JP2022060711A - Contact probe - Google Patents

Contact probe Download PDF

Info

Publication number
JP2022060711A
JP2022060711A JP2020168338A JP2020168338A JP2022060711A JP 2022060711 A JP2022060711 A JP 2022060711A JP 2020168338 A JP2020168338 A JP 2020168338A JP 2020168338 A JP2020168338 A JP 2020168338A JP 2022060711 A JP2022060711 A JP 2022060711A
Authority
JP
Japan
Prior art keywords
contact probe
contact
measured
metal conductor
end portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020168338A
Other languages
Japanese (ja)
Inventor
遼太 小路
Ryota Shoji
雅章 深澤
Masaaki Fukazawa
卓弥 小澤
Takuya Ozawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Totoku Electric Co Ltd
Original Assignee
Totoku Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Totoku Electric Co Ltd filed Critical Totoku Electric Co Ltd
Priority to JP2020168338A priority Critical patent/JP2022060711A/en
Priority to CN202180025869.XA priority patent/CN115427820A/en
Priority to KR1020227039236A priority patent/KR20230082598A/en
Priority to PCT/JP2021/026089 priority patent/WO2022074888A1/en
Priority to TW110129583A priority patent/TW202229878A/en
Publication of JP2022060711A publication Critical patent/JP2022060711A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • G01R1/06738Geometry aspects related to tip portion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06755Material aspects
    • G01R1/06761Material aspects related to layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2896Testing of IC packages; Test features related to IC packages

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Measuring Leads Or Probes (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

To provide a contact probe capable of reliably contacting an inspection point of an object to be measured with a tip portion thereof, and preventing the inspection point of the object to be measured from being scraped or scratched.SOLUTION: In a contact probe 10 that has a body portion 14 having an insulating coating 12 on the outer periphery of a metal conductor 11 and an end portion 16 having no insulating coating 12 formed at both ends of the metal conductor 11, and that measures electrical characteristics by obtaining contact pressure with respect to an object to be measured 20 by applying a load in the axial direction and bending, the shape of the end portion 16 on the side of the end portion 16 that comes into contact with the object to be measured 20 is a curved surface, and by taking a curvature radius of the curved surface for R and a diameter of the metal conductor 11 for D, R is in the range of more than 0.5D and less than 5D.SELECTED DRAWING: Figure 3

Description

本発明は、電子部品及び基板などの電気特性の検査に用いる検査用のコンタクトプローブに関する。 The present invention relates to an inspection contact probe used for inspecting electrical characteristics of electronic components and substrates.

近年、スマートフォンや携帯電話等に使用される高密度実装基板、又はパーソナルコンピュータ等に組み込まれるBGA(Ball Grid Array)やCSP(Chip Size Package)等のICパッケージ基板等、様々な回路基板が用いられている。
これら回路基板は、実装の前後の工程において、例えば直流抵抗値の測定や導通検査等が行われ、その電気特性の良否が検査されている。
In recent years, various circuit boards such as high-density mounting boards used for smartphones and mobile phones, and IC package boards such as BGA (Ball Grid Array) and CSP (Chip Size Package) incorporated in personal computers have been used. ing.
In the processes before and after mounting these circuit boards, for example, DC resistance value measurement, continuity inspection, and the like are performed, and the quality of their electrical characteristics is inspected.

例えば特許文献1に示すように、電気特性の良否の検査は、検査装置に接続された検査装置用治具(以下、プローブユニットと称する場合がある)を用いて行われる。
具体的には、測定対象の回路基板(以下、被測定体と称する場合がある)の電極(以下、検査点と称する場合がある)に、プローブユニットの先端に装着されたピン形状のコンタクトプローブの先端を接触させることにより行われる。
For example, as shown in Patent Document 1, the quality of electrical characteristics is inspected using a jig for an inspection device (hereinafter, may be referred to as a probe unit) connected to the inspection device.
Specifically, a pin-shaped contact probe attached to the tip of a probe unit on an electrode (hereinafter, may be referred to as an inspection point) of a circuit board to be measured (hereinafter, may be referred to as a measured object). It is done by contacting the tips of the.

特許文献2には、コンタクトプローブの先端部の形状が半球形状、円錐形状、先端に半球形状を有する円錐形状、先端に平坦形状を有する円錐形状のうちいずれかの形状を適宜選択できる旨が記載されている。 Patent Document 2 describes that the shape of the tip of the contact probe can be appropriately selected from a hemispherical shape, a conical shape, a conical shape having a hemispherical shape at the tip, and a conical shape having a flat shape at the tip. Has been done.

特許文献3には、コンタクトプローブの先端部の形状が平坦形状のものが記載されている。 Patent Document 3 describes a contact probe having a flat tip.

特開2002-131334号公報Japanese Unexamined Patent Publication No. 2002-131334 特開2007-322369号公報Japanese Unexamined Patent Publication No. 2007-322369 特開2013-024716号公報Japanese Unexamined Patent Publication No. 2013-024716

上述した特許文献1及び特許文献2のように、コンタクトプローブの先端部の形状が半球形状であると、コンタクトプローブの先端部が被測定体の検査点から滑りすぎてしまい、コンタクトプローブの先端部が検査点に接触せず正確な検査が行えないおそれがある。 If the shape of the tip of the contact probe is hemispherical as in Patent Document 1 and Patent Document 2 described above, the tip of the contact probe slips too much from the inspection point of the object to be measured, and the tip of the contact probe However, there is a risk that accurate inspection cannot be performed because it does not come into contact with the inspection point.

また、特許文献2のように、コンタクトプローブの先端部の形状が円錐形状、先端に半球形状を有する円錐形状、先端に平坦形状を有する円錐形状の場合には、被測定体の検査点との接触面積が小さくなってしまうため、近年の電極の狭ピッチ化に伴い各検査点に対してコンタクトプローブの先端部を接触させて検査することが困難となるおそれがある。 Further, as in Patent Document 2, when the shape of the tip portion of the contact probe is a conical shape, a conical shape having a hemispherical shape at the tip, and a conical shape having a flat shape at the tip, the inspection point of the object to be measured is used. Since the contact area becomes small, it may be difficult to inspect by contacting the tip of the contact probe with each inspection point due to the recent narrowing of the pitch of the electrodes.

さらに、特許文献3のように、コンタクトプローブの先端部の形状が平坦形状の場合には、被測定体の検査点との接触面積は十分であるが、コンタクトプローブの先端部に直角のエッジ部が生じているため、このエッジ部が検査点と接触した場合おいては検査点が削られたり、傷がついたりしてしまうおそれがある。 Further, as in Patent Document 3, when the shape of the tip of the contact probe is flat, the contact area with the inspection point of the object to be measured is sufficient, but the edge portion perpendicular to the tip of the contact probe. If this edge portion comes into contact with the inspection point, the inspection point may be scraped or scratched.

そこで、本発明は上記課題を解決すべくなされ、その目的は、コンタクトプローブの先端部が被測定体の検査点に確実に接触することができ、且つ被測定体の検査点を削ったり傷をつけたりすることを軽減するコンタクトプローブを提供することにある。 Therefore, the present invention has been made to solve the above problems, and an object thereof is that the tip of the contact probe can surely come into contact with the inspection point of the object to be measured, and the inspection point of the object to be measured is scraped or scratched. The purpose is to provide a contact probe that reduces wearing.

本発明にかかるコンタクトプローブによれば、ピン形状の金属導体の外周に絶縁被膜を有する胴体部と、前記金属導体の両端に形成された前記絶縁被膜を有しない端部と、を有し、軸線方向に荷重をかけて撓ませることにより被測定体に対する接触圧力を得て電気特性を測定するコンタクトプローブにおいて、前記端部のうち少なくとも被測定体に接触する側の端部の形状が曲面であり、該曲面の曲率半径をRとし、前記金属導体の直径をDとしたときに、Rは0.5Dを超え5D以下の範囲であることを特徴としている。
この構成を採用することによって、被測定体に接触する端部がほぼ平坦形状に近い曲面とすることができるので、被測定体の検査点に接触させた際に滑りすぎることがなくなり、またエッジ部が直角でなくなったため検査点に対して面接触することができ、検査点を削ったり傷をつけたりしないようにすることができる。
According to the contact probe according to the present invention, the body portion having an insulating coating on the outer periphery of the pin-shaped metal conductor and the end portions formed at both ends of the metal conductor without the insulating coating are provided, and the axis line is provided. In a contact probe for measuring electrical characteristics by obtaining a contact pressure with respect to an object to be measured by applying a load in a direction and bending the contact probe, the shape of at least the end of the end portion on the side in contact with the object to be measured is a curved surface. When the radius of curvature of the curved surface is R and the diameter of the metal conductor is D, R is characterized in that it is in the range of more than 0.5D and 5D or less.
By adopting this configuration, the end portion in contact with the object to be measured can have a curved surface close to a nearly flat shape, so that the edge does not slip too much when in contact with the inspection point of the object to be measured, and the edge. Since the parts are no longer at right angles, surface contact can be made with respect to the inspection point, and the inspection point can be prevented from being scraped or scratched.

また、前記曲率半径RはD以上であることを特徴としてもよい。 Further, the radius of curvature R may be D or more.

また、前記金属導体の直径が8μm以上180μm以下であることを特徴としてもよい。 Further, the metal conductor may be characterized in that the diameter is 8 μm or more and 180 μm or less.

本発明によれば、被測定体の検査点に確実に接触することができ、且つ被測定体の検査点を削ったり傷をつけたりしないようにできるコンタクトプローブを提供することができる。 According to the present invention, it is possible to provide a contact probe that can reliably contact the inspection point of the object to be measured and that can prevent the inspection point of the object to be measured from being scraped or scratched.

コンタクトプローブの概略平面図である。It is a schematic plan view of a contact probe. コンタクトプローブの使用態様を示す説明図である。It is explanatory drawing which shows the use mode of a contact probe. コンタクトプローブの端部の拡大図である。It is an enlarged view of the end part of a contact probe. 2個所の検査点にコンタクトプローブの端部が接触するところを示す説明図ある。It is explanatory drawing which shows the place where the end of a contact probe comes into contact with two inspection points. 端部の形状を変更して、滑り試験と傷試験を実施した場合の結果をまとめた表である。It is a table summarizing the results when the slip test and the scratch test were carried out by changing the shape of the end part. 図5の表において対応する端部の形状を示す説明図である。It is explanatory drawing which shows the shape of the corresponding end part in the table of FIG.

以下、図面に基づいて本発明のコンタクトプローブの実施形態を詳細に説明する。
図1はコンタクトプローブの概略平面図であり、図2はコンタクトプローブを用いて被測定体の電気特性等の検査を実行するときの説明図である。
Hereinafter, embodiments of the contact probe of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic plan view of the contact probe, and FIG. 2 is an explanatory view when inspecting the electrical characteristics of the object to be measured is performed using the contact probe.

コンタクトプローブ10は、断面円形のきわめて細い円柱状(ピン形状)の金属導体11からなり、金属導体11の外周に絶縁被膜12を有する胴体部14を有している。金属導体11の両端には、絶縁被膜12を有していない端部16が形成されている。
コンタクトプローブ10は、軸線方向に荷重をかけて撓ませることにより、被測定体に対する接触圧力を得て電気特性を検査するように構成されている。
The contact probe 10 is made of an extremely thin columnar (pin-shaped) metal conductor 11 having a circular cross section, and has a body portion 14 having an insulating coating 12 on the outer periphery of the metal conductor 11. Ends 16 having no insulating coating 12 are formed at both ends of the metal conductor 11.
The contact probe 10 is configured to obtain a contact pressure with respect to the object to be measured and inspect the electrical characteristics by applying a load in the axial direction and bending the contact probe 10.

(コンタクトプローブを使用した電気特性の検査方法)
コンタクトプローブの使用態様の説明を図2に基づいて行う。
ここで示す例では、ICパッケージ基板等を被測定体20とし、被測定体20の表面に形成されている複数の電極を検査点22とし、この検査点22に対してコンタクトプローブ10の端部16を接触させる。
(Inspection method of electrical characteristics using contact probe)
The usage mode of the contact probe will be described with reference to FIG.
In the example shown here, the IC package substrate or the like is used as the object to be measured 20, and a plurality of electrodes formed on the surface of the object to be measured 20 are used as inspection points 22, and the end portion of the contact probe 10 with respect to the inspection point 22. 16 is brought into contact.

検査用の治具であるプローブユニット30は、複数のコンタクトプローブ10を有する。
プローブユニット30は、複数のコンタクトプローブ10の上端部を保持する上プレート32と、コンタクトプローブ10の下端部をガイドする下プレートとを有し、上プレート32と下プレート34との間は、支持柱36によって支持されている。
下プレート34には、コンタクトプローブ10の下端部よりもやや大径のガイド孔が形成されており、コンタクトプローブ10の下端部がガイド孔内を軸線方向に移動可能となっている。
また、上プレート32には、複数のコンタクトプローブ10の各上端部と電気的に接続される複数のリード線37が配置される。複数のリード線37は、測定機(図示せず)や電源(図示せず)に接続される。
The probe unit 30, which is a jig for inspection, has a plurality of contact probes 10.
The probe unit 30 has an upper plate 32 that holds the upper end portions of the plurality of contact probes 10 and a lower plate that guides the lower end portions of the contact probe 10, and is supported between the upper plate 32 and the lower plate 34. It is supported by the pillar 36.
A guide hole having a diameter slightly larger than that of the lower end of the contact probe 10 is formed in the lower plate 34, and the lower end of the contact probe 10 can move in the guide hole in the axial direction.
Further, a plurality of lead wires 37 electrically connected to the upper end portions of the plurality of contact probes 10 are arranged on the upper plate 32. The plurality of lead wires 37 are connected to a measuring instrument (not shown) or a power source (not shown).

図2の右図のように、被測定体20の上方に、各コンタクトプローブ10の下端部が被測定体20の各検査点22の位置に対向するように、プローブユニット30を配置する。
そして、各コンタクトプローブ10の下端部を被測定体20の各検査点22に接触するようにプローブユニット30を下降させ、さらに図2の右図のように、プローブユニット30を上方から下方に向けて加圧する。
すると、コンタクトプローブ10の軸線方向に沿って荷重がかかってコンタクトプローブ10が撓む。このときコンタクトプローブ10の端部16は、コンタクトプローブ10が撓んだことによる弾性力による所定の接触圧力で検査点22に接触する。
As shown in the right figure of FIG. 2, the probe unit 30 is arranged above the body to be measured 20 so that the lower end of each contact probe 10 faces the position of each inspection point 22 of the body to be measured 20.
Then, the probe unit 30 is lowered so that the lower end of each contact probe 10 comes into contact with each inspection point 22 of the object to be measured 20, and the probe unit 30 is directed downward from above as shown in the right figure of FIG. Pressurize.
Then, a load is applied along the axial direction of the contact probe 10, and the contact probe 10 bends. At this time, the end portion 16 of the contact probe 10 comes into contact with the inspection point 22 at a predetermined contact pressure due to the elastic force caused by the bending of the contact probe 10.

(金属導体)
金属導体11としては、高い導電性と高い弾性率を有する金属線(金属ばね線ともいう)が用いられる。金属導体11に用いられる金属材料としては、タングステン、レニウムタングステン、ベリリウム銅等の銅合金、パラジウム合金、銅銀合金等を好適に用いることができる。
(Metal conductor)
As the metal conductor 11, a metal wire (also referred to as a metal spring wire) having high conductivity and high elastic modulus is used. As the metal material used for the metal conductor 11, copper alloys such as tungsten, renium tungsten and beryllium copper, palladium alloys, copper-silver alloys and the like can be preferably used.

金属導体11の上記金属材料の表面には、金属導体11と被測定体20の検査点22又は検査装置のリード線37との接触抵抗値の上昇を抑えるために、めっき層が必要に応じて設けられていてもよい。めっき層を形成する金属としては、ニッケル、金、ロジウム等の金属や金合金等の合金を挙げることができる。めっき層は、単層であってもよいし複層であってもよい。複層のめっき層としては、例えばニッケルめっき層上に金めっき層が形成されたものを好ましく挙げることができる。めっき層の厚さは特に限定されないが、例えば1μm以上5μm以下とすることができる。 A plating layer is provided on the surface of the metal material of the metal conductor 11 as necessary in order to suppress an increase in the contact resistance value between the metal conductor 11 and the inspection point 22 of the object to be measured 20 or the lead wire 37 of the inspection device. It may be provided. Examples of the metal forming the plating layer include metals such as nickel, gold and rhodium, and alloys such as gold alloys. The plating layer may be a single layer or a plurality of layers. As the multi-layered plating layer, for example, one in which a gold plating layer is formed on a nickel plating layer can be preferably mentioned. The thickness of the plating layer is not particularly limited, but may be, for example, 1 μm or more and 5 μm or less.

本実施形態の金属導体11の導体径は、近年の狭ピッチ化の要請から細径化が求められており、8μm以上180μm以下のものを好適に用いることができる。さらに好ましくは、導体径は10μm以上110μm以下の範囲内のものを用いることができる。
金属導体11は所定の径のピン形状の導体となるように冷間又は熱間伸線等の塑性加工により製造される。
The conductor diameter of the metal conductor 11 of the present embodiment has been required to be reduced due to the recent demand for narrower pitch, and a conductor having a diameter of 8 μm or more and 180 μm or less can be preferably used. More preferably, a conductor diameter in the range of 10 μm or more and 110 μm or less can be used.
The metal conductor 11 is manufactured by plastic working such as cold or hot wire drawing so as to be a pin-shaped conductor having a predetermined diameter.

なお、コンタクトプローブ10をプローブユニット30に装着しやすくし、且つプローブユニット30の下プレート34のガイド孔に引っかかることなく、コンタクトプローブ10の動きが妨げられることがないようにするため、金属導体11の真直度が高いことが好ましく、具体的には、真直度は曲率半径1000mm以上であることが好ましい。
真直度の高い金属導体11は、絶縁被膜12を設ける前の長尺の金属線を直線矯正処理することにより得られる。直線矯正処理は、例えば回転ダイス式直線矯正装置等によって行われる。
The metal conductor 11 is used so that the contact probe 10 can be easily attached to the probe unit 30 and the movement of the contact probe 10 is not hindered without being caught in the guide hole of the lower plate 34 of the probe unit 30. It is preferable that the straightness is high, and specifically, the straightness is preferably 1000 mm or more in radius of curvature.
The metal conductor 11 having high straightness is obtained by straightening the long metal wire before providing the insulating film 12. The straight line straightening process is performed by, for example, a rotary die type straight line straightening device or the like.

(端部)
金属導体11の両端部のうち一方の端部16が被測定体20の検査点22に接触する。
本実施形態のコンタクトプローブ10は、図3に示すように、少なくとも金属導体11の両端部のうち、被測定体20の検査点22に接触する端部16の形状を曲面とする。
また、この曲面の曲率半径をRとし、金属導体11の直径をDとしたときに、Rは0.5Dを超え5D以下(以下、0.5D<R≦5Dと表現することもある)である構成を好適に用いることができる。
ただし、上述したような条件の曲面とするのは片方の端部16だけでなく、両端部を上述したような条件の曲面に形成してもよい。
(edge)
One end 16 of both ends of the metal conductor 11 comes into contact with the inspection point 22 of the object 20 to be measured.
As shown in FIG. 3, the contact probe 10 of the present embodiment has a curved surface having at least the shape of the end portion 16 of both ends of the metal conductor 11 that contacts the inspection point 22 of the object to be measured 20.
Further, when the radius of curvature of this curved surface is R and the diameter of the metal conductor 11 is D, R exceeds 0.5D and is 5D or less (hereinafter, may be expressed as 0.5D <R≤5D). Certain configurations can be preferably used.
However, the curved surface under the above-mentioned conditions is not limited to one end 16, and both ends may be formed on the curved surface under the above-mentioned conditions.

端部16の曲面の曲率半径Rを、0.5D<R≦5Dとすることにより、被測定体20の検査点22に接触する端部16をほぼ平坦形状に近い曲面とすることができる。
このため、端部16を被測定体20の検査点22に接触させた際に滑りすぎることがなくなる。また端部16のエッジ部が直角でないため、検査点22に対して面接触することができ、検査点22を削ったり傷をつけたりするのを抑制することができる。さらに、検査点22に対する接触面積を十分に確保することができる。
By setting the radius of curvature R of the curved surface of the end portion 16 to 0.5D <R ≦ 5D, the end portion 16 in contact with the inspection point 22 of the object to be measured 20 can be made into a curved surface having a substantially flat shape.
Therefore, when the end portion 16 is brought into contact with the inspection point 22 of the object to be measured 20, it does not slip too much. Further, since the edge portion of the end portion 16 is not at a right angle, it is possible to make surface contact with the inspection point 22, and it is possible to prevent the inspection point 22 from being scraped or scratched. Further, a sufficient contact area with respect to the inspection point 22 can be secured.

上述したように金属導体11の直径を、8μm以上180μm以下とすると、例えば端部16の曲率半径Rは、D=8μmの場合、4μm<R≦40μmの範囲となり、D=180μmの場合、90μm<R≦900μmの範囲となる。 As described above, when the diameter of the metal conductor 11 is 8 μm or more and 180 μm or less, for example, the radius of curvature R of the end portion 16 is in the range of 4 μm <R ≦ 40 μm when D = 8 μm, and 90 μm when D = 180 μm. <R ≦ 900 μm.

また、図4に示すように、本実施形態のコンタクトプローブ10は、被測定体20における2つの検査点22の中間に配置させるような場合において好適に用いることができる。なお、図4では、半球形状の検査点22を図示したが、検査点22の形状はこのような形状に限定するものではない。
この場合、特に半球形状の検査点22に対して端部が滑りすぎることが無く、また検査点22に対する接触面積を十分に確保できる。また、端部16のエッジ部が直角でないため、検査点22に対して面接触することができ、2つの検査点22を削ったり傷をつけたりしないようにすることができる。
Further, as shown in FIG. 4, the contact probe 10 of the present embodiment can be suitably used in a case where the contact probe 10 of the present embodiment is arranged between two inspection points 22 in the object to be measured 20. Although the hemispherical inspection point 22 is shown in FIG. 4, the shape of the inspection point 22 is not limited to such a shape.
In this case, the end portion does not slip too much with respect to the hemispherical inspection point 22, and a sufficient contact area with respect to the inspection point 22 can be secured. Further, since the edge portion of the end portion 16 is not at a right angle, surface contact can be made with respect to the inspection points 22, and the two inspection points 22 can be prevented from being scraped or scratched.

金属導体11の端部16を上述した形状に形成する方法としては、金属導体11の端部16を研削加工することによって行われる。
研削加工は、研削布紙を用いたり、ダイヤモンドホイールを使用したりすることで行うことができる。また、ピン形状の金属材料を研削可能な公知の研削加工機を用いてもよい。
The method of forming the end portion 16 of the metal conductor 11 into the above-mentioned shape is performed by grinding the end portion 16 of the metal conductor 11.
Grinding can be performed by using abrasive cloth or by using a diamond wheel. Further, a known grinding machine capable of grinding a pin-shaped metal material may be used.

(絶縁被膜)
絶縁被膜12は、絶縁性を有する被膜であれば、その材料については特に限定されないが、ポリウレタン樹脂、ナイロン樹脂、ポリエステル樹脂、エポキシ樹脂、ポリエステルイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂等から選ばれる1種又は2種以上の樹脂材料を好適に用いることができる。
また、これらの樹脂からなる絶縁被膜12は、樹脂の種類によって耐熱性が異なるため、被測定体20の検査の際に発生する熱又は周囲環境温度を考慮して任意に選択することができる。
(Insulation film)
The insulating coating 12 is not particularly limited as long as it is a coating having an insulating property, but is selected from polyurethane resin, nylon resin, polyester resin, epoxy resin, polyesterimide resin, polyamide resin, polyamideimide resin and the like1 A seed or two or more kinds of resin materials can be preferably used.
Further, since the insulating coating 12 made of these resins has different heat resistance depending on the type of resin, it can be arbitrarily selected in consideration of the heat generated during the inspection of the object to be measured 20 or the ambient temperature.

絶縁被膜12の厚さは、電気絶縁性を確保できる程度の厚さであればよく、金属導体11の直径との関係を考慮して、1μm以上30μm以下の範囲内で適宜設定される。
絶縁被膜12は、金属導体11に焼付エナメル被膜として形成されることが好ましい。焼付エナメル被膜は、塗料の塗布と焼付の繰り返しによる連続工程で形成されるので、生産性が良く、金属導体11との間の密着性が高く且つ被膜強度をより高いものとすることができる。
The thickness of the insulating coating 12 may be a thickness sufficient to ensure electrical insulation, and is appropriately set within a range of 1 μm or more and 30 μm or less in consideration of the relationship with the diameter of the metal conductor 11.
The insulating coating 12 is preferably formed on the metal conductor 11 as a baking enamel coating. Since the baked enamel film is formed by a continuous process of repeated coating and baking of the paint, the productivity is good, the adhesion with the metal conductor 11 is high, and the film strength can be made higher.

なお、本実施形態では、金属導体11のそれぞれの端部16から所定長さ分だけ絶縁被膜12が除去されている領域が形成されている。絶縁被膜12が除去されている領域の長さは、プローブユニット30の構造等に基づいて適宜設定される。 In this embodiment, a region is formed in which the insulating coating 12 is removed from each end 16 of the metal conductor 11 by a predetermined length. The length of the region from which the insulating coating 12 is removed is appropriately set based on the structure of the probe unit 30 and the like.

(実施例)
以下の実施例では、金属導体11として、長尺のレニウムタングステン線(外径D:0.025mm)を用いた。
絶縁被膜12は2層構造とし、第1絶縁被膜はウレタン樹脂系エナメル塗料を第1絶縁被膜用塗料として用い、厚さ1μmで第1絶縁被膜を形成した。第2絶縁被膜は、第1絶縁被膜と同じエナメル塗料を用い、そのエナメル塗料100重量部に対して顔料(BASFジャパン株式会社製、商品名:Irgazin(登録商標))を4重量部含有させた第2絶縁被膜用エナメル塗料とし、厚さ2.5μmで第2絶縁被膜を形成した。
(Example)
In the following examples, a long rhenium tungsten wire (outer diameter D: 0.025 mm) was used as the metal conductor 11.
The insulating coating 12 had a two-layer structure, and a urethane resin-based enamel paint was used as the first insulating coating for the first insulating coating, and the first insulating coating was formed with a thickness of 1 μm. The second insulating coating used the same enamel paint as the first insulating coating, and contained 4 parts by weight of a pigment (manufactured by BASF Japan Co., Ltd., trade name: Irgazin (registered trademark)) in 100 parts by weight of the enamel paint. The enamel paint for the second insulating film was used, and the second insulating film was formed with a thickness of 2.5 μm.

絶縁被膜12(総厚約3.5μm)が形成された長尺のコンタクトプローブを定尺切断機で切断して長さ10mmの絶縁被膜付きコンタクトプローブを切り出し、その絶縁被膜付きコンタクトプローブの両端部の所定長さをレーザー剥離し、図1に示す様態からなるコンタクトプローブ10を作製した。
研削加工装置により金属導体11を加工する際に研削角度や時間等を適宜調整することで端部16の形状を調整した。
A long contact probe having an insulating coating 12 (total thickness of about 3.5 μm) is cut with a standard cutting machine to cut out a contact probe with an insulating coating having a length of 10 mm, and both ends of the contact probe with an insulating coating are cut out. The contact probe 10 having the appearance shown in FIG. 1 was produced by laser peeling off the predetermined length of the above.
When the metal conductor 11 was machined by the grinding apparatus, the shape of the end portion 16 was adjusted by appropriately adjusting the grinding angle, time, and the like.

さらに、絶縁被膜12が剥離されて露出した金属導体11の表面に、電気めっきで厚さ1μmのニッケルめっき層を設けた後、さらにその上に厚さ0.2μmの金めっき層を設けて合計厚さが1.2μmのめっき層を形成した。 Further, a nickel plating layer having a thickness of 1 μm is provided on the surface of the metal conductor 11 exposed by peeling the insulating film 12, and then a gold plating layer having a thickness of 0.2 μm is further provided on the nickel plating layer. A plating layer having a thickness of 1.2 μm was formed.

図5に、上述した実施例によるコンタクトプローブ10の端部16の曲面の曲率半径Rを変更した場合における、端部16の検査点22に対する滑り、検査点22における傷の評価を行った結果を示す。なお、本実施例において金属導体11の直径Dは一定である。
なお、比較例1として端部の曲率半径Rが0.5Dの場合、比較例2として端部が平坦形状の場合、比較例3として端部が鋭角の場合について評価を行った。
FIG. 5 shows the results of evaluation of slippage of the end portion 16 with respect to the inspection point 22 and scratches at the inspection point 22 when the radius of curvature R of the curved surface of the curved surface of the end portion 16 of the contact probe 10 is changed according to the above-described embodiment. show. In this embodiment, the diameter D of the metal conductor 11 is constant.
As Comparative Example 1, the case where the radius of curvature R of the end portion was 0.5D, the case where the end portion had a flat shape as Comparative Example 2, and the case where the end portion had an acute angle were evaluated as Comparative Example 3.

ちなみに、図6には、図5の実施例及び比較例におけるコンタクトプローブ10の端部形状についての概略を図示している。
図6の(A)は、端部が曲面のものである。
図6の(B)は、端部が平坦形状のものである。
図6の(C)は、端部が鋭角のものである。
Incidentally, FIG. 6 illustrates an outline of the end shape of the contact probe 10 in the examples and comparative examples of FIG.
In FIG. 6A, the end portion is a curved surface.
FIG. 6B has a flat end portion.
FIG. 6C has an acute-angled end.

滑り評価の方法は、コンタクトプローブ10の端部16と被測定体20との接触試験を10000回行い、滑りが発生した回数が9回以下の場合は評価A、10回以上99回以下の場合は評価B、100回以上の場合は評価Cとする。 As a method for evaluating slippage, a contact test between the end portion 16 of the contact probe 10 and the object to be measured 20 is performed 10,000 times, and evaluation A is performed when the number of times slippage occurs is 9 times or less, and evaluation A is performed when the number of times slippage occurs is 10 times or more and 99 times or less. Is evaluated as B, and if it is 100 times or more, it is evaluated as C.

傷評価の方法は、コンタクトプローブ10の端部16と被測定体20との接触試験を10000回行い、傷が無い場合は評価A、傷がある場合は評価Bとする。 As a method for evaluating scratches, a contact test between the end portion 16 of the contact probe 10 and the object to be measured 20 is performed 10,000 times, and if there are no scratches, evaluation A is performed, and if there are scratches, evaluation B is used.

以下、各実施例について説明する。
実施例1の端部は、R=5Dであり、図6の対応モデルは(A)である。実施例1における滑り評価はA、傷評価はAであった。
Hereinafter, each embodiment will be described.
The end of Example 1 is R = 5D, and the corresponding model in FIG. 6 is (A). The slip evaluation in Example 1 was A, and the scratch evaluation was A.

実施例2の端部は、R=4Dであり、図6の対応モデルは(A)である。実施例2における滑り評価はA、傷評価はAであった。 The end of Example 2 is R = 4D, and the corresponding model in FIG. 6 is (A). The slip evaluation in Example 2 was A, and the scratch evaluation was A.

実施例3の端部は、R=3Dであり、図6の対応モデルは(A)である。実施例3における滑り評価はA、傷評価はAであった。 The end of Example 3 is R = 3D, and the corresponding model in FIG. 6 is (A). The slip evaluation in Example 3 was A, and the scratch evaluation was A.

実施例4の端部は、R=2Dであり、図6の対応モデルは(A)である。実施例4における滑り評価はA、傷評価はAであった。 The end of Example 4 is R = 2D, and the corresponding model in FIG. 6 is (A). The slip evaluation in Example 4 was A, and the scratch evaluation was A.

実施例5の端部は、R=1.5Dであり、図6の対応モデルは(A)である。実施例5における滑り評価はA、傷評価はAであった。 The end of Example 5 is R = 1.5D, and the corresponding model in FIG. 6 is (A). The slip evaluation in Example 5 was A, and the scratch evaluation was A.

実施例6の端部は、R=Dであり、図6の対応モデルは(A)である。実施例6における滑り評価はA、傷評価はAであった。 The end of Example 6 is R = D, and the corresponding model in FIG. 6 is (A). The slip evaluation in Example 6 was A, and the scratch evaluation was A.

実施例7の端部は、R=0.9Dであり、図6の対応モデルは(A)である。実施例7における滑り評価はB、傷評価はAであった。 The end of Example 7 is R = 0.9D, and the corresponding model in FIG. 6 is (A). The slip evaluation in Example 7 was B, and the scratch evaluation was A.

実施例8の端部は、R=0.7Dであり、図6の対応モデルは(A)である。実施例8における滑り評価はB、傷評価はAであった。 The end of Example 8 is R = 0.7D, and the corresponding model in FIG. 6 is (A). The slip evaluation in Example 8 was B, and the scratch evaluation was A.

なお、比較例1の端部は、R=0.5Dであり、形状としては実施例1~実施例8と同様であるが実施例1~8よりも曲率半径が大きく形成されている。比較例1における滑り評価はC、傷評価はAであった。 The end portion of Comparative Example 1 has R = 0.5D, and the shape is the same as that of Examples 1 to 8, but the radius of curvature is larger than that of Examples 1 to 8. The slip evaluation in Comparative Example 1 was C, and the scratch evaluation was A.

比較例2の端部は、平坦形状であり、図6の対応モデルは(B)である。比較例2における滑り評価はA、傷評価はBであった。 The end portion of Comparative Example 2 has a flat shape, and the corresponding model of FIG. 6 is (B). In Comparative Example 2, the slip evaluation was A and the scratch evaluation was B.

比較例3の端部は、先端が尖鋭の鋭角であり、図6の対応モデルは(C)である。比較例3における滑り評価はA、傷評価はBであった。 The end of Comparative Example 3 has an acute angle at the tip, and the corresponding model in FIG. 6 is (C). In Comparative Example 3, the slip evaluation was A and the scratch evaluation was B.

図5の結果から、比較例1のようにコンタクトプローブ10の端部が曲面であって、その曲率半径RがR≦0.5Dの場合には滑りやすくなるため、滑り評価が悪くなることが判明した。
また、比較例2のようにコンタクトプローブの端部が平坦形状であると、滑り評価は問題ないが、傷がついてしまっていた。
さらに、比較例3のようにコンタクトプローブの端部が鋭角であると、滑り評価は問題ないが、傷がついてしまっていた。
したがって、コンタクトプローブ10の端部が曲面であって、その曲率半径Rが0.5D<R≦5Dの場合には滑りやすくなく、且つ傷もつかないため好適であることが判明した。
From the results of FIG. 5, when the end portion of the contact probe 10 is a curved surface and the radius of curvature R thereof is R ≦ 0.5D as in Comparative Example 1, the slipperiness becomes slippery, so that the slip evaluation may deteriorate. found.
Further, when the end portion of the contact probe has a flat shape as in Comparative Example 2, there is no problem in slip evaluation, but the contact probe is scratched.
Further, when the end portion of the contact probe has an acute angle as in Comparative Example 3, there is no problem in the slip evaluation, but the contact probe is scratched.
Therefore, it has been found that when the end portion of the contact probe 10 is a curved surface and the radius of curvature R thereof is 0.5D <R≤5D, it is not slippery and is not scratched, which is suitable.

なお、実施例1~6の滑り評価と傷評価は双方ともAであった。このため、実施例1~6のように、D≦R≦5DとなるRの範囲がさらに好ましいことも判明した。 The slip evaluation and the scratch evaluation of Examples 1 to 6 were both A. Therefore, it was also found that the range of R in which D ≦ R ≦ 5D is more preferable as in Examples 1 to 6.

10 コンタクトプローブ
11 金属導体
12 絶縁被膜
14 胴体部
16 端部
20 被測定体
22 検査点
30 プローブユニット
32 上プレート
34 下プレート
36 支持柱
37 リード線
10 Contact probe 11 Metal conductor 12 Insulation coating 14 Body part 16 End part 20 Measured body 22 Inspection point 30 Probe unit 32 Upper plate 34 Lower plate 36 Support column 37 Lead wire

Claims (3)

ピン形状の金属導体の外周に絶縁被膜を有する胴体部と、
前記金属導体の両端に形成された前記絶縁被膜を有しない端部と、を有し、
軸線方向に荷重をかけて撓ませることにより被測定体に対する接触圧力を得て電気特性を測定するコンタクトプローブであって、
前記端部のうち少なくとも被測定体に接触する側の端部の形状が曲面であり、該曲面の曲率半径をRとし、前記金属導体の直径をDとしたときに、Rは0.5Dを超え5D以下であることを特徴とするコンタクトプローブ。
A fuselage with an insulating coating on the outer circumference of a pin-shaped metal conductor,
It has the end portions having no insulating coating formed on both ends of the metal conductor, and has.
A contact probe that measures electrical characteristics by obtaining contact pressure with respect to the object to be measured by applying a load in the axial direction and bending it.
When the shape of at least the end of the end that comes into contact with the object to be measured is a curved surface, the radius of curvature of the curved surface is R, and the diameter of the metal conductor is D, R is 0.5D. A contact probe characterized in that it exceeds 5D or less.
前記曲率半径RはD以上であることを特徴とする請求項1記載のコンタクトプローブ。 The contact probe according to claim 1, wherein the radius of curvature R is D or more. 前記金属導体の直径が8μm以上180μm以下であることを特徴とする請求項1又は請求項2記載のコンタクトプローブ。 The contact probe according to claim 1 or 2, wherein the metal conductor has a diameter of 8 μm or more and 180 μm or less.
JP2020168338A 2020-10-05 2020-10-05 Contact probe Pending JP2022060711A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020168338A JP2022060711A (en) 2020-10-05 2020-10-05 Contact probe
CN202180025869.XA CN115427820A (en) 2020-10-05 2021-07-12 Contact probe
KR1020227039236A KR20230082598A (en) 2020-10-05 2021-07-12 contact probe
PCT/JP2021/026089 WO2022074888A1 (en) 2020-10-05 2021-07-12 Contact probe
TW110129583A TW202229878A (en) 2020-10-05 2021-08-11 Contact probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020168338A JP2022060711A (en) 2020-10-05 2020-10-05 Contact probe

Publications (1)

Publication Number Publication Date
JP2022060711A true JP2022060711A (en) 2022-04-15

Family

ID=81125364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020168338A Pending JP2022060711A (en) 2020-10-05 2020-10-05 Contact probe

Country Status (5)

Country Link
JP (1) JP2022060711A (en)
KR (1) KR20230082598A (en)
CN (1) CN115427820A (en)
TW (1) TW202229878A (en)
WO (1) WO2022074888A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08166407A (en) * 1994-10-14 1996-06-25 Kobe Steel Ltd Probe card for semiconductor element check
JP2002131334A (en) 2000-10-24 2002-05-09 Nec Yamaguchi Ltd Probe needle, probe card, and manufacturing method of probe card
JP2007322369A (en) * 2006-06-05 2007-12-13 Totoku Electric Co Ltd Contact probe and its manufacturing method
JP5027522B2 (en) * 2007-02-09 2012-09-19 東京特殊電線株式会社 Probe unit and method of using a contact probe using the probe unit
JP4539681B2 (en) * 2007-06-04 2010-09-08 三菱電機株式会社 Probe card for wafer test
JP5144997B2 (en) * 2007-09-21 2013-02-13 東京特殊電線株式会社 Contact probe unit and manufacturing method thereof
JP5845678B2 (en) 2011-07-21 2016-01-20 日本電産リード株式会社 Inspection contact and inspection jig

Also Published As

Publication number Publication date
KR20230082598A (en) 2023-06-08
WO2022074888A1 (en) 2022-04-14
TW202229878A (en) 2022-08-01
CN115427820A (en) 2022-12-02

Similar Documents

Publication Publication Date Title
JP6305754B2 (en) Contact probe unit
JP5144997B2 (en) Contact probe unit and manufacturing method thereof
JP2007322369A (en) Contact probe and its manufacturing method
US10228392B2 (en) Contact probe for a testing head
JP5027522B2 (en) Probe unit and method of using a contact probe using the probe unit
JP2009198238A (en) Probe needle and method of manufacturing the same
JP4611822B2 (en) Probe needle with insulating coating and method for manufacturing the same
JP5192899B2 (en) Probe needle and manufacturing method thereof
JP2015025697A (en) Probe unit
WO2022074888A1 (en) Contact probe
JP6600387B2 (en) Probe and probe contact method
JP2009210443A (en) Contact probe and method for manufacturing the same
JP7008541B2 (en) Probe needle
JP7496716B2 (en) Probe unit and method for producing same
JP7471148B2 (en) Probe needle and probe unit
JP7390115B2 (en) probe unit
JP2006017455A (en) Probe needle and its manufacturing method
JP2021189064A (en) Probe needle and probe unit
JP2014238330A (en) Contact probe, contact probe unit and method for measuring electric characteristic
KR20230151879A (en) Contact probe
JP2016011925A (en) Contact probe and contact probe unit
JP7008529B2 (en) Lead wires for inspection equipment, lead wire mounting parts, and inspection jigs
JP2006098066A (en) Probe needle, using method therefor, and manufacturing method for probe needle
JP7557965B2 (en) Probe needle and probe unit
KR101164415B1 (en) Probe card

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230516

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240902