JP2022064169A - Manufacturing method of welding jointed body and manufacturing method of ceramic heater - Google Patents

Manufacturing method of welding jointed body and manufacturing method of ceramic heater Download PDF

Info

Publication number
JP2022064169A
JP2022064169A JP2020172742A JP2020172742A JP2022064169A JP 2022064169 A JP2022064169 A JP 2022064169A JP 2020172742 A JP2020172742 A JP 2020172742A JP 2020172742 A JP2020172742 A JP 2020172742A JP 2022064169 A JP2022064169 A JP 2022064169A
Authority
JP
Japan
Prior art keywords
manufacturing
film
cold
welded
tubular body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020172742A
Other languages
Japanese (ja)
Inventor
章弘 大森
Akihiro Omori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2020172742A priority Critical patent/JP2022064169A/en
Publication of JP2022064169A publication Critical patent/JP2022064169A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a manufacturing method of providing a welding joined body of preferable welding quality according to a method of manufacturing the welding joined body by performing laser welding of two metal members by setting a coated film-remaining portion in which a coated film remains on the surface as a welding portion, without removing the coated film, with respect to a cold-forged article as the cold-forged article formed by forging forging-raw material formed of the coated film as a lubricant on the surface of at least one metal member of two metal members.SOLUTION: A cold forged article is forged from forging raw material in which a fluorine resin coated film is formed as a lubricant on the surface. When the coated film remaining on the cold forged article is the fluorine resin coated film, a low-melting point component to be contained in the coated film has small amounts and, therefore, the occurrence of blow hole or else can be extremely reduced even when the coated film receives thermal energy due to laser welding. When mother material of one side which is to be laser welded is the cold forged article, the fluorine resin coated film is effectively used for the lubricant of forging.SELECTED DRAWING: None

Description

本発明は、溶接接合体の製造方法に関し、詳しくは、2つの金属部材の少なくとも一方が冷間鍛造品であり、この2つの金属部材をレーザ溶接して溶接接合体を製造する方法等に関する。 The present invention relates to a method for manufacturing a welded joint, and more particularly to a method in which at least one of two metal members is a cold forged product and the two metal members are laser welded to manufacture a welded joint.

冷間鍛造においては、鍛造前の金属素材(鉄鋼材料等からなる被加工材。以下、「鍛造素材」、又は単に「素材」ともいう)に、鍛造用の金型面との摩擦抵抗や加工圧力の低減、冷間鍛造品の寸法精度や表面状態の向上、そして、鍛造時の焼き付き防止等のため、潤滑剤が使用される。この潤滑剤は、通常、素材に塗布(被覆)や、素材を潤滑剤(液)中に浸漬し、その後、乾燥処理工程を経ることで、素材の表面に被膜として密着させ、形成される。従来、このような被膜(潤滑剤)には、水溶性のシュウ酸塩被膜や無機被膜、酸に溶解する石灰被膜等、種々のものが使用されている。この被膜は、素材が冷間鍛造品となるまでの工程(通常、複数の鍛造工程)に従い、その素材の変形(塑性変形)、表面積の拡大等に追従して、薄膜化等の変形をするものの、最終的な塑性変形後の冷間鍛造品において、その表面に残存する。 In cold forging, the metal material before forging (working material made of steel material, etc., hereinafter also referred to as "forging material" or simply "material") is subjected to frictional resistance and processing with the mold surface for forging. Lubricants are used to reduce pressure, improve the dimensional accuracy and surface condition of cold forged products, and prevent seizure during forging. This lubricant is usually formed by applying (coating) to a material, immersing the material in a lubricant (liquid), and then undergoing a drying treatment step to bring the material into close contact with the surface of the material as a film. Conventionally, various such coatings (lubricants) have been used, such as a water-soluble oxalate coating, an inorganic coating, and a lime coating that dissolves in an acid. This film undergoes deformation such as thinning according to the process (usually multiple forging processes) until the material becomes a cold forged product, following the deformation (plastic deformation) of the material, the expansion of the surface area, and the like. However, it remains on the surface of the cold forged product after the final plastic deformation.

従来、このような被膜が残存している冷間鍛造品である金属部材(母材)同士を、そのまま、レーザ溶接(以下、単に「溶接」ともいう)することは、できないことは無いが、その被膜が有る部位において溶接する場合には、溶接部にブローホールやスパッタ(以下、ブローホール等)を発生させる。このため、溶接品質の低下や溶接不良を招きやすいため、溶接部に高精度が要求されるような溶接接合体、特に小物の溶接接合体の製造には不向きであり、適用ができないという問題があった。このブローホール等の発生原因は、冷間鍛造品の表面に残存する被膜(潤滑剤)が、不純物としての低融点成分を含むことになるため、レーザ照射に起因する高密度エネルギーによる発熱により、その溶接箇所(溶融、凝固箇所)において、その不純物がガスを発生させること等によると考えられる。そして、このような問題は、冷間鍛造品同士だけではなく、一方が被膜の残存する冷間鍛造品であれば、他方(レーザ溶接の相手方の金属部材)が、切削加工品(部材、製品)である場合においても生じる。 Conventionally, it is possible to perform laser welding (hereinafter, also simply referred to as “welding”) as it is between metal members (base materials) that are cold forged products in which such a coating remains. When welding is performed at a portion having the coating film, blow holes and spatters (hereinafter referred to as blow holes, etc.) are generated in the welded portion. For this reason, it is easy to cause deterioration of welding quality and welding defects, so that it is not suitable for manufacturing welded joints that require high precision in welded parts, especially small welded joints, and there is a problem that it cannot be applied. there were. The cause of the occurrence of blowholes and the like is that the film (lubricant) remaining on the surface of the cold forged product contains a low melting point component as an impurity, and therefore heat is generated by high-density energy caused by laser irradiation. It is considered that the impurities generate gas at the welded parts (melted and solidified parts). And, such a problem is not limited to cold forged products, but if one is a cold forged product with a residual coating, the other (metal member of the other party of laser welding) is a machined product (member, product). ) Also occurs.

このため、冷間鍛造品を相手方の金属部材とレーザ溶接して、溶接接合体を製造する場合には、冷間鍛造品の表面に残存する被膜を、少なくとも溶接予定箇所(溶接部位)、及びその近傍部分においては、切削加工や酸洗い等による洗浄で、溶接前にその被膜を除去する、という工程が必要となる。このように切削加工等による被膜除去工程(仕上げ工程)を経てから溶接するということでは、冷間鍛造による精密鍛造のメリットを損なうことになる。また、切削、洗浄のいずれの手段によるとしても、そのような被膜除去を行うということは、溶接接合体の製造工程の増大、製造効率の低下を招くことを意味する。よって、結果として溶接接合体の製造コストの増大を招く要因となる。 Therefore, when a cold forged product is laser-welded to a metal member of the other party to manufacture a welded joint, the film remaining on the surface of the cold forged product is applied to at least the planned welding location (welded portion) and the welded portion. In the vicinity thereof, a step of removing the coating film before welding by cutting, pickling, or the like is required. Welding after the film removal process (finishing process) by cutting or the like is impaired the merit of precision forging by cold forging. Further, by any means of cutting or cleaning, removing such a film means that the manufacturing process of the welded joint is increased and the manufacturing efficiency is lowered. Therefore, as a result, it becomes a factor that causes an increase in the manufacturing cost of the welded joint.

こうした中、素材の表面に、リン酸亜鉛被膜(ボンデ被膜)を形成して冷間鍛造し、その溶接前の冷間鍛造品において、少なくとも、その溶接所望部分(溶接部位)を100℃~500℃に加熱する熱処理(加熱処理)を行い、リン酸亜鉛被膜(ボンデ被膜)中の低融点成分(結晶水等)を解離、放出させ、その後で、レーザ溶接することで、ブローホール等の発生を防ぎ、溶接品質の低下という上記問題を解消するという技術が提案されている(特許文献1参照)。 Under these circumstances, a zinc phosphate film (bonde film) is formed on the surface of the material and cold forged, and in the cold forged product before welding, at least the desired welded portion (welded portion) is 100 ° C. to 500 ° C. Blow holes, etc. are generated by performing heat treatment (heat treatment) to heat to ℃, dissociating and releasing low melting point components (crystal water, etc.) in the zinc phosphate coating (bonde coating), and then performing laser welding. A technique has been proposed in which the above-mentioned problem of deterioration of welding quality is solved (see Patent Document 1).

特開平10-235482号公報Japanese Unexamined Patent Publication No. 10-235482

前記文献1に記載の技術によれば、切削加工工程や洗浄工程は要しないが、加熱処理工程を必要とするものであるから、それが比較的、簡易な処理工程であるとはいえ、被膜除去工程を要するという点では、工程が増えることには変わりがない。しかも、前記ボンデ被膜は、素材が冷間鍛造品の主要な被加工材の1つであるステンレス鋼には、適用できないという課題があり、冷間鍛造の適用対象金属の範囲が狭いという問題があった。 According to the technique described in Document 1, a cutting process and a cleaning process are not required, but a heat treatment process is required. Therefore, although it is a relatively simple processing process, the coating film is required. In terms of requiring a removal process, there is no change in the number of processes. Moreover, the bonde coating has a problem that it cannot be applied to stainless steel whose material is one of the main materials to be processed for cold forging, and there is a problem that the range of metals to which cold forging is applied is narrow. there were.

こうした中、本願発明者は、冷間鍛造品について、被膜除去工程を要することなく、良好なレーザ溶接を得るべく、ステンレス鋼を含む各種の金属素材(鍛造素材試験片)に、種々の潤滑剤で被膜を形成して冷間鍛造品(試験片)を製造し、試験的レーザ溶接を行った。すなわち、その冷間鍛造品(試験片)について、被膜の除去後の試験片と、その除去を行わない被膜残存試験片とについて、これらを、他部材(被膜の無い、例えば、切削加工品。以下、「他部材」ともいう。)に、それぞれレーザ溶接する試験溶接を繰り返し行った。結果、特定の潤滑剤を使用して被膜を形成した素材を出発材とする冷間鍛造品(試験片)については、その被膜残存試験片においても、ブローホール等の発生を格段に低減でき、良好な溶接品質(必要な合格品質)の溶接接合体が得られることを知った。 Under these circumstances, the inventor of the present application has applied various lubricants to various metal materials (forged material test pieces) including stainless steel in order to obtain good laser welding for cold forged products without requiring a film removing step. A cold forged product (test piece) was manufactured by forming a coating film, and a test laser welding was performed. That is, for the cold forged product (test piece), the test piece after the film is removed and the film residual test piece without the film removal are combined with other members (for example, a machined product without a film). Hereinafter, test welding of laser welding was repeatedly performed on each of the "other members"). As a result, for cold forged products (test pieces) whose starting material is a material in which a film is formed using a specific lubricant, the occurrence of blow holes and the like can be significantly reduced even in the film residual test piece. I learned that a welded joint with good welding quality (required passing quality) can be obtained.

本発明は、上記課題に鑑みて行った、冷間鍛造品同士、又は冷間鍛造品とそれ以外の金属部材とのレーザ溶接において、特定の潤滑剤を被膜として使用することで、冷間鍛造品においてその被膜の除去を行うことなくレーザ溶接しても、良好な溶接品質が得られると共に、素材がステンレス鋼であっても使用が可能であるという上記試験溶接から得られた知見に基づいてなされたものであり、冷間鍛造品を含む好適な溶接接合体の製造方法を提供することを目的とする。 In the present invention, cold forging is performed by using a specific lubricant as a film in laser welding between cold forged products or between a cold forged product and a metal member other than the cold forged products in view of the above problems. Based on the knowledge obtained from the above test welding that good welding quality can be obtained even if the product is laser welded without removing the coating film, and it can be used even if the material is stainless steel. It is made and an object thereof is to provide a suitable method for manufacturing a welded joint including a cold forged product.

請求項1に記載の発明は、2つの金属部材のうちの少なくとも一つの金属部材が、表面に潤滑剤をなす被膜を形成した鍛造素材から鍛造してなる冷間鍛造品であり、かつ、該冷間鍛造品については、その被膜を残存させた状態で、表面に該被膜が残存している被膜残存部位を溶接部位として、前記2つの金属部材をレーザ溶接することで溶接接合体を製造する方法において、
該冷間鍛造品を、表面に潤滑剤としてフッ素樹脂被膜を形成した鍛造素材から鍛造しておくことを特徴とする、溶接接合体の製造方法である。
請求項2に記載の発明は、前記冷間鍛造品がステンレス鋼からなる、ことを特徴とする請求項1に記載の溶接接合体の製造方法である。
The invention according to claim 1 is a cold forged product in which at least one of the two metal members is forged from a forged material having a coating film forming a lubricant on the surface thereof. For cold forged products, a welded joint is manufactured by laser welding the two metal members with the film remaining on the surface as the welded site with the film remaining. In the method
It is a method for manufacturing a welded joint, characterized in that the cold forged product is forged from a forged material having a fluororesin film formed on the surface as a lubricant.
The invention according to claim 2 is the method for manufacturing a welded joint according to claim 1, wherein the cold forged product is made of stainless steel.

請求項3に記載の発明は、一方の金属部材が軸材であり、他方の金属部材が筒状体であり、前記溶接接合体は、該筒状体の一端部の内側に、該軸材の一端部を嵌合し、その嵌合によって形成される接合部の外周縁を前記溶接部位として、2つの金属部材をレーザ溶接することで製造される軸状部材である、ことを特徴とする請求項1又は2のいずれか1項に記載の溶接接合体の製造方法である。 In the invention according to claim 3, one metal member is a shaft member, the other metal member is a tubular body, and the welded joint is formed inside one end of the tubular body. It is a shaft-shaped member manufactured by fitting one end of the metal member and laser welding two metal members with the outer peripheral edge of the joint formed by the fitting as the welded portion. The method for manufacturing a welded joint according to any one of claims 1 and 2.

請求項4に記載の発明は、通電することにより先端が発熱する棒状をなすセラミックヒータ素子と、該セラミックヒータ素子に形成された電極端子のうちの一方との導通が保持されるように該セラミックヒータ素子の後端部に固定された金属部材である筒状体と、自身の先端が該筒状体の後端部内に圧入によって嵌合された金属部材である軸材とを備え、該筒状体と該軸材とが、その嵌合によって形成される接合部の外周縁を溶接部位としてレーザ溶接されることにより、該筒状体を介して前記電極端子と該軸材との導通を保持する端子軸構造を備えてなるセラミックヒータの製造方法において、
前記筒状体と前記軸材の少なくとも一方を、表面に潤滑剤としてフッ素樹脂被膜を形成した鍛造素材から冷間鍛造しておき、該冷間鍛造品については、そのフッ素樹脂被膜が残存した状態で、前記接合部の外周縁を溶接部位としてレーザ溶接することを特徴とする、セラミックヒータの製造方法である。
The invention according to claim 4 is the ceramic so as to maintain continuity between a rod-shaped ceramic heater element whose tip generates heat when energized and one of the electrode terminals formed on the ceramic heater element. The cylinder is provided with a tubular body which is a metal member fixed to the rear end portion of the heater element, and a shaft member which is a metal member whose tip is fitted into the rear end portion of the tubular body by press fitting. The shape and the shaft are laser-welded with the outer peripheral edge of the joint formed by the fitting as a welded portion, so that the electrode terminal and the shaft are connected to each other via the tubular body. In a method of manufacturing a ceramic heater provided with a holding terminal shaft structure,
At least one of the tubular body and the shaft material is cold forged from a forged material having a fluororesin film formed on the surface as a lubricant, and the fluororesin film remains in the cold forged product. This is a method for manufacturing a ceramic heater, which comprises laser welding with the outer peripheral edge of the joint as a welded portion.

本願発明者は、冷間鍛造品をレーザ溶接する場合において、表面に残存する被膜を除去することなく、レーザ溶接を可能とするため、上記したように、各種材料からなる潤滑剤を用いて鍛造素材に被膜を形成して冷間鍛造品(試験片)を作り、試験溶接を繰り返し行った。結果、被膜残存部位を溶接部位としてレーザ溶接する場合において、上記したような周知の多種の潤滑剤(水溶性のシュウ酸塩被膜や無機被膜、酸に溶解する石灰被膜等)で被膜を形成した鍛造素材から鍛造された冷間鍛造品に比べ、フッ素樹脂で被膜を形成した素材から鍛造された冷間鍛造品では、溶接部位におけるブローホール等の発生を格段に低減でき、良好な溶接品質(必要な合格品質)の溶接接合体が得られることが判明した。本願発明者においては、フッ素樹脂が、高度の潤滑性、低摩擦性、耐熱性、密着性を備えている点に着目し、これを被膜として試用し、その被膜残存部位を溶接部位としてレーザ溶接した結果、得られたものである。しかも、フッ素樹脂被膜は、前記ボンデ被膜と異なり、ステンレス鋼への適用にも問題がない。 In the case of laser welding a cold forged product, the inventor of the present application forges using a lubricant made of various materials as described above in order to enable laser welding without removing the film remaining on the surface. A film was formed on the material to make a cold forged product (test piece), and test welding was repeated. As a result, in the case of laser welding with the remaining film portion as the weld site, a film was formed with various well-known lubricants (water-soluble oxalate film, inorganic film, lime film soluble in acid, etc.) as described above. Compared to cold forged products forged from forged materials, cold forged products forged from materials with a film formed of fluororesin can significantly reduce the occurrence of blow holes at welded parts, resulting in better welding quality ( It was found that a welded joint of the required acceptable quality) could be obtained. The inventor of the present application focused on the fact that the fluororesin has a high degree of lubricity, low friction, heat resistance, and adhesion, tried this as a coating, and laser welded the remaining coating portion as a welding portion. As a result of this, it was obtained. Moreover, unlike the bonde coating, the fluororesin coating has no problem in being applied to stainless steel.

このように、フッ素樹脂は、ステンレス鋼及びそれ以外の金属材料の冷間鍛造における被膜としても適用できるし、それが除去されずに残存していてもレーザ溶接における溶接品質に支障がない。このため、冷間鍛造品であって、その後、レーザ溶接されることで溶接接合体を製造する場合には、潤滑材にフッ素樹脂被膜を用いることが極めて効果的である。すなわち、本願発明によれば、冷間鍛造において、潤滑剤として、フッ素樹脂被膜を形成することとしたため、その被膜の除去工程を要することなく、良好なレーザ溶接品質の溶接接合体が得られる。結果、その溶接接合体の製造における製造効率の向上、及びコスト低減が図られる、という特有の効果が得られる。 As described above, the fluororesin can be applied as a coating film in cold forging of stainless steel and other metal materials, and even if it remains without being removed, there is no problem in welding quality in laser welding. Therefore, in the case of a cold forged product and then laser welding to produce a welded joint, it is extremely effective to use a fluororesin coating as a lubricant. That is, according to the present invention, since the fluororesin film is formed as a lubricant in cold forging, a welded joint having good laser welding quality can be obtained without requiring a step of removing the film. As a result, it is possible to obtain a peculiar effect that the manufacturing efficiency in the manufacturing of the welded joint is improved and the cost is reduced.

前記効果が得られる要因については、次のように考えられる。従来、被膜の残存する冷間鍛造品をレーザ溶接する場合において、ブローホール等が発生するのは、冷間鍛造の素材をなす成分中、例えば素材がステンレス鋼(Fe-Cr合金)では、その主要母材(Fe)よりも融点の低い成分(低融点成分)等が不純物をなし、これがレーザ照射による発熱によるガスの発生を招いていると考えられる。一方で、被膜に、フッ素樹脂被膜を用いた場合には上記効果が得られた。この結果からして、被膜に、フッ素樹脂被膜を用いた場合には、冷間鍛造品の表面に残存する被膜中に含まれる成分中、その母材(Fe)よりも融点の低い成分(以下、「低融点成分」ともいう)は、従来の潤滑材をなす被膜を用いた冷間鍛造品に比べると格段に少なく、したがって、レーザ照射による発熱に起因するガスの発生量が抑えられる、と考えられる。例えば、SUS430製の冷間鍛造品において、従来のKa含有の無機被膜等を用い、溶接した場合の不良判定となるブローホール等の発生率は7~9%であったのに対し、フッ素樹脂を用いた場合の不良判定となるブローホール等の発生率は、それらより格段と低い、1%以下であった。本発明は、このような試験溶接結果から、その効果が実証されるものである。 The factors for obtaining the above effects are considered as follows. Conventionally, when a cold forged product having a residual film is laser-welded, blow holes and the like occur in the components of the cold forged material, for example, when the material is stainless steel (Fe—Cr alloy). It is considered that the components having a lower melting point (low melting point component) than the main base material (Fe) form impurities, which causes the generation of gas due to the heat generated by the laser irradiation. On the other hand, when a fluororesin film was used as the film, the above effect was obtained. From this result, when a fluororesin film is used as the film, among the components contained in the film remaining on the surface of the cold forged product, the component having a melting point lower than that of the base material (Fe) (hereinafter referred to as the component). , Also referred to as "low melting point component") is significantly less than that of conventional cold forged products using a coating film that forms a lubricant, and therefore the amount of gas generated due to heat generation due to laser irradiation is suppressed. Conceivable. For example, in a cold forged product made of SUS430, the occurrence rate of blow holes and the like, which is a defect judgment when welding using a conventional Ka-containing inorganic film or the like, was 7 to 9%, whereas the fluororesin The rate of occurrence of blow holes and the like, which is a defect judgment when using the above, was 1% or less, which is much lower than those. The effect of the present invention is demonstrated from such test welding results.

なお、本願発明者において、前記例に関して低融点成分について、溶接後の溶接箇所近傍において検査し、上記推論について検証してみた。結果、レーザ溶接の後において、冷間鍛造品における溶接箇所近傍における被膜中に含まれるSUS430中の、Feよりも低融点の成分(低融点成分)を検査した結果、鍛造素材に形成した被膜に、Ka含有の無機被膜を用いた場合には、Feを100%としたときの低融点成分(質量)の合計は20%程度であった。これに対し、鍛造素材に形成した被膜に、フッ素樹脂被膜を用いた場合には、Feを100%としたときの低融点成分(質量)の合計は、5%以下であった。この検証結果からしても、低融点成分の少なさが、レーザ照射(発熱)によるそのガス化の減少をもたらし、ブローホールやスパッタの発生の低減に大きく寄与していると考えられる。 In addition, the inventor of the present application inspected the low melting point component in the vicinity of the welded portion after welding with respect to the above example, and tried to verify the above reasoning. As a result, after laser welding, a component having a melting point lower than Fe (low melting point component) in SUS430 contained in the film in the vicinity of the welded portion in the cold forged product was inspected, and as a result, the film formed on the forged material was obtained. When the Ka-containing inorganic film was used, the total low melting point component (mass) was about 20% when Fe was 100%. On the other hand, when the fluororesin film was used for the film formed on the forged material, the total low melting point components (mass) when Fe was 100% was 5% or less. From this verification result, it is considered that the small amount of the low melting point component causes the reduction of gasification due to laser irradiation (heat generation) and greatly contributes to the reduction of the occurrence of blow holes and spatter.

本願において、被膜残存部位を溶接部位とする上記「冷間鍛造品」は、溶接対象の2つの金属部材(溶接母材)の一方でも、両方でもよい。そして、その「冷間鍛造品」は、素材の一部、又は大部分が冷間鍛造で成形されるものも含まれ、素材の全体が冷間鍛造で成形されるものに限定されない。また、鍛造素材の一部分のみが冷間鍛造で成形されるようなものでは、その素材の一部分の表面にのみ被膜を形成しておく場合も含まれる。このような冷間鍛造品では、例えば、その一部分に対応する成形部位の表面部分が被膜残存部位となり、溶接部位となる。なお、被膜残存部位を溶接部位とする上記「冷間鍛造品」の相手方の金属部材(母材)には、切削加工品のみならず、冷間鍛造品であって、切削、洗浄や熱処理等によりその被膜が除去されたものも含まれる。本発明において、被膜に用いられるフッ素樹脂は、フッ素樹脂を主成分として含む樹脂をいい、4フッ化樹脂、3フッ化樹脂、4-6フッ化樹脂が例示される。このようなフッ素樹脂皮膜は、これらの樹脂を主成分(微粉末)とする原料を適度の水で混合攪拌してなる液に、鍛造素材を浸漬し、或いは同液を鍛造素材に塗布し、乾燥等の処理をすることで形成される。 In the present application, the above-mentioned "cold forged product" in which the coating residual portion is a welded portion may be one or both of the two metal members (welded base materials) to be welded. The "cold forged product" includes a product in which a part or most of the material is formed by cold forging, and is not limited to a product in which the entire material is formed by cold forging. Further, in the case where only a part of the forged material is formed by cold forging, a case where a film is formed only on the surface of a part of the material is included. In such a cold forged product, for example, the surface portion of the molded portion corresponding to a part thereof becomes the coating residual portion and becomes the welded portion. The metal member (base material) of the other party of the above-mentioned "cold forged product" whose welded portion is the remaining film portion is not only a machined product but also a cold forged product, such as cutting, cleaning, and heat treatment. The film is also removed by the method. In the present invention, the fluororesin used for the coating film refers to a resin containing a fluororesin as a main component, and examples thereof include tetrafluororesin, trifluororesin, and 4-6 fluororesin. In such a fluororesin film, the forging material is dipped in a liquid obtained by mixing and stirring the raw materials containing these resins as the main component (fine powder) with appropriate water, or the same liquid is applied to the forging material. It is formed by processing such as drying.

本発明において、フッ素樹脂被膜を除去することなく(残存したまま)レーザ溶接の対象とされる冷間鍛造品は、その素材の材質に限定はない。また、その冷間鍛造品は、ステンレス鋼(SUS430、SUS630等)や合金鋼を含む鉄鋼材の他、アルミニウム、銅などの非鉄金属材料のように、冷間鍛造(塑性加工)に適し、レーザ溶接できるものに広く適用できる。また、本発明に係る金属部材、溶接接合体は、小物で、高精度の要求されるものに好適とされるが、これらに限定されるものではない。また、金属部材、溶接接合体の用途等に応じて、筒状体(管)、板、棒等、各種の形状のものに、そして、その溶接部位(突き合せ部位、嵌合部位等)の形状、構造に係らず、広く適用でき、溶接接合体については、上記した軸状部材の他、所望とする形状、構造のものとして具体化できる。 In the present invention, the cold forged product to be laser-welded without removing the fluororesin film (remaining) is not limited to the material of the material. The cold forged product is suitable for cold forging (plastic working) such as steel materials including stainless steel (SUS430, SUS630, etc.) and alloy steel, as well as non-ferrous metal materials such as aluminum and copper, and lasers. Widely applicable to things that can be welded. Further, the metal member and the welded joint according to the present invention are suitable for small items that require high precision, but are not limited thereto. In addition, depending on the application of the metal member, the welded joint, etc., it can be made into various shapes such as a tubular body (tube), a plate, a rod, etc., and the welded part (butting part, fitting part, etc.). It can be widely applied regardless of the shape and structure, and the welded joint can be embodied as a desired shape and structure in addition to the above-mentioned shaft-shaped member.

本発明の溶接接合体の製造方法を具体化した実施の形態例-1を説明する模式図であって、Aは、溶接前の2つの金属部材(軸材と筒状体)の説明図、Bはその溶接後の断面図。It is a schematic diagram explaining Embodiment-1 which embodied the manufacturing method of the welded joint of this invention, and A is the explanatory drawing of two metal members (shaft material and a tubular body) before welding. B is a cross-sectional view after welding. 図1の溶接接合体を、セラミックヒータ素子の電極端子との通電用の端子軸構造とするグロープラグの縦断面図、及びその端子軸構造部分を説明する拡大図。A vertical cross-sectional view of a glow plug having a welded joint of FIG. 1 as a terminal shaft structure for energization with an electrode terminal of a ceramic heater element, and an enlarged view illustrating a terminal shaft structure portion thereof. 溶接接合体の形態例-2を説明する模式図であって、Aは、溶接前の2つの金属部材の説明図、Bはその溶接後の図。It is a schematic diagram explaining the form example-2 of the welded joint, A is the explanatory view of two metal members before welding, and B is the figure after welding.

本発明の溶接接合体の製造方法を具体化した実施の形態例-1について、図1に基づいて詳細に説明する。本発明の溶接接合体をなす、2つの金属部材は、図1の左図(A)に示したように、例えば、その一方(上図)が、SUS430製の横断面が異径円形の軸材51であり、他方(下図)が、SUS630製の円筒状(横断面が円形の管状)の筒状体(パイプ)61である。このうち、本例では、軸材51は、表面にフッ素樹脂被膜を形成した鍛造素材から多段の冷間鍛造工程を経て製造された冷間鍛造品であり、冷間鍛造後、フッ素樹脂被膜(4フッ化樹脂)が除去されておらず、したがって、その表面にフッ素樹脂被膜が残存している。図1(A)中の「網掛け」は、同被膜を示す。そして、筒状体61は冷間鍛造品ではあるが、その表面の被膜は熱処理等により除去されているものとする。なお、軸材51は、一端部(図示、下方の端部)が、筒状体61の一端(図示、上方の端)63の内側(内周面)に、例えば圧入で嵌合される軸部54をなし、これに続く他端側(図示、上方の端側)に向い、その嵌合状態において、筒状体61の外径と同径となる大径フランジ(大径部)55を備え、このフランジ55より他端側に向け、軸部54より細い外径の細長軸部58が延びている。 The first embodiment, which embodies the method for manufacturing a welded joint of the present invention, will be described in detail with reference to FIG. As shown in the left figure (A) of FIG. 1, the two metal members forming the welded joint of the present invention, for example, one of them (upper figure) is a shaft made of SUS430 and having a circular cross section with a different diameter. The material 51 is the material 51, and the other (see the figure below) is a cylindrical body (pipe) 61 made of SUS630 and having a cylindrical shape (a tubular body having a circular cross section). Of these, in this example, the shaft member 51 is a cold forged product manufactured from a forged material having a fluororesin film formed on its surface through a multi-step cold forging process, and after cold forging, the fluororesin film (fluororesin film). (4 Fluororesin) has not been removed, and therefore a fluororesin film remains on the surface thereof. “Shading” in FIG. 1 (A) indicates the same coating. Although the tubular body 61 is a cold forged product, it is assumed that the coating film on the surface thereof has been removed by heat treatment or the like. The shaft member 51 has a shaft in which one end (shown, lower end) is fitted, for example, by press fitting to the inside (inner peripheral surface) of one end (shown, upper end) 63 of the tubular body 61. A large-diameter flange (large-diameter portion) 55 forming a portion 54, facing the other end side (illustrated, upper end side) following the portion 54, and having the same diameter as the outer diameter of the tubular body 61 in the fitted state thereof. A slender shaft portion 58 having an outer diameter smaller than that of the shaft portion 54 extends toward the other end side of the flange 55.

本例では、図1-Bに示したように、溶接接合体100は、筒状体61の一端63の内側に、軸材51の一端部(軸部54)を圧入で嵌合させ、かつ、筒状体61の一端(円環面)63に、軸材51の大径フランジ55の一端向き面(円環面)57を当接させ、その嵌合によって形成される接合部(2つの円環接合面57,63の当接部)の外周縁Wを溶接部位としている。レーザ溶接においては、この外周縁Wに所定の溶かし込み深さが得られる条件でレーザLaを照射し、両部材をその軸線回りに周回させ、2つの金属部材(筒状体61、軸材51)を、外周縁Wにおいて所定の溶接ビードが得られるようレーザ溶接する。これにより、溶接接合体100である軸状部材が製造される。なお軸材51の一端部である軸部54は、先端53寄り部位が先細りテーパの嵌合におけるガイド部54aをなし、筒状体61の内周面に圧入される軸部54の部分の外径は、筒状体61の内径より、微量(圧入代分)、大きく設定されている。 In this example, as shown in FIG. 1-B, in the welded joint 100, one end portion (shaft portion 54) of the shaft member 51 is press-fitted into the inside of one end 63 of the tubular body 61 by press fitting. , One end (annular surface) 63 of the tubular body 61 is brought into contact with one end facing surface (annular surface) 57 of the large-diameter flange 55 of the shaft member 51, and a joint portion (two) formed by the fitting thereof. The outer peripheral edge W of the abutment portion of the torus joint surfaces 57 and 63) is used as the welded portion. In laser welding, the outer peripheral edge W is irradiated with laser La under the condition that a predetermined melting depth can be obtained, and both members are made to circulate around the axis thereof, and two metal members (cylindrical body 61, shaft member 51). ) Is laser welded on the outer peripheral edge W so as to obtain a predetermined weld bead. As a result, a shaft-shaped member which is a welded joint 100 is manufactured. The shaft portion 54, which is one end of the shaft member 51, has a portion near the tip 53 that serves as a guide portion 54a for fitting with a tapered taper, and is outside the portion of the shaft portion 54 that is press-fitted into the inner peripheral surface of the tubular body 61. The diameter is set to be slightly larger (for the press-fitting allowance) than the inner diameter of the tubular body 61.

なお、本例において製造される、溶接接合体(軸状部材)100の構造は、例えば、図2に示した公知構造のセラミックヒータ(例えば、ディーゼルエンジンの始動促進に用いられるグロープラグ)に用いられている、棒状のセラミックヒータ素子11に形成された電極端子のうちの一方の電極端子16との導通が保持されるように、その素子11の後端部に固定される筒状体61と、この筒状体61を介し、その電極端子16と軸材51との導通を保持する端子軸構造に適用できる。詳しくは後述する。 The structure of the welded joint (shaft member) 100 manufactured in this example is used, for example, in a ceramic heater having a known structure shown in FIG. 2 (for example, a glow plug used to promote the start of a diesel engine). A tubular body 61 fixed to the rear end of the element 11 so as to maintain continuity with one of the electrode terminals 16 formed on the rod-shaped ceramic heater element 11. This can be applied to a terminal shaft structure that maintains continuity between the electrode terminal 16 and the shaft member 51 via the tubular body 61. Details will be described later.

このような本例で製造された溶接接合体100は、冷間鍛造品である軸材51については、その表面に、図1に示した網掛けのように、4フッ化樹脂被膜が残存しているものの、レーザ溶接過程で生成される溶接ビード(溶接部位)に溶接品質が不良判定となるようなブローホールも、その近傍に溶接不良判定となるようなスパッタの発生も見られなかった。このように、冷間鍛造に4フッ化樹脂被膜を用いた場合には、これを除去することなく、それが残存している状態において、レーザ溶接しても、その溶接品質に問題も無く、接合強度の高い溶接接合体を得ることができる。そして、この溶接接合体100の製造においては、従来におけるような被膜除去工程を要しないので、その分、その製造効率を高めることができ、コストの低減が図られる。 In the welded joint 100 manufactured in this example, a tetrafluoride resin coating remains on the surface of the shaft member 51, which is a cold forged product, as shown in FIG. However, neither blow holes whose welding quality was judged to be defective were found in the weld beads (welded parts) generated in the laser welding process, and spatters such as welding defects were not found in the vicinity thereof. In this way, when the tetrafluororesin coating is used for cold forging, there is no problem in the welding quality even if laser welding is performed in the state where it remains without removing it. A welded joint with high joint strength can be obtained. Further, in the production of the welded joint 100, the film removing step as in the conventional case is not required, so that the production efficiency can be improved and the cost can be reduced accordingly.

なお、比較例として、同一素材に、潤滑剤として上記した従来の被膜材(無機被膜等)で被膜を形成した点のみを変更して冷間鍛造した冷間鍛造品を用いて、上記したのと同様にレーザ溶接して溶接接合体を製造し、その溶接接合体における溶接品質を検査をした。結果、生成される溶接ビードには溶接品質が不良判定となる、ブローホールの発生が多くみられ、また、溶接ビードの近傍には溶接品質が不良判定となる、スパッタの発生も多く見られた。この比較試験より、従来の皮膜である無機被膜等の使用では、溶接前に、その除去工程が必須であるのに対し、上記例ではその必要が無く、上記したように、極めて効率的に溶接接合体を製造できる。なお、4フッ化樹脂被膜に代えて、3フッ化樹脂被膜、4-6フッ化樹脂被膜を用いた場合にも、同様の効果が得られた。 As a comparative example, a cold forged product obtained by cold forging by changing only the point where a film was formed on the same material with the above-mentioned conventional film material (inorganic film, etc.) as a lubricant was used as described above. In the same manner as above, laser welding was performed to manufacture a welded joint, and the weld quality of the welded joint was inspected. As a result, in the generated weld bead, the welding quality was judged to be defective and many blow holes were generated, and in the vicinity of the weld bead, the welding quality was judged to be defective and spatter was also frequently generated. .. From this comparative test, in the case of using an inorganic film, which is a conventional film, the removal step is indispensable before welding, but in the above example, it is not necessary, and as described above, welding is extremely efficient. Welds can be manufactured. The same effect was obtained when a trifluoride resin film or a 4-6 fluoride resin film was used instead of the tetrafluoride resin film.

上記したように、上記例の溶接接合体(軸状部材)100は、図2に示したセラミックヒータ(グロープラグ)201を構成する、セラミックヒータ素子11の一方の電極16との接続をする端子軸構造に適用できる。すなわち、上記例における溶接接合体(軸状部材)100を構成する筒状体61は、その他端(図2における下側の端)の内側に、通電することにより発熱する抵抗発熱体14を自身の先端部10の内部に有する丸棒状のセラミックヒータ素子11の後端13を、圧入によって嵌合して、セラミックヒータ素子11の外周面の先後において形成された一対の電極16,17のうちの相対的に後端(図2の素子11の上方の端)側に位置する電極16との通電を保持する通電保持パイプとなる。一方、この溶接接合体である軸状部材を構成する軸材51は、その軸材51の一端部53が、筒状体61の一端63の内側に嵌合され、この一端部53と反対側の他端部52側を端子とする通電中継軸材となる。なお、このような筒状体61のように、軸材51が圧入、嵌合がされるものでは、それも鍛造素材にフッ素樹脂被膜を形成してなる冷間鍛造品とするのが高強度でよいが、素子11の電極16との導通の確保やメッキ層の形成のため、その表面の被膜は、鍛造後の熱処理で除去しておくのが好ましい。 As described above, the welded joint (shaft member) 100 of the above example is a terminal for connecting to one electrode 16 of the ceramic heater element 11 constituting the ceramic heater (glow plug) 201 shown in FIG. Applicable to shaft structure. That is, the cylindrical body 61 constituting the welded joint (shaft member) 100 in the above example has a resistance heating element 14 that generates heat by energizing the inside of the other end (lower end in FIG. 2). Of the pair of electrodes 16 and 17 formed behind the outer peripheral surface of the ceramic heater element 11 by fitting the rear end 13 of the round bar-shaped ceramic heater element 11 inside the tip portion 10 by press fitting. It is an energization holding pipe that holds energization with the electrode 16 located relatively on the rear end side (the upper end of the element 11 in FIG. 2). On the other hand, in the shaft member 51 constituting the shaft-shaped member which is a welded joint, one end portion 53 of the shaft member 51 is fitted inside one end 63 of the tubular body 61, and the side opposite to the one end portion 53. It is a current-carrying relay shaft material having the other end 52 side as a terminal. In the case where the shaft member 51 is press-fitted and fitted like such a tubular body 61, it is a cold forged product in which a fluororesin film is formed on the forged material. However, in order to ensure continuity with the electrode 16 of the element 11 and to form a plating layer, it is preferable to remove the coating film on the surface by heat treatment after forging.

このように、図1に示した、筒状体61と軸材51とからなる溶接接合体100の構造は、セラミックヒータ素子11用の端子軸構造として好適である。というのは、その端子軸構造への適用により、被膜の除去工程を要しないから、筒状体61である通電保持パイプの他端(図2の下端)の内側に、棒状のセラミックヒータ素子11の後端部(後端13)を嵌合することで形成されるヒータ素子組付け体の製造、ひいては、このヒータ素子組付け体における筒状体61に軸材51を、上記したように嵌合、レーザ溶接し、そして、グロープラグとしてセラミックヒータを製造することの効率化を図ることができるためである。しかも、グロープラグは、近時、益々、その小型化(小径化)、軽量化、さらにはロングリーチ化の要請が強く、軸材51である通電中継軸材も小径化、長寸(細長)化が求められてきている。このようなグロープラグにおいて、セラミックヒータ素子11、及び筒状体61と軸材51とからなる端子軸構造の外周面と、それらを包囲する筒状本体31の内周面との隙間(空隙)も小さくなってきている。このため、上記したような溶接部位をレーザ溶接する場合において、ブローホールやスパッタの発生があると、短絡の危険が高まる。これに対し本発明を用いることで、皮膜の除去をするまでもなく、その発生を排除できるため、こうした小型化(小径化)等の要請に応えることのできるグロープラグの低コスト化も期待される。 As described above, the structure of the welded joint 100 composed of the tubular body 61 and the shaft member 51 shown in FIG. 1 is suitable as a terminal shaft structure for the ceramic heater element 11. This is because the application to the terminal shaft structure does not require a coating removal step, so that the rod-shaped ceramic heater element 11 is inside the other end (lower end of FIG. 2) of the energization holding pipe which is the tubular body 61. Manufacture of a heater element assembly formed by fitting the rear end portion (rear end 13), and by extension, the shaft member 51 is fitted into the tubular body 61 in the heater element assembly as described above. This is because it is possible to improve the efficiency of laser welding and manufacturing a ceramic heater as a glow plug. Moreover, in recent years, there has been a strong demand for glow plugs to be smaller (smaller diameter), lighter, and longer reach, and the current-carrying relay shaft material, which is the shaft material 51, is also smaller in diameter and longer (slender). There is a demand for conversion. In such a glow plug, a gap (gap) between the outer peripheral surface of the terminal shaft structure composed of the ceramic heater element 11, the tubular body 61 and the shaft member 51, and the inner peripheral surface of the tubular main body 31 surrounding them. Is getting smaller. Therefore, in the case of laser welding the welded portion as described above, if blow holes or spatter occur, the risk of short circuit increases. On the other hand, by using the present invention, it is possible to eliminate the occurrence of the film without removing the film, and therefore, it is expected that the cost of the glow plug that can meet the demand for such miniaturization (smaller diameter) can be reduced. To.

なお、図2に示したセラミックヒータ(グロープラグ)201の構成(構造)について説明すると次のようである。グロープラグは、セラミックヒータ素子11の先端(図示下端)10及び後端13を突出させるようにして内側に締り嵌め状態で固定(固着)してなるステンレス鋼製の金属製筒体(異径円筒体)21と、この金属製筒体21の後端部(図示上端)の異径大径部22に同軸状に配置、嵌合されて溶接されたステンレス鋼製の円筒状の金属製本体31等から、次のように構成されている。 The configuration (structure) of the ceramic heater (glow plug) 201 shown in FIG. 2 will be described as follows. The glow plug is a stainless steel metal cylinder (different diameter cylinder) formed by fixing (fixing) the front end (lower end in the figure) 10 and the rear end 13 of the ceramic heater element 11 so as to protrude inward in a tightly fitted state. Body) 21 and a cylindrical metal body 31 made of stainless steel that is coaxially arranged, fitted, and welded to the different diameter and large diameter portion 22 of the rear end portion (upper end in the drawing) of the metal cylinder 21. From the above, it is configured as follows.

すなわち、セラミックヒータ素子11は、軸線G方向において同径をなす丸棒状に形成されており、絶縁基体(例えば窒化珪素質セラミック)中に設けられた抵抗発熱体14の両端部に連なる電極端子16,17を、セラミックヒータ素子11の後端寄り部位において先後にずれた位置で外周面(側面)に露出させている。このうち一方(先端側)の電極端子(接地側電極端子)17は、金属製筒体21の内周面に押付けられて電気的に接続されている。そして、素子11の後端13には、上記したように筒状体61が圧入され、その内周面と他方の電極端子16との導通が保持されている。また、軸材51は、金属製本体31内において絶縁が保持されて同軸状に内挿、配置され、その後端52が本体31の後端より突出させられており、その突出する後端52には、電力供給用のリード線が接続される外部端子71が固定されている。ただし、この外部端子71は、先端側に中央に開口する取り付け穴を有しており、この取り付け穴に軸材51の後端52寄り部位を内挿した上で、その取り付け穴に対応する外周面を加締めることで軸材51に固定されている。なお、本体31の後端部の内周面には拡径部が設けられており、この拡径部の内周面と、軸材51の外周面との間に、リング状のパッキン81、及び円筒状の絶縁部材91が配置され、軸材51を本体31の後端において絶縁を保持して固定する構成を有している。なお、金属製本体31の後端寄り部位の外周面には、グロープラグ201をエンジンにねじ込み方式で取り付けるためのネジ部37が形成されており、後端寄り部位の外周面には、そのねじ込み用の多角形部(例えば、六角ボルトの頭部状部位)39を備えている。 That is, the ceramic heater element 11 is formed in the shape of a round bar having the same diameter in the axis G direction, and the electrode terminals 16 connected to both ends of the resistance heating element 14 provided in the insulating substrate (for example, silicon nitride ceramic). , 17 are exposed on the outer peripheral surface (side surface) at a position shifted from the front to the back at the portion near the rear end of the ceramic heater element 11. Of these, one (tip side) electrode terminal (ground side electrode terminal) 17 is pressed against the inner peripheral surface of the metal cylinder 21 and is electrically connected. Then, as described above, the tubular body 61 is press-fitted into the rear end 13 of the element 11, and the conduction between the inner peripheral surface thereof and the other electrode terminal 16 is maintained. Further, the shaft member 51 is coaxially inserted and arranged in the metal main body 31 while being insulated, and the rear end 52 is projected from the rear end of the main body 31. Is fixed to an external terminal 71 to which a lead wire for power supply is connected. However, this external terminal 71 has a mounting hole that opens in the center on the tip side, and after inserting a portion near the rear end 52 of the shaft member 51 into this mounting hole, the outer circumference corresponding to the mounting hole is inserted. It is fixed to the shaft member 51 by crimping the surface. A diameter-expanded portion is provided on the inner peripheral surface of the rear end portion of the main body 31, and a ring-shaped packing 81 is provided between the inner peripheral surface of the enlarged diameter portion and the outer peripheral surface of the shaft member 51. A cylindrical insulating member 91 is arranged, and the shaft member 51 is configured to hold and fix the insulating member at the rear end of the main body 31. A screw portion 37 for attaching the glow plug 201 to the engine by a screwing method is formed on the outer peripheral surface of the portion near the rear end of the metal main body 31, and the screwed portion 37 is formed on the outer peripheral surface of the portion near the rear end. It is provided with a polygonal portion (for example, a head-shaped portion of a hexagon bolt) 39 for use.

上記例では、溶接接合体が、セラミックヒータに好適な端子軸構造であり、2つの金属部材が、筒状体と、軸材であり、これらを上記したような嵌合構造として、その嵌合状態における接合面の外周縁を溶接部位として、2つの金属部材をレーザ溶接することで製造される軸状部材について例示したが、本願発明は、溶接接合体、及び2つの金属部材の形状、構造、そして、溶接部位に限定はなく、溶接接合体の用途等に応じて適宜のものとして具体化できるのは上記したとおりである。例えば、実施形態例-2として図3に示した溶接接合体102のように、金属部材を、2つの円柱体(円板51、又は円筒部材61)とし、その両者の端面57,63において突き合せ、その突き合せ面の外周縁Wを溶接部位として周回状にレーザ溶接Laする場合など、金属部材、溶接接合体の形状、構造にかかわらず、広く適用できる。 In the above example, the welded joint has a terminal shaft structure suitable for a ceramic heater, and the two metal members are a tubular body and a shaft material, which are fitted as a fitting structure as described above. An example of a shaft-shaped member manufactured by laser welding two metal members with the outer peripheral edge of the joint surface in the state as a welded portion has been illustrated, but the present invention has a welded joint and the shape and structure of the two metal members. And, the welded portion is not limited, and it can be embodied as an appropriate one depending on the use of the welded joint as described above. For example, as in the welded joint 102 shown in FIG. 3 as the second embodiment, the metal member is made up of two cylindrical bodies (disk 51 or cylindrical member 61), and the metal members are thrust at the end faces 57 and 63 of both. It can be widely applied regardless of the shape and structure of the metal member and the welded joint, such as when laser welding La is performed around the outer peripheral edge W of the butt surface as a welded portion.

すなわち、本発明は、2つの金属部材のうちの少なくとも一つの金属部材が、表面に潤滑剤をなす被膜を形成した鍛造素材から鍛造してなる冷間鍛造品であり、かつ、該冷間鍛造品については、その被膜を除去することなく、表面に該被膜が残存している被膜残存部位を溶接部位として、2つの金属部材をレーザ溶接することで溶接接合体を製造する方法において、該冷間鍛造品を、表面に潤滑剤としてフッ素樹脂被膜を形成した鍛造素材から鍛造しておく、という本発明の要旨を逸脱しない範囲において、金属部材、溶接部位、そして溶接接合体の形状、構造にも限定なく、広く適用できる。 That is, the present invention is a cold forged product in which at least one of the two metal members is forged from a forged material having a coating film forming a lubricant on the surface thereof, and the cold forging is performed. As for the product, the cold method is used in a method of manufacturing a welded joint by laser welding two metal members with the film remaining portion on the surface as the welded portion without removing the film. To the extent that the forged product is forged from a forged material having a fluororesin film formed on the surface as a lubricant, to the extent that it does not deviate from the gist of the present invention, the shape and structure of metal members, welded parts, and welded joints Can be widely applied without limitation.

11 セラミックヒータ素子
16,17 ヒータ素子の電極
51 金属部材(冷間鍛造品)
61 金属部材
100、102 溶接接合体
201 セラミックヒータ(グロープラグ)
11 Ceramic heater elements 16, 17 Electrodes of heater elements 51 Metal members (cold forged products)
61 Metal members 100, 102 Welded joint 201 Ceramic heater (glow plug)

Claims (4)

2つの金属部材のうちの少なくとも一つの金属部材が、表面に潤滑剤をなす被膜を形成した鍛造素材から鍛造してなる冷間鍛造品であり、かつ、該冷間鍛造品については、その被膜を残存させた状態で、表面に該被膜が残存している被膜残存部位を溶接部位として、前記2つの金属部材をレーザ溶接することで溶接接合体を製造する方法において、
該冷間鍛造品を、表面に潤滑剤としてフッ素樹脂被膜を形成した鍛造素材から鍛造しておくことを特徴とする、溶接接合体の製造方法。
At least one of the two metal members is a cold forged product formed by forging from a forged material having a coating film forming a lubricant on the surface, and the cold forged product has a coating film. In a method of manufacturing a welded joint by laser welding the two metal members with the film remaining portion on the surface as the welded portion in the state where the film remains.
A method for manufacturing a welded joint, characterized in that the cold forged product is forged from a forged material having a fluororesin film formed on the surface as a lubricant.
前記冷間鍛造品がステンレス鋼からなる、ことを特徴とする請求項1に記載の溶接接合体の製造方法。 The method for manufacturing a welded joint according to claim 1, wherein the cold forged product is made of stainless steel. 一方の金属部材が軸材であり、他方の金属部材が筒状体であり、前記溶接接合体は、該筒状体の一端部の内側に、該軸材の一端部を嵌合し、その嵌合によって形成される接合部の外周縁を前記溶接部位として、2つの金属部材をレーザ溶接することで製造される軸状部材である、ことを特徴とする請求項1又は2のいずれか1項に記載の溶接接合体の製造方法。 One metal member is a shaft member, the other metal member is a tubular body, and the welded joint has one end of the shaft member fitted inside one end of the tubular body. One of claims 1 or 2, wherein the axial member is manufactured by laser welding two metal members with the outer peripheral edge of the joint formed by fitting as the welded portion. The method for manufacturing a welded joint according to the section. 通電することにより先端が発熱する棒状をなすセラミックヒータ素子と、該セラミックヒータ素子に形成された電極端子のうちの一方との導通が保持されるように該セラミックヒータ素子の後端部に固定された金属部材である筒状体と、自身の先端が該筒状体の後端部内に圧入によって嵌合された金属部材である軸材とを備え、該筒状体と該軸材とが、その嵌合によって形成される接合部の外周縁を溶接部位としてレーザ溶接されることにより、該筒状体を介して前記電極端子と該軸材との導通を保持する端子軸構造を備えてなるセラミックヒータの製造方法において、
前記筒状体と前記軸材の少なくとも一方を、表面に潤滑剤としてフッ素樹脂被膜を形成した鍛造素材から冷間鍛造しておき、該冷間鍛造品については、そのフッ素樹脂被膜が残存した状態で、前記接合部の外周縁を溶接部位としてレーザ溶接することを特徴とする、セラミックヒータの製造方法。
It is fixed to the rear end of the ceramic heater element so that the continuity between the rod-shaped ceramic heater element whose tip generates heat when energized and one of the electrode terminals formed on the ceramic heater element is maintained. A tubular body that is a metal member and a shaft member that is a metal member whose tip is fitted into the rear end portion of the tubular body by press fitting are provided, and the tubular body and the shaft member are formed. By laser welding the outer peripheral edge of the joint formed by the fitting as a welded portion, the terminal shaft structure for maintaining the continuity between the electrode terminal and the shaft member via the tubular body is provided. In the method of manufacturing ceramic heaters
At least one of the tubular body and the shaft material is cold forged from a forged material having a fluororesin film formed on the surface as a lubricant, and the fluororesin film remains in the cold forged product. A method for manufacturing a ceramic heater, which comprises laser welding with the outer peripheral edge of the joint as a welded portion.
JP2020172742A 2020-10-13 2020-10-13 Manufacturing method of welding jointed body and manufacturing method of ceramic heater Pending JP2022064169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020172742A JP2022064169A (en) 2020-10-13 2020-10-13 Manufacturing method of welding jointed body and manufacturing method of ceramic heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020172742A JP2022064169A (en) 2020-10-13 2020-10-13 Manufacturing method of welding jointed body and manufacturing method of ceramic heater

Publications (1)

Publication Number Publication Date
JP2022064169A true JP2022064169A (en) 2022-04-25

Family

ID=81378684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020172742A Pending JP2022064169A (en) 2020-10-13 2020-10-13 Manufacturing method of welding jointed body and manufacturing method of ceramic heater

Country Status (1)

Country Link
JP (1) JP2022064169A (en)

Similar Documents

Publication Publication Date Title
JP4968786B2 (en) Glow plug and manufacturing method thereof
JP5202801B2 (en) Method and apparatus for short cycle arc welding
CN106808078A (en) A kind of diffusion welding method of dissimilar metal
CA2570707A1 (en) Bi-metallic connectors, method for producing the same, and method for connecting the same to a structure
US20110148275A1 (en) Spark plug and process for producing same
CN108057952A (en) A kind of electron beam soldering method of big L/D ratio thin-walled parts
JP4849468B2 (en) High-pressure fuel injection pipe having a connecting head and a bent portion and method for manufacturing the same
JPWO2004099636A1 (en) Roller bearing cage
JP2022064169A (en) Manufacturing method of welding jointed body and manufacturing method of ceramic heater
EP3216552B1 (en) Laser welding methods, method of manufacturing a welded body, method of manufacturing electrode for spark plug, and method of manufacturing spark plug based on such laser welding methods
US6791052B1 (en) Method for resistance welding a tube to a member
JP3823003B2 (en) Seeds type glow plug and manufacturing method thereof
CN109483032B (en) Welded part forming structure and method of joining metal members
US10668555B2 (en) Aluminum spot welding method
CN101500743A (en) Friction welded part and method of friction welding
JP2016003817A (en) Glow plug
CN108907606A (en) CLOOS welding robot welding gun restorative procedure
US10680416B2 (en) Method for producing a spark plug including an electrode having a base portion and a tip fixed to the base portion
JP6947704B2 (en) Welded part forming structure and joining method of metal members
JP6203561B2 (en) Heater unit and glow plug equipped with the same
JP2005273955A (en) Sheath type glow plug and method of manufacturing the same
WO2019049440A1 (en) Method for manufacturing spark plug
JP2001287040A (en) Joined structure body and method of evaluation of joined strength of the same
JPH11179536A (en) Tip for soldering, and its manufacture
JP5487079B2 (en) Hollow member connecting part and method for producing hollow member