JP2022064235A - Heat storage type temperature difference storage battery, combined heat and power system, and combined heat and power system group - Google Patents

Heat storage type temperature difference storage battery, combined heat and power system, and combined heat and power system group Download PDF

Info

Publication number
JP2022064235A
JP2022064235A JP2020172863A JP2020172863A JP2022064235A JP 2022064235 A JP2022064235 A JP 2022064235A JP 2020172863 A JP2020172863 A JP 2020172863A JP 2020172863 A JP2020172863 A JP 2020172863A JP 2022064235 A JP2022064235 A JP 2022064235A
Authority
JP
Japan
Prior art keywords
heat
flow path
heat medium
storage tank
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020172863A
Other languages
Japanese (ja)
Inventor
良之 佐藤
Yoshiyuki Sato
学 加藤
Manabu Kato
哲也 新海
Tetsuya Shinkai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Ind Power Ids Co Ltd
Mitsubishi Heavy Industries Power Ids Co Ltd
Cosmo Oil Co Ltd
Original Assignee
Mitsubishi Heavy Ind Power Ids Co Ltd
Mitsubishi Heavy Industries Power Ids Co Ltd
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Ind Power Ids Co Ltd, Mitsubishi Heavy Industries Power Ids Co Ltd, Cosmo Oil Co Ltd filed Critical Mitsubishi Heavy Ind Power Ids Co Ltd
Priority to JP2020172863A priority Critical patent/JP2022064235A/en
Publication of JP2022064235A publication Critical patent/JP2022064235A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

To provide a heat storage type temperature difference storage battery, which is a novel type battery that generates electricity by using heat media having different temperatures stored in a heat pump cycle.SOLUTION: A heat storage type temperature difference storage battery includes a compressor for compressing a heat medium, a first flow path connected to the compressor, an accumulation heat insulation high temperature storage tank connected to the first flow path, a second flow path connected to the accumulation heat insulation high temperature storage tank, an expansion device provided in the second flow path and configured to reduce the pressure of the heat medium flowing through the second flow path, an accumulation heat insulation low temperature storage tank provided on the upstream side or the downstream side of the expansion device in the second flow path for storing the heat medium of the second flow path, a third flow path connected to the downstream side of the second flow path and configured to supply a heat medium through each of the expansion device and the accumulation high insulation low temperature storage tank to the compressor, and a temperature difference generator configured to generate electricity by using the temperature difference between the heat medium flowing on the upstream side of an expansion turbine in the second flow path and the heat medium flowing through the third flow path.SELECTED DRAWING: Figure 1

Description

本開示は、蓄熱式温度差蓄電池、熱電併給システム及び熱電併給システム群に関する。 The present disclosure relates to a heat storage type temperature difference storage battery, a combined heat and power system, and a group of combined heat and power systems.

従来、我が国では、原子力発電所に代表されるような大規模集中型の発電所から電力を供給するエネルギー供給システムが採用されてきた。これに対し、近年、エネルギーの安定供給や省エネルギー等の観点から、比較的小規模なエネルギー変換機器をエネルギー消費地に近い場所に設置してエネルギー供給を行う分散型のエネルギー供給システムが注目されている。 Conventionally, in Japan, an energy supply system that supplies electric power from a large-scale centralized power plant such as a nuclear power plant has been adopted. On the other hand, in recent years, from the viewpoint of stable energy supply and energy saving, a distributed energy supply system that supplies energy by installing relatively small-scale energy conversion equipment near the energy consuming area has attracted attention. There is.

特許文献1には、分散型のエネルギー供給システムの一形態である地域熱電併給システムが記載されている。特許文献1に記載の地域熱電併給システムでは、熱媒体を供給する側に少なくとも圧縮機と放熱装置とを設けるとともに熱媒体を供給される需要体側(対象地域の複数の需要体)に熱交換器を設けて、熱媒体を供給する側と供給される側とで熱媒体の流路を形成し、対象地域の複数の需要体を対象とした大規模なヒートポンプサイクルを構築している。これにより、少ない投入エネルギーで効率的に対象地域の冷暖房及び給湯需要を満たすことができる。 Patent Document 1 describes a regional combined heat and power system, which is a form of a distributed energy supply system. In the regional heat and power combined supply system described in Patent Document 1, at least a compressor and a heat radiating device are provided on the side that supplies the heat medium, and a heat exchanger is provided on the side of the consumer to which the heat medium is supplied (plural demands in the target area). A large-scale heat pump cycle is constructed for a plurality of consumers in the target area by forming a flow path of the heat medium between the side that supplies the heat medium and the side that supplies the heat medium. As a result, it is possible to efficiently meet the demand for air conditioning and hot water supply in the target area with a small amount of input energy.

この構成では、少なくとも圧縮機と放熱装置とを複数の需要体に対する共用設備として熱媒体の共用流路に設けることにより、これらの設備を各需要体側に設置する場合と比較して、各需要体側の設備構成を簡素化することができる。これにより、各需要体側における熱電併給用の設備の設置スペース及び騒音の問題を軽減又は解消することが可能となる。 In this configuration, at least the compressor and the radiator are provided in the common flow path of the heat medium as shared equipment for a plurality of demand bodies, so that these facilities are installed on each demand body side as compared with the case where these facilities are installed on each demand body side. The equipment configuration can be simplified. This makes it possible to reduce or eliminate the problems of the installation space and noise of the equipment for combined heat and power on each consumer side.

特開2016-61190号公報Japanese Unexamined Patent Publication No. 2016-61190

本開示は、ヒートポンプサイクル内で貯蔵した互いに温度の異なる熱媒体を利用して発電する新規な方式の電池である蓄熱式温度差蓄電池、並びにこれを備える熱電併給システム及び相互に熱電のやり取りが可能な熱電併給システム群を提供することを目的とする。 The present disclosure discloses a heat storage type temperature difference storage battery which is a novel type battery that generates electricity by using heat media having different temperatures stored in a heat pump cycle, a combined heat and power system equipped with the battery, and mutual exchange of heat and power. The purpose is to provide a group of combined heat and power systems.

上記目的を達成するため、本開示の少なくとも一実施形態に係る蓄熱式温度差蓄電池は、
熱媒体を圧縮するための圧縮機と、
圧縮機に接続され、前記圧縮機で圧縮された前記熱媒体を流すための第1流路と、
前記第1流路に接続され、前記第1流路から供給された前記熱媒体を貯蔵するための蓄圧断熱高温貯槽と、
前記蓄圧断熱高温貯槽に接続され、前記蓄圧断熱高温貯槽を出た前記熱媒体を流すための第2流路と、
前記第2流路に設けられ、前記第2流路を流れる前記熱媒体を減圧するように構成された膨張装置と、
前記第2流路における前記膨張装置の上流側又は下流側に設けられ、前記第2流路の前記熱媒体を貯蔵するための蓄圧断熱低温貯槽と、
前記第2流路の下流側に接続され、前記膨張装置及び前記蓄圧断熱低温貯槽の各々を通った前記熱媒体を前記圧縮機に供給するように構成された第3流路と、
前記第2流路における前記膨張装置の上流側を流れる前記熱媒体と前記第3流路を流れる前記熱媒体との温度差を利用して発電するように構成された温度差発電機と、
を備える。
In order to achieve the above object, the heat storage type temperature difference storage battery according to at least one embodiment of the present disclosure is
A compressor for compressing the heat medium,
A first flow path connected to a compressor and for flowing the heat medium compressed by the compressor,
A pressure-accumulation adiabatic high-temperature storage tank connected to the first flow path and for storing the heat medium supplied from the first flow path,
A second flow path connected to the accumulator adiabatic high temperature storage tank and for flowing the heat medium leaving the accumulator adiabatic high temperature storage tank.
An expansion device provided in the second flow path and configured to reduce the pressure of the heat medium flowing through the second flow path.
A pressure-accumulation adiabatic low-temperature storage tank provided on the upstream side or the downstream side of the expansion device in the second flow path and for storing the heat medium of the second flow path.
A third flow path connected to the downstream side of the second flow path and configured to supply the heat medium through each of the expansion device and the accumulator adiabatic low temperature storage tank to the compressor.
A temperature difference generator configured to generate electricity by utilizing the temperature difference between the heat medium flowing on the upstream side of the expansion device in the second flow path and the heat medium flowing through the third flow path.
To prepare for.

上記目的を達成するため、本開示の少なくとも一実施形態に係る熱電併給システムは、
上記蓄熱式温度差蓄電池と、
前記蓄圧断熱高温貯槽に接続され、前記蓄圧断熱高温貯槽から対象サイトの需要体に前記熱媒体を供給するように構成された第4流路と、
を備える。
In order to achieve the above object, the combined heat and power system according to at least one embodiment of the present disclosure may be used.
With the above heat storage type temperature difference storage battery,
A fourth flow path connected to the accumulator adiabatic high temperature storage tank and configured to supply the heat medium from the accumulator adiabatic high temperature storage tank to the demand body of the target site.
To prepare for.

上記目的を達成するため、本開示の少なくとも一実施形態に係る熱電併給システム群は、
上記熱電併給システムを複数備える熱電併給システム群であって、
前記複数の熱電併給システムは、複数の対象サイトにそれぞれ対応して設けられており、
前記熱電併給システム群は、前記複数の熱電併給システム全体における電力と熱の需給最適化を行うように構成された統括熱電需給システムを更に備える。
In order to achieve the above object, the combined heat and power system group according to at least one embodiment of the present disclosure is
A group of combined heat and power systems equipped with the above-mentioned combined heat and power systems.
The plurality of combined heat and power systems are provided corresponding to each of a plurality of target sites.
The combined heat and power system group further includes a centralized heat and power supply and demand system configured to optimize the supply and demand of electric power and heat in the entire plurality of combined heat and power systems.

本開示によれば、ヒートポンプサイクル内で貯蔵した互いに温度の異なる熱媒体を利用して発電する新規な方式の電池である蓄熱式温度差蓄電池、並びにこれを備える熱電併給システム及び熱電併給システム群が提供される。 According to the present disclosure, a heat storage type temperature difference storage battery, which is a novel type battery that generates electricity by using heat media having different temperatures stored in a heat pump cycle, and a combined heat and power system and a group of combined heat and power systems equipped with the battery are included. Provided.

一実施形態に係る地域熱電併給システム2(2A)の概略構成を示す模式図である。It is a schematic diagram which shows the schematic structure of the regional combined heat and power system 2 (2A) which concerns on one Embodiment. 地域熱電併給システム群4の概略構成を示す模式図である。It is a schematic diagram which shows the schematic structure of the regional combined heat and power system group 4. 一実施形態に係る地域熱電併給システム2(2B)の概略構成を示す模式図である。It is a schematic diagram which shows the schematic structure of the regional combined heat and power system 2 (2B) which concerns on one Embodiment. 図3に示した地域熱電併給システム2(2B)における循環流路74及び循環流路76を太線で示す模式図である。FIG. 3 is a schematic diagram showing a circulation flow path 74 and a circulation flow path 76 in the regional combined heat and power system 2 (2B) shown in FIG. 3 with thick lines. 一実施形態に係る地域熱電併給システム2(2C)の概略構成を示す模式図である。It is a schematic diagram which shows the schematic structure of the regional combined heat and power system 2 (2C) which concerns on one Embodiment. 地域熱電併給システム2(2B)の変形例を示す模式図である。It is a schematic diagram which shows the modification of the regional combined heat and power system 2 (2B).

以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present disclosure will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as embodiments or shown in the drawings are not intended to limit the scope of the invention, but are merely explanatory examples. ..
For example, expressions that represent relative or absolute arrangements such as "in one direction", "along a certain direction", "parallel", "orthogonal", "center", "concentric" or "coaxial" are exact. Not only does it represent such an arrangement, but it also represents a tolerance or a state of relative displacement at an angle or distance to the extent that the same function can be obtained.
For example, expressions such as "same", "equal", and "homogeneous" that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
For example, the expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion or a chamfer within the range where the same effect can be obtained. It shall also represent the shape including the part and the like.
On the other hand, the expressions "equipped", "equipped", "equipped", "included", or "have" one component are not exclusive expressions excluding the existence of other components.

(地域熱電併給システムの概略構成)
図1は、一実施形態に係る地域熱電併給システム2(2A)の概略構成を示す模式図である。
図1に示す地域熱電併給システム2は、発電と、対象サイトにおける需要体100への熱供給とを併行して実行可能に構築されるシステムである。対象サイトの規模は、例えば直径300~500m程度の地域であってもよいし、それより広くとも狭くともよい。需要体100は、例えば戸建住宅、マンション等の集合住宅、ショッピング施設、工場及び病院等の各種施設のうち少なくとも1種を含む。
(Outline configuration of regional combined heat and power system)
FIG. 1 is a schematic diagram showing a schematic configuration of a regional combined heat and power system 2 (2A) according to an embodiment.
The district heat and power cogeneration system 2 shown in FIG. 1 is a system constructed so as to be feasible in parallel with power generation and heat supply to the demand body 100 at the target site. The scale of the target site may be, for example, an area having a diameter of about 300 to 500 m, and may be wider or narrower than that. The demand body 100 includes at least one of various facilities such as a detached house, an apartment house such as an apartment, a shopping facility, a factory and a hospital.

図1に示すように、地域熱電併給システム2は、電気モータ5、圧縮機6、第1流路8、蓄圧断熱高温貯槽10、第2流路12、膨張タービン14(膨張装置)、蓄圧断熱低温貯槽18、第3流路20及び温度差発電機22、第4流路24、第5流路26、第6流路28、第7流路30、送電ライン32~38及びサイト熱電需給システム50、温度センサ82、温度センサ84及びモータ制御部86を備える。なお、図1では、熱及び電力の伝達経路がそれぞれ実線及び一点鎖線で記載されている。 As shown in FIG. 1, the regional combined heat and power supply system 2 includes an electric motor 5, a compressor 6, a first flow path 8, a pressure-accumulation heat insulation high-temperature storage tank 10, a second flow path 12, an expansion turbine 14 (expansion device), and a pressure-accumulation heat insulation. Low temperature storage tank 18, 3rd flow path 20, temperature difference generator 22, 4th flow path 24, 5th flow path 26, 6th flow path 28, 7th flow path 30, transmission lines 32 to 38, and site thermoelectric supply and demand system. 50, a temperature sensor 82, a temperature sensor 84, and a motor control unit 86 are provided. In FIG. 1, heat and electric power transfer paths are shown by solid lines and alternate long and short dash lines, respectively.

電気モータ5は、圧縮機6に連結されており、サイト熱電需給システム50から送電ライン32を介して供給された電力を用いて圧縮機6を駆動する。サイト熱電需給システム50から電気モータ5に供給される電力は、系統電力であってもよいし、温度差発電機22から供給された電力であってもよいし、膨張タービン14に連結された後述の発電機や、送電ライン36を通じて需要体100に設置されたEVやNAS電池、太陽光などの各種電気設備から供給された電力であってもよい。サイト熱電需給システム50から電気モータ5に供給する電力として系統電力を用いる場合は、安価な夜間電力を使用することが望ましい。 The electric motor 5 is connected to the compressor 6 and drives the compressor 6 using the electric power supplied from the site thermoelectric supply and demand system 50 via the power transmission line 32. The electric power supplied from the site thermoelectric supply and demand system 50 to the electric motor 5 may be system electric power, electric power supplied from the temperature difference generator 22, and described later connected to the expansion turbine 14. It may be electric power supplied from various electric facilities such as an EV, a NAS battery, and sunlight installed in the demand body 100 through the generator of the above and the transmission line 36. When system power is used as power supplied from the site thermoelectric supply and demand system 50 to the electric motor 5, it is desirable to use inexpensive nighttime power.

圧縮機6は、電気モータ5により駆動されることにより、第3流路20から供給された中温低圧の熱媒体を圧縮して高温高圧の熱媒体を生成するよう構成されている。なお、他の実施形態では、電気モータ5に代えて、風車や水車等によって直接(電力に変換せずに)圧縮機6を駆動してもよい。また、第3流路20から圧縮機6に供給される熱媒体は、ヒートポンプサイクルに使用可能な熱媒体であれば特に限定されず、例えばCO、アンモニア、プロパン、ブタン、代替フロン等を用いることができる。なお、本明細書では、相対的な温度として、温度の高い方から順に、高温、中温、低温との表現を使用する。また、相対的な圧力として、圧力の高い方から順に、高圧、中圧、低圧との表現を使用する。 The compressor 6 is driven by an electric motor 5 to compress a medium-temperature low-pressure heat medium supplied from the third flow path 20 to generate a high-temperature and high-pressure heat medium. In another embodiment, the compressor 6 may be driven directly (without being converted into electric power) by a wind turbine, a water turbine, or the like instead of the electric motor 5. The heat medium supplied to the compressor 6 from the third flow path 20 is not particularly limited as long as it is a heat medium that can be used in the heat pump cycle, and for example, CO 2 , ammonia, propane, butane, alternative CFCs, or the like is used. be able to. In this specification, the expressions high temperature, medium temperature, and low temperature are used as relative temperatures in order from the highest temperature. In addition, as relative pressure, the expressions high pressure, medium pressure, and low pressure are used in order from the one with the highest pressure.

第1流路8は、圧縮機6の下流側に接続されており、圧縮機6で圧縮された高温高圧の熱媒体を流すように構成されている。 The first flow path 8 is connected to the downstream side of the compressor 6 and is configured to flow a high-temperature and high-pressure heat medium compressed by the compressor 6.

蓄圧断熱高温貯槽10は、第1流路8の下流側に接続されており、第1流路8から供給された高温高圧の熱媒体を貯蔵するように構成されている。 The accumulator heat insulating high temperature storage tank 10 is connected to the downstream side of the first flow path 8 and is configured to store a high temperature and high pressure heat medium supplied from the first flow path 8.

第2流路12は、蓄圧断熱高温貯槽10の下流側に接続されており、蓄圧断熱高温貯槽10を出た熱媒体を温度差発電機22の高温側、膨張タービン14及び蓄圧断熱低温貯槽18に供給するように構成されている。幾つかの実施形態では、需要体100の温熱・電力の需要や消費量に基づくサイト熱電需給システム50からの指令に従い、蓄圧断熱高温貯槽10に貯蔵された高温高圧の熱媒体の一部を後述の第4流路24によって需要体100へ供給し、また一部を第2流路12によって温度差発電機22の高温側に導入し、温度差発電機22の低温側との温度差により発電し、送電ライン34及び送電ライン35を介して需要体100へ電力を供給してもよい。第2流路12を流れる熱媒体は、温度差発電機22の高温側で放熱して減温する。一実施形態では、温度差発電機22の高温側は凝縮器として機能する。 The second flow path 12 is connected to the downstream side of the accumulator adiabatic high temperature storage tank 10, and the heat medium leaving the accumulator adiabatic high temperature storage tank 10 is transferred to the high temperature side of the temperature difference generator 22, the expansion turbine 14, and the accumulator adiabatic low temperature storage tank 18. It is configured to supply to. In some embodiments, a part of the high-temperature and high-pressure heat medium stored in the accumulator-insulated high-temperature storage tank 10 is described later in accordance with a command from the site thermoelectric power supply / supply system 50 based on the heat / power demand and consumption of the demand body 100. It is supplied to the demand body 100 by the fourth flow path 24 of the above, and a part of it is introduced to the high temperature side of the temperature difference generator 22 by the second flow path 12, and power is generated by the temperature difference from the low temperature side of the temperature difference generator 22. Then, electric power may be supplied to the demand body 100 via the power transmission line 34 and the power transmission line 35. The heat medium flowing through the second flow path 12 dissipates heat on the high temperature side of the temperature difference generator 22 to reduce the temperature. In one embodiment, the high temperature side of the temperature difference generator 22 functions as a condenser.

膨張タービン14は、第2流路12における温度差発電機22の下流側に設けられており、第2流路12を流れる中温高圧の熱媒体(温度差発電機22の高温側で仕事をした後の中温高圧の熱媒体)を減圧するように構成されている。図1に示す例では、第2流路12を流れる中温高圧の熱媒体によって膨張タービン14が駆動され、膨張タービン14に接続された不図示の発電機が発電を行う。膨張タービン14に接続された発電機から得られる電力は、送電ライン33を介してサイト熱電需給システム50に送電される。 The expansion turbine 14 is provided on the downstream side of the temperature difference generator 22 in the second flow path 12, and works on a medium-temperature high-pressure heat medium (the high-temperature side of the temperature difference generator 22) flowing through the second flow path 12. It is configured to reduce the pressure of the later medium-temperature and high-pressure heat medium). In the example shown in FIG. 1, the expansion turbine 14 is driven by a medium-temperature high-pressure heat medium flowing through the second flow path 12, and a generator (not shown) connected to the expansion turbine 14 generates power. The electric power obtained from the generator connected to the expansion turbine 14 is transmitted to the site thermoelectric supply and demand system 50 via the transmission line 33.

蓄圧断熱低温貯槽18は、第2流路12において膨張タービン14の下流側に設けられており、第2流路12の低温低圧の熱媒体を貯蔵するように構成されている。 The accumulator adiabatic low-temperature storage tank 18 is provided on the downstream side of the expansion turbine 14 in the second flow path 12, and is configured to store the low-temperature low-pressure heat medium of the second flow path 12.

第3流路20は、第2流路12の下流側に接続されており、膨張タービン14及び蓄圧断熱低温貯槽18の各々を通った熱媒体を温度差発電機22の低温側を介して圧縮機6に供給するように構成されている。幾つかの実施形態では、需要体100の冷熱・電力の需要や消費量に基づくサイト熱電需給システム50からの指令に従い、蓄圧断熱低温貯槽18に貯蔵された低温低圧の熱媒体の一部を後述の第6流路28によって需要体100へ供給し、また一部を第3流路20によって温度差発電機22の低温側に導入し、温度差発電機22の高温側との温度差により発電し、送電ライン34及び送電ライン35を介して需要体100へ電力を供給してもよい。 The third flow path 20 is connected to the downstream side of the second flow path 12, and compresses the heat medium that has passed through each of the expansion turbine 14 and the accumulator adiabatic low temperature storage tank 18 via the low temperature side of the temperature difference generator 22. It is configured to supply to the machine 6. In some embodiments, a part of the low-temperature low-pressure heat medium stored in the accumulator-insulated low-temperature storage tank 18 is described later in accordance with a command from the site thermoelectric power supply / supply system 50 based on the demand and consumption of cold heat / electric power of the demand body 100. It is supplied to the demand body 100 by the sixth flow path 28 of the above, and a part of it is introduced to the low temperature side of the temperature difference generator 22 by the third flow path 20, and power is generated by the temperature difference from the high temperature side of the temperature difference generator 22. Then, electric power may be supplied to the demand body 100 via the power transmission line 34 and the power transmission line 35.

温度差発電機22は、ゼーベック素子(熱電素子)を含み、第2流路12における膨張タービン14の上流側を流れる高温高圧の熱媒体と第3流路20を流れる低温低圧の熱媒体との温度差を利用して、ゼーベック効果により発電するように構成されている。温度差発電機22で発電した電力は送電ライン34を介してサイト熱電需給システム50に供給される。第3流路20を流れる熱媒体は、温度差発電機22の低温側で吸熱して加温する。一実施形態では、温度差発電機22の低温側は蒸発器として機能する。第3流路20において温度差発電機22で仕事をした後の中温低圧の熱媒体は、圧縮機6に戻されて、圧縮機6で再び圧縮されて高温高圧の熱媒体となる。 The temperature difference generator 22 includes a Zeebeck element (thermoelectric element), and has a high temperature and high pressure heat medium flowing upstream of the expansion turbine 14 in the second flow path 12 and a low temperature and low pressure heat medium flowing through the third flow path 20. It is configured to generate electricity by the Zeebeck effect using the temperature difference. The electric power generated by the temperature difference generator 22 is supplied to the site thermoelectric supply and demand system 50 via the transmission line 34. The heat medium flowing through the third flow path 20 absorbs heat on the low temperature side of the temperature difference generator 22 and heats it. In one embodiment, the low temperature side of the temperature difference generator 22 functions as an evaporator. The medium-temperature and low-pressure heat medium after working in the temperature difference generator 22 in the third flow path 20 is returned to the compressor 6 and compressed again by the compressor 6 to become a high-temperature and high-pressure heat medium.

第4流路24は、蓄圧断熱高温貯槽10の下流側に接続されており、蓄圧断熱高温貯槽10から地域熱電併給システム2の対象サイトの需要体100に高温高圧の熱媒体を供給(温熱供給)するように構成されている。この温熱は、需要体100に備えられた貯湯槽へお湯等の形にて改めて熱として蓄えられても良い。 The fourth flow path 24 is connected to the downstream side of the accumulator adiabatic high temperature storage tank 10, and supplies a high temperature and high pressure heat medium from the accumulator adiabatic high temperature storage tank 10 to the demand body 100 of the target site of the regional heat and power cogeneration system 2 (heat supply). ) Is configured to. This heat may be stored again as heat in the form of hot water or the like in the hot water storage tank provided in the demand body 100.

第5流路26は、第4流路24を介して需要体100に供給されて需要体100側で仕事を行うことで温度が下がった中温高圧の熱媒体を需要体100から回収するように構成されている。第5流路26は、第2流路12における温度差発電機22と膨張タービン14との間の位置に接続しており、需要体100から回収した中温高圧の熱媒体を第2流路12における温度差発電機22と膨張タービン14との間の位置に供給するように構成されている。 The fifth flow path 26 is supplied to the demand body 100 via the fourth flow path 24 so as to recover the medium-temperature high-pressure heat medium whose temperature has dropped by performing work on the demand body 100 side from the demand body 100. It is configured. The fifth flow path 26 is connected to a position between the temperature difference generator 22 and the expansion turbine 14 in the second flow path 12, and the medium-temperature high-pressure heat medium recovered from the demand body 100 is transferred to the second flow path 12. It is configured to supply to the position between the temperature difference generator 22 and the expansion turbine 14 in the above.

第6流路28は、蓄圧断熱低温貯槽18の下流側に接続されており、蓄圧断熱低温貯槽18を出た低温低圧の熱媒体を蓄圧断熱低温貯槽18から需要体100に供給(冷熱供給)するように構成されている。なお、より低温の熱媒体を供給する場合には、第6流路28を膨張タービン14の下流側に接続し、膨張タービン14を通過後のより低温となった熱媒体を需要体100に供給するように構成してもよい。 The sixth flow path 28 is connected to the downstream side of the accumulator adiabatic low temperature storage tank 18, and supplies a low-temperature low-pressure heat medium leaving the accumulator adiabatic low-temperature storage tank 18 from the accumulator adiabatic low-temperature storage tank 18 to the demand body 100 (cold heat supply). It is configured to do. When supplying a lower temperature heat medium, the sixth flow path 28 is connected to the downstream side of the expansion turbine 14, and the lower temperature heat medium after passing through the expansion turbine 14 is supplied to the demand body 100. It may be configured to do so.

第7流路30は、第6流路28を介して需要体100に供給された低温低圧の熱媒体を需要体100から回収するように構成されている。第7流路30は、第3流路20における温度差発電機22と圧縮機6との間の位置に接続しており、需要体100から回収した低温低圧の熱媒体を第3流路20における温度差発電機22と圧縮機6との間の位置に供給するように構成されている。 The seventh flow path 30 is configured to recover the low-temperature low-pressure heat medium supplied to the demand body 100 via the sixth flow path 28 from the demand body 100. The seventh flow path 30 is connected to a position between the temperature difference generator 22 and the compressor 6 in the third flow path 20, and the low-temperature low-pressure heat medium recovered from the demand body 100 is transferred to the third flow path 20. It is configured to supply to the position between the temperature difference generator 22 and the compressor 6 in the above.

サイト熱電需給システム50は、電気モータ5を駆動するための電力を送電ライン32を介して電気モータ5に直流電力で送電する。サイト熱電需給システム50は、膨張タービン14に接続された不図示の発電機で発電した電力を送電ライン33を介して直流電力で受電し、温度差発電機22で発電した電力を送電ライン34を介して直流電力で受電する。 The site thermoelectric supply and demand system 50 transmits electric power for driving the electric motor 5 to the electric motor 5 via a transmission line 32 by direct current power. The site thermoelectric supply and demand system 50 receives power generated by a generator (not shown) connected to the expansion turbine 14 as DC power via a power transmission line 33, and receives power generated by a temperature difference generator 22 through a power transmission line 34. Receives power via DC power.

サイト熱電需給システム50は、膨張タービン14に接続された発電機から送電ライン33を介して受電した直流電力と、温度差発電機22から送電ライン34を介して受電した直流電力とを、送電ライン35を介して対象サイトの需要体100に供給可能に構成されている。サイト熱電需給システム50は、対象サイトの需要体側で発電した電力(例えば対象サイトに設置された太陽光発電設備、燃料電池、NAS電池、対象サイトで使用される電気自動車に設置されたリチウムイオン電池等から出力される電力)を送電ライン36を介して直流電力で受電可能に構成されている。 The site thermoelectric supply and demand system 50 transfers the DC power received from the generator connected to the expansion turbine 14 via the power transmission line 33 and the DC power received from the temperature difference generator 22 via the power transmission line 34. It is configured to be able to supply to the demand body 100 of the target site via 35. The site thermoelectric supply and demand system 50 is a power generated on the demand side of the target site (for example, a solar power generation facility installed at the target site, a fuel cell, a NAS battery, and a lithium ion battery installed in an electric vehicle used at the target site. (Electricity output from the above, etc.) can be received by DC power via the transmission line 36.

サイト熱電需給システム50は、送電ライン37を介して統括熱電需給システム52に直流電力を供給可能に構成されており、送電ライン38を介して統括熱電需給システム52から直流電力を受電可能に構成されている。 The site thermoelectric power supply / supply system 50 is configured to be able to supply DC power to the centralized thermoelectric power supply / supply system 52 via the power transmission line 37, and is configured to be able to receive DC power from the centralized thermoelectric power supply / supply system 52 via the power transmission line 38. ing.

統括熱電需給システム52は、図2に示すように、複数の地域熱電併給システム2全体における電力と熱の需給最適化を行うように構成されている。統括熱電需給システム52とサイト熱電需給システム50とは直流電力を授受可能に構成されており、地域熱電併給システム2間では、直流電力、高温高圧の熱媒体及び低温低圧の熱媒体を授受可能に構成されている。図2において、複数の地域熱電併給システム2は、複数の対象サイトにそれぞれ対応して設けられており、複数の地域熱電併給システム2と、統括熱電需給システム52とが、地域熱電併給システム群4を構成する。 As shown in FIG. 2, the integrated heat and power supply and demand system 52 is configured to optimize the supply and demand of electric power and heat in the entire plurality of regional heat and power combined supply systems 2. The integrated heat and power supply and demand system 52 and the site heat and power supply and demand system 50 are configured to be able to exchange DC power, and DC power, high temperature and high voltage heat medium, and low temperature and low voltage heat medium can be exchanged between the regional heat and power combined supply system 2. It is configured. In FIG. 2, a plurality of regional cogeneration systems 2 are provided corresponding to a plurality of target sites, and a plurality of regional cogeneration systems 2 and a centralized heat and power supply and demand system 52 are combined with a regional heat and power supply system group 4. To configure.

温度センサ82は、蓄圧断熱高温貯槽10に設けられており、蓄圧断熱高温貯槽10に貯蔵された熱媒体の温度を検出可能に構成されている。温度センサ84は、蓄圧断熱低温貯槽18に設けられており、蓄圧断熱低温貯槽18に貯蔵された熱媒体の温度を検出可能に構成されている。 The temperature sensor 82 is provided in the accumulator adiabatic high temperature storage tank 10 and is configured to be able to detect the temperature of the heat medium stored in the accumulator adiabatic high temperature storage tank 10. The temperature sensor 84 is provided in the accumulator adiabatic low temperature storage tank 18 and is configured to be able to detect the temperature of the heat medium stored in the accumulator adiabatic low temperature storage tank 18.

モータ制御部86は、温度センサ82の出力が閾値以下である場合に、電気モータ5を駆動して圧縮機6を作動させることにより、蓄圧断熱高温貯槽10に高温高圧の熱媒体を補充するように構成されてもよい。また、蓄圧断熱高温貯槽10には、蓄圧断熱高温貯槽10に貯蔵された熱媒体の残量を検出可能な残量センサ(容量センサ)が設けられていてもよい。また、当該残量センサが設けられている場合には、モータ制御部86は、残量センサによって検出された蓄圧断熱高温貯槽10の熱媒体の残量が閾値を下回った場合に電気モータ5を駆動して圧縮機6を作動させることにより、蓄圧断熱高温貯槽10に高温高圧の熱媒体を補充するように構成されていてもよい。 When the output of the temperature sensor 82 is equal to or less than the threshold value, the motor control unit 86 drives the electric motor 5 to operate the compressor 6 to replenish the accumulator heat insulating high temperature storage tank 10 with a high temperature and high pressure heat medium. It may be configured in. Further, the accumulator heat insulating high temperature storage tank 10 may be provided with a residual quantity sensor (capacity sensor) capable of detecting the remaining amount of the heat medium stored in the accumulator heat insulating high temperature storage tank 10. When the remaining amount sensor is provided, the motor control unit 86 sets the electric motor 5 when the remaining amount of the heat medium of the accumulator heat insulating high temperature storage tank 10 detected by the remaining amount sensor falls below the threshold value. By driving and operating the compressor 6, the accumulator heat insulating high temperature storage tank 10 may be configured to be replenished with a high temperature and high pressure heat medium.

また、モータ制御部86は、温度センサ84の出力が閾値以上である場合に、電気モータ5を駆動して圧縮機6を作動させることにより、蓄圧断熱高温貯槽10に高温高圧の熱媒体を補充するとともに蓄圧断熱高温貯槽10から高温高圧の熱媒体を第2流路12に放出し、温度差発電機22で発電を行ってもよい。また、蓄圧断熱低温貯槽18には、蓄圧断熱低温貯槽18に貯蔵された熱媒体の残量を検出可能な残量センサ(容量センサ)が設けられていてもよい。また、当該残量センサが設けられている場合には、モータ制御部86は、残量センサによって検出された蓄圧断熱低温貯槽18の熱媒体の残量が閾値を下回った場合に、電気モータ5を駆動して圧縮機6を作動させることにより、蓄圧断熱高温貯槽10に高温高圧の熱媒体を補充するとともに蓄圧断熱高温貯槽10から高温高圧の熱媒体を第2流路12に放出し、温度差発電機22で発電を行ってもよい。 Further, when the output of the temperature sensor 84 is equal to or higher than the threshold value, the motor control unit 86 replenishes the accumulator heat insulating high temperature storage tank 10 with a high temperature and high pressure heat medium by driving the electric motor 5 to operate the compressor 6. At the same time, a high-temperature and high-pressure heat medium may be discharged from the accumulator-insulated high-temperature storage tank 10 to the second flow path 12, and power may be generated by the temperature difference generator 22. Further, the accumulator adiabatic low temperature storage tank 18 may be provided with a residual amount sensor (capacity sensor) capable of detecting the remaining amount of the heat medium stored in the accumulator adiabatic low temperature storage tank 18. When the remaining amount sensor is provided, the motor control unit 86 transfers the electric motor 5 when the remaining amount of the heat medium of the accumulator adiabatic low temperature storage tank 18 detected by the remaining amount sensor falls below the threshold value. By driving the compressor 6 to operate the compressor 6, a high-temperature and high-pressure heat medium is replenished in the accumulator-insulated high-temperature storage tank 10, and the high-temperature and high-pressure heat medium is discharged from the accumulator-insulated high-temperature storage tank 10 to the second flow path 12, and the temperature is increased. The difference generator 22 may generate electricity.

この際、温度差発電機22の高温側で単に放熱するのではなく、蓄圧断熱低温貯槽18から第3流路20を介して温度差発電機22に低温低圧の熱媒体を供給することにより温度差発電機22で発電を行ってエネルギーを回収する。そして、第2流路12において温度差発電機22の高温側で発電に利用された後の中温高圧の熱媒体は、膨張タービン14に供給されて膨張タービン14を駆動し、膨張タービン14に連結された不図示の発電機が行われる。膨張タービン14を通過して低温低圧となった熱媒体は蓄圧断熱低温貯槽18に補充される。 At this time, instead of simply radiating heat on the high temperature side of the temperature difference generator 22, the temperature is increased by supplying a low temperature and low pressure heat medium from the accumulator heat insulating low temperature storage tank 18 to the temperature difference generator 22 via the third flow path 20. The difference generator 22 generates electricity to recover the energy. Then, the medium-temperature and high-pressure heat medium after being used for power generation on the high temperature side of the temperature difference generator 22 in the second flow path 12 is supplied to the expansion turbine 14 to drive the expansion turbine 14 and connect to the expansion turbine 14. A generator (not shown) is performed. The heat medium that has passed through the expansion turbine 14 and has become low temperature and low pressure is replenished in the accumulator adiabatic low temperature storage tank 18.

図1に示した構成によれば、圧縮機6、第1流路8、蓄圧断熱高温貯槽10、第2流路12、膨張タービン14、蓄圧断熱低温貯槽18、第3流路20及び温度差発電機22によって構成される熱媒体の循環流路25によって、ヒートポンプサイクルを構築することができる。ヒートポンプは、COPが3(=300%)を超えるのが通常であり、効率が90%程度の燃焼式機器を利用する給湯に比べ、効率は何百%の向上となり極めて効率的である。このため、少ない投入エネルギーで効率的に高温高圧の熱媒体と低温低圧の熱媒体とを生成することができる。 According to the configuration shown in FIG. 1, the compressor 6, the first flow path 8, the accumulator adiabatic high temperature storage tank 10, the second flow path 12, the expansion turbine 14, the accumulator adiabatic low temperature storage tank 18, the third flow path 20, and the temperature difference. A heat pump cycle can be constructed by the circulation flow path 25 of the heat medium configured by the generator 22. A heat pump usually has a COP of more than 3 (= 300%), and is extremely efficient because the efficiency is improved by several hundred percent as compared with a hot water supply using a combustion type device having an efficiency of about 90%. Therefore, it is possible to efficiently generate a high-temperature high-pressure heat medium and a low-temperature low-pressure heat medium with a small amount of input energy.

また、生成した高温高圧の熱媒体と低温低圧の熱媒体とをそれぞれ蓄圧断熱高温貯槽10と蓄圧断熱低温貯槽18に貯蔵することで電力を熱として蓄積し、電力需要に応じて蓄圧断熱高温貯槽10と蓄圧断熱低温貯槽18から高温高圧の熱媒体と低温低圧の熱媒体と温度差発電機22に供給して発電を行うことができるため、ヒートポンプサイクル内で貯蔵した互いに温度の異なる熱媒体を利用して発電する新規な方式の電池である蓄熱式温度差蓄電池3を提供することができる。図1に示す構成では、圧縮機6、第1流路8、蓄圧断熱高温貯槽10、第2流路12、膨張タービン14、蓄圧断熱低温貯槽18、第3流路20及び温度差発電機22が蓄熱式温度差蓄電池3を構成する。 Further, by storing the generated high-temperature and high-pressure heat medium and the low-temperature and low-pressure heat medium in the pressure-accumulation heat-insulating high-temperature storage tank 10 and the pressure-accumulation heat-insulating low-temperature storage tank 18, electric power is stored as heat, and the pressure-accumulation heat-insulating high-temperature storage tank is used according to the power demand. Since the heat medium of high temperature and high pressure, the heat medium of low temperature and low pressure, and the temperature difference generator 22 can be supplied from 10 and the heat storage adiabatic low temperature storage tank 18 to generate power, heat media having different temperatures stored in the heat pump cycle can be used. It is possible to provide a heat storage type temperature difference storage battery 3 which is a novel type battery that is used to generate power. In the configuration shown in FIG. 1, the compressor 6, the first flow path 8, the accumulator adiabatic high temperature storage tank 10, the second flow path 12, the expansion turbine 14, the accumulator adiabatic low temperature storage tank 18, the third flow path 20, and the temperature difference generator 22. Consists of the heat storage type temperature difference storage battery 3.

この蓄熱式温度差蓄電池3によれば、例えば特許文献1に記載される構成(ヒートポンプサイクルを流れる高温高圧の熱媒体で膨張タービンを駆動して膨張タービンに接続された発電機により発電を行う構成)と比較して、ヒートポンプサイクル内の熱媒体を利用して簡素な構成で発電を行うことができる。 According to this heat storage type temperature difference storage battery 3, for example, the configuration described in Patent Document 1 (a configuration in which an expansion turbine is driven by a high-temperature and high-pressure heat medium flowing through a heat pump cycle and power is generated by a generator connected to the expansion turbine. ), It is possible to generate electricity with a simple configuration by using the heat medium in the heat pump cycle.

また、地域熱電併給システム2のヒートポンプサイクルによって生成される熱媒体は、給湯、暖房、冷房、氷温保存等をはじめとした、一般的な生活に十分な温度(例えば-30℃程度~60℃程度)で需要体100に供給可能であることから、地域への熱供給源として活用できる。
特にコンパクトシティやスマートシティなど、インフラが集中する地域では、熱の移動距離に伴う制約を受けずにより効率的な運用が可能となる。
In addition, the heat medium generated by the heat pump cycle of the district heating and power system 2 has a temperature sufficient for general life (for example, about -30 ° C to 60 ° C) including hot water supply, heating, cooling, and ice temperature storage. Since it can be supplied to the demand body 100, it can be used as a heat supply source for the region.
Especially in areas where infrastructure is concentrated, such as compact cities and smart cities, more efficient operation is possible without being restricted by the distance traveled by heat.

比較的小規模なエネルギー変換機器である圧縮機6や温度差発電機22等をエネルギー消費地に近い場所に設置してエネルギー供給を行う分散型のエネルギー供給システムを実現することができ、エネルギーの安定供給や省エネルギー等の観点でもメリットがある。 It is possible to realize a distributed energy supply system that supplies energy by installing a relatively small-scale energy conversion device such as a compressor 6 and a temperature difference generator 22 in a place close to an energy consuming area. There are also merits in terms of stable supply and energy saving.

また、一般に、夏は冷熱需要が多く、冬は温熱需要が多い。多量の熱を使う家もあれば、日中は不在で熱をそれほど使わない家もある。環境やライフスタイルほか、多様な因子により熱の需要量に変動が発生するが、その変動の結果、余った熱を大気に放出するのは省エネの観点から望ましくない。電気も熱と同様、需要者単位での変動は大きいが、複数の需要者を纏めて管理することで平準化が可能である。上記地域熱電併給システム2は、このような熱や電気の需要量や再生可能エネルギーの発電量等の変動のバッファーとして、余剰熱/電気を熱状態で蓄え、必要に応じ温度差発電機22を用いて電気として取り出すことを可能とするものである。 In general, there is a large demand for cold heat in summer and a large demand for heat in winter. Some homes use a lot of heat, while others are absent during the day and don't use much heat. The amount of heat demand fluctuates due to various factors such as the environment and lifestyle, but it is not desirable from the viewpoint of energy saving to release excess heat to the atmosphere as a result of the fluctuation. Like heat, electricity fluctuates greatly on a consumer-by-consumer basis, but it can be leveled by managing multiple consumers together. The regional combined heat and power system 2 stores surplus heat / electricity in a thermal state as a buffer for fluctuations in the amount of heat and electricity demand and the amount of power generation of renewable energy, and a temperature difference generator 22 is used as needed. It can be used to take out electricity.

また、例えばNAS電池やリチウムイオン電池は、蓄電容量を上げるためには、リチウムや硫黄を増やすなどにより高コスト化を招きやすいが、この蓄熱式温度差蓄電池3では、蓄圧断熱高温貯槽10及び蓄圧断熱低温貯槽18を新設又は増設することにより蓄電容量を容易に増大することができる。 Further, for example, NAS batteries and lithium-ion batteries tend to increase in cost by increasing lithium and sulfur in order to increase the storage capacity, but in this heat storage type temperature difference storage battery 3, the pressure storage heat insulation high temperature storage tank 10 and the pressure storage are stored. The storage capacity can be easily increased by newly installing or adding a heat insulating low temperature storage tank 18.

また、温度差発電機22(熱電素子)は、可動部がないため、長寿命で信頼性が高く、振動や雑音が発生しない。温度差発電機22(熱電素子)は、素子の形状を自由設計できる。温度差発電機22は、単位面積当たりの発電量が太陽光発電の数倍から数十倍である。温度差発電機22は、使用材料の多くが金属又は半導体なので高温環境下や、酸素、水蒸気等により酸化劣化する場合があるが、この酸化劣化を抑制する観点からは、地域熱電併給システム2で使用する熱媒体は代替フロン類が望ましい。 Further, since the temperature difference generator 22 (thermoelectric element) has no moving part, it has a long life and high reliability, and vibration and noise do not occur. The temperature difference generator 22 (thermoelectric element) can freely design the shape of the element. The amount of power generated per unit area of the temperature difference generator 22 is several to several tens of times that of solar power generation. Since most of the materials used in the temperature difference generator 22 are metals or semiconductors, the temperature difference generator 22 may be oxidatively deteriorated in a high temperature environment, oxygen, steam, etc., but from the viewpoint of suppressing this oxidative deterioration, the regional heat and power cogeneration system 2 is used. It is desirable that the heat medium used is alternative chlorophylls.

また、温度差発電機22において、蓄圧断熱高温貯槽10に貯蔵された熱媒体が保有する温熱量と、蓄圧断熱低温貯槽18に貯蔵された熱媒体の保有する冷熱量がバランスしない場合、温度差発電機22による発電を効率的に行うことができない。 Further, in the temperature difference generator 22, when the amount of heat held by the heat medium stored in the accumulator adiabatic high temperature storage tank 10 and the amount of cold heat held by the heat medium stored in the accumulator adiabatic low temperature storage tank 18 are not balanced, the temperature difference Power generation by the generator 22 cannot be performed efficiently.

この点、上記温度センサ82及びモータ制御部86を備える地域熱電併給システム2によれば、蓄圧断熱高温貯槽10に設けられた温度センサ82の出力が閾値以下である場合に電気モータ5で圧縮機6を駆動して蓄圧断熱高温貯槽10に貯蔵された熱媒体が保有する温熱量を補充する(蓄圧断熱高温貯槽10に貯蔵された熱媒体の温度を上昇させる)ことができるため、温度差発電機22で効率的に発電することができる。 In this regard, according to the regional heat and power combined supply system 2 provided with the temperature sensor 82 and the motor control unit 86, when the output of the temperature sensor 82 provided in the accumulator adiabatic high temperature storage tank 10 is equal to or less than the threshold value, the electric motor 5 is used as a compressor. 6 can be driven to replenish the amount of heat held by the heat medium stored in the accumulator adiabatic high temperature storage tank 10 (the temperature of the heat medium stored in the accumulator adiabatic high temperature storage tank 10 is raised), so that temperature difference power generation can be performed. The machine 22 can efficiently generate electricity.

また、上記温度センサ84及びモータ制御部86を備える地域熱電併給システム2によれば、蓄圧断熱低温貯槽18に設けられた温度センサ84の出力が閾値以上である場合に電気モータ5で圧縮機6を駆動して高温高圧の熱媒体を生成し、温度差発電機22で減温後に膨張タービン14で膨張させて蓄圧断熱低温貯槽18に貯蔵された熱媒体が保有する冷熱量を補充する(蓄圧断熱低温貯槽18に貯蔵された熱媒体の温度を低下させる)ことができるため、温度差発電機22で効率的に発電することができる。 Further, according to the regional heat and power combined supply system 2 provided with the temperature sensor 84 and the motor control unit 86, when the output of the temperature sensor 84 provided in the accumulator adiabatic low temperature storage tank 18 is equal to or higher than the threshold value, the electric motor 5 is used to compress the compressor 6. Is driven to generate a high-temperature and high-pressure heat medium, and after the temperature is reduced by the temperature difference generator 22, it is expanded by the expansion turbine 14 to replenish the amount of cold heat held by the heat medium stored in the accumulator adiabatic low-temperature storage tank 18 (accumulation). Since the temperature of the heat medium stored in the adiabatic low-temperature storage tank 18 can be lowered), the temperature difference generator 22 can efficiently generate electricity.

(機械学習装置)
幾つかの実施形態では、図1に示すように、複数の対象サイトの各々における電力及び熱の需給傾向を学習するように構成された機械学習装置88を更に備えていてもよい。この場合、統括熱電需給システム52は、機械学習装置88が学習した複数の対象サイトの各々における電力及び熱の需給傾向(以下、単に「機械学習装置88の学習結果」と記載する。)に基づいて、複数の熱電併給システム2全体における電力と熱の需給最適化を行うように構成される。機械学習装置88は、コンピュータで構成されており、図示しないCPU(プロセッサ)や、ROMやRAMといったメモリや外部記憶装置などからなる記憶装置を備えている。また、機械学習装置88や統括熱電需給システム、および100需要体の各種設備間においては、データや指示命令信号の授受のために必要な相互通信手段(有線、無線を問わない)を含む。図1に示す例では、機械学習装置88は、統括熱電需給システム52に設けられているが、機械学習装置88はサイト熱電需給システム50毎に設けられていてもよいし、その他の箇所に設けられていてもよい。
(Machine learning device)
In some embodiments, as shown in FIG. 1, a machine learning device 88 configured to learn power and heat supply and demand trends at each of the plurality of target sites may be further provided. In this case, the integrated thermoelectric supply and demand system 52 is based on the power and heat supply and demand tendency at each of the plurality of target sites learned by the machine learning device 88 (hereinafter, simply referred to as "learning result of the machine learning device 88"). Therefore, it is configured to optimize the supply and demand of electric power and heat in the entire plurality of combined heat and power supply systems 2. The machine learning device 88 is composed of a computer, and includes a CPU (processor) (not shown), a storage device including a memory such as ROM and RAM, and an external storage device. Further, between the machine learning device 88, the integrated thermoelectric supply and demand system, and various facilities of 100 demand units, an intercommunication means (whether wired or wireless) necessary for exchanging data and instruction command signals is included. In the example shown in FIG. 1, the machine learning device 88 is provided in the integrated thermoelectric supply and demand system 52, but the machine learning device 88 may be provided for each site thermoelectric supply and demand system 50, or may be provided in other places. It may have been.

統括熱電需給システム52は、機械学習装置88の学習結果に基づいて、例えば複数の地域熱電併給システム2に対応する複数の対象サイトのうち特に高温の熱媒体の需要が多いサイトには、圧縮機6での圧縮直後の極高温の熱媒体を第1流路8から抽出して積極的に供給するように熱の需給最適化を行ってもよい。また、統括熱電需給システム52は、機械学習装置88の学習結果に基づいて、例えば複数の地域熱電併給システム2に対応する複数の対象サイトのうち特に低温の熱媒体の需要が多いサイト(例えば食品工場が多い地域等)には、膨張タービン14での膨張直後の極低温の熱媒体を第2流路における膨張タービン14の下流側から抽出して積極的に供給するように熱の需給最適化を行ってもよい。また、統括熱電需給システム52は、機械学習装置88の学習結果に基づいて、例えば複数の地域熱電併給システム2に対応する複数の対象サイトのうちそれほど高温や低温の熱媒体を必要としないサイトには、各サイトで仕事をした後の熱媒体(リターン熱媒体)を供給するように熱の需給最適化を行ってもよい。 Based on the learning results of the machine learning device 88, the integrated heat and power supply and demand system 52 is, for example, a compressor for a site having a particularly high demand for a high temperature heat medium among a plurality of target sites corresponding to a plurality of regional heat and power combined supply systems 2. The heat supply and demand may be optimized so that the extremely high temperature heat medium immediately after the compression in No. 6 is extracted from the first flow path 8 and positively supplied. Further, the integrated heat / power supply / supply system 52 is based on the learning result of the machine learning device 88, for example, a site having a particularly high demand for a low-temperature heat medium among a plurality of target sites corresponding to a plurality of regional heat / power supply systems 2 (for example, food). In areas where there are many factories, etc.), the heat supply and demand is optimized so that the extremely low temperature heat medium immediately after expansion in the expansion turbine 14 is extracted from the downstream side of the expansion turbine 14 in the second flow path and actively supplied. May be done. Further, the integrated heat and power supply and demand system 52 is based on the learning result of the machine learning device 88, for example, to a site that does not require a high temperature or low temperature heat medium among a plurality of target sites corresponding to a plurality of regional heat and power combined supply systems 2. May optimize the supply and demand of heat so as to supply the heat medium (return heat medium) after working at each site.

統括熱電需給システム52は、機械学習装置88の学習結果に基づいて、例えば複数の地域熱電併給システム2に対応する複数の対象サイトの各々において、サイト内の人口の過疎化や過密化に合わせて、温度差発電機22の発電量、膨張タービン14に接続された不図示の発電機の発電量、電気モータ5の駆動、蓄圧断熱高温貯槽10及び蓄圧断熱低温貯槽18の各々の蓄熱量並びに蓄熱のタイミングを制御して電力及び熱の供給不足や供給過多を回避してもよい。また、統括熱電需給システム52は、例えば複数の地域熱電併給システム2に対応する複数の対象サイトの各々において、サイト内の人の年齢構成や就労状況などのライフスタイルによる電力及び熱の需要の変動量(例えば自宅におけるエネルギー使用時間や使用量)についての機械学習装置88の学習結果に基づいて、温度差発電機22の発電量、膨張タービン14に接続された不図示の発電機の発電量、電気モータ5の駆動、蓄圧断熱高温貯槽10及び蓄圧断熱低温貯槽18の各々の蓄熱量並びに蓄熱のタイミングを制御して電力及び熱の供給不足や供給過多を回避してもよい。 The integrated heat and power supply and demand system 52 is based on the learning result of the machine learning device 88, for example, at each of a plurality of target sites corresponding to a plurality of regional heat and power combined supply systems 2, in accordance with the depopulation and congestion of the population in the site. , The amount of power generated by the temperature difference generator 22, the amount of power generated by a generator (not shown) connected to the expansion turbine 14, the drive of the electric motor 5, the amount of heat stored in each of the accumulator adiabatic high temperature storage tank 10 and the accumulator adiabatic low temperature storage tank 18, and heat storage. The timing may be controlled to avoid insufficient or excessive supply of electric power and heat. Further, in the integrated heat and power supply and demand system 52, for example, at each of a plurality of target sites corresponding to a plurality of regional heat and power combined supply systems 2, fluctuations in power and heat demand due to lifestyle such as age composition and employment status of people in the site. Based on the learning result of the machine learning device 88 about the amount (for example, the energy usage time and the usage amount at home), the power generation amount of the temperature difference generator 22 and the power generation amount of the generator (not shown) connected to the expansion turbine 14. It is also possible to control the drive of the electric motor 5, the amount of heat stored in each of the pressure-accumulated heat-insulated high-temperature storage tank 10 and the pressure-accumulated heat-insulated low-temperature storage tank 18, and the timing of heat storage to avoid insufficient or excessive supply of electric power and heat.

図3は、一実施形態に係る地域熱電併給システム2(2B)の概略構成を示す模式図である。図3に示す地域熱電併給システム2(2B)において、図1に示した地域熱電併給システム2(2A)の各構成と共通の符号は、特記しない限り図1に示した地域熱電併給システム2(2A)の各構成と同様の構成を示すものとし、説明を省略する。 FIG. 3 is a schematic diagram showing a schematic configuration of the regional combined heat and power system 2 (2B) according to the embodiment. In the regional combined heat and power system 2 (2B) shown in FIG. 3, the reference numerals common to each configuration of the regional combined heat and power system 2 (2A) shown in FIG. 1 are the regional combined heat and power system 2 (2B) shown in FIG. 1 unless otherwise specified. The configuration similar to each configuration of 2A) shall be shown, and the description thereof will be omitted.

図3に示す地域熱電併給システム2(2B)は、第1分岐流路60、地中熱熱交換装置62、第1戻り流路64、第2分岐流路66、第2戻り流路68を備える点が図1に示す地域熱電併給システム2(2A)と異なる。 The regional combined heat and power system 2 (2B) shown in FIG. 3 includes a first branch flow path 60, a geothermal heat exchange device 62, a first return flow path 64, a second branch flow path 66, and a second return flow path 68. It is different from the regional combined heat and power system 2 (2A) shown in FIG.

第1分岐流路60は、第2流路12における温度差発電機22と膨張タービン14との間から分岐し、第2流路12から供給された熱媒体を地中熱熱交換装置62の第1熱交換部70あるいは第2熱交換部72に流すように構成されている。 The first branch flow path 60 branches from between the temperature difference generator 22 and the expansion turbine 14 in the second flow path 12, and the heat medium supplied from the second flow path 12 is used in the geothermal heat exchange device 62. It is configured to flow to the first heat exchange unit 70 or the second heat exchange unit 72.

第1熱交換部70は、第1分岐流路60に接続し、第1分岐流路60から供給された高温高圧の熱媒体を未利用エネルギーとしての地中熱との熱交換により加熱するように構成されている。なお、第1熱交換部70は、地中熱に代えて、工場排熱やごみ焼却場の排熱等の未利用エネルギーとの熱交換により熱媒体を加熱するように構成されていてもよい。 The first heat exchange unit 70 is connected to the first branch flow path 60 and heats the high-temperature and high-pressure heat medium supplied from the first branch flow path 60 by heat exchange with geothermal heat as unused energy. It is configured in. The first heat exchange unit 70 may be configured to heat the heat medium by exchanging heat with unused energy such as exhaust heat from a factory or exhaust heat from a waste incinerator, instead of geothermal heat. ..

第1戻り流路64は、第1熱交換部70に接続し、第1熱交換部70を通過した高温高圧の熱媒体を第2流路12における蓄圧断熱高温貯槽10と温度差発電機22との間に供給するように構成されている。 The first return flow path 64 is connected to the first heat exchange section 70, and the high-temperature and high-pressure heat medium that has passed through the first heat exchange section 70 is transferred to the accumulator-insulated high-temperature storage tank 10 and the temperature difference generator 22 in the second flow path 12. It is configured to supply between and.

このように、地域熱電併給システム2(2B)では、第2流路12の一部、第1分岐流路60、第1熱交換部70及び第1戻り流路64によって循環流路74(図4の2か所の太線部のうち上側の太線部と第1熱交換部70とからなる循環流路)を構成可能となっている。 As described above, in the regional heat and power combined supply system 2 (2B), the circulation flow path 74 (FIG. Of the two thick wire portions of No. 4, the circulation flow path including the upper thick wire portion and the first heat exchange portion 70) can be configured.

第2分岐流路66は、第3流路20における温度差発電機22と圧縮機6との間から分岐し、第3流路20から供給された低温低圧の熱媒体を地中熱熱交換装置62の第1熱交換部70あるいは第2熱交換部72に流すように構成されている。 The second branch flow path 66 branches from between the temperature difference generator 22 and the compressor 6 in the third flow path 20, and geothermal heat exchanges the low-temperature low-pressure heat medium supplied from the third flow path 20. It is configured to flow to the first heat exchange unit 70 or the second heat exchange unit 72 of the device 62.

第2熱交換部72は、第2分岐流路66に接続し、第2分岐流路66から供給された低温低圧の熱媒体を未利用エネルギーとしての地中熱との熱交換により冷却するように構成されている。なお、第2熱交換部72は、地中熱に代えて、河川、海水、下水又は雪氷熱等の未利用エネルギーとの熱交換により熱媒体を冷却するように構成されていてもよい。 The second heat exchange unit 72 is connected to the second branch flow path 66 so as to cool the low-temperature low-pressure heat medium supplied from the second branch flow path 66 by heat exchange with geothermal heat as unused energy. It is configured in. The second heat exchange unit 72 may be configured to cool the heat medium by heat exchange with unused energy such as river, seawater, sewage, or snow and ice heat instead of geothermal heat.

第2戻り流路68は、第2熱交換部72に接続し、第2熱交換部72を通過した低温低圧の熱媒体を第3流路20における蓄圧断熱低温貯槽18と温度差発電機22との間に供給するように構成されている。 The second return flow path 68 is connected to the second heat exchange section 72, and the low-temperature low-temperature heat medium that has passed through the second heat exchange section 72 is transferred to the accumulator-insulated low-temperature storage tank 18 and the temperature difference generator 22 in the third flow path 20. It is configured to supply between and.

このように、地域熱電併給システム2(2B)では、第3流路20の一部、第2分岐流路66、第2熱交換部72及び第2戻り流路68によって循環流路76(図4の2か所の太線部のうち下側の太線部と第2熱交換部72とからなる循環流路)を構成可能となっている。 As described above, in the regional heat and power combined supply system 2 (2B), the circulation flow path 76 is formed by a part of the third flow path 20, the second branch flow path 66, the second heat exchange section 72, and the second return flow path 68 (FIG. Of the two thick wire portions of No. 4, the circulation flow path including the lower thick wire portion and the second heat exchange portion 72) can be configured.

温度差発電機22において、第2流路12を流れる熱媒体が保有する温熱量と、第3流路20を流れる熱媒体の保有する冷熱量がバランスしない場合、温度差発電機22による発電を効率的に行うことができない。この点、上記地域熱電併給システム2(2B)の蓄熱式温度差蓄電池によれば、第2流路12における温度差発電機22と膨張タービン14との間を流れる熱媒体を第1分岐流路60を介して第1熱交換部70に供給し、第1熱交換部70で地中熱との熱交換により加熱してから第1戻り流路64で第2流路12における蓄圧断熱高温貯槽10と温度差発電機22との間に供給することができる。このため、第2流路12を流れる熱媒体が保有する温熱量が第3流路20を流れる熱媒体の保有する冷熱量に対して不足している場合(温媒不足の場合)に、第2流路12を流れる熱媒体の温熱量を地中熱を利用して補充し、温度差発電機22で効率的に発電することができる。 In the temperature difference generator 22, when the amount of heat possessed by the heat medium flowing through the second flow path 12 and the amount of cold heat possessed by the heat medium flowing through the third flow path 20 are not balanced, the temperature difference generator 22 generates power. It cannot be done efficiently. In this regard, according to the heat storage type temperature difference storage battery of the regional heat and power combined supply system 2 (2B), the heat medium flowing between the temperature difference generator 22 and the expansion turbine 14 in the second flow path 12 is the first branch flow path. It is supplied to the first heat exchange unit 70 via 60, heated by heat exchange with geothermal heat in the first heat exchange unit 70, and then stored in the second flow path 12 in the first return flow path 64. It can be supplied between 10 and the temperature difference generator 22. Therefore, when the amount of heat possessed by the heat medium flowing through the second flow path 12 is insufficient with respect to the amount of cold heat possessed by the heat medium flowing through the third flow path 20 (in the case of insufficient heat medium), the first step is made. The amount of heat of the heat medium flowing through the two flow paths 12 can be replenished by using geothermal heat, and the temperature difference generator 22 can efficiently generate heat.

また、第3流路20を流れる熱媒体を第2分岐流路66を介して第2熱交換部72に供給し、第2熱交換部72で地中熱との熱交換により冷却してから第2戻り流路68で第3流路20における蓄圧断熱低温貯槽18と温度差発電機22との間に供給することができる。このため、第3流路20を流れる熱媒体が保有する冷熱量が第2流路12を流れる熱媒体の保有する温熱量に対して不足している場合(冷媒不足の場合)に、第3流路20を流れる熱媒体の冷熱量を未利用エネルギーを利用して補充し、温度差発電機22で効率的に発電することができる。 Further, the heat medium flowing through the third flow path 20 is supplied to the second heat exchange section 72 via the second branch flow path 66, and is cooled by the second heat exchange section 72 by heat exchange with geothermal heat. The second return flow path 68 can supply heat between the accumulator adiabatic low temperature storage tank 18 and the temperature difference generator 22 in the third flow path 20. Therefore, when the amount of cold heat possessed by the heat medium flowing through the third flow path 20 is insufficient with respect to the amount of heat possessed by the heat medium flowing through the second flow path 12 (in the case of insufficient refrigerant), the third channel is used. The amount of cold heat of the heat medium flowing through the flow path 20 can be replenished by using unused energy, and the temperature difference generator 22 can efficiently generate electricity.

なお、図3及び図4に示す構成では、圧縮機6、第1流路8、蓄圧断熱高温貯槽10、第2流路12、膨張タービン14、蓄圧断熱低温貯槽18、第3流路20及び温度差発電機22、第1分岐流路60、第1熱交換部70、第1戻り流路64、第2分岐流路66、第2熱交換部72及び第2戻り流路68が蓄熱式温度差蓄電池3を構成する。 In the configurations shown in FIGS. 3 and 4, the compressor 6, the first flow path 8, the accumulator adiabatic high temperature storage tank 10, the second flow path 12, the expansion turbine 14, the accumulator adiabatic low temperature storage tank 18, the third flow path 20 and the like. The temperature difference generator 22, the first branch flow path 60, the first heat exchange section 70, the first return flow path 64, the second branch flow path 66, the second heat exchange section 72, and the second return flow path 68 are heat storage type. The temperature difference storage battery 3 is configured.

図5は、一実施形態に係る地域熱電併給システム2(2C)の概略構成を示す模式図である。図5に示す地域熱電併給システム2(2C)において、上述した地域熱電併給システム2(2A)及び地域熱電併給システム2(2B)の各構成と共通の符号は、特記しない限り上述した地域熱電併給システム2(2A)及び地域熱電併給システム2(2B)の各構成と同様の構成を示すものとし、説明を省略する。 FIG. 5 is a schematic diagram showing a schematic configuration of the regional combined heat and power system 2 (2C) according to the embodiment. In the regional combined heat and power system 2 (2C) shown in FIG. 5, the reference numerals common to the configurations of the above-mentioned regional combined heat and power system 2 (2A) and the above-mentioned regional combined heat and power system 2 (2B) are the same as those described above unless otherwise specified. The same configurations as those of the system 2 (2A) and the regional combined heat and power system 2 (2B) will be shown, and the description thereof will be omitted.

図5に示す地域熱電併給システム2(2C)は、温度調整流路78,80を備える点が図3に示す地域熱電併給システム2(2B)と異なる。温度調整流路78は第2熱交換部72に、温度調整流路80は第1熱交換部70にそれぞれ接続されているのが基本である。ただし、システムを効率的に稼働させるため、切替バルブなどを設置し、温度調整流路78を第1熱交換部70に、温度調整流路80を第2熱交換部72に接続してもよい。ただし、第1分岐流路60から供給された熱媒体と第2分岐流路66から供給された熱媒体とが地中熱交換装置62内で混ざらないように各流路が切り替えられる。第1分岐流路60が第1熱交換部70に対する熱媒体の入口側の流路となる場合に温度調整流路78が第1熱交換部70に対する熱媒体の出口側の流路となり、第2分岐流路66が第2熱交換部72に対する熱媒体の入口側の流路となる場合に温度調整流路80が第2熱交換部72に対する熱媒体の出口側の流路となる。第1分岐流路60が第2熱交換部72に対する熱媒体の入口側の流路となる場合に温度調整流路78が第2熱交換部72に対する熱媒体の出口側の流路となり、第2分岐流路66が第1熱交換部70に対する熱媒体の入口側の流路となる場合に温度調整流路80が第1熱交換部70に対する熱媒体の出口側の流路となる。 The regional combined heat and power system 2 (2C) shown in FIG. 5 is different from the regional combined heat and power system 2 (2B) shown in FIG. 3 in that the temperature control channels 78 and 80 are provided. Basically, the temperature control flow path 78 is connected to the second heat exchange section 72, and the temperature control flow path 80 is connected to the first heat exchange section 70. However, in order to operate the system efficiently, a switching valve or the like may be installed to connect the temperature control flow path 78 to the first heat exchange section 70 and the temperature control flow path 80 to the second heat exchange section 72. .. However, each flow path is switched so that the heat medium supplied from the first branch flow path 60 and the heat medium supplied from the second branch flow path 66 do not mix in the geothermal heat exchange device 62. When the first branch flow path 60 is the flow path on the inlet side of the heat medium with respect to the first heat exchange unit 70, the temperature adjustment flow path 78 is the flow path on the outlet side of the heat medium with respect to the first heat exchange unit 70. When the two-branch flow path 66 is the flow path on the inlet side of the heat medium with respect to the second heat exchange unit 72, the temperature adjustment flow path 80 is the flow path on the outlet side of the heat medium with respect to the second heat exchange unit 72. When the first branch flow path 60 is the flow path on the inlet side of the heat medium with respect to the second heat exchange unit 72, the temperature adjustment flow path 78 is the flow path on the outlet side of the heat medium with respect to the second heat exchange unit 72. When the two-branch flow path 66 is the flow path on the inlet side of the heat medium with respect to the first heat exchange unit 70, the temperature adjustment flow path 80 is the flow path on the outlet side of the heat medium with respect to the first heat exchange unit 70.

温度調整流路78は、第2流路12を流れる高温高圧の熱媒体の温度調整が必要な時に使用される。具体的には、温度差発電機22にて十分に温度が下がらない場合などに使用される。
温度調整流路80は、第3流路20を流れる低温高圧の熱媒体の温度調整が必要な時に使用される。具体的には、温度差発電機22にて十分に温度が上がらない場合などに使用される。
The temperature control flow path 78 is used when it is necessary to control the temperature of the high temperature and high pressure heat medium flowing through the second flow path 12. Specifically, it is used when the temperature does not drop sufficiently in the temperature difference generator 22.
The temperature control flow path 80 is used when it is necessary to control the temperature of the low temperature and high pressure heat medium flowing through the third flow path 20. Specifically, it is used when the temperature does not rise sufficiently in the temperature difference generator 22.

なお、図5に示す構成では、圧縮機6、第1流路8、蓄圧断熱高温貯槽10、第2流路12、膨張タービン14、蓄圧断熱低温貯槽18、第3流路20及び温度差発電機22、第1分岐流路60、第1熱交換部70、第1戻り流路64、第2分岐流路66、第2熱交換部72及び第2戻り流路68及び温度調整流路78,80が蓄熱式温度差蓄電池3を構成する。 In the configuration shown in FIG. 5, the compressor 6, the first flow path 8, the accumulator heat insulation high temperature storage tank 10, the second flow path 12, the expansion turbine 14, the accumulator heat insulation low temperature storage tank 18, the third flow path 20, and the temperature difference power generation. Machine 22, first branch flow path 60, first heat exchange section 70, first return flow path 64, second branch flow path 66, second heat exchange section 72, second return flow path 68, and temperature control flow path 78. , 80 constitute the heat storage type temperature difference storage battery 3.

本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。 The present disclosure is not limited to the above-described embodiment, and includes a modified form of the above-mentioned embodiment and a form in which these forms are appropriately combined.

例えば上述の地域熱電併給システム2(2A~2C)の各々において、膨張タービン14の代わりに膨張弁等の他の膨張装置(減圧弁等の蒸発器)を設けてもよい。 For example, in each of the above-mentioned regional combined heat and power supply systems 2 (2A to 2C), another expansion device (evaporator such as a pressure reducing valve) such as an expansion valve may be provided instead of the expansion turbine 14.

また、上述した実施形態では、温度差発電機22で発電した電力及び膨張タービン14に連結された発電機で発電した電力が対象サイトの需要体100へ供給される場合等を例示したが、温度差発電機22で発電した電力及び膨張タービン14に連結された発電機で発電した電力を例えば電気モータ5の駆動に利用してもよいし、統括熱電需給システム52を介して電力会社に売電してもよい。 Further, in the above-described embodiment, the case where the electric power generated by the temperature difference generator 22 and the electric power generated by the generator connected to the expansion turbine 14 are supplied to the demand body 100 of the target site is exemplified. The electric power generated by the differential generator 22 and the electric power generated by the generator connected to the expansion turbine 14 may be used, for example, to drive the electric motor 5, or sold to the electric power company via the integrated thermoelectric supply and demand system 52. You may.

また、例えば上述の地域熱電併給システム2(2A~2C)の各々において、第1流路8、第2流路12、第3流路20等の各流路に熱媒体を貯蔵するためのバッファタンクを必要に応じて設置してもよい。また、このバッファタンクにバッファタンクの熱媒体の残量を検出するための残量センサ(容量センサ)を設けてもよい。 Further, for example, in each of the above-mentioned regional combined heat and power supply systems 2 (2A to 2C), a buffer for storing a heat medium in each flow path such as the first flow path 8, the second flow path 12, and the third flow path 20. The tank may be installed as needed. Further, the buffer tank may be provided with a remaining amount sensor (capacity sensor) for detecting the remaining amount of the heat medium in the buffer tank.

また、上述した幾つかの実施形態では、送電ライン32,33,34,35,36,37,38が設けられていたが、各送電ラインは地域熱電併給システム2に必須の構成ではない。例えば、温度差発電機22で発電した電力で水を電気分解して水素を製造し、水素を需要体100に輸送して需要体100側で燃料電池により発電してもよい。 Further, in some of the above-described embodiments, the power transmission lines 32, 33, 34, 35, 36, 37, 38 are provided, but each power transmission line is not an essential configuration for the regional combined heat and power system 2. For example, water may be electrolyzed with the electric power generated by the temperature difference generator 22 to produce hydrogen, and the hydrogen may be transported to the demand body 100 to generate power by a fuel cell on the demand body 100 side.

また、例えば上述の地域熱電併給システム2(2A~2C)の各々において、蓄圧断熱低温貯槽18は、第2流路12における膨張タービン14の下流側に設けられていたが、蓄圧断熱低温貯槽18は、第2流路12における膨張タービン14の上流側に設けられていてもよい。この場合、上述した地域熱電併給システム2(2A~2C)の各々において、膨張タービン14の位置と蓄圧断熱低温貯槽18の位置とを入れ替えればよい(例えば図6参照)。これにより、膨張タービン14で気化する前の液体の熱媒体を蓄圧断熱低温貯槽18に貯蔵することができる。このため、膨張タービン14で気化した後の気体の熱媒体を蓄圧断熱低温貯槽18に貯蔵する場合と比較して、蓄圧断熱低温貯槽18を小型化することができる。 Further, for example, in each of the above-mentioned regional combined heat and power supply systems 2 (2A to 2C), the accumulator adiabatic low temperature storage tank 18 is provided on the downstream side of the expansion turbine 14 in the second flow path 12, but the accumulator adiabatic low temperature storage tank 18 is provided. May be provided on the upstream side of the expansion turbine 14 in the second flow path 12. In this case, in each of the above-mentioned regional combined heat and power supply systems 2 (2A to 2C), the position of the expansion turbine 14 and the position of the accumulator adiabatic low temperature storage tank 18 may be exchanged (see, for example, FIG. 6). As a result, the heat medium of the liquid before being vaporized by the expansion turbine 14 can be stored in the accumulator adiabatic low temperature storage tank 18. Therefore, the accumulator adiabatic low temperature storage tank 18 can be downsized as compared with the case where the gas heat medium after being vaporized by the expansion turbine 14 is stored in the accumulator adiabatic low temperature storage tank 18.

上記各実施形態に記載の内容は、例えば以下のように把握される。 The contents described in each of the above embodiments are grasped as follows, for example.

(1)本開示の一実施形態に係る蓄熱式温度差蓄電池(例えば上述の蓄熱式温度差蓄電池3)は、
熱媒体を圧縮するための圧縮機(例えば上述の圧縮機6)と、
前記圧縮機に接続され、前記圧縮機で圧縮された前記熱媒体を流すための第1流路(例えば上述の第1流路8)と、
前記第1流路に接続され、前記第1流路から供給された前記熱媒体を貯蔵するための蓄圧断熱高温貯槽(例えば上述の蓄圧断熱高温貯槽10)と、
前記蓄圧断熱高温貯槽に接続され、前記蓄圧断熱高温貯槽を出た前記熱媒体を流すための第2流路(例えば上述の第2流路12)と、
前記第2流路に設けられ、前記第2流路を流れる前記熱媒体を減圧するように構成された膨張装置(例えば上述の膨張タービン14)と、
前記第2流路における前記膨張装置の上流側又は下流側に設けられ、前記第2流路の前記熱媒体を貯蔵するための蓄圧断熱低温貯槽(例えば上述の蓄圧断熱低温貯槽18)と、
前記第2流路の下流側に接続され、前記膨張装置及び前記蓄圧断熱低温貯槽の各々を通った前記熱媒体を前記圧縮機に供給するように構成された第3流路(例えば上述の第3流路20)と、
前記第2流路における前記膨張装置の上流側を流れる前記熱媒体と前記第3流路を流れる前記熱媒体との温度差を利用して発電するように構成された温度差発電機(例えば上述の温度差発電機22)と、
を備える。
(1) The heat storage type temperature difference storage battery (for example, the above-mentioned heat storage type temperature difference storage battery 3) according to the embodiment of the present disclosure is
A compressor for compressing a heat medium (for example, the compressor 6 described above) and
A first flow path (for example, the above-mentioned first flow path 8) connected to the compressor and for flowing the heat medium compressed by the compressor, and
A pressure-accumulation heat-insulated high-temperature storage tank (for example, the above-mentioned pressure-accumulation heat-insulating high-temperature storage tank 10) connected to the first flow path and for storing the heat medium supplied from the first flow path.
A second flow path (for example, the above-mentioned second flow path 12) connected to the pressure-accumulation heat-insulated high-temperature storage tank and for flowing the heat medium leaving the pressure-accumulation heat-insulating high-temperature storage tank.
An expansion device (for example, the expansion turbine 14 described above) provided in the second flow path and configured to reduce the pressure of the heat medium flowing through the second flow path.
A pressure-accumulation adiabatic low-temperature storage tank (for example, the above-mentioned pressure-accumulation adiabatic low-temperature storage tank 18) provided on the upstream side or the downstream side of the expansion device in the second flow path and for storing the heat medium of the second flow path.
A third flow path (eg, the above-mentioned first flow path) connected to the downstream side of the second flow path and configured to supply the heat medium through each of the expansion device and the accumulator adiabatic low temperature storage tank to the compressor. 3 flow paths 20) and
A temperature difference generator configured to generate electricity by utilizing the temperature difference between the heat medium flowing on the upstream side of the expansion device in the second flow path and the heat medium flowing on the third flow path (for example, the above-mentioned above). Temperature difference generator 22) and
To prepare for.

上記(1)に記載の蓄熱式温度差蓄電池によれば、圧縮機で圧縮されて高温高圧状態となった熱媒体は、第1流路を介して蓄圧断熱高温貯槽に送られて貯蔵される。
蓄圧断熱高温貯槽を出た高温高圧の熱媒体は、第2流路を通って温度差発電機に供給され、温度差発電機で放熱して膨張装置に供給される。膨張装置に供給された熱媒体は膨張装置で減圧されて低温低圧の熱媒体となる。膨張装置及び蓄圧断熱低温貯槽の各々を通った低温低圧の熱媒体は、第3流路を介して温度差発電機に供給され、温度差発電機に冷熱を供給してから圧縮機に戻される。
このように、圧縮機、第1流路、蓄圧断熱高温貯槽、膨張装置、蓄圧断熱低温貯槽、第3流路及び温度差発電機が設けられた熱媒体の循環流路によって、ヒートポンプサイクルを構築することができるため、少ない投入エネルギーで効率的に高温高圧の熱媒体と低温低圧の熱媒体とを生成することができる。
また、生成した高温高圧の熱媒体と低温低圧の熱媒体とをそれぞれ蓄圧断熱高温貯槽と蓄圧断熱低温貯槽に貯蔵することで電力を蓄積し、電力需要に応じて蓄圧断熱高温貯槽と蓄圧断熱低温貯槽から高温高圧の熱媒体と低温低圧の熱媒体と温度差発電機に供給して発電を行うことができるため、ヒートポンプサイクル内で貯蔵した互いに温度の異なる熱媒体を利用して発電する新規な方式の電池である蓄熱式温度差蓄電池を提供することができる。
この蓄熱式温度差蓄電池によれば、例えば特許文献1に記載される構成(ヒートポンプサイクルを流れる高温高圧の熱媒体で膨張タービンを駆動して膨張タービンに接続された発電機により発電を行う構成)と比較して、ヒートポンプサイクル内の熱媒体を利用して簡素な構成で発電を行うことができる。
According to the heat storage type temperature difference storage battery described in (1) above, the heat medium compressed by the compressor and in a high temperature and high pressure state is sent to a pressure storage heat insulating high temperature storage tank via the first flow path and stored. ..
The high-temperature and high-pressure heat medium that has left the accumulator-insulated high-temperature storage tank is supplied to the temperature difference generator through the second flow path, dissipates heat in the temperature difference generator, and is supplied to the expansion device. The heat medium supplied to the inflator is depressurized by the inflator to become a low-temperature low-pressure heat medium. The low-temperature low-pressure heat medium that has passed through each of the expansion device and the accumulator adiabatic low-temperature storage tank is supplied to the temperature difference generator via the third flow path, supplies cold heat to the temperature difference generator, and then returns to the compressor. ..
In this way, the heat pump cycle is constructed by the circulation flow path of the heat medium provided with the compressor, the first flow path, the accumulator heat insulating high temperature storage tank, the expansion device, the accumulator heat insulating low temperature storage tank, the third flow path and the temperature difference generator. Therefore, it is possible to efficiently generate a high-temperature high-pressure heat medium and a low-temperature low-pressure heat medium with a small input energy.
In addition, electric power is stored by storing the generated high-temperature and high-pressure heat medium and low-temperature and low-pressure heat medium in the pressure-accumulation heat insulation high-temperature storage tank and the pressure-accumulation heat insulation low-temperature storage tank, respectively. Since it is possible to supply power from a storage tank to a high-temperature high-pressure heat medium, a low-temperature low-pressure heat medium, and a temperature difference generator, a new type of power generation is performed using heat media with different temperatures stored in a heat pump cycle. It is possible to provide a heat storage type temperature difference storage battery which is a type of battery.
According to this heat storage type temperature difference storage battery, for example, the configuration described in Patent Document 1 (a configuration in which an expansion turbine is driven by a high-temperature and high-pressure heat medium flowing through a heat pump cycle and power is generated by a generator connected to the expansion turbine). In comparison with, the heat medium in the heat pump cycle can be used to generate electricity with a simple configuration.

(2)幾つかの実施形態では、上記(1)に記載の蓄熱式温度差蓄電池において、
前記第2流路における前記温度差発電機と前記膨張装置との間から分岐し、前記第2流路から供給された前記熱媒体を流すための第1分岐流路(例えば上述の第1分岐流路60)と、
前記第1分岐流路に接続し、前記第1分岐流路から供給された前記熱媒体を未利用エネルギーとの熱交換により加熱するように構成された第1熱交換部(例えば上述の第1熱交換部70)と、
前記第1熱交換部に接続し、前記第1熱交換部を通過した前記熱媒体を前記第2流路における前記蓄圧断熱高温貯槽と前記温度差発電機との間に供給するように構成された第1戻り流路(例えば上述の第1戻り流路64)と、
を更に備える。
(2) In some embodiments, in the heat storage type temperature difference storage battery described in (1) above,
A first branch flow path (for example, the above-mentioned first branch) for branching from between the temperature difference generator and the expansion device in the second flow path and allowing the heat medium supplied from the second flow path to flow. Channel 60) and
A first heat exchange unit (for example, the above-mentioned first) connected to the first branch flow path and configured to heat the heat medium supplied from the first branch flow path by heat exchange with unused energy. Heat exchange unit 70) and
It is configured to connect to the first heat exchange section and supply the heat medium that has passed through the first heat exchange section between the accumulator heat insulating high temperature storage tank and the temperature difference generator in the second flow path. The first return flow path (for example, the above-mentioned first return flow path 64) and
Further prepare.

温度差発電機において、第2流路を流れる熱媒体が保有する温熱量と、第3流路を流れる熱媒体の保有する冷熱量がバランスしない場合、温度差発電機による発電を効率的に行うことができない。この点、上記(2)に記載の蓄熱式温度差蓄電池によれば、第2流路を流れる熱媒体を第1分岐流路を介して第1熱交換部に供給し、第1熱交換部で未利用エネルギーとの熱交換により加熱してから第1戻り流路で第2流路における蓄圧断熱高温貯槽と温度差発電機との間に供給することができる。このため、第2流路を流れる熱媒体が保有する温熱量が第3流路を流れる熱媒体の保有する冷熱量に対して不足している場合(温媒不足の場合)に、第2流路を流れる熱媒体の温熱量を未利用エネルギー等を利用して補充し、温度差発電機で効率的に発電することができる。 In the temperature difference generator, when the amount of heat possessed by the heat medium flowing through the second flow path and the amount of cold heat possessed by the heat medium flowing through the third flow path are not balanced, the temperature difference generator efficiently generates power. I can't. In this regard, according to the heat storage type temperature difference storage battery described in (2) above, the heat medium flowing through the second flow path is supplied to the first heat exchange section via the first branch flow path, and the first heat exchange section is provided. After heating by heat exchange with unused energy, it can be supplied between the pressure-accumulated heat-insulated high-temperature storage tank and the temperature difference generator in the second flow path in the first return flow path. Therefore, when the amount of heat possessed by the heat medium flowing through the second flow path is insufficient with respect to the amount of cold heat possessed by the heat medium flowing through the third flow path (in the case of insufficient heat medium), the second flow. The amount of heat of the heat medium flowing through the path can be replenished by using unused energy or the like, and the temperature difference generator can efficiently generate electricity.

(3)幾つかの実施形態では、上記(1)又は(2)に記載の蓄熱式温度差蓄電池において、
前記第3流路における前記温度差発電機と前記圧縮機との間から分岐し、前記第3流路から供給された前記熱媒体を流すための第2分岐流路(例えば上述の第2分岐流路66)と、
前記第2分岐流路に接続し、前記第2分岐流路から供給された前記熱媒体を未利用エネルギーとの熱交換により冷却するように構成された第2熱交換部(例えば上述の第2熱交換部72)と、
前記第2熱交換部に接続し、前記第2熱交換部を通過した前記熱媒体を前記第3流路における前記蓄圧断熱低温貯槽と前記温度差発電機との間に供給するように構成された第2戻り流路(例えば上述の第2戻り流路68)と、
を更に備える。
(3) In some embodiments, in the heat storage type temperature difference storage battery according to the above (1) or (2).
A second branch flow path (for example, the above-mentioned second branch) for branching from between the temperature difference generator and the compressor in the third flow path and allowing the heat medium supplied from the third flow path to flow. Channel 66) and
A second heat exchange unit (for example, the above-mentioned second heat exchange unit) connected to the second branch flow path and configured to cool the heat medium supplied from the second branch flow path by heat exchange with unused energy. Heat exchange unit 72) and
It is configured to connect to the second heat exchange section and supply the heat medium that has passed through the second heat exchange section between the accumulator adiabatic low temperature storage tank and the temperature difference generator in the third flow path. The second return flow path (for example, the above-mentioned second return flow path 68) and
Further prepare.

温度差発電機において、第2流路を流れる熱媒体が保有する温熱量と、第3流路を流れる熱媒体の保有する冷熱量がバランスしない場合、温度差発電機による発電を効率的に行うことができない。この点、上記(3)に記載の蓄熱式温度差蓄電池によれば、第3流路を流れる熱媒体を第2分岐流路を介して第2熱交換部に供給し、第2熱交換部で未利用エネルギーとの熱交換により冷却してから第2戻り流路で第3流路における蓄圧断熱低温貯槽と温度差発電機との間に供給することができる。このため、第3流路を流れる熱媒体が保有する冷熱量が第2流路を流れる熱媒体の保有する温熱量に対して不足している場合(冷媒不足の場合)に、第3流路を流れる熱媒体の冷熱量を未利用エネルギー等を利用して補充し、温度差発電機で効率的に発電することができる。 In the temperature difference generator, when the amount of heat possessed by the heat medium flowing through the second flow path and the amount of cold heat possessed by the heat medium flowing through the third flow path are not balanced, the temperature difference generator efficiently generates power. I can't. In this regard, according to the heat storage type temperature difference storage battery described in (3) above, the heat medium flowing through the third flow path is supplied to the second heat exchange section via the second branch flow path, and the second heat exchange section is provided. After cooling by heat exchange with unused energy, it can be supplied between the pressure-accumulated adiabatic low-temperature storage tank in the third flow path and the temperature difference generator in the second return flow path. Therefore, when the amount of cold heat possessed by the heat medium flowing through the third flow path is insufficient with respect to the amount of heat possessed by the heat medium flowing through the second flow path (in the case of insufficient refrigerant), the third flow path The amount of cold heat of the heat medium flowing through the surface can be replenished by using unused energy or the like, and the temperature difference generator can efficiently generate electricity.

(4)本開示の一実施形態に係る熱電併給システムは、
上記(1)乃至(3)の何れかに記載の蓄熱式温度差蓄電池と、
前記蓄圧断熱高温貯槽に接続され、前記蓄圧断熱高温貯槽から対象サイトの需要体(例えば上述の需要体100)に前記熱媒体を供給するように構成された第4流路(例えば上述の第4流路24)と、
を備える。
(4) The combined heat and power system according to the embodiment of the present disclosure is
The heat storage type temperature difference storage battery according to any one of (1) to (3) above,
A fourth flow path (for example, the above-mentioned fourth channel) connected to the pressure-accumulation adiabatic high-temperature storage tank and configured to supply the heat medium from the accumulator-insulated high-temperature storage tank to a demand body (for example, the above-mentioned demand body 100) of the target site. Channel 24) and
To prepare for.

上記(4)に記載の熱電併給システムによれば、上記蓄熱式温度差蓄電池で蓄圧断熱高温貯槽に貯蔵された熱媒体を用いて需要体の温熱需要(例えば暖房需要や給湯需要)を満たすことができる。 According to the combined heat and power system described in (4) above, the heat storage type temperature difference storage battery is used to satisfy the heat demand (for example, heating demand and hot water supply demand) of the demand body by using the heat medium stored in the heat storage heat insulation high temperature storage tank. Can be done.

(5)幾つかの実施形態では、上記(4)に記載の熱電併給システムにおいて、
前記第4流路を介して前記需要体に供給された前記熱媒体を前記需要体から回収するための第5流路(例えば上述の第65流路26)を更に備え、
前記第5流路は、前記需要体から回収した前記熱媒体を前記第2流路における前記温度差発電機と前記膨張装置との間の位置に供給するように構成される。
(5) In some embodiments, in the combined heat and power system described in (4) above,
Further provided with a fifth flow path (for example, the above-mentioned 65th flow path 26) for recovering the heat medium supplied to the demand body through the fourth flow path from the demand body.
The fifth flow path is configured to supply the heat medium recovered from the demand body to a position between the temperature difference generator and the expansion device in the second flow path.

上記(5)に記載の熱電併給システムによれば、第1流路、蓄圧断熱高温貯槽、第4流路、第5流路、膨張装置、蓄圧断熱低温貯槽及び第3流路が設けられた熱媒体の循環流路によって、ヒートポンプサイクルを構築することができるため、少ない投入エネルギーで効率的に高温高圧の熱媒体を需要体に供給することができる。 According to the combined heat and power system described in (5) above, a first flow path, a pressure-accumulated heat-insulated high-temperature storage tank, a fourth flow path, a fifth flow path, an expansion device, a pressure-accumulated heat-insulated low-temperature storage tank, and a third flow path are provided. Since the heat pump cycle can be constructed by the circulation flow path of the heat medium, the high temperature and high pressure heat medium can be efficiently supplied to the demand body with a small input energy.

(6)幾つかの実施形態では、上記(4)又は(5)に記載の熱電併給システムにおいて、
前記蓄圧断熱低温貯槽に接続された第6流路(例えば上述の第6流路28)を更に備え、
前記第6流路は、前記蓄圧断熱低温貯槽から対象サイトの需要体に前記熱媒体を供給するように構成される。
(6) In some embodiments, in the combined heat and power system according to (4) or (5) above.
A sixth flow path (for example, the above-mentioned sixth flow path 28) connected to the pressure-accumulation adiabatic low-temperature storage tank is further provided.
The sixth flow path is configured to supply the heat medium from the accumulator-insulated low-temperature storage tank to the demand body of the target site.

上記(6)に記載の熱電併給システムによれば、上記蓄熱式温度差蓄電池で蓄圧断熱低温貯槽に貯蔵された熱媒体を用いて需要体の冷熱需要(例えば冷房需要)を満たすことができる。 According to the combined heat and power system described in (6) above, the heat storage type temperature difference storage battery can satisfy the cold heat demand (for example, cooling demand) of the demand body by using the heat medium stored in the pressure storage heat insulating low temperature storage tank.

(7)幾つかの実施形態では、上記(6)に記載の熱電併給システムにおいて、
前記第6流路を介して前記需要体に供給された前記熱媒体を回収するための第7流路(例えば上述の第7流路30)を更に備え、
前記第7流路は、前記需要体から回収した前記熱媒体を前記第3流路における前記温度差発電機と前記圧縮機との間の位置に供給するように構成される。
(7) In some embodiments, in the combined heat and power system described in (6) above,
A seventh flow path (for example, the above-mentioned seventh flow path 30) for recovering the heat medium supplied to the demand body via the sixth flow path is further provided.
The seventh flow path is configured to supply the heat medium recovered from the demand body to a position between the temperature difference generator and the compressor in the third flow path.

上記(7)に記載の熱電併給システムによれば、第1流路、蓄圧断熱高温貯槽、第2流路、膨張装置、蓄圧断熱低温貯槽、第6流路及び第7流路が設けられた熱媒体の循環流路によって、ヒートポンプサイクルを構築することができるため、少ない投入エネルギーで効率的に低温低圧の熱媒体を需要体に供給することができる。 According to the combined heat and power system described in (7) above, a first flow path, a pressure-accumulated heat-insulated high-temperature storage tank, a second flow path, an expansion device, a pressure-accumulated heat-insulated low-temperature storage tank, a sixth flow path, and a seventh flow path are provided. Since the heat pump cycle can be constructed by the circulation flow path of the heat medium, the low temperature and low pressure heat medium can be efficiently supplied to the demand body with a small input energy.

(8)幾つかの実施形態では、上記(1)に記載の熱電併給システムにおいて、
前記蓄圧断熱低温貯槽は、前記第2流路において前記膨張装置の上流側に設けられる。
(8) In some embodiments, in the combined heat and power system described in (1) above,
The pressure-accumulation adiabatic low-temperature storage tank is provided on the upstream side of the expansion device in the second flow path.

上記(8)に記載の熱電併給システムによれば、膨張装置で気化する前の液体の熱媒体を蓄圧断熱低温貯槽に貯蔵することができる。このため、膨張装置で気化した後の気体の熱媒体を蓄圧断熱低温貯槽に貯蔵する場合と比較して、蓄圧断熱低温貯槽を小型化することができる。 According to the combined heat and power system described in (8) above, the heat medium of the liquid before being vaporized by the expansion device can be stored in the accumulator adiabatic low temperature storage tank. Therefore, the accumulator adiabatic low temperature storage tank can be downsized as compared with the case where the gas heat medium after being vaporized by the expansion device is stored in the accumulator adiabatic low temperature storage tank.

(9)幾つかの実施形態では、上記(1)乃至(8)の何れかに記載の熱電併給システムにおいて、
前記圧縮機を駆動する電気モータ(例えば上述の電気モータ5)と、
前記蓄圧断熱高温貯槽の熱媒体の残量を検出するための残量センサ(例えば上述の残量センサ)と、
前記電気モータを制御するモータ制御部(例えば上述のモータ制御部86)と、
を備え、
前記モータ制御部は、前記残量センサによって検出した前記蓄圧断熱高温貯槽の前記熱媒体の残量が閾値以下である場合に、前記電気モータを駆動するように構成される。
(9) In some embodiments, in the combined heat and power system according to any one of (1) to (8) above.
An electric motor for driving the compressor (for example, the electric motor 5 described above) and
A remaining amount sensor (for example, the above-mentioned remaining amount sensor) for detecting the remaining amount of the heat medium of the pressure-accumulated heat-insulated high-temperature storage tank, and the remaining amount sensor.
A motor control unit that controls the electric motor (for example, the motor control unit 86 described above) and
Equipped with
The motor control unit is configured to drive the electric motor when the remaining amount of the heat medium in the accumulator heat insulating high temperature storage tank detected by the remaining amount sensor is equal to or less than a threshold value.

温度差発電機において、蓄圧断熱高温貯槽に貯蔵された熱媒体が保有する温熱量と、蓄圧断熱低温貯槽に貯蔵された熱媒体の保有する冷熱量がバランスしない場合、温度差発電機による発電を効率的に行うことができない。この点、上記(9)に記載の蓄熱式温度差蓄電池によれば、残量センサによって検出した蓄圧断熱高温貯槽の熱媒体の残量が閾値以下である場合に電気モータで圧縮機を駆動して蓄圧断熱高温貯槽に貯蔵された熱媒体が保有する温熱量を補充することができるため、温度差発電機で効率的に発電することができる。 In a temperature difference generator, if the amount of heat held by the heat medium stored in the accumulator adiabatic high temperature storage tank and the amount of cold heat held by the heat medium stored in the accumulator adiabatic low temperature storage tank are not balanced, power generation by the temperature difference generator is performed. It cannot be done efficiently. In this regard, according to the heat storage type temperature difference storage battery described in (9) above, the compressor is driven by an electric motor when the remaining amount of the heat medium of the heat storage heat insulating high temperature storage tank detected by the remaining amount sensor is equal to or less than the threshold value. Since it is possible to replenish the amount of heat possessed by the heat medium stored in the pressure-accumulation heat-insulating high-temperature storage tank, it is possible to efficiently generate electricity with the temperature difference generator.

(10)幾つかの実施形態では、上記(1)乃至(9)の何れかに記載の熱電併給システムにおいて、
前記圧縮機を駆動する電気モータ(例えば上述の電気モータ5)と、
前記蓄圧断熱低温貯槽の熱媒体の残量を検出するための残量センサ(例えば上述の残量センサ)と、
前記電気モータを制御するモータ制御部(例えば上述のモータ制御部86)と、
を備え、
前記モータ制御部は、残量センサによって検出した蓄圧断熱低温貯槽の熱媒体の残量が閾値以下である場合に、前記電気モータを駆動するように構成される。
(10) In some embodiments, in the combined heat and power system according to any one of (1) to (9) above.
An electric motor for driving the compressor (for example, the electric motor 5 described above) and
A remaining amount sensor (for example, the above-mentioned remaining amount sensor) for detecting the remaining amount of the heat medium of the pressure-accumulated heat-insulated low-temperature storage tank, and the remaining amount sensor.
A motor control unit that controls the electric motor (for example, the motor control unit 86 described above) and
Equipped with
The motor control unit is configured to drive the electric motor when the remaining amount of the heat medium of the accumulator adiabatic low temperature storage tank detected by the remaining amount sensor is equal to or less than the threshold value.

温度差発電機において、蓄圧断熱高温貯槽に貯蔵された熱媒体が保有する温熱量と、蓄圧断熱低温貯槽に貯蔵された熱媒体の保有する冷熱量がバランスしない場合、温度差発電機による発電を効率的に行うことができない。この点、上記(10)に記載の蓄熱式温度差蓄電池によれば、残量センサによって検出した蓄圧断熱低温貯槽の熱媒体の残量が閾値以下である場合に電気モータで圧縮機を駆動して蓄圧断熱低温貯槽に貯蔵された熱媒体が保有する冷熱量を補充することができるため、温度差発電機で効率的に発電することができる。 In a temperature difference generator, if the amount of heat held by the heat medium stored in the accumulator adiabatic high temperature storage tank and the amount of cold heat held by the heat medium stored in the accumulator adiabatic low temperature storage tank are not balanced, power generation by the temperature difference generator is performed. It cannot be done efficiently. In this regard, according to the heat storage type temperature difference storage battery described in (10) above, the compressor is driven by an electric motor when the remaining amount of the heat medium in the heat storage adiabatic low temperature storage tank detected by the remaining amount sensor is equal to or less than the threshold value. Since the amount of cold heat possessed by the heat medium stored in the heat storage adiabatic low-temperature storage tank can be replenished, the temperature difference generator can efficiently generate electricity.

(11)本開示の一実施形態に係る熱電併給システム群は、
上記(1)乃至(10)の何れかに記載の熱電併給システムを複数備える熱電併給システム群(例えば上述の地域熱電併給システム群4)であって、
前記複数の熱電併給システムは、複数の対象サイトにそれぞれ対応して設けられており、
前記熱電併給システム群は、前記複数の熱電併給システム全体における電力と熱の需給最適化を行うように構成された統括熱電需給システム(例えば上述の統括熱電需給システム52)を更に備える。
(11) The combined heat and power system group according to the embodiment of the present disclosure is
The combined heat and power system group (for example, the above-mentioned regional combined heat and power system group 4) including a plurality of combined heat and power systems according to any one of (1) to (10) above.
The plurality of combined heat and power systems are provided corresponding to each of a plurality of target sites.
The combined heat and power system group further includes a centralized heat and power supply and demand system (for example, the above-mentioned centralized heat and power supply and supply system 52) configured to optimize the supply and demand of electric power and heat in the entire plurality of combined heat and power systems.

上記(11)に記載の熱電併給システムによれば、統括熱電需給システムによって複数の熱電併給システム全体における電力と熱の需給最適化を行うことで、電力及び熱の負荷を平準化し、少ない投入エネルギーで効率的に電力需要と熱需要を満たすことができる。 According to the combined heat and power system described in (11) above, the integrated heat and power supply and demand system optimizes the supply and demand of power and heat in the entire combined heat and power supply system to equalize the power and heat load and reduce the input energy. Can efficiently meet power and heat demands.

(12)幾つかの実施形態では、上記(11)に記載の熱電併給システム群において、
前記複数の対象サイトの各々における電力及び熱の需給傾向を学習する機械学習装置(例えば上述の機械学習装置88)を更に備え、
前記統括熱電需給システムは、前記機械学習装置が学習した前記複数の対象サイトの各々における電力及び熱の需給傾向および電力市場価格等に基づいて、前記複数の熱電併給システム全体における電力と熱の需給最適化を行うように構成される。
(12) In some embodiments, in the combined heat and power system group described in (11) above,
Further, a machine learning device (for example, the above-mentioned machine learning device 88) for learning the supply and demand tendency of electric power and heat at each of the plurality of target sites is further provided.
The integrated heat and power supply and demand system is based on the power and heat supply and demand trends and the power market price at each of the plurality of target sites learned by the machine learning device, and the power and heat supply and demand in the entire plurality of heat and power combined supply systems. It is configured to perform optimization.

上記(12)に記載の熱電併給システム群によれば、複数の対象サイトの各々における電力及び熱の需給傾向を学習して前記複数の熱電併給システム全体で電力と熱の需給最適化を行うことで、電力及び熱の負荷を平準化し、少ない投入エネルギーで効率的に電力需要と熱需要を満たすことができる。 According to the combined heat and power system group described in (12) above, the supply and demand tendency of electric power and heat at each of the plurality of target sites is learned, and the supply and demand of electric power and heat is optimized for the entire plurality of combined heat and power systems. Therefore, the load of electric power and heat can be leveled, and the electric power demand and heat demand can be efficiently satisfied with a small amount of input energy.

2 地域熱電併給システム
3 蓄熱式温度差蓄電池
4 地域熱電併給システム群
5 電気モータ
6 圧縮機
8 第1流路
10 蓄圧断熱高温貯槽
12 第2流路
14 膨張装置
18 蓄圧断熱低温貯槽
20 第3流路
22 温度差発電機
24 第4流路
26 第5流路
25 循環流路
28 第6流路
30 第7流路
32,33,34,35,36,37,38 送電ライン
50 サイト熱電需給システム
52 統括熱電需給システム
60 第1分岐流路
62 地中熱熱交換装置
64 第1戻り流路
66 第2分岐流路
68 第2戻り流路
70 第1熱交換部
72 第2熱交換部
74,76 循環流路
78,80 温度調整流路
82,84 温度センサ
86 モータ制御部
88 機械学習装置
100 需要体
2 Regional heat and power combined supply system 3 Regional heat storage type temperature difference storage battery 4 Regional heat and power combined supply system group 5 Electric motor 6 Compressor 8 1st flow path 10 Accumulation heat insulation high temperature storage tank 12 2nd flow path 14 Expansion device 18 Storage pressure insulation low temperature storage tank 20 3rd flow Road 22 Temperature difference generator 24 4th flow path 26 5th flow path 25 Circulation flow path 28 6th flow path 30 7th flow path 32, 33, 34, 35, 36, 37, 38 Transmission line 50 Site heat and electricity supply and demand system 52 Integrated heat and electricity supply and demand system 60 1st branch flow path 62 Underground heat heat exchange device 64 1st return flow path 66 2nd branch flow path 68 2nd return flow path 70 1st heat exchange section 72 2nd heat exchange section 74, 76 Circulation flow path 78,80 Temperature control flow path 82,84 Temperature sensor 86 Motor control unit 88 Machine learning device 100 Demand unit

Claims (12)

熱媒体を圧縮するための圧縮機と、
前記圧縮機に接続され、前記圧縮機で圧縮された前記熱媒体を流すための第1流路と、
前記第1流路に接続され、前記第1流路から供給された前記熱媒体を貯蔵するための蓄圧断熱高温貯槽と、
前記蓄圧断熱高温貯槽に接続され、前記蓄圧断熱高温貯槽を出た前記熱媒体を流すための第2流路と、
前記第2流路に設けられ、前記第2流路を流れる前記熱媒体を減圧するように構成された膨張装置と、
前記第2流路における前記膨張装置の上流側又は下流側に設けられ、前記第2流路の前記熱媒体を貯蔵するための蓄圧断熱低温貯槽と、
前記第2流路の下流側に接続され、前記膨張装置及び前記蓄圧断熱低温貯槽の各々を通った前記熱媒体を前記圧縮機に供給するように構成された第3流路と、
前記第2流路における前記膨張装置の上流側を流れる前記熱媒体と前記第3流路を流れる前記熱媒体との温度差を利用して発電するように構成された温度差発電機と、
を備える、蓄熱式温度差蓄電池。
A compressor for compressing the heat medium,
A first flow path connected to the compressor and for flowing the heat medium compressed by the compressor,
A pressure-accumulation adiabatic high-temperature storage tank connected to the first flow path and for storing the heat medium supplied from the first flow path,
A second flow path connected to the accumulator adiabatic high temperature storage tank and for flowing the heat medium leaving the accumulator adiabatic high temperature storage tank.
An expansion device provided in the second flow path and configured to reduce the pressure of the heat medium flowing through the second flow path.
A pressure-accumulation adiabatic low-temperature storage tank provided on the upstream side or the downstream side of the expansion device in the second flow path and for storing the heat medium of the second flow path.
A third flow path connected to the downstream side of the second flow path and configured to supply the heat medium through each of the expansion device and the accumulator adiabatic low temperature storage tank to the compressor.
A temperature difference generator configured to generate electricity by utilizing the temperature difference between the heat medium flowing on the upstream side of the expansion device in the second flow path and the heat medium flowing through the third flow path.
A heat storage type temperature difference storage battery.
前記第2流路における前記温度差発電機と前記膨張装置との間から分岐し、前記第2流路から供給された前記熱媒体を流すための第1分岐流路と、
前記第1分岐流路に接続し、前記第1分岐流路から供給された前記熱媒体を未利用エネルギーとの熱交換により加熱するように構成された第1熱交換部と、
前記第1熱交換部に接続し、前記第1熱交換部を通過した前記熱媒体を前記第2流路における前記蓄圧断熱高温貯槽と前記温度差発電機との間に供給するように構成された第1戻り流路と、
を更に備える、請求項1に記載の蓄熱式温度差蓄電池。
A first branch flow path for branching from between the temperature difference generator and the expansion device in the second flow path and allowing the heat medium supplied from the second flow path to flow.
A first heat exchange unit connected to the first branch flow path and configured to heat the heat medium supplied from the first branch flow path by heat exchange with unused energy.
It is configured to connect to the first heat exchange section and supply the heat medium that has passed through the first heat exchange section between the accumulator heat insulating high temperature storage tank and the temperature difference generator in the second flow path. The first return flow path and
The heat storage type temperature difference storage battery according to claim 1.
前記第3流路における前記温度差発電機と前記圧縮機との間から分岐し、前記第3流路から供給された前記熱媒体を流すための第2分岐流路と、
前記第2分岐流路に接続し、前記第2分岐流路から供給された前記熱媒体を未利用エネルギーとの熱交換により冷却するように構成された第2熱交換部と、
前記第2熱交換部に接続し、前記第2熱交換部を通過した前記熱媒体を前記第3流路における前記蓄圧断熱低温貯槽と前記温度差発電機との間に供給するように構成された第2戻り流路と、
を更に備える、請求項1又は2に記載の蓄熱式温度差蓄電池。
A second branch flow path for branching from between the temperature difference generator and the compressor in the third flow path and allowing the heat medium supplied from the third flow path to flow.
A second heat exchange unit connected to the second branch flow path and configured to cool the heat medium supplied from the second branch flow path by heat exchange with unused energy.
It is configured to connect to the second heat exchange section and supply the heat medium that has passed through the second heat exchange section between the accumulator adiabatic low temperature storage tank and the temperature difference generator in the third flow path. The second return flow path and
The heat storage type temperature difference storage battery according to claim 1 or 2, further comprising.
請求項1乃至3の何れか1項に記載の蓄熱式温度差蓄電池と、
前記蓄圧断熱高温貯槽に接続され、前記蓄圧断熱高温貯槽から対象サイトの需要体に前記熱媒体を供給するように構成された第4流路と、
を備える、熱電併給システム。
The heat storage type temperature difference storage battery according to any one of claims 1 to 3.
A fourth flow path connected to the accumulator adiabatic high temperature storage tank and configured to supply the heat medium from the accumulator adiabatic high temperature storage tank to the demand body of the target site.
A combined heat and power system.
前記第4流路を介して前記需要体に供給された前記熱媒体を前記需要体から回収するための第5流路を更に備え、
前記第5流路は、前記需要体から回収した前記熱媒体を前記第2流路における前記温度差発電機と前記膨張装置との間の位置に供給するように構成された、請求項4に記載の熱電併給システム。
Further, a fifth flow path for recovering the heat medium supplied to the demand body through the fourth flow path from the demand body is provided.
According to claim 4, the fifth flow path is configured to supply the heat medium recovered from the demand body to a position between the temperature difference generator and the expansion device in the second flow path. The combined heat and power system described.
前記蓄圧断熱低温貯槽に接続された第6流路を更に備え、
前記第6流路は、前記蓄圧断熱低温貯槽から対象サイトの需要体に前記熱媒体を供給するように構成された、請求項4又は5に記載の熱電併給システム。
Further provided with a sixth flow path connected to the accumulator adiabatic low temperature storage tank,
The combined heat and power system according to claim 4 or 5, wherein the sixth flow path is configured to supply the heat medium from the accumulator-insulated low-temperature storage tank to the demand body of the target site.
前記第6流路を介して前記需要体に供給された前記熱媒体を回収するための第7流路を更に備え、
前記第7流路は、前記需要体から回収した前記熱媒体を前記第3流路における前記温度差発電機と前記圧縮機との間の位置に供給するように構成された、請求項6に記載の熱電併給システム。
A seventh flow path for recovering the heat medium supplied to the demand body via the sixth flow path is further provided.
According to claim 6, the seventh flow path is configured to supply the heat medium recovered from the demand body to a position between the temperature difference generator and the compressor in the third flow path. The combined heat and power system described.
前記蓄圧断熱低温貯槽は、前記第2流路において前記膨張装置の上流側に設けられた、請求項1に記載の蓄熱式温度差蓄電池。 The heat storage type temperature difference storage battery according to claim 1, wherein the pressure storage heat insulating low temperature storage tank is provided on the upstream side of the expansion device in the second flow path. 前記圧縮機を駆動する電気モータと、
前記蓄圧断熱高温貯槽の熱媒体の残量を検出するための残量センサと、
前記電気モータを制御するモータ制御部と、
を備え、
前記モータ制御部は、前記残量センサによって検出した前記蓄圧断熱高温貯槽の前記熱媒体の残量が閾値以下である場合に、前記電気モータを駆動するように構成された、請求項1乃至8の何れか1項に記載の熱電併給システム。
The electric motor that drives the compressor and
A remaining amount sensor for detecting the remaining amount of the heat medium of the pressure-accumulated heat-insulated high-temperature storage tank, and
A motor control unit that controls the electric motor,
Equipped with
The motor control unit is configured to drive the electric motor when the remaining amount of the heat medium of the accumulator heat insulating high temperature storage tank detected by the remaining amount sensor is equal to or less than a threshold value. The combined heat and power supply system according to any one of the above items.
前記圧縮機を駆動する電気モータと、
前記蓄圧断熱低温貯槽の熱媒体の残量を検出するための残量センサと、
前記電気モータを制御するモータ制御部と、
を備え、
前記モータ制御部は、前記残量センサによって検出した前記蓄圧断熱低温貯槽の前記熱媒体の残量が閾値以下である場合に、前記電気モータを駆動するように構成された、請求項1乃至9の何れか1項に記載の熱電併給システム。
The electric motor that drives the compressor and
A remaining amount sensor for detecting the remaining amount of the heat medium of the pressure-accumulated heat-insulated low-temperature storage tank, and
A motor control unit that controls the electric motor,
Equipped with
The motor control unit is configured to drive the electric motor when the remaining amount of the heat medium of the accumulator adiabatic low temperature storage tank detected by the remaining amount sensor is equal to or less than a threshold value. The combined heat and power supply system according to any one of the above items.
請求項1乃至10の何れか1項に記載の熱電併給システムを複数備える熱電併給システム群であって、
前記複数の熱電併給システムは、複数の対象サイトにそれぞれ対応して設けられており、
前記熱電併給システム群は、前記複数の熱電併給システム全体における電力と熱の需給最適化を行うように構成された統括熱電需給システムを更に備える、熱電併給システム群。
A group of heat and power cogeneration systems including a plurality of heat and power cogeneration systems according to any one of claims 1 to 10.
The plurality of combined heat and power systems are provided corresponding to each of a plurality of target sites.
The combined heat and power system group is a group of combined heat and power systems further including a centralized heat and supply system configured to optimize the supply and demand of electric power and heat in the entire plurality of combined heat and power systems.
前記複数の対象サイトの各々における電力及び熱の需給傾向を学習する機械学習装置を更に備え、
前記統括熱電需給システムは、前記機械学習装置が学習した前記複数の対象サイトの各々における電力及び熱の需給傾向に基づいて、前記複数の熱電併給システム全体における電力と熱の需給最適化を行うように構成された、請求項11に記載の熱電併給システム群。
Further equipped with a machine learning device for learning the supply and demand tendency of electric power and heat at each of the plurality of target sites.
The integrated heat and power supply and demand system optimizes the power and heat supply and demand of the entire plurality of combined heat and power systems based on the power and heat supply and demand trends of each of the plurality of target sites learned by the machine learning device. The combined heat and power system group according to claim 11, which is configured in the above.
JP2020172863A 2020-10-13 2020-10-13 Heat storage type temperature difference storage battery, combined heat and power system, and combined heat and power system group Pending JP2022064235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020172863A JP2022064235A (en) 2020-10-13 2020-10-13 Heat storage type temperature difference storage battery, combined heat and power system, and combined heat and power system group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020172863A JP2022064235A (en) 2020-10-13 2020-10-13 Heat storage type temperature difference storage battery, combined heat and power system, and combined heat and power system group

Publications (1)

Publication Number Publication Date
JP2022064235A true JP2022064235A (en) 2022-04-25

Family

ID=81378515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020172863A Pending JP2022064235A (en) 2020-10-13 2020-10-13 Heat storage type temperature difference storage battery, combined heat and power system, and combined heat and power system group

Country Status (1)

Country Link
JP (1) JP2022064235A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024044281A3 (en) * 2022-08-23 2024-05-10 Enginuity Power Systems, Inc. Combined heat and power architectures and related methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024044281A3 (en) * 2022-08-23 2024-05-10 Enginuity Power Systems, Inc. Combined heat and power architectures and related methods

Similar Documents

Publication Publication Date Title
Yu et al. Techno-economic analysis of air source heat pump combined with latent thermal energy storage applied for space heating in China
CN110998200B (en) Co-production system and method for producing heat and electricity
KR100893828B1 (en) Hybrid heat pump system for cooling and heating with integrated power generation system
CN102549348B (en) Hot water storage-type hot water supply system and method for operating same
US20130047616A1 (en) Electrical power cogeneration system
US20210123643A1 (en) Grid interactive water heater
Kiviluoma et al. Harnessing flexibility from hot and cold: heat storage and hybrid systems can play a major role
Hassan et al. Integrated adsorption-based multigeneration systems: A critical review and future trends
US10883728B2 (en) Broad band district heating and cooling system
Demirel et al. Energy conservation
KR101319975B1 (en) Thermal energy network system
Chen et al. Techno-economic control strategy optimization for water-source heat pump coupled with ice storage district cooling system
US11502628B2 (en) Energy storage system
KR100618292B1 (en) Triple purpose integrated power, heat and cold cogeneration system with absortion cooler from natural gas
JP2022064235A (en) Heat storage type temperature difference storage battery, combined heat and power system, and combined heat and power system group
KR20170033469A (en) Cooling and Heat system and its controlling method used by solar heat, geoheat or outside air for selected heat source
KR20190080177A (en) Electric car charging station based on gas energy and operating method of that
KR200369438Y1 (en) Triple purpose integrated power, heat and cold cogeneration system with absortion cooler from natural gas
KR20190080176A (en) Cng charging station with trigeneration system and operating method of that
JP2023154926A (en) Heat storage type storage battery, cogeneration system, and cogeneration system group
Kallio Modelling of a combined heat and power system
JP6408315B2 (en) District heat and power supply system
CN115986603B (en) Photovoltaic power supply cabinet and pipeline control method thereof
KR102680341B1 (en) Cogeneration systems and methods for generating heating and electricity
JP2000073862A (en) Energy supply device and energy supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240612