁石22A~22Cとの間に生ずるローレンツ力によって、第2の部材20が第1の部材10に対してX、Y方向に相対移動するとともにZ軸周りに相対回転する。これによって、光学式手振れ補正(OIS)機能が実現される。本実施形態では、第1~第3の磁石22A~22Cがレンズ31の駆動に用いられるが、レンズ31を駆動するためのOIS用磁石を別途設けてもよい。
図2はZ方向からみた磁気センサアセンブリ1の平面図であり、第1~第3の磁石22A~22C、第1~第3の磁気センサ13A~13C、レンズ31及び筐体21を示している。図2(a)は第1~第3の磁石22A~22Cが基準位置にある状態(基準状態)を、図2(b)は第2の部材20が第1の部材10に対して反時計回りにdθ回転した状態を示している。ここで、基準位置とは、第1~第3の磁石22A~22Cの中心と第1~第3の磁気センサ13A~13Cの中心がZ方向に一致する位置である。図3(a)~3(c)はそれぞれ、図2のA-A線、B-B線、C-C線に沿った部分断面図である。
第1~第3の磁石22A~22Cは3次元直交座標系101の第1のX-Y平面P1(所定のX-Y平面)に位置している。第1~第3の磁気センサ13A~13Cは3次元直交座標系101の第1のX-Y平面P1とは異なる(本実施形態では-Z側の)第2のX-Y平面P2に位置している。第1~第3の磁気センサ13A~13Cは各々、Z方向に第1~第3の磁石22A~22Cと対向している。具体的には、基準状態で第1の磁気センサ13Aの中心と第1の磁石22Aの中心を通る線はZ軸と平行であり、基準状態で第2の磁気センサ13Bの中心と第2の磁石22Bの中心を通る線はZ軸と平行であり、基準状態で第3の磁気センサ13Cの中心と第3の磁石22Cの中心を通る線はZ軸と平行である。第1の磁気センサ13Aと第1の磁石22Aが第1の位置検知体2Aを構成し、第2の磁気センサ13Bと第2の磁石22Bが第2の位置検知体2Bを構成し、第3の磁気センサ13Cと第3の磁石22Cが第3の位置検知体2Cを構成する。
Z方向からみて、第1の磁気センサ13A及び第1の磁石22A(第1の位置検知体2A)と、第2の磁気センサ13B及び第2の磁石22B(第2の位置検知体2B)は、3次元直交座標系101のX軸を挟んで互いに対向する象限にある。また、Z方向からみて、第3の磁気センサ13C及び第3の磁石22C(第3の位置検知体2C)は、第1の磁気センサ13A及び第1の磁石22A(第1の位置検知体2A)のある象限(第2象限II)並びに第2の磁気センサ13B及び第2磁石(第2の位置検知体2B)のある象限(第3象限III)とは異なる象限(第1象限I)にある。また、Z方向からみて、第1~第3の磁石22A~22Cの中心及び第1~第3の磁気センサ13A~13Cの中心は、3次元直交座標系101の原点を中心とする同一円R1上にある。さらに、第1~第3の磁石22A~22Cはすべて同じ構成且つ同じ重量を有している。従って、第2の部材20の周方向の重量バランスを容易に確保することができる。また、第1~第3の磁石22A~22Cはすべて同じサイズを有していることが好ましい。
Z方向からみて、第1~第3の磁石22A~22Cの中心は各々、第1のX-Y平面P1の原点Oを一端とする第1~第3の直線L1~L3上にある。第1の磁石22Aと第2の磁石22BはX軸に関し線対称の位置に設けられており、第1の直線L1とX軸とがなす第1の角度θ1と、第2の直線L2とX軸とがなす第2の角度θ2は等しい。第3の直線L3は第1の直線L1と直交している。従って、第3の直線L3とY軸とがなす第3の角度θ3は第1及び第2の角度θ1,θ2と等しい。ここで、第1~第3の角度θ1~θ3は0~90度の範囲で定義される。後で詳細に説明するが、第1及び第2の角度θ1,θ2は0度を超え90度以下の角度の任意の角度(すなわち、挟角または直角)であってよく、磁石のサイズ、位置、筐体21の形状、大きさ等に応じて適宜定めることができる。
本実施形態では、第1の磁石22Aと第2の磁石22Bはある程度離れていることが好ましい。具体的には、第1の角度θ1と第2の角度θ2は20~70度であることが好ましい。これによって、第1~第3の磁石22A~22Cを筐体21のコーナー部23またはその近傍に設けることが可能となり、筐体21のサイズアップ、ひいてはカメラモジュール100の大型化を防止することができる。また、第1の磁石22Aと第2の磁石22BのY方向の離隔距離が確保されることで、第1の磁気センサ13Aは主に第1の磁石22Aが発生する磁束を検知し、第2の磁気センサ13Bは主に第2の磁石22Bが発生する磁束を検知することができる。これによって、磁気センサアセンブリ1の精度が向上する。
第1~第3の磁石22A~22Cは、N極が筐体21あるいはレンズ31の中心、ないし第1のX-Y平面P1の原点Oと対向する向きで筐体21に取り付けられている。ただし、第1及び第2の磁石22A,22BのN極の端面25から引いた垂線はX軸と平行であり、原点Oを通っていない。第3の磁石22CのN極の端面25から引いた垂線はY軸と平行であり、原点Oを通っていない。第1の磁石22Aと第2の磁石22Bは同じ方向に着磁されており、第3の磁石22Cは第1及び第2の磁石22A,22Bと直交する方向に着磁されている。具体的には、基準状態で、第1の磁石22Aと第2の磁石22BのN極は+X方向を向き、第3の磁石22CのN極は-Y方向を向いている。
第1~第3の磁気センサ13A~13Cは、所定の方向の磁界を感知する磁界検出素子を備えている。磁界検出素子は、ホール素子であってもよく、GMR素子、TMR素子、AMR素子などの磁気抵抗効果素子であってもよい。第1~第3の磁気センサ13A~13Cは同一の構成と同一の感度を有している。磁気センサアセンブリ1は、第1~第3の磁気センサ13A~13Cからの出力を処理する演算部(図示せず)を有している。演算部は通常筐体21の外部に設置されるが、筐体21の内部に設置してもよい。
磁気センサアセンブリ1の作動について説明する。ここでは、第2の部材20が第1の部材10に対して+X方向にdX、+Y方向にdY相対変位(並進運動)し、Z軸周りに反時計回りでdθ相対回転すると仮定する。これらの変位及び回転は微小であるため、別々に考慮することが可能である。まず、第2の部材20が反時計回りにdθ回転すると仮定する。このとき、図2(b)及び図3に示すように、第1の磁石22Aは-X方向に移動し、第2の磁石22Bは+X方向に移動し、第3の磁石22Cは+Y方向に移動する。
第1~第3の磁気センサ13A~13Cの磁界検出素子はZ方向の感磁軸を有している。ここでは、第1~第3の磁気センサ13A~13Cの出力電圧は、検出される磁束密度に比例するとともに、-Z方向を向く磁束を検出すると増加し、+Z方向を向く磁束を検出すると減少すると仮定する。図3に実線で示すように、基準位置では、Z方向からみて、第1~第3の磁気センサ13A~13Cの中心は各々第1~第3の磁石22A~22Cの中心と一致している。従って、第1~第3の磁気センサ13A~13Cが検知するZ方向磁界は概ねゼロである。これに対し、図3(a)に破線で示すように、第1の磁石22Aが-X方向に移動すると、-Z方向を向く磁束が検出されるため、第1の磁気センサ13Aの出力電圧は増加する。同様に、図3(b)に破線で示すように、第2の磁石22Bが+X方向に移動すると、+Z方向を向く磁束が検出されるため、第2の磁気センサ13Bの出力電圧は減少する。同様に、図3(c)に破線で示すように、第3の磁石22Cが+Y方向に移動すると、-Z方向を向く磁束が検出されるため、第3の磁気センサ13Cの出力電圧は増加する。第1~第3の磁石22A~22Cが逆方向に移動すると、出力電圧の増減も逆となる。従って、第1の磁気センサ13Aの出力は、第1の磁気センサ13Aと第1の磁石22AのX方向の相対変位に応じて単調変化し、第2の磁気センサ13Bの出力は、第2の磁気センサ13Bと第2の磁石22BのX方向の相対変位に応じて単調変化し、第3の磁気センサ13Cの出力は、第3の磁気センサ13Cと第3の磁石22CのY方向の相対変位に応じて単調変化する。便宜上は、図2(b)において、磁気センサの中心がN極と相対する場合は出力電圧が増加し、S極と相対する場合は出力電圧が減少すると理解することができる。
第2の部材20が第1の部材10に対してX方向にdX相対変位(並進運動)した場合も、同様に考えることができる。図3(a)から理解されるように、第1の磁石22Aが+X方向に移動すると、第1の磁気センサ13Aの出力電圧は減少し、-X方向に移動すると、第1の磁気センサ13Aの出力電圧は増加する。図3(b)から理解されるように、第2の磁石22Bが+X方向に移動すると、第2の磁気センサ13Bの出力電圧は減少し、-X方向に移動すると、第2の磁気センサ13Bの出力電圧は増加する。同様に、図3(c)から理解されるように、第3の磁石22Cが+Y方向に移動すると、第3の磁気センサ13Cの出力電圧は増加し、-Y方向に移動すると、第3の磁気センサ13Cの出力電圧は減少する。また、以上のことから分かる通り、第1及び第2の磁気センサ13A,13BはX方向の変位センサとして、第3の磁気センサ13CはY方向の変位センサとして機能する。
第1及び第2の磁石22A,22BのY方向寸法は、第1及び第2の磁気センサ13A,13BのY方向寸法より長い。また、基準状態で、第1及び第2の磁気センサ13A,13Bはそれぞれ、第1及び第2の磁石22A,22BのY方向中央に位置している。従って、第2の部材20がY方向に移動しても第1及び第2の磁気センサ13A,13Bの出力は影響を受けない。同様に、第3の磁石22CのX方向寸法は第3の磁気センサ13CのX方向寸法より長い。また、基準状態で、第3の磁気センサ13Cは第3の磁石22CのX方向中央に位置している。従って、第2の部材20がX方向に移動しても第3の磁気センサ13Cの出力は影響を受けない。
本実施形態では、Z方向からみて、第1及び第2の磁石のN極とS極の中間の面24は円R1と交差する。例えば、図2(a)において破線の位置にある第1の磁石22Aは比較例を示しており、中間の面24は円R1と接するので、円R1とは交差しない。この場合、上述の説明から理解できるように、第1の磁石22Aが時計回り、反時計回りのどちら方向に回転してもN極が第1の磁気センサ13Aの中心と相対し、第1の磁気センサ13Aの出力電圧は増加する。従って、第2の部材20が回転したことは検知できるが、どちら向きに回転したかは検知することができない。これに対し本実施形態では、中間の面24は円R1と交差するため、第2の部材20が回転する方向によって、第1の磁気センサ13Aの出力電圧は増加または減少する。従って、第2の部材20がどちら向きに回転したかを検知することができる。第2及び第3の磁気センサ13B,13Cについても同様である。また、本実施形態では、第2の部材20がZ軸周りに回転したとき、第1の磁石22Aと第2の磁石22BはX方向に関し互いに反対側に動く。従って、本実施形態では、第1の磁気センサ13Aの出力変化と第2の磁気センサ13Bの出力変化は互いに異なる。
以上を踏まえると、第2の部材20が第1の部材10に対してX方向にdX変位(並進運動)し、Y方向にdY変位(並進運動)し、Z軸周りにdθ回転したときの第1の磁気センサ13Aの出力変化Vx1、第2の磁気センサ13Bの出力変化Vx2、第3の磁気センサ13Cの出力変化Vyは以下のように求められる。
X1=f(dX)+f(dθ) ・・・ (式1)
X2=f(dX)-f(dθ) ・・・ (式2)
y=f(dY)+f(dθ) ・・・ (式3)
ここで、f(dX)、f(dY)、f(dθ)は各磁気センサのdX、dY、dθによる出力変化である。(式1)~(式3)を変形すると、
(dx)=Vx1-(Vx1-Vx2)/2 ・・・ (式4)
(dy)=Vy-(Vx1-Vx2)/2 ・・・ (式5)
(dθ)=(Vx1-Vx2)/2 ・・・ (式6)
となる。f(dx)、f(dy)、f(dθ)から第2の部材20の第1の部材10に対する移動量(dX、dY、dθ)を求めることができる。この演算は演算部16で実行することができる。
このように、本実施形態では、3つの磁石22A~22Cと3つの磁気センサ13A~13Cで、第2の部材20の第1の部材10に対するX方向及びY方向への相対移動量、並びにZ軸周りの相対回転角を求めることができる。第1~第3の角度θ1~θ3の選択可能な範囲が大きいため、第1~第3の磁気センサ13A~13C及び第1~第3の磁石22A~22Cの配置を工夫することで、磁気センサアセンブリ1の小型化が可能となる。
(第1の実施形態の変形例及び比較例)
第1~第3の磁気センサ13A~13C、及び第1~第3の磁石22A~22Cが配置される位置は、(式1)~(式6)が成立する限り第1の実施形態に限定されない。図4には第1の実施形態とその変形例を示す。第2の部材20は反時計回りにdθ回転している。変形例1-1では、第3の磁石22Cが第1の磁石22Aと同様、第2象限IIに配置されており、第3の直線L3は第2の直線L2と直交している。換言すれば、第3の磁石22Cは第1の実施形態の第3の磁石22Cと、Y軸に関し線対称の関係にある。変形例1-2では、第3の磁石22Cが第4象限IVに配置されており、第3の直線L3は第2の直線L2と直交している。換言すれば、第3の磁石22Cは第1の実施形態の第3の磁石22Cと、X軸に関し線対称の関係にある。変形例1-3では、第3の磁石22Cが第3象限IIIに配置されており、第3の直線L3は第1の直線L1と直交している。換言すれば、第3の磁石22Cは第1の実施形態の第3の磁石22Cと、原点Oに関し点対称の関係にある。これらの場合も、第2の部材20が反時計回りにdθ回転すると、第3の磁石22CのN極が第3の磁気センサ13Cの中心と相対するため、(式1)~(式6)が成立する。
図5には第1の実施形態の他の変形例を示す。第2の部材20は反時計回りにdθ回転している。変形例1-4~1-7の第1~第3の磁石22A~22Cの配置されている位置はそれぞれ、第1の実施形態及び変形例1-1~1-3と同じであるが、第3の磁石22Cの着磁方向が逆になっている。これらの場合、以下の式が成立する。
X1=f(dX)+f(dθ) (式1)
X2=f(dX)-f(dθ) (式2)
y=f(dY)-f(dθ) (式3’)
(dx)=Vx1-(Vx1-Vx2)/2 (式4)
(dy)=Vy+(Vx1-Vx2)/2 (式5’)
(dθ)=(Vx1-Vx2)/2 (式6)
つまり、(式3)と(式5)が変わるだけで、基本的には第1の実施形態と同様の方法でf(dx)、f(dy)、f(dθ)を求めることができる。図示は省略するが、第3のセンサの極性を逆にしても(すなわち、-Z方向を向く磁束を検出すると出力電圧が減少し、+Z方向を向く磁束を検出すると出力電圧が増加)同様の結果が得られる。
図6には第1の実施形態の他の変形例を示す。図6は、本変形例に係る磁気センサアセンブリ1の、Z方向からみた図2と同様の平面図である。本変形例では第1~第3の角度θ1~θ3がすべて90度となっている。第1の磁石22Aと第2の磁石22BのN極の端面25から引いた垂線はX軸と平行であり、原点Oを通っていない。第3の磁石22CのN極の端面25から引いた垂線はY軸と平行であり、原点Oを通っていない。第1の磁石22Aと第2の磁石22Bは同じ方向に着磁されており、第3の磁石22Cは第1及び第2の磁石22A,22Bと直交する方向に着磁されている。すなわち、本変形例は第1~第3の角度θ1~θ3がすべて90度となっている点を除き、第1の実施形態と同じである。従って、本変形例は式(1)~(6)を満足し、第1の実施形態と同様に作動する。
図7には比較例を示す。第2の部材20は反時計回りにdθ回転している。比較例1-1~1-4はそれぞれ、第1の実施形態及び変形例1-2~1-4に対応するが、第2の磁石22Bの着磁方向が逆になっている。従って、第2の部材20が反時計回りにdθ回転すると、第2の磁石22BのN極が第2の磁気センサ13Bの中心と相対する。第1の磁石22AのN極も第1の磁気センサ13Aの中心と相対するため、第1の磁気センサ13Aと第2のセンサ13Bの出力が同じになる(Vx1=Vx2)。この場合、f(dx)を求めることができないため、f(dy)、f(dθ)も求めることができない。比較例より、(式1)~(式6)が成立するためには、第1の磁気センサ13Aと第2のセンサの出力が異なることが必要であることが理解される。
(第2の実施形態)
図8は、第2の実施形態に係る磁気センサアセンブリ1の、Z方向からみた図2と同様の平面図である。図8(a)は第1~第3の磁石22A~22Cが基準位置にある状態(基準状態)を、図8(b)は第2の部材20が第1の部材10に対して反時計回りにdθ回転した状態を示している。本実施形態では、第1の直線L1と第2の直線L2は同一の直線上にあり、第3の直線L3は第1の直線L1及び第2の直線L2と直交している。Z方向からみて、第1の磁気センサ13A及び第1の磁石22A(第1の位置検知体2A)と、第2の磁気センサ13B及び第2の磁石22B(第2の位置検知体2B)は、3次元直交座標系101の原点を挟んで互いに対向する象限にある。すなわち、第1の磁気センサ13A及び第1の磁石22A(第1の位置検知体2A)は第2象限IIにあり、第2の磁気センサ13B及び第2の磁石22B(第2の位置検知体2B)は第4象限IVにある。また、第3の磁気センサ13C及び第3の磁石22C(第3の位置検知体2C)は第1象限Iにある。このため、第1の実施形態と比べて第2の部材20の周方向の重量バランスがさらに向上する。図8(b)からわかる通り、第2の部材20が反時計回りにdθ回転したときの第2の磁石22Bと第2の磁気センサ13Bの位置関係は第1の実施形態と同じである(第2の磁石22BのS極が第2の磁気センサ13Bの中心と相対する)。従って、(式1)~(式6)は本実施形態においても成立する。図示は省略するが、第3の磁石22Cは第3象限III、すなわち、図8に示す第3の磁石22Cと原点Oに関し点対称の位置に設けることもできる。
(第2の実施形態の変形例)
図9は、第2の実施形態の変形例に係る磁気センサアセンブリ1の、Z方向からみた図2(a)と同様の平面図である。本変形例では、原点Oを挟んで磁石22Cの反対側に、第1~第3の磁石22A~22Cと同じ重量のバランサー22Dが設けられている。バランサー22Dは第1~第3の磁石22A~22Cと同じ重量の磁石でもよいが、重量が同じであればどのようなものでも使用できる。Z方向からみて、バランサー22Dの中心は、第1のX-Y平面P1の原点Oを一端とする第4の直線L4上にある。第4の直線L4は第1の直線L1及び第2の直線L2と直交している。従って、第4の直線L4とY軸とがなす第4の角度θ4は第1~第3の角度θ1~θ3と等しい。第1~第3の磁石22A~22Cとバランサー22Dは同一の円上に90度間隔で設置されるため、第2の実施形態と比べて第2の部材20の周方向の重量バランスがさらに向上する。バランサー22Dは、第1の磁気センサ13A及び第1の磁石22A(第1の位置検知体2A)のある象限、第2の磁気センサ13B及び第2の磁石22B(第2の位置検知体2B)のある象限、並びに第3の磁気センサ13C及び第3の磁石22C(第3の位置検知体2C)のある象限とは異なる象限にあればよく、第1~第3の磁石22A~22Cと回転対称の関係になくてもよい。
(第3の実施形態)
図10は、第3の実施形態に係る磁気センサアセンブリ1の、Z方向からみた図2(a)と同様の平面図である。Z方向からみて、第1~第3の磁石22A~22Cのいずれかの中心と他のいずれかの中心は、3次元直交座標系101の原点を中心とし径の異なる同心円R1,R2上にある。本実施形態では第1の磁石22Aの中心は、第2及び第3の磁石22B,22Cの中心よりも原点Oから離れている。これに伴い、第1の磁気センサ13Aの中心も、第2及び第3の磁気センサ13B,13Cの中心よりも原点Oから離れている。このため、dθ回転した際の第1の磁気センサ13AのX方向変位が大きくなる。換言すれば、第1の磁気センサ13Aの感度が高められる。第1の磁石22Aの中心の原点Oからの距離:第2及び第3の磁石22B,22Cの中心の原点Oからの距離=n:1とすると(式1)~(式6)は以下のように書き換えられる。
X1=f(dX)+n×f(dθ) (式1”)
X2=f(dX)-f(dθ) (式2)
y=f(dY)+f(dθ) (式3)
(dx)=Vx1-(Vx1-Vx2)/(1+n) (式4”)
(dy)=Vy-(Vx1-Vx2)/(1+n) (式5”)
(dθ)=(Vx1-Vx2)/(1+n) (式6”)
つまり、(式1)と(式4)~(式6)が変わるだけで、基本的には第1の実施形態と同様の方法でf(dx)、f(dy)、f(dθ)を求めることができる。なお、本実施形態では、Z方向からみて、第1及び第2の磁石のN極とS極の中間の面24は円R1と交差しているが、接していてもよい。n≠1なので、比較例と異なり、Vx1=Vx2とならないためである。
図示は省略するが、第3の磁石22Cは第3象限III、すなわち、図10に示す第3の磁石22Cと原点Oに関し点対称の位置に設けることもできる。また、第2の磁石22Bは第3象限III、すなわち、図2に示す第2の磁石22Bの位置に設けることもでき、その場合、図4,5に示す変形例1-1~1-7も適用可能である。さらに、本実施形態では第1の磁石22Aの位置を第1の実施形態から変更しているが、第2の磁石22Bまたは第3の磁石22Cの位置を変更してもよく、第1~第3の磁石22A~22Cを原点Oから互いに距離の異なる位置に配置してもよい。
(第4の実施形態)
図11は、第4の実施形態に係る磁気センサアセンブリ1の、Z方向からみた図2(a)と同様の平面図である。本実施形態では、第1の磁石22Aと第2の磁石22BがX軸を挟んで一体化されて、第1の磁石122Aとされている。第3の磁石22CはY軸に関して対称となるように第2象限IIまで延ばされている。つまり、第3の磁石22CはY軸の両側をX軸と平行に延びている。図2(a)と図2(b)との対比から理解できるように、第1の磁石22Aと第2の磁石22Bは、原点Oの周りを、相互の位置関係を変えることなく回転する。換言すれば、第1の磁石22Aと第2の磁石22Bは、たとえ相互に拘束されていても(すなわち、本実施形態のように一体化されていても)、第1の実施形態と同様に移動可能である。従って、本実施形態に係る磁気センサアセンブリ1は式(1)~(6)を満足し、第1の実施形態に係る磁気センサアセンブリ1と同様に作動する。なお、第1の磁石22Aまたは第2の磁石22Bが長い場合はレンズ31と干渉しないよう、磁石の取り付け位置や取り付け方法に注意する必要がある。
磁石122A、22Cが長尺化されたことによって、第1~第3の磁気センサ13A~13Cの設置位置の自由度が高まり、例えば、第1~第3の角度θ1~θ3をより小さく設定することが可能となる。つまり、本実施形態によれば、磁気センサアセンブリ1の設計自由度を高めることが可能である。カメラモジュールにおける磁石の配置は図1に示す例に限定されず、例えば、図11に示す位置にレンズ31駆動用及びOIS用の磁石が配置されることがある。本実施形態では、このような磁石を第1の磁石122A及び第3の磁石22Cとして利用することができる。なお、第3の磁石22Cは長尺化する必要はなく、第1~第3の実施形態と同様の形状を有していてもよい。
以上の各実施形態をより一般化すると、第2の部材20が第1の部材10に対してX方向にdX変位(並進運動)し、Y方向にdY変位(並進運動)し、Z軸周りにdθ回転したときの第1の磁気センサ13Aの出力変化Vx1、第2の磁気センサ13Bの出力変化Vx2、第3の磁気センサ13Cの出力変化Vyは以下のように求められる。
X1=f(dX)+a×f(dθ) (式7)
X2=f(dX)+b×f(dθ) (式8)
y=f(dY)+c×f(dθ) (式9)
ここで、f(dX)、f(dY)、f(dθ)は各磁気センサのdX、dY、dθによる出力変化、a、b、cは定数である。(式7)~(式9)を変形すると、
(dx)=Vx1-a×(Vx1-Vx2)/(a-b) (式10)
(dy)=Vy-c×(Vx1-Vx2)/(a-b) (式11)
(dθ)=(Vx1-Vx2)/(a-b) (式12)
となる。a,b,cは例えば、第1~第3の磁石22A~22Cの配置位置で決まる定数で、a=1,b=-r2/r1,c=r3/r1(ここで、r1、r2、r3は、Z方向からみた、第1~第3の磁石22A~22Cの中心の3次元直交座標系101における原点からの距離)である。(式7)~(式9)から理解されるように、a,b,cはf(dθ)に掛かる係数であるので、例えば、第3の磁気センサ13Cの感度に比例する定数であってもよい。(式10)~(式12)から理解されるように、Vx1=Vx2であるとf(dx)=Vx1、f(dy)=Vy、f(dθ)=0となり、回転角を求めることができない。これより、Vx1≠Vx2が必須の条件であることがわかる。なお、(式10)~(式12)からはa≠bも必要であるが、(式7)、(式8)の対比より、Vx1≠Vx2であればこの条件は自動的に満たされる。
以上、本発明をいくつかの実施形態を例に説明したが、本発明はこれらの実施形態に限定されない。例えば、本実施形態では第1の部材10が固定部材であり、第2の部材20が可動部材であるが、第1の部材10が可動部材であり、第2の部材20が固定部材であってもよい。また、第1の磁石22Aと第2の磁石22Bはそれぞれ一つの象限内に設けられているが、X軸またはY軸上(例えば、図2Aにおける破線の位置)に、すなわち象限を跨いで設けることもできる。この場合も、第1及び第2の磁石22A,22BのN極とS極の中間の面24が円R1と交差していれば、Vx1≠Vx2が成立するため、(式1)~(式6)に従って、第2の部材20の変位を求めることができる。また、ここでは本発明をカメラモジュール100に適用される磁気センサアセンブリ1を例に説明したが、磁気センサアセンブリ1がカメラモジュール100以外の用途に適用可能であることは言うまでもない。
また、第1の実施形態では、第1の角度θ1と第2の角度θ2を20~70度とすることで筐体21のサイズアップを防止することができることを説明した。一方、第1の角度θ1と第2の角度θ2を0~20°とすることでも、筐体21のサイズアップを防止することができる。ここでは、説明の便宜上磁気センサが回転するとするが、磁石が回転しても同じである。図12において、磁気センサ113が磁石222と対向し、角度θの初期位置に配置されている。図12には、初期位置から反時計回りにdθ回転した磁気センサ113も示している。dθ回転した後の磁気センサ113のX方向及びY方向の移動距離をa,b、原点からの磁気センサ113の感磁部の距離をrとすると、
a=2×r×sin(dθ/2)×sin(dθ/2+θ)=C×sin(θ)
b=2×r×sin(dθ/2)×cos(dθ/2+θ)=C’×cos(θ)
となる。ここで、C,C’は定数である。dθは例えばOIS機能によって実現される。
磁気センサ113の感磁部がZ方向からみて磁石222の内部にあれば磁気センサ113の作動が可能であるが、磁石222の外部にあると磁気センサ113の作動は困難である。角度θが小さい場合、上式に示す通りaが小さくなる。従って、磁石222のX方向寸法を縮小し、これによって筐体21のサイズアップを防止することができる。角度θは0<θ≦~20°の範囲が好ましく、一例ではθ=8°である。
また、図7を参照し、比較例1-1~1-4ではf(dx)、f(dy)、f(dθ)を求めることができないと説明した。しかし、この場合も信号処理を変更することによって、f(dx)、f(dy)、f(dθ)を求めることができる。図13(a)は、ホール素子、MR素子などの第1~第4の磁界検出素子S1~S4がブリッジ回路(ホイートストンブリッジ)で相互に接続された磁気センサを示している。4つの磁界検出素子S1~S4は2つの組S1,S2及びS3,S4に分割され、それぞれの組の磁界検出素子S1,S2及び磁界検出素子S3,S4は直列接続されている。磁界検出素子の組S1,S2及びS3,S4のそれぞれの一端が電源電圧Vccに接続され、他端が接地(GND)されている。また、磁界検出素子S1と磁界検出素子S2の間の中点電圧V1と、磁界検出素子S3と磁界検出素子S4の間の中点電圧V2が取り出される。各磁界検出素子S1~S4における電圧降下はほぼ各磁界検出素子S1~S4の電気抵抗に比例する。従って、磁界検出素子S1~S4の電気抵抗をそれぞれR1~R4とすると、中点電圧V1、V2はそれぞれ下式のように求められ、通常は中点電圧の差分V1-V2が磁気センサの出力として出力される。
Figure 2022069261000002
Figure 2022069261000003
図13(b)は磁石と磁界検出素子の一般的な配置と出力処理方法を示している。ケース1とケース3が通常行われる差動出力の出力方法である。しかし、ケース1とケース2の比較(またはケース3とケース4の比較)からわかる通り、磁石の着磁方向が同じでも、差動出力dVをV1-V2とするかV2-V1とするかで出力の極性が変わる。図14(a)は図7に示す比較例1-3と同様の磁気センサの概略構成図であり、図14(b)は全ての磁気センサの差動出力dVをV1-V2とした場合の、各磁気センサの出力を概念的に示している。この場合、第1、第2の磁気センサ13A、13Bの出力は同じであるため、f(dx)、f(dy)、f(dθ)を求めることができない。これに対し、図14(c)は第2の磁気センサ13Bの差動出力dVをV2-V1としている。これにより、磁気センサ13A、13Bの出力が互いに異なるものとなり、f(dx)、f(dy)、f(dθ)を求めることができる。このように、第1、第2の磁気センサ13A、13Bの差動出力の極性を互いに逆にすることでもf(dx)、f(dy)、f(dθ)を求めることができる。
1 磁気センサアセンブリ
10 第1の部材
13A~13C 第1~第3の磁気センサ
20 第2の部材
21 筐体
22A~22C 第1~第3の磁石
122A 第1の磁石
22D バランサー
24 N極とS極の境界面
30 第3の部材
100 カメラモジュール
L1~L4 第1~第4の直線
θ1~θ4 第1~第4の角度

Claims (19)

  1. 第1~第3の磁気センサを含む第1の部材と、第1~第3の磁石を含む第2の部材と、を有し、前記第2の部材は3次元直交座標系において、前記第1の部材に対してX、Y方向への相対移動とZ軸周りの相対回転が可能であり、前記第1~第3の磁気センサは各々Z方向に前記第1~第3の磁石と対向しており、
    前記第1の磁気センサの出力は、前記第1の磁気センサと前記第1の磁石のX方向の相対変位に応じて単調変化し、前記第2の磁気センサの出力は、前記第2の磁気センサと前記第2の磁石のX方向の相対変位に応じて単調変化し、前記第3の磁気センサの出力は、前記第3の磁気センサと前記第3の磁石のY方向の相対変位に応じて単調変化し、
    前記第2の部材が前記第1の部材に対してX方向、Y方向に相対変位し、Z軸周りに相対回転したときの前記第1の磁気センサの出力変化と前記第2の磁気センサの出力変化は互いに異なり、
    第1~第3の磁石は各々、所定のX-Y平面の原点を一端とする第1~第3の直線上にあり、前記第1の直線とX軸とがなす第1の角度と、前記第2の直線とX軸とがなす第2の角度と、前記第3の直線とY軸とがなす第3の角度は同じである磁気センサアセンブリ。
  2. 前記第1の角度と前記第2の角度と前記第3の角度は、0度を超え90度以下の角度である、請求項1に記載の磁気センサアセンブリ。
  3. 前記第1の角度と前記第2の角度と前記第3の角度は20~70度の範囲にある、請求項2に記載の磁気センサアセンブリ。
  4. 前記第1の角度と前記第2の角度と前記第3の角度は90度である、請求項2に記載の磁気センサアセンブリ。
  5. 第1~第3の磁気センサを含む第1の部材と、第1~第3の磁石を含む第2の部材と、を有し、前記第2の部材は3次元直交座標系において、前記第1の部材に対してX、Y方向への相対移動とZ軸周りの相対回転が可能であり、前記第1~第3の磁気センサは各々Z方向に前記第1~第3の磁石と対向しており、
    前記第1の磁気センサの出力は、前記第1の磁気センサと前記第1の磁石のX方向の相対変位に応じて単調変化し、前記第2の磁気センサの出力は、前記第2の磁気センサと前記第2の磁石のX方向の相対変位に応じて単調変化し、前記第3の磁気センサの出力は、前記第3の磁気センサと前記第3の磁石のY方向の相対変位に応じて単調変化し、
    前記第2の部材が前記第1の部材に対してX方向にdx、Y方向にdy変位し、Z軸周りにdθ回転したときの前記第1の磁気センサの出力変化をVx1、前記第2の磁気センサの出力変化をVx2、前記第3の磁気センサの出力変化をVyとしたときに、dx、dy、dθによる前記第1~第3の磁気センサの出力変化f(dx)、f(dy)、f(dθ)
    (dx)=Vx1-a×(Vx1-Vx2)/(a-b)
    (dy)=Vy-c×(Vx1-Vx2)/(a-b)
    (dθ)=(Vx1-Vx2)/(a-b)
    ここで、a、b、cは定数であり、Vx1≠Vx2である磁気センサアセンブリ。
  6. Z方向からみた、前記第1~第3の磁石の中心の前記3次元直交座標系における原点からの距離をr1、r2、r3としたときにa=1,b=-r2/r1,c=r3/r1である、請求項5に記載の磁気センサアセンブリ。
  7. Z方向からみて、前記第1の磁気センサ及び前記第1の磁石と、前記第2の磁気センサ及び前記第2の磁石は、前記3次元直交座標系の原点を挟んで互いに対向する象限にある、請求項1から6のいずれか1項に記載の磁気センサアセンブリ。
  8. Z方向からみて、前記第1の磁気センサ及び前記第1の磁石と、前記第2の磁気センサ及び前記第2の磁石は、前記3次元直交座標系のX軸を挟んで互いに対向する象限にある、請求項1から6のいずれか1項に記載の磁気センサアセンブリ。
  9. Z方向からみて、前記第3の磁気センサ及び前記第3の磁石は、前記第1の磁気センサ及び前記第1の磁石のある象限並びに前記第2の磁気センサ及び前記第2磁石のある象限とは異なる象限にある、請求項7または8に記載の磁気センサアセンブリ。
  10. 前記第2の部材は前記3次元直交座標系に対して可動であり、前記第1~第3の磁石は同じ重量を有し、
    前記第2の部材に、前記第1の磁石のある象限、前記第2の磁石のある象限、及び前記第3の磁石のある象限とは異なる象限に、第1~第3の磁石と同じ重量のバランサーが設けられている、請求項9に記載の磁気センサアセンブリ。
  11. Z方向からみて、前記第1~第3の磁石の中心は、前記3次元直交座標系の所定のX-Y平面の原点を中心とする同一円上にある、請求項1から10のいずれか1項に記載の磁気センサアセンブリ。
  12. Z方向からみて、前記第1及び第2の磁石のN極とS極の中間の面は前記円と交差する、請求項11に記載の磁気センサアセンブリ。
  13. Z方向からみて、前記第1~第3の磁石のいずれかの中心と他のいずれかの中心は、前記3次元直交座標系の所定のX-Y平面の原点を中心とし径の異なる同心円上にある、請求項1から10のいずれか1項に記載の磁気センサアセンブリ。
  14. 前記第1の磁石と前記第2の磁石は同じ方向に着磁されており、前記第3の磁石は前記第1及び第2の磁石と直交する方向に着磁されている、請求項1から13のいずれか1項に記載の磁気センサアセンブリ。
  15. 前記第2の部材の内側に、前記第1~第3の磁石によって、前記第2の部材に対して相対移動可能に駆動される第3の部材が設けられている、請求項1から14のいずれか1項に記載の磁気センサアセンブリ。
  16. 前記第2の部材は前記第3の部材を取り囲む矩形形状の筐体を有し、前記第3の部材はZ方向からみて円形であり、前記第1~第3の磁石は前記筐体のコーナー部に設けられている、請求項15に記載の磁気センサアセンブリ。
  17. 前記第1の磁石と前記第2の磁石は前記X軸を挟んで一体化されている、請求項8に記載の磁気センサアセンブリ。
  18. 前記第3の磁石は前記Y軸の両側を前記X軸と平行に延びている、請求項17に記載の磁気センサアセンブリ。
  19. 請求項1から18のいずれか1項に記載の磁気センサアセンブリを有するカメラモジュール。
JP2020178346A 2020-10-23 2020-10-23 磁気センサアセンブリとこれを備えたカメラモジュール Active JP7287375B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020178346A JP7287375B2 (ja) 2020-10-23 2020-10-23 磁気センサアセンブリとこれを備えたカメラモジュール
US17/502,724 US11561079B2 (en) 2020-10-23 2021-10-15 Magnetic sensor assembly and camera module having the same
CN202111234917.4A CN114487949A (zh) 2020-10-23 2021-10-22 磁传感器组件和具有其的相机模块

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020178346A JP7287375B2 (ja) 2020-10-23 2020-10-23 磁気センサアセンブリとこれを備えたカメラモジュール

Publications (2)

Publication Number Publication Date
JP2022069261A true JP2022069261A (ja) 2022-05-11
JP7287375B2 JP7287375B2 (ja) 2023-06-06

Family

ID=81258253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020178346A Active JP7287375B2 (ja) 2020-10-23 2020-10-23 磁気センサアセンブリとこれを備えたカメラモジュール

Country Status (3)

Country Link
US (1) US11561079B2 (ja)
JP (1) JP7287375B2 (ja)
CN (1) CN114487949A (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094185A (ja) * 2004-09-24 2006-04-06 Pentax Corp ステージ駆動機構
JP2018132356A (ja) * 2017-02-14 2018-08-23 日本電産サンキョー株式会社 ロータリエンコーダ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538429B2 (en) * 2001-02-09 2003-03-25 Delphi Technologies, Inc. Angular position sensor assembly for a motor vehicle generator shaft
JP5557021B2 (ja) * 2009-08-26 2014-07-23 株式会社ジェイテクト 回転角検出装置
US20120038349A1 (en) * 2010-08-12 2012-02-16 Norman Luwei Jin Triple Hall Effect Sensor Absolute Angular Encoder
DE102011052043B4 (de) * 2011-07-21 2022-06-09 Bourns, Inc. Drehwinkel- und Torsionswinkelsensor
US9268001B2 (en) * 2013-07-17 2016-02-23 Infineon Technologies Ag Differential perpendicular on-axis angle sensor
DE102017206025A1 (de) * 2017-04-07 2018-10-11 Deutsches Zentrum für Luft- und Raumfahrt e.V. Magnetische Anordnung zur Erfassung von Relativbewegungen oder Relativpositionen
US10627459B2 (en) * 2017-07-17 2020-04-21 Texas Instruments Incorporated Anisotropic magneto-resistive (AMR) angle sensor die comprising a plurality of AMR angle sensors
FR3078775B1 (fr) * 2018-03-12 2020-04-03 Ntn-Snr Roulements Systeme de determination d'au moins un parametre de rotation d'un organe tournant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094185A (ja) * 2004-09-24 2006-04-06 Pentax Corp ステージ駆動機構
JP2018132356A (ja) * 2017-02-14 2018-08-23 日本電産サンキョー株式会社 ロータリエンコーダ

Also Published As

Publication number Publication date
US20220128345A1 (en) 2022-04-28
US11561079B2 (en) 2023-01-24
JP7287375B2 (ja) 2023-06-06
CN114487949A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
EP2770303B1 (en) Magnetic field sensor system with a magnetic wheel rotatable around a wheel axis and with magnetic sensor elements being arranged within a plane perpendicular to the wheel axis
US6456444B1 (en) Lens barrel
US8102172B2 (en) Position detector including magnetoresistive elements
JP5801566B2 (ja) 回転角度検出装置
CN113324564B (zh) 位置检测装置和使用其的位置检测系统及转向系统
US20220163870A1 (en) Camera module
CN108267830B (zh) 光学机构
JP7287375B2 (ja) 磁気センサアセンブリとこれを備えたカメラモジュール
CN109959883B (zh) 磁传感器
CN113048868B (zh) 位置检测信号的校正方法和位置检测装置
CN113641055B (zh) 相机模块及包括相机模块的电子设备
JP5103158B2 (ja) 磁気式座標位置検出装置
CN110703409B (zh) 相机模块
CN114199114A (zh) 位置检测装置、镜头模组和摄像装置
JP7071585B2 (ja) レンズ駆動装置
JP4404364B2 (ja) 磁気式加速度センサを用いた小型の加速度地磁気検出装置
WO2023058697A1 (ja) モータ用位置検知システム
KR102632375B1 (ko) 센서 시프팅 액추에이터
US20230388619A1 (en) Camera module and ic chip
US20240036437A1 (en) Camera module
CN113258742A (zh) 位置检测装置、摄像头模块及旋转致动器
CN113132590A (zh) 位置检测装置、光圈模块及相机模块
CN112068048A (zh) 位置检测装置
CN114791578A (zh) 磁传感器
CN116097658A (zh) 抖动修正机构及具备该抖动修正机构的相机模块

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230508

R150 Certificate of patent or registration of utility model

Ref document number: 7287375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150