既存のLTEシステム(例えば、LTE Rel.8-13)では、ユーザ端末は、1msのTTIを用いて、DL及び/又はULの通信を行う。1msのTTIは、1msの時間長を有する。1msのTTIは、TTI、サブフレーム、通常TTI、ロングTTI、通常サブフレーム、ロングサブフレーム等とも呼ばれ、2つのスロットで構成される。また、1msのTTI内の各シンボルには、サイクリックプリフィクス(CP)が付加される。
将来の無線通信システム(例えば、LTE Rel.14以降、5G又はNRなど)では、時間長の異なる複数のTTI(例えば、ロングTTI及びショートTTI)をサポートすることが検討されている。ロングTTIは、例えば、既存のLTEシステムと同一の1msのTTI長を有し、通常CPの場合14シンボルを含んでもよい。ショートTTIは、ロングTTIよりも短いTTI長を有し、例えば、通常CPの場合、2、3又は7シンボルを含んでもよい。
また、将来の無線通信システムでは、ユーザ端末は、同一キャリア(CC、セル)内において、ショートTTI及びロングTTIを用いて通信することが想定される。また、ユーザ端末は、例えば、キャリアアグリゲーション(CA)又はデュアルコネクティビティ(DC)により、ショートTTI及び/又はロングTTIが用いられる複数のキャリア(CC、セル)を用いて通信することが想定される。
このように、将来の無線通信システムでは、同一キャリア内でロングTTI及びショートTTIを用いることが許容される一方で、同一キャリア内におけるロングTTIのPUSCH(ロングTTIでスケジューリングされるPUSCH)とショートTTIのsPUSCH(ショートTTIでスケジューリングされるsPUSCH)との同時送信(simultaneous transmission)は許容されない。
このため、将来の無線通信システムでは、同一キャリア内においてロングTTIのPUSCHとショートTTIのsPUSCHとの間の衝突が発生する場合、ユーザ端末は、ショートTTIのsPUSCHを送信し、ロングTTIのPUSCHの送信を停止(stop)又はドロップ(drop)することが想定される。
ところで、既存のLTEシステム(例えば、LTE Rel.8-13)では、ユーザ端末は、PUSCH又はPUCCHを用いてUCIを送信する。具体的には、ユーザ端末は、UCIを送信するTTIにおいてPUSCHを送信する場合、PUSCHを用いて、当該UCIを送信する(PUSCHにピギーバック(piggyback)される)。
しかしながら、将来の無線通信システムにおいて、既存のLTEシステム(例えば、LTE Rel.8-13)と同様の方法を用いてUCIの送信を制御する場合、UCIを適切に送信できない恐れがある。例えば、将来の無線通信システムにおいて、UCIを伝送するロングTTIのPUSCHが同一キャリア内のショートTTIのsPUSCHと衝突する場合、ユーザ端末が当該ロングTTIのPUSCHの送信を停止すると、当該UCIを適切に送信できない恐れがある。
また、将来の無線通信システムのULにおいてCA又はDCが設定(configure)される場合、複数のCCでロングTTIのPUSCH及び/又はショートTTIのPUSCHがスケジューリングされ、当該複数のCCの少なくとも一つにおいてロングTTIのPUSCHとショートTTIのsPUSCHとが衝突することが想定される。
例えば、図1では、ユーザ端末にCC1及びCC2のCA又はDCが設定され、ロングTTIでCC1におけるPUSCHとCC2におけるPUSCHとがスケジューリングされる。また、図1では、CC1のPUSCHにUCIがピギーバックされる。図1に示すように、CC1において、UCIを伝送するロングTTIのPUSCHとショートTTIのsPUSCHが衝突する場合、当該ショートTTIを送信し、当該ロングTTIの送信を停止又はドロップすると、当該UCIを適切に送信できない恐れがある。
そこで、本発明者らは、UCIを伝送するロングTTIのPUSCHが同一キャリア内でショートTTIのsPUSCHと衝突する場合に、当該UCIを適切に送信する方法を検討し、本発明に至った。具体的には、本発明者らは、当該同一キャリアのsPUSCHへの当該UCIのリダイレクトを制御すること(第1の態様)、或いは、別のキャリアのsPUSCH又はPUSCHへの当該UCIのリダイレクトを制御すること(第2の態様)を着想した。
以下、本発明の一実施の形態について図面を参照して詳細に説明する。なお、本実施の形態において、ロングTTIは、サブフレーム又はスロット等と言い換えられてもよい。また、ショートTTIは、スロット、ミニスロット又はサブスロット等と言い換えられてもよい。
なお、以下では図面並びに本文において記載するsPUSCHは、すべてショートTTIのPUCCH(sPUCCH)と読み替えて差し支えない。すなわち、本実施の形態における発明は、いずれもsPUSCHがsPUCCHで置き換えられる場合においても適用可能である。より一般的には、本実施の形態は、UCIを伝送するロングTTIのPUSCHが同一キャリア内でショートTTIのULチャネル(例えば、sPUSCH及び/又はsPUCCH)と衝突する場合、当該ショートTTIのULチャネルに対するリダイレクト制御、又は、別のキャリアのショートTTIのULチャネル(例えば、sPUSCH及び/又はsPUCCH)又はロングTTIのULチャネル(例えば、PUSCH及び/又はPUCCH)に対するリダイレクト制御に適用可能である。
また、本実施の形態において、「リダイレクト」とは、UCIの伝送に用いるチャネルを変更することをいう。また、「UCI」は、DLデータ(DLデータチャネル、DL共有チャネル又はPDSCH:Physical Downlink Shared Channel)に対する送達確認情報(HARQ-ACK:Hybrid Automatic Repeat reQuest-Acknowledge、ACK又はNACK、A/N等ともいう)、スケジューリング要求(SR:Scheduling Request)、チャネル状態情報(CSI:Channel State Information)及びビーム情報(BI:Beam Index)の少なくとも一つを含んでもよい。CSIは、チャネル品質識別子(CQI:Channel Quality Indicator)、ランク識別子(RI:Rank Indicator)及びプリコーディング行列識別子(PMI:Precoding Matrix Indicator)の少なくとも一つを含んでもよい。
(第1の態様)
第1の態様では、あるキャリアにおいてUCIを伝送するロングTTIのPUSCHがショートTTIのsPUSCHとの間の衝突が発生する場合において、同一キャリア内のショートTTIのsPUSCHへの当該UCIのリダイレクト制御について説明する。
第1の態様において、ユーザ端末は、当該ロングTTIのPUSCHの送信を停止(又はドロップ)し、当該UCIの少なくとも一部を当該ショートTTIのsPUSCHにリダイレクトしてもよい(第1のキャリア内(intra-carrier)リダイレクト制御)。或いは、ユーザ端末は、上記衝突が発生するタイミングに基づいて、当該UCIの少なくとも一部を当該ショートTTIのsPUSCHにリダイレクトするか否かを制御してもよい(第2のキャリア内リダイレクト制御)。
<第1のキャリア内リダイレクト制御>
第1のキャリア内リダイレクト制御では、あるキャリアにおいてUCIを伝送(carry)するロングTTIのPUSCHがショートTTIのsPUSCHとの間の衝突が発生する場合、ユーザ端末は、当該衝突が発生するタイミング(ロングTTIにおける時間位置(position)、シンボル、ショートTTI、サブスロット又はミニスロット等ともいう)に関わらず、当該ロングTTIのPUSCHの送信を停止(又はドロップ)し、当該ショートTTIのsPUSCHに当該UCIの少なくとも一部(例えば、少なくともHARQ-ACK)をリダイレクトしてもよい。
ロングTTIのPUSCHで伝送されるロングTTI用のHARQ-ACKビットは、限られたビット数(例えば、1ビット)である。このため、ショートTTIのsPUSCHでショートTTI用のUCIが送信される場合、当該ショートTTI用のUCIの最初又は最後に、当該ロングTTI用のHARQ-ACKビットが付加(append)されてもよい。
図2は、第1の態様に係る第1のキャリア内リダイレクト制御の一例を示す図である。図2では、CC1において、ロングTTI用のUCIを伝送(carry)するロングTTIのPUSCHと、ショートTTI用のUCIを伝送するショートTTIのsPUSCHとの衝突が発生する場合が例示される。また、図2では、当該ロングTTIのPUSCHと当該ショートTTIのsPUSCHとが同一のユーザ端末に割り当てられるものとする。
図2に示す場合、ユーザ端末、上記衝突が発生するタイミングに関わらず、ロングTTI用のUCIの少なくとも一部(例えば、少なくともHARQ-ACK)をショートTTIのsPUSCHにリダイレクトしてもよい。
具体的には、図2に示すように、上記衝突が発生する場合、ユーザ端末は、当該ショートTTIのsPUSCHを送信し、当該ロングTTIのPUSCHの送信を停止又はドロップしてもよい。ユーザ端末は、ショートTTIのsPUSCHを用いて、ショートTTI用のUCIに加えてリダイレクトされるロングTTI用のUCIを送信してもよい。
なお、図2において、ユーザ端末は、ショートTTIのsPUSCHにロングTTI用のUCIの全てをリダイレクトしなくてもよい。例えば、ユーザ端末は、当該UCIの一部(例えば、CSI)をリダイレクトせずに、ドロップしてもよい。UCIのドロップは、優先度に基づいて行うことができる。優先度は、例えば、UCIの種別(HARQ-ACK及び/又はSR>RI>CQI)、UCIが対応するキャリア番号(CCインデックスが小さいほど優先度が高い)、などとすることができる。UCIのドロップは、例えばUCIをマッピングするリソースの総量とUCIのペイロード(ビット数)及び変調方式から算出される符号化率が所定値を下回るように決定してもよいし、特定のUCI種別(例えばCQI)は、常にドロップされるよう制御してもよい。
また、図2において、ショートTTI用のUCI及びショートTTIのsPUSCHにリダイレクトされるロングTTI用のUCIは、連結して符号化(ジョイント符号化)されてもよいし、別々に符号化(セパレート符号化)されてもよい。また、当該ショートTTI用のUCI及び当該ロングTTI用のUCIが同一の値である場合、当該ロングTTI用のUCIのリダイレクトは停止されてもよい。
第1のキャリア内リダイレクト制御では、ロングTTI用のUCIを伝送するロングTTIのPUSCHが同一キャリア内でショートTTIのsPUSCHと衝突する場合に、当該ショートTTI用のsPUSCHに当該UCIの少なくとも一部がリダイレクトされるので、ユーザ端末は、当該UCIを適切に送信できる。
<第2のキャリア内リダイレクト制御>
第2のキャリア内リダイレクト制御では、あるキャリア内においてロングTTI用のUCIを伝送するロングTTIのPUSCHとショートTTIのsPUSCHとの間の衝突が発生する場合、ユーザ端末は、当該衝突が発生するタイミング(ロングTTIにおける時間位置、シンボル、ショートTTI、サブスロット又はミニスロット等ともいう)に基づいて、当該ショートTTIのsPUSCHに当該UCIの少なくとも一部をリダイレクトするか否かを制御する。
図3は、ロングTTIの構成の一例を示す図である。図3では、ロングTTIが14シンボルで構成され、最終シンボルにサウンディング用の参照信号(SRS:Sounding Reference Signal)がマッピングされる場合が示される。また、図3では、ロングTTIのPUSCHには、ロングTTI用のUCIがピギーバック(搭載)されるものとする。なお、図3は例示にすぎず、SRS及び/又はUCIのマッピングは図3に示すものに限られない。また、SRSはマッピングされなくともよい。
例えば、図3では、シンボル#3及び#10(7シンボル毎のスロットの中央のシンボル)にロングTTIのPUSCHの復調用の参照信号(DMRS:Demodulation Reference Signal)がマッピングされる。DMRSの配置シンボル(DMRSシンボル)#3及び#10にそれぞれ隣接するシンボル#2、#4及び#9、#11のサブキャリア#0及び#1には、HARQ-ACKが分散マッピングされる。
また、HARQ-ACKの配置シンボル#2、#4、#9及び#11にそれぞれ隣接するシンボル#1、#5、#8及び#12のサブキャリア#0及び#1には、RIが分散マッピングされる。また、HARQ-ACK及びRIが配置されるサブキャリア#0及び#1とは反対側のサブキャリア#10及び#11には、DMRS及びSRSが配置されるシンボルを除いて、CQI及び/又はPMI(CQI/PMI)がマッピングされる。
また、ロングTTIには、所定数のシンボルのショートTTIが含まれてもよい。例えば、図3では、ロングTTIは、3シンボルのショートTTI#0及び#5、2シンボルのショートTTI#1~#4を含む。図3において、ショートTTI#1及び#4は、それぞれ、ロングTTIのPUSCH用のDMRSシンボル#3及び#10を含む。一方、ショートTTI#0、#2、#3及び#5は、それぞれ、当該DMRSシンボル#3及び#10を含まない。
第2のキャリア内リダイレクト制御では、ロングTTI用のUCIを伝送するロングTTIのPUSCHと、DMRSシンボルを含むショートTTI#1又は#4のsPUSCHとの衝突が発生する場合、当該ロングTTIのPUSCHの送信を停止(又はドロップ)し、当該UCIの少なくとも一部(例えば、少なくともHARQ-ACK)を当該ショートTTI#1又は#4のsPUSCHにリダイレクトしてもよい。
一方、ロングTTI用のUCIを伝送するロングTTIのPUSCHと、DMRSシンボルを含まないショートTTI#0、#2、#3又は#5のsPUSCHとの衝突が発生する場合、当該ロングTTIのPUSCHの一部をパンクチャし、ショートTTI#0、#2、#3又は#5へのリダイレクトを行わなくともよい。または、ロングTTI用のUCIを伝送するロングTTIのPUSCHと、DMRSシンボルを含まないショートTTI#0、#2、#3又は#5のsPUSCHとの衝突が発生する場合、当該ロングTTIのPUSCHの一部をパンクチャし、ショートTTI#0、#2、#3又は#5へのリダイレクトを行いつつも、ロングTTIのパンクチャされていないPUSCHシンボルは送信を継続するものとしてもよい。
このように、ショートTTIのsPUSCHに当該UCIの少なくとも一部をリダイレクトするか否かは、当該衝突が生じるタイミングに限られず、衝突が生じるショートTTIにDMRSシンボルが含まれるか否かに基づいて制御されてもよい。
図4は、第1の態様に係る第2のキャリア内リダイレクト制御の一例を示す図である。図4Aでは、ロングTTI用のUCI(ここでは、HARQ-ACK、RI、CQI/PMI)を伝送するロングTTIのPUSCHと、DMRSシンボル#10を含むショートTTI#4のsPUSCHとが衝突するものとする。一方、図4Bでは、当該ロングTTIのPUSCHと、DMRSシンボルを含まないショートTTI#3のsPUSCHとが衝突するものとする。
図4Aに示す場合、ユーザ端末は、当該ショートTTI#4のsPUSCHを送信し、当該ロングTTIのPUSCHの送信を停止又はドロップしてもよい。なお、図4Aでは、ロングTTIのPUSCH全体がドロップされるが、所定のタイミング(例えば、ショートTTI#4)以降について当該PUSCHがドロップされればよい。
また、図4Aでは、ユーザ端末は、ロングTTIにマッピングされるHARQ-ACKだけがショートTTI#4のsPUSCHにリダイレクトされるが、HARQ-ACK以外のUCIもショートTTI#4のsPUSCHにリダイレクトされてもよい。また、図示しないが、ショートTTI#4のsPUSCHでは、リダイレクトされるUCIに加えて、ショートTTI用のUCIが送信されてもよい。
一方、図4Bに示す場合、ユーザ端末は、ショートTTI#3のsPUSCHを送信し、ロングTTIのPUSCHの一部(例えば、ショートTTI#3の対応部分)だけをパンクチャ(又はドロップ)してもよい。
また、図4Bに示す場合、ユーザ端末は、ロングTTI用のUCIのリダイレクトを行わなくともよい。図4Bに示すように、sPUSCHが送信されるショートTTI#3には、HARQ-ACKは含まれない。図4Bでは、ロングTTIのPUSCHのショートTTI#3の対応部分だけがパンクチャされる。このため、ユーザ端末は、ショートTTI#3のsPUSCHへのリダイレクトを行わずとも、パンクチャされていない部分(ロングTTI内のショートTTI#3以外のシンボル)でロングTTI用のUCIを所定品質で伝送できる。
第2のキャリア内リダイレクト制御では、ロングTTI用のUCIを伝送するロングTTIのPUSCHがショートTTIのsPUSCHとの衝突が発生するタイミングに基づいて、当該UCIを当該sPUSCHにリダイレクトするか否かが制御されるので、リダイレクトによるユーザ端末の処理量の増加を防止できる。
以上のように、第1の態様では、ロングTTIのUCIを伝送するロングTTIのPUSCHがショートTTIのsPUSCHとの間の衝突が同一キャリア内で発生する場合でも、ユーザ端末は、当該同一キャリア内のsPUSCH又はPUSCHを用いて、当該UCIを適切に送信できる。
(第2の態様)
第2の態様では、あるキャリアにおいてUCIを伝送するロングTTIのPUSCHがショートTTIのsPUSCHとの間の衝突が発生する場合において、別のキャリアへの当該UCIのリダイレクト制御について説明する。
第2の態様において、あるキャリアにおいてUCIを伝送するロングTTIのPUSCHがショートTTIのsPUSCHとの間の衝突が発生する場合、ユーザ端末は、他のキャリアのショートTTIのsPUSCHに当該UCIの少なくとも一部をリダイレクトしてもよい(第1のキャリア間(inter-carrier)リダイレクト制御)。或いは、ユーザ端末は、別のキャリアのロングTTIのPUSCHに当該UCIの少なくとも一部をリダイレクトしてもよい(第2のキャリア間リダイレクト制御)。
また、第2の態様において、衝突が発生するキャリアとは別の複数のキャリアにおいてショートTTIのsPUSCH及び/又はロングTTIのPUSCHが当該ユーザ端末に割り当てられる(スケジューリングされる)場合、当該ユーザ端末は、最若(最小)のキャリアインデックスを有するキャリアのsPUSCH又はPUSCHに、上記UCIの少なくとも一つをリダイレクトしてもよい。
<第1のキャリア間リダイレクト制御>
第1のキャリア間リダイレクト制御では、ユーザ端末に対してあるキャリア(CC、セル)のロングTTIのPUSCHが割り当てられる場合に、当該ロングTTI内において当該ユーザ端末に対して別のキャリアのショートTTIのsPUSCHが割り当てられる場合を想定する。
上記あるキャリアにおいてロングTTI用のUCIを伝送するロングTTIのPUSCHとショートTTIのsPUSCHとの間の衝突が発生する場合、当該ユーザ端末は、当該UCIの少なくとも一部(例えば、少なくともHARQ-ACK)を、上記別のキャリアのショートTTIのsPUSCHにリダイレクトしてもよい。
ここで、ロングTTIのPUSCHと衝突するショートTTIのsPUSCHは、当該ロングTTIのPUSCHと同一のユーザ端末に割り当てられてもよいし、異なるユーザ端末に割り当てられてもよい。
上記あるキャリアにおいて衝突するロングTTIのPUSCHとショートTTIのsPUSCHが同一のユーザ端末に割り当てられる場合、当該ユーザ端末は、当該ショートTTIのsPUSCHを送信し、当該ロングTTIのPUSCHの送信を停止(又はドロップ)してもよい。
一方、上記あるキャリアにおいて衝突するロングTTIのPUSCHとショートTTIのsPUSCHが異なるユーザ端末に割り当てられる場合、ロングTTIのPUSCHが割り当てられるユーザ端末は、第1キャリアにおけるロングTTIのPUSCHの送信を停止しなくともよい(当該ユーザ端末は、無線基地局からの割り込み指示(プリエンプション指示、パンクチャ指示)に基づいて、衝突部分だけをパンクチャすればよい)。
図5は、第2の態様に係る第1のキャリア間リダイレクト制御の一例を示す図である。図5では、ユーザ端末に対してCC1(第1キャリア又は第1セル等ともいう)のロングTTIのPUSCHが割り当てられる場合に、当該ロングTTI内において当該ユーザ端末に対してCC2(第2キャリア又は第2セル等ともいう)のショートTTIのsPUSCHが割り当てられる場合を想定する。
また、図5では、CC1において、同一のユーザ端末に割り当てられるロングTTIのPUSCHとショートTTIのsPUSCHとが衝突するものとする。また、図5では、CC1のロングTTIのPUSCHにはロングTTI用のUCIがピギーバックされており、CC1のショートTTIのsPUSCHにはショートTTI用のUCIがピギーバックされているものとする。
図5に示す場合、ユーザ端末は、CC1のロングTTI用のUCIの少なくとも一部(例えば、少なくともHARQ-ACK)を、CC2のショートTTIのsPUSCHにリダイレクトしてもよい。なお、ユーザ端末は、ロングTTI用のUCIの全てをリダイレクトしなくてもよい。例えば、ユーザ端末は、当該UCIの一部(例えば、CQI、PMI及びRIの少なくとも一つであるCSI)をリダイレクトせずに、ドロップしてもよい。
また、図5では、CC1において、ロングTTIのPUSCHとショートTTIのsPUSCHとが同一のユーザ端末に割り当てられるため、当該ユーザ端末は、CC1のショートTTIのsPUSCHとCC2のショートTTIのsPUSCHを送信し、CC1のロングTTIのPUSCHの送信を停止(ドロップ)する。
第1のキャリア間リダイレクト制御では、あるキャリアでUCIを伝送するロングTTIのPUSCHがショートTTIのsPUSCHと衝突する場合に、当該ロングTTI用のUCIの少なくとも一部が別のキャリアのショートTTI用のsPUSCHにリダイレクトされるので、ユーザ端末は、当該UCIを適切に送信できる。
<第2のキャリア間リダイレクト制御>
第2のキャリア間リダイレクト制御では、ユーザ端末に対してあるキャリアのロングTTIのPUSCHが割り当てられる場合に、当該ロングTTIにおいて当該ユーザ端末に対して別のキャリアのPUSCHが割り当てられる場合を想定する。
上記あるキャリアにおいてUCIを伝送するロングTTIのPUSCHとショートTTIのsPUSCHとの間の衝突が発生する場合、当該ユーザ端末は、当該UCIの少なくとも一部(例えば、少なくともHARQ-ACK)を、上記別のキャリアのロングTTIのPUSCHにリダイレクトしてもよい。
ここで、上記あるキャリアにおいてロングTTIのPUSCHと衝突するショートTTIのsPUSCHは、当該ロングTTIのPUSCHと同一のユーザ端末に割り当てられてもよいし、異なるユーザ端末に割り当てられてもよい。
上記あるキャリアにおいて衝突するロングTTIのPUSCHとショートTTIのsPUSCHが同一のユーザ端末に割り当てられる場合、当該ユーザ端末は、当該ショートTTIのsPUSCHを送信し、当該ロングTTIのPUSCHの送信を停止(又はドロップ)してもよい。
一方、上記あるキャリアにおいて衝突するロングTTIのPUSCHとショートTTIのsPUSCHが異なるユーザ端末に割り当てられる場合、ロングTTIのPUSCHが割り当てられるユーザ端末は、当該ロングTTIのPUSCHの送信を停止しなくともよい(当該ユーザ端末は、無線基地局からの割り込み指示(プリエンプション指示、パンクチャ指示)に基づいて、衝突部分だけをパンクチャすればよい)。
図6は、第2の態様に係る第2のキャリア間リダイレクト制御の一例を示す図である。図6では、ユーザ端末に対してCC1のロングTTIのPUSCHが割り当てられる場合に、当該ロングTTI内において当該ユーザ端末に対してCC2のPUSCHが割り当てられる場合を想定する。すなわち、当該ユーザ端末は、CC1及びCC2においてULのキャリアアグリゲーション(CA)又はデュアルコネクティビティ(DC)を行っているものとする。
また、図6では、CC1において、同一のユーザ端末に割り当てられるロングTTIのPUSCHとショートTTIのsPUSCHとが衝突するものとする。また、図6では、CC1のロングTTIのPUSCHにはロングTTI用のUCIがピギーバックされており、CC1のショートTTIのsPUSCHにはショートTTI用のUCIがピギーバックされているものとする。
図6に示す場合、ユーザ端末は、CC1のロングTTI用のUCIの少なくとも一部(例えば、少なくともHARQ-ACK)を、CC2のPUSCHにリダイレクトしてもよい。なお、ユーザ端末は、ロングTTI用のUCIの全てをリダイレクトしてもよいし、当該UCIの一部(例えば、CQI、PMI及びRIの少なくとも一つであるCSI)をリダイレクトせずに、ドロップしてもよい。
また、図6では、CC1において、ロングTTIのPUSCHとショートTTIのsPUSCHとが同一のユーザ端末に割り当てられるため、当該ユーザ端末は、CC1のショートTTIのsPUSCHとCC2のロングTTIのPUSCHを送信し、CC1のロングTTIのPUSCHの送信を停止(ドロップ)する。
第2のキャリア間リダイレクト制御では、あるキャリアでUCIを伝送するロングTTIのPUSCHがショートTTIのsPUSCHと衝突する場合に、別のキャリアのロングTTIのPUSCHに当該UCIの少なくとも一部がリダイレクトされるので、ユーザ端末は、当該UCIを適切に送信できる。
(その他の態様)
上述のように、第1及び/又は第2の態様において、あるキャリアにおいてロングTTIのPUSCHがショートTTIのsPUSCHと衝突する場合、ユーザ端末は、当該ロングTTIのPUSCHの送信を停止(又はドロップ)してもよい。
ここで、ロングTTIのPUSCHの送信の停止(又はドロップ)は、当該PUSCHの少なくとも一部の送信の停止(又はドロップ)を意味してもよい。図7は、その他の態様に係るロングTTIのPUSCHの送信の停止(又はドロップ)の一例を示す図である。
図7Aに示すように、あるキャリアにおいてロングTTIのPUSCHがショートTTIのsPUSCHと衝突する場合、ユーザ端末は、ショートTTIのsPUSCHを送信し、当該ロングTTIのPUSCH全体をドロップしてもよい。
或いは、図7Bに示すように、あるキャリアにおいてロングTTIのPUSCHがショートTTIのsPUSCHと衝突する場合、ユーザ端末は、ショートTTIのsPUSCHを送信し、所定タイミングまではロングTTIのPUSCHを送信し、所定タイミング後から当該ロングTTIのPUSCHをドロップしてもよい。
或いは、図7Cに示すように、あるキャリアにおいてロングTTIのPUSCHがショートTTIのsPUSCHと衝突する場合、ユーザ端末は、ショートTTIのsPUSCHを送信し、当該sPUSCHとの衝突部分だけ、当該ロングTTIのPUSCHをドロップし、非衝突部分については当該PUSCHを送信してもよい。
このように、あるキャリアにおいてロングTTIのPUSCHがショートTTIのsPUSCHと衝突する場合、当該ショートTTIのsPUSCHが所定品質で送信される限り、当該ロングTTIのPUSCHの送信については、ユーザ端末の実装次第であってもよい。
(無線通信システム)
以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記各態様に係る無線通信方法が適用される。なお、上記各態様に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
図8は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。なお、無線通信システム1は、SUPER 3G、LTE-A(LTE-Advanced)、IMT-Advanced、4G、5G、FRA(Future Radio Access)、NR(New RAT)などと呼ばれても良い。
図8に示す無線通信システム1は、マクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12a~12cとを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。セル間で異なるニューメロロジーが適用される構成としてもよい。なお、ニューメロロジーとは、あるRATにおける信号のデザインを特徴付ける通信パラメータのセットのことをいう。
ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、異なる周波数を用いるマクロセルC1とスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、2個以上のCC)を用いてCA又はDCを適用することができる。また、ユーザ端末は、複数のセルとしてライセンスバンドCCとアンライセンスバンドCCを利用することができる。
また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。TDDのセル、FDDのセルは、それぞれ、TDDキャリア(フレーム構成タイプ2)、FDDキャリア(フレーム構成タイプ1)等と呼ばれてもよい。
また、各セル(キャリア)では、相対的に長い時間長(例えば、1ms)を有するサブフレーム(TTI、通常TTI、ロングTTI、通常サブフレーム、ロングサブフレーム、スロット等ともいう)、又は、相対的に短い時間長を有するサブフレーム(ショートTTI、ショートサブフレーム、スロット等ともいう)のいずれか一方が適用されてもよいし、ロングサブフレーム及びショートサブフレームの双方が適用されてもよい。また、各セルで、2以上の時間長のサブフレームが適用されてもよい。
ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrierなどと呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHz、30~70GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。
無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでもよい。また、ユーザ端末20は、他のユーザ端末20との間で端末間通信(D2D)を行うことができる。
無線通信システム1においては、無線アクセス方式として、下りリンク(DL)にOFDMA(直交周波数分割多元接続)が適用でき、上りリンク(UL)にSC-FDMA(シングルキャリア-周波数分割多元接続)が適用できる。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限られず、ULでOFDMAが用いられてもよい。また、端末間通信に用いられるサイドリンク(SL)にSC-FDMAを適用できる。
無線通信システム1では、DLチャネルとして、各ユーザ端末20で共有されるDLデータチャネル(PDSCH:Physical Downlink Shared Channel、DL共有チャネル等ともいう)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、L1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などの少なくとも一つが伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。
L1/L2制御チャネルは、DL制御チャネル(PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel))、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。EPDCCHは、PDSCHと周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。PHICH、PDCCH、EPDCCHの少なくとも一つにより、PUSCHの再送制御情報(A/N、HARQ-ACK、HARQ-ACKビット又はA/Nコードブック等ともいう)を伝送できる。
無線通信システム1では、ULチャネルとして、各ユーザ端末20で共有されるULデータチャネル(PUSCH:Physical Uplink Shared Channel、UL共有チャネル等ともいう)、UL制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータ、上位レイヤ制御情報が伝送される。PDSCHの再送制御情報(A/N、HARQ-ACK)チャネル状態情報(CSI)などの少なくとも一つを含む上り制御情報(UCI:Uplink Control Information)は、PUSCH又はPUCCHにより、伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルを伝送できる。
<無線基地局>
図9は、本実施の形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されてもよい。
下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQ(Hybrid Automatic Repeat reQuest)の処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、レートマッチング、スクランブリング、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理及びプリコーディング処理の少なくとも一つなどの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化及び/又は逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。
本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
一方、UL信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅されたUL信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
ベースバンド信号処理部104では、入力されたUL信号に含まれるULデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定、解放などの呼処理、無線基地局10の状態管理、無線リソースの管理の少なくとも一つを行う。
伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して隣接無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
また、送受信部103は、ロングTTI(第1のTTI)及び/又はショートTTI(第2のTTI)において、DL信号(例えば、DCI(DLアサインメント、ULグラント、共通DCIの少なくとも一つを含む)、DLデータ、割り込み指示、パンクチャ指示、プリエンプション指示の少なくとも一つ)を送信し、UL信号(例えば、ULデータ、UCI)を受信する。
図10は、本実施の形態に係る無線基地局の機能構成の一例を示す図である。なお、図10は、本実施の形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。図10に示すように、ベースバンド信号処理部104は、制御部301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305とを備えている。
制御部301は、無線基地局10全体の制御を実施する。制御部301は、例えば、送信信号生成部302によるDL信号の生成、マッピング部303によるDL信号のマッピング、受信信号処理部304によるUL信号の受信処理(例えば、復調など)及び測定部305による測定の少なくとも一つを制御する。
具体的には、制御部301は、ロングTTI及び/又はショートTTIのスケジューリングを行う。制御部301は、ロングTTI及び/又はショートTTIにおけるDL制御チャネル(スケジューリング制御チャネル等ともいう)を用いたDCIの送信処理(例えば、符号化、変調、送信など)を制御してもよい。
また、制御部301は、ロングTTI及び/又はショートTTIにおけるDL信号の送信及び/又はUL信号の受信を制御する。具体的には、制御部301は、ロングTTI及び/又はショートTTIにおけるDLデータの送信処理(例えば、符号化、変調、マッピング、送信など)及び/又はULデータの受信処理(例えば、受信、デマッピング、復調、復号など)を制御してもよい。
また、制御部301は、DLデータの再送データの送信を制御する。具体的には、制御部301は、ロングTTIのDLデータの一部がショートTTIの送信によりプリエンプト(パンクチャ)される場合、ユーザ端末20からの送達確認情報(HARQ-ACK)なしに、再送データの送信を制御してもよい。なお、DLデータは、一以上のコードブロック(CB)を含むトランスポートブロック(TB)で構成され、再送データは、DLデータの少なくとも一部(例えば、当該CB全体、プリエンプトされる部分又はTB全体)を含んでもよい。
また、制御部301は、あるキャリアにおいてUCIを伝送するロングTTIのPUSCHがショートTTIのsPUSCHとの間の衝突が発生する場合におけるリダイレクトを制御してもよい。例えば、当該制御部301は、リダイレクトに関する設定情報の生成及び送信を制御してもよい。
制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
送信信号生成部302は、制御部301からの指示に基づいて、DL信号(DLデータ、DCI、DL参照信号、上位レイヤシグナリングによる制御情報の少なくとも一つを含む)を生成して、マッピング部303に出力してもよい。
送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。
マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成されたDL信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。
受信信号処理部304は、ユーザ端末20から送信されるUL信号の受信処理(例えば、デマッピング、復調、復号など)を行う。例えば、受信信号処理部304は、制御部301からの指示に従って、CB単位で復号処理を行ってもよい。
受信信号処理部304は、ユーザ端末20から送信されるUL信号(例えば、ULデータ信号、UL制御信号、UL参照信号を含む)に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。具体的には、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力してもよい。また、受信信号処理部304は、制御部301から指示されるUL制御チャネル構成に基づいて、UCIの受信処理を行う。
測定部305は、例えば、UL参照信号の受信電力(例えば、RSRP(Reference Signal Received Power))及び/又は受信品質(例えば、RSRQ(Reference Signal Received Quality))に基づいて、ULのチャネル品質を測定してもよい。測定結果は、制御部301に出力されてもよい。
<ユーザ端末>
図11は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。
複数の送受信アンテナ201で受信された無線周波数信号は、それぞれアンプ部202で増幅される。各送受信部203はアンプ部202で増幅されたDL信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。
ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などの少なくとも一つを行う。DLデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。
一方、ULデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御処理(例えば、HARQの処理)、チャネル符号化、レートマッチング、パンクチャ、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などの少なくとも一つが行われて各送受信部203に転送される。UCI(例えば、DL信号のA/N、チャネル状態情報(CSI)、スケジューリング要求(SR)の少なくとも一つなど)についても、チャネル符号化、レートマッチング、パンクチャ、DFT処理及びIFFT処理などの少なくとも一つが行われて各送受信部203に転送される。
送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
また、送受信部203は、ロングTTI(第1のTTI)及び/又はショートTTI(第2のTTI)において、DL信号(例えば、DCI、DLデータ、割り込み指示、パンクチャ指示、プリエンプション指示の少なくとも一つなど)を受信する。また、送受信部203は、ロングTTI及び/又はショートTTIにおいて、UL信号(例えば、ULデータ、UCIなど)を送信する。
送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置とすることができる。また、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
図12は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。なお、図12においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。図12に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を備えている。
制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、例えば、送信信号生成部402によるUL信号の生成、マッピング部403によるUL信号のマッピング、受信信号処理部404によるDL信号の受信処理及び測定部405による測定の少なくとも一つを制御する。
具体的には、制御部401は、ロングTTI及び/又はショートTTIのDL制御チャネルをモニタリング(ブラインド復号)し、ユーザ端末20に対するロングTTI及び/又はショートTTIのDCIを検出してもよい。
また、制御部401は、ロングTTI及び/又はショートTTIにおけるDL信号の受信及び/又はUL信号の送信を制御する。具体的には、制御部401は、ロングTTI及び/又はショートTTIにおけるDLデータの受信処理(例えば、受信、デマッピング、復調、復号など)及び/又はULデータの送信処理(例えば、符号化、変調、マッピング、送信など)を制御してもよい。
また、制御部401は、ロングTTI及び/又はショートTTI用のUCIの送信を制御する。具体的には、制御部401は、UCIを伝送するロングTTIのPUSCHとショートTTIのsPUSCHとの衝突が同一キャリア内で発生する場合、当該UCIの少なくとも一部のリダイレクトを制御してもよい。
例えば、制御部401は、UCIを伝送するロングTTIのPUSCHとショートTTIのsPUSCHとの衝突が同一キャリア内で発生する場合、当該衝突が発生するタイミングに関係なく、当該ショートTTIのsPUSCHに、当該UCIの少なくとも一部をリダイレクトしてもよい(第1の態様、第1のキャリア内リダイレクト制御、図2)。
また、制御部401は、UCIを伝送するロングTTIのPUSCHとショートTTIのsPUSCHとの衝突が同一キャリア内で発生する場合、当該衝突が発生するタイミングに基づいて、当該ショートTTIのsPUSCHに、当該UCIの少なくとも一部をリダイレクトするか否かを制御してもよい(第1の態様、第2のキャリア内リダイレクト制御、図4)。
また、制御部401は、UCIを伝送するロングTTIのPUSCHとショートTTIのsPUSCHとの衝突が同一キャリア内で発生する場合、別のキャリアのショートTTIのsPUSCHに、当該UCIの少なくとも一部をリダイレクトしてもよい(第2の態様、第1のキャリア間リダイレクト制御、図5)。
また、制御部401は、UCIを伝送するロングTTIのPUSCHとショートTTIのsPUSCHとの衝突が同一キャリア内で発生する場合、別のキャリアのロングTTIのPUSCHに、当該UCIの少なくとも一部をリダイレクトしてもよい(第2の態様、第2のキャリア間リダイレクト制御、図6)。
また、制御部401は、UCIを伝送するロングTTIのPUSCHとショートTTIのsPUSCHとの衝突が同一キャリア内で発生する場合、当該ロングTTIのPUSCHの送信の停止(又はドロップ又はパンクチャ)を制御してもよい。また、制御部401は、当該ショートTTIのsPUSCHの送信を制御してもよい。
制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
送信信号生成部402は、制御部401からの指示に基づいて、UL信号、DL信号の再送制御情報を生成(例えば、符号化、レートマッチング、パンクチャ、変調など)して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。
マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成されたUL信号、DL信号の再送制御情報を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。
受信信号処理部404は、DL信号の受信処理(例えば、デマッピング、復調及び復号の少なくとも一つなど)を行う。例えば、受信信号処理部404は、制御部401からの指示に従って、CB単位で復号処理を行い、各CBの復号結果を制御部401に出力してもよい。
受信信号処理部404は、無線基地局10から受信した情報を、制御部401に出力する。受信信号処理部404は、例えば、上位レイヤシグナリングによる上位レイヤ制御情報、L1/L2制御情報(例えば、ULグラント及び/又はDLアサインメント)などを、制御部401に出力する。
受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
測定部405は、無線基地局10からの参照信号(例えば、CSI-RS)に基づいて、チャネル状態を測定し、測定結果を制御部401に出力する。なお、チャネル状態の測定は、CC毎に行われてもよい。
測定部405は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置、並びに、測定器、測定回路又は測定装置から構成することができる。
<ハードウェア構成>
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
例えば、本実施の形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図13は、本実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサで実行されてもよいし、処理が同時に、逐次に、又はその他の手法で、1以上のプロセッサで実行されてもよい。なお、プロセッサ1001は、1以上のチップで実装されてもよい。
無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一つを制御することで実現される。
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001で実現されてもよい。
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004で実現されてもよい。
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
また、図13に示す各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
(変形例)
なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)で構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットで構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。
スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)で構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において一つ又は複数のシンボルで構成されてもよい。
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅及び/又は送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。TTIは、チャネル符号化されたデータパケット(トランスポートブロック)の送信時間単位であってもよいし、スケジューリング及び/又はリンクアダプテーションなどの処理単位となってもよい。なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、又はショートサブフレームなどと呼ばれてもよい。
リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。なお、RBは、物理リソースブロック(PRB:Physical RB)、PRBペア、RBペアなどと呼ばれてもよい。
また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)で構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボルの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースは、所定のインデックスで指示されるものであってもよい。さらに、これらのパラメータを使用する数式などは、本明細書で明示的に開示したものと異なってもよい。
本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的なものではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。
本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))で通知されてもよい。
また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
本明細書で使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
本明細書では、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
本明細書では、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び/又は「下り」は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
本明細書において、基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)から成るネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
本明細書で使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
本明細書で使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
本明細書で使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどの電磁エネルギーを使用することにより、互いに「接続」又は「結合」されると考えることができる。
本明細書又は請求の範囲で「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。