JP2022059439A - コンピュータプログラム、判定装置及び判定方法 - Google Patents

コンピュータプログラム、判定装置及び判定方法 Download PDF

Info

Publication number
JP2022059439A
JP2022059439A JP2020167188A JP2020167188A JP2022059439A JP 2022059439 A JP2022059439 A JP 2022059439A JP 2020167188 A JP2020167188 A JP 2020167188A JP 2020167188 A JP2020167188 A JP 2020167188A JP 2022059439 A JP2022059439 A JP 2022059439A
Authority
JP
Japan
Prior art keywords
power storage
storage device
drive body
simulation
diagnosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020167188A
Other languages
English (en)
Other versions
JP7501290B2 (ja
Inventor
悠 松本
Hisashi Matsumoto
誠治 高井
Seiji Takai
英司 林
Eiji Hayashi
真一 浪床
Shinichi Namitoko
将輝 大矢
Masaki Oya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2020167188A priority Critical patent/JP7501290B2/ja
Priority to PCT/JP2021/031067 priority patent/WO2022070686A1/ja
Priority to CN202180067620.5A priority patent/CN116420263A/zh
Priority to US18/247,208 priority patent/US20230382231A1/en
Priority to DE112021005120.2T priority patent/DE112021005120T5/de
Publication of JP2022059439A publication Critical patent/JP2022059439A/ja
Application granted granted Critical
Publication of JP7501290B2 publication Critical patent/JP7501290B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

【課題】コンピュータプログラム、判定装置及び判定方法の提供。【解決手段】コンピュータに、通電状態と非通電状態とを切り替えるスイッチを備え、スイッチの自己診断機能を有する蓄電デバイスと、蓄電デバイスから供給される電力によって駆動する駆動体とを含むシステムについて、蓄電デバイスを模擬するバッテリモデルと、駆動体を模擬する駆動体モデルとを用いて、スイッチの自己診断に関するシミュレーションを実行し、シミュレーションの実行結果に基づき、蓄電デバイスと駆動体との適合性を判定する処理を実行させる。【選択図】図6

Description

本発明は、コンピュータプログラム、判定装置及び判定方法に関する。
EV(Electric Vehicle)やHEV(Hybrid Electric Vehicle)などの車両には、バッテリ及びバッテリを充電するための充電システムが搭載されている(例えば、特許文献1を参照)。
車両に搭載されるバッテリには、過充電や過放電などの異常が発生した場合に充放電経路を遮断するリレーが設けられている。バッテリは、充放電が行われていないタイミングにてリレーを開閉させることによって、異常発生時にリレーが正常に機能するか否かを診断するリレー自己診断を実施する。
また、バッテリには、バッテリ内部に流れる電流を検知する電流センサが設けられている。バッテリは、例えばゼロ負荷の状態において検知された電流(暗電流)に基づき、電流センサを校正する電流キャリブレーションを実施する。
特開2011-062018号公報
しかしながら、車両の仕様と車両に搭載されたバッテリの仕様とが適合していなかった場合、リレー自己診断や電流キャリブレーションが正常に機能しない可能性がある。実際にバッテリを搭載して車両システムの総合検証を行う段階において、上述のような不具合が見つかった場合、仕様を見直す必要が生じたり、車両に搭載するバッテリの種類を変更したりする必要が生じたりするので、早期に仕様の合意に達することができないという問題点が生じる。
本発明は、シミュレーションによってリレー自己診断及び電流キャリブレーションの成否を判定するコンピュータプログラム、判定方法及び判定装置を提供することを目的とする。
コンピュータプログラムは、コンピュータに、通電状態と非通電状態とを切り替えるスイッチを備え、前記スイッチの自己診断機能を有する蓄電デバイスと、前記蓄電デバイスから供給される電力によって駆動する駆動体とを含むシステムについて、前記蓄電デバイスを模擬するバッテリモデルと、前記駆動体を模擬する駆動体モデルとを用いて、前記スイッチの自己診断に関するシミュレーションを実行し、前記シミュレーションの実行結果に基づき、前記蓄電デバイスと前記駆動体との適合性を判定する処理を実行させるためのコンピュータプログラムである。
コンピュータプログラムは、コンピュータに、接続先の状態に依存するセンサを備え、前記センサの校正機能を備えた蓄電デバイスと、前記蓄電デバイスから供給される電力によって駆動する駆動体とを含むシステムについて、前記蓄電デバイスを模擬するバッテリモデルと、前記駆動体を模擬する駆動体モデルとを用いて、前記センサの校正に関するシミュレーションを実行し、前記シミュレーションの実行結果に基づき、前記蓄電デバイスと前記駆動体との適合性を判定する処理を実行させるためのコンピュータプログラムである。
判定装置は、通電状態と非通電状態とを切り替えるスイッチを備え、前記スイッチの自己診断機能を有する蓄電デバイスと、前記蓄電デバイスから供給される電力によって駆動する駆動体とを含むシステムについて、前記蓄電デバイスを模擬するバッテリモデルと、前記駆動体を模擬する駆動体モデルとを用いて、前記スイッチの自己診断に関するシミュレーションを実行する実行部と、前記シミュレーションの実行結果に基づき、前記蓄電デバイスと前記駆動体との適合性を判定する判定部とを備える。
判定装置は、接続先の状態に依存するセンサを備え、前記センサの校正機能を備えた蓄電デバイスと、前記蓄電デバイスから供給される電力によって駆動する駆動体とを含むシステムについて、前記蓄電デバイスを模擬するバッテリモデルと、前記駆動体を模擬する駆動体モデルとを用いて、前記センサの校正に関するシミュレーションを実行する実行部と、前記シミュレーションの実行結果に基づき、前記蓄電デバイスと前記駆動体との適合性を判定する判定部とを備える。
判定方法は、コンピュータを用いて、通電状態と非通電状態とを切り替えるスイッチを備え、前記スイッチの自己診断機能を有する蓄電デバイスと、前記蓄電デバイスから供給される電力によって駆動する駆動体とを含むシステムについて、前記蓄電デバイスを模擬するバッテリモデルと、前記駆動体を模擬する駆動体モデルとを用いて、前記スイッチの自己診断に関するシミュレーションを実行し、前記シミュレーションの実行結果に基づき、前記蓄電デバイスと前記駆動体との適合性を判定する。
判定方法は、コンピュータを用いて、接続先の状態に依存するセンサを備え、前記センサの校正機能を備えた蓄電デバイスと、前記蓄電デバイスから供給される電力によって駆動する駆動体とを含むシステムについて、前記蓄電デバイスを模擬するバッテリモデルと、前記駆動体を模擬する駆動体モデルとを用いて、前記センサの校正に関するシミュレーションを実行し、前記シミュレーションの実行結果に基づき、前記蓄電デバイスと前記駆動体との適合性を判定する。
本願によれば、シミュレーションによってリレー自己診断及び電流キャリブレーションの成否を判定できる。
車両における制御系の構成を説明するブロック図である。 蓄電デバイスの内部構成を示すブロック図である。 本実施の形態に係る開発支援装置の内部構成を説明するブロック図である。 開発支援装置が用いるシミュレーションモデルの構成を示すブロック図である。 蓄電素子を模擬する等価回路の一例を示す回路図である。 開発支援装置が実行する処理の手順を示すフローチャートである。
実施形態におけるコンピュータプログラムは、コンピュータに、通電状態と非通電状態とを切り替えるスイッチを備え、前記スイッチの自己診断機能を有する蓄電デバイスと、前記蓄電デバイスから供給される電力によって駆動する駆動体とを含むシステムについて、前記蓄電デバイスを模擬するバッテリモデルと、前記駆動体を模擬する駆動体モデルとを用いて、前記スイッチの自己診断に関するシミュレーションを実行し、前記シミュレーションの実行結果に基づき、前記蓄電デバイスと前記駆動体との適合性を判定する処理を実行させる。
本実施の形態において、蓄電デバイスが備えるスイッチとは、蓄電デバイスに対する充放電経路を遮断又は接続するための回路要素を表す。スイッチの一例は、リレーである。代替的に、スイッチは、FET(Field-Effect Transistor)などの半導体素子、ブレーカ、マグネットコンタクタなど、通電状態と非通電状態とを切り替える回路要素であってもよい。駆動体とは、蓄電デバイスから供給される電力により動作することが可能な装置やシステムの総称である。駆動体の一例は、車両である。車両は、四輪車に限らず、二輪車であってもよい。代替的に、駆動体は、AGV(Automatic Guided Vehicle)、無人飛行体(ドローン)、航空機などの移動体であってもよい。適合性とは、自己診断中の電力供給状態において、駆動体が駆動できるかどうかを表す。実機や試作品を用いた検証では、スイッチの自己診断に不具合が発生した場合、蓄電デバイスの仕様を見直したり、駆動体に搭載する蓄電デバイスの種類を変更したりする必要があるので、開発に時間を要する。これに対し、本実施形態では、蓄電デバイスや駆動体の実機又は試作品を用いた検証を実施する必要はなく、自己診断に関するシミュレーションによって、蓄電デバイスと駆動体との適合性を判定できるので、開発時間を短縮できる。昨今の電気自動車、再生可能エネルギ、スマートグリッドなどの目覚ましい開発進展を考えた場合、高性能・高安全の蓄電デバイスに対する期待は大きく、シミュレーションを活用した開発時間の短縮の意義は大きい。
前記コンピュータプログラムにおいて、前記コンピュータに、前記シミュレーションによって、前記スイッチの自己診断に要する時間を推定し、推定した時間の長短に応じて、前記蓄電デバイスと前記駆動体との適合性を判定する処理を実行させてもよい。この構成によれば、駆動体の実機や試作品が備える様々な要素の影響を受けることなく、自己診断に要する時間といった診断に本質的な部分に着目して適合性を判定できる。
前記コンピュータプログラムにおいて、前記コンピュータに、前記シミュレーションによって、推定した時間の長短に応じて前記スイッチの自己診断の成否を判定する処理を実行させてもよい。この構成によれば、駆動体の実機や試作品が備える様々な要素の影響を受けることなく、自己診断に要する時間といった診断に本質的な部分に着目してスイッチの自己診断の成否を判定できる。
実施形態におけるコンピュータプログラムは、コンピュータに、接続先の状態に依存するセンサを備え、前記センサの校正機能を備えた蓄電デバイスと、前記蓄電デバイスから供給される電力によって駆動する駆動体とを含むシステムについて、前記蓄電デバイスを模擬するバッテリモデルと、前記駆動体を模擬する駆動体モデルとを用いて、前記センサの校正に関するシミュレーションを実行し、前記シミュレーションの実行結果に基づき、前記蓄電デバイスと前記駆動体との適合性を判定する処理を実行させる。
本実施の形態において、センサは、接続先である駆動体の状態に応じて変化するような値を計測するための素子や装置を表す。センサの一例は、電流センサである。代替的に、センサは、電圧センサ、温度センサなどの素子や装置であってもよい。駆動体とは、蓄電デバイスから供給される電力により動作することが可能な装置やシステムの総称である。駆動体の一例は、車両である。車両は、四輪車に限らず、二輪車であってもよい。代替的に、駆動体は、電車、AGV、無人飛行体(ドローン)、航空機などの移動体であってもよい。適合性とは、校正中の電力供給状態において、駆動体が駆動できるかどうかを表す。実機や試作品を用いた検証では、センサの校正に成功しなかった場合、蓄電デバイスの仕様を見直したり、駆動体に搭載する蓄電デバイスの種類を変更したりする必要があるので、開発に時間を要する。これに対し、本実施形態では、蓄電デバイスや駆動体の実機又は試作品を用いた検証を実施する必要はなく、センサの校正に関するシミュレーションによって、蓄電デバイスと駆動体との適合性を判定できるので、開発時間を短縮できる。昨今の電気自動車、再生可能エネルギ、スマートグリッドなどの目覚ましい開発進展を考えた場合、高性能・高安全の蓄電デバイスに対する期待は大きく、シミュレーションを活用した開発時間の短縮の意義は大きい。
前記コンピュータプログラムにおいて、前記コンピュータに、前記シミュレーションによって、前記蓄電デバイスがゼロ負荷となる時間を推定し、推定した時間の長短に応じて、前記蓄電デバイスと前記駆動体との適合性を判定する処理を実行させてもよい。この構成によれば、駆動体の実機や試作品が備える様々な要素の影響を受けることなく、ゼロ負荷になる時間といった診断に本質的な部分に着目して適合性を判定できる。
前記コンピュータプログラムにおいて、前記コンピュータに、前記シミュレーションによって、推定した時間の長短に応じて前記センサの校正の成否を判定する処理を実行させてもよい。この構成によれば、駆動体の実機や試作品が備える様々な要素の影響を受けることなく、ゼロ負荷になる時間といった診断に本質的な部分に着目してセンサの校正の成否を判定できる。
前記コンピュータプログラムにおいて、前記駆動体モデルは、前記駆動体を容量素子及び抵抗素子の並列回路により記述してもよい。この構成によれば、容量素子及び抵抗素子のみを用いた簡易な回路によって駆動体を記述しているので、駆動体の実機や試作品が備える様々な要素の影響を受けることなく、スイッチの自己診断に要する時間やゼロ負荷になる時間といった診断に本質的な部分に着目して適合性を判定できる。上記コンピュータプログラムでは、駆動体を簡易な回路によって記述しているので、計算負荷が軽減される。
本実施の形態における判定装置は、通電状態と非通電状態とを切り替えるスイッチを備え、前記スイッチの自己診断機能を有する蓄電デバイスと、前記蓄電デバイスから供給される電力によって駆動する駆動体とを含むシステムについて、前記蓄電デバイスを模擬するバッテリモデルと、前記駆動体を模擬する駆動体モデルとを用いて、前記スイッチの自己診断に関するシミュレーションを実行する実行部と、前記シミュレーションの実行結果に基づき、前記蓄電デバイスと前記駆動体との適合性を判定する判定部とを備える。
実機や試作品を用いた検証では、スイッチの自己診断に不具合が発生した場合、蓄電デバイスの仕様を見直したり、駆動体に搭載する蓄電デバイスの種類を変更したりする必要があるので、開発に時間を要する。これに対し、本実施形態における判定装置では、蓄電デバイスや駆動体の実機又は試作品を用いた検証を実施する必要はなく、自己診断に関するシミュレーションによって、蓄電デバイスと駆動体との適合性を判定できるので、開発時間を短縮できる。昨今の電気自動車、再生可能エネルギ、スマートグリッドなどの目覚ましい開発進展を考えた場合、高性能・高安全の蓄電デバイスに対する期待は大きく、シミュレーションを活用した開発時間の短縮の意義は大きい。
本実施の形態における判定装置は、接続先の状態に依存するセンサを備え、前記センサの校正機能を備えた蓄電デバイスと、前記蓄電デバイスから供給される電力によって駆動する駆動体とを含むシステムについて、前記蓄電デバイスを模擬するバッテリモデルと、前記駆動体を模擬する駆動体モデルとを用いて、前記センサの校正に関するシミュレーションを実行する実行部と、前記シミュレーションの実行結果に基づき、前記蓄電デバイスと前記駆動体との適合性を判定する判定部とを備える。
実機や試作品を用いた検証では、センサの校正に成功しなかった場合、蓄電デバイスの仕様を見直したり、駆動体に搭載する蓄電デバイスの種類を変更したりする必要があるので、開発に時間を要する。これに対し、本実施形態における判定装置では、蓄電デバイスや駆動体の実機又は試作品を用いた検証を実施する必要はなく、センサの校正に関するシミュレーションによって、蓄電デバイスと駆動体との適合性を判定できるので、開発時間を短縮できる。昨今の電気自動車、再生可能エネルギ、スマートグリッドなどの目覚ましい開発進展を考えた場合、高性能・高安全の蓄電デバイスに対する期待は大きく、シミュレーションを活用した開発時間の短縮の意義は大きい。
本実施の形態における判定方法は、コンピュータを用いて、通電状態と非通電状態とを切り替えるスイッチを備え、前記スイッチの自己診断機能を有する蓄電デバイスと、前記蓄電デバイスから供給される電力によって駆動する駆動体とを含むシステムについて、前記蓄電デバイスを模擬するバッテリモデルと、前記駆動体を模擬する駆動体モデルとを用いて、前記スイッチの自己診断に関するシミュレーションを実行し、前記シミュレーションの実行結果に基づき、前記蓄電デバイスと前記駆動体との適合性を判定する。
実機や試作品を用いた検証では、スイッチの自己診断に不具合が発生した場合、蓄電デバイスの仕様を見直したり、駆動体に搭載する蓄電デバイスの種類を変更したりする必要があるので、開発に時間を要する。これに対し、本実施形態における判定方法では、蓄電デバイスや駆動体の実機又は試作品を用いた検証を実施する必要はなく、自己診断に関するシミュレーションによって、蓄電デバイスと駆動体との適合性を判定できるので、開発時間を短縮できる。昨今の電気自動車、再生可能エネルギ、スマートグリッドなどの目覚ましい開発進展を考えた場合、高性能・高安全の蓄電デバイスに対する期待は大きく、シミュレーションを活用した開発時間の短縮の意義は大きい。
本実施の形態における判定方法は、コンピュータを用いて、接続先の状態に依存するセンサを備え、前記センサの校正機能を備えた蓄電デバイスと、前記蓄電デバイスから供給される電力によって駆動する駆動体とを含むシステムについて、前記蓄電デバイスを模擬するバッテリモデルと、前記駆動体を模擬する駆動体モデルとを用いて、前記センサの校正に関するシミュレーションを実行し、前記シミュレーションの実行結果に基づき、前記蓄電デバイスと前記駆動体との適合性を判定する。
実機や試作品を用いた検証では、センサの校正に成功しなかった場合、蓄電デバイスの仕様を見直したり、駆動体に搭載する蓄電デバイスの種類を変更したりする必要があるので、開発に時間を要する。これに対し、本実施形態における判定方法では、蓄電デバイスや駆動体の実機又は試作品を用いた検証を実施する必要はなく、センサの校正に関するシミュレーションによって、蓄電デバイスと駆動体との適合性を判定できるので、開発時間を短縮できる。昨今の電気自動車、再生可能エネルギ、スマートグリッドなどの目覚ましい開発進展を考えた場合、高性能・高安全の蓄電デバイスに対する期待は大きく、シミュレーションを活用した開発時間の短縮の意義は大きい。
以下、本発明の実施形態として、ハイブリッド自動車(HEV)や電気自動車(EV)などの車両に搭載される充電システムへの適用例を説明する。
図1は車両における制御系の構成を説明するブロック図である。車両Cは、制御系の構成として、蓄電デバイス10、蓄電デバイス10を充電するための充電システム20、及び車両全体の制御を実行する車両ECU(Electronic Control Unit)30を備える。本実施の形態において車両Cは、蓄電デバイス10から供給される電力によって駆動する駆動体の一例である。蓄電デバイス10、充電システム20、及び車両ECU30は、CAN(Controller Area Network)やLIN(Local Interconnect Network)などの車内回線を介して互いに通信可能に接続される。本実施の形態において、車両ECU30は、車両Cの走行状態、蓄電デバイス10の充電状態などを監視し、車両Cの走行状態や蓄電デバイス10の充電状態に応じて、蓄電デバイス10の充放電を切り替える制御等を実行する。
蓄電デバイス10は、蓄電素子11と、BMU12(Battery Management Unit)とを備える(図2を参照)。蓄電素子11は、例えば複数の電池を直列に接続してなる組電池により構成される。蓄電素子11は、車両Cの充電システム20から供給される電力により充電され、車両ECU30からの制御指令に応じて負荷へ電力を供給する。蓄電素子11が電力を供給する負荷の一例は、車両Cを走行させるための駆動トルクを発生させる電動モータ23である。負荷の他の例は、ヘッドライト、方向指示灯、車内灯、パワーウィンドウなど車両Cが備える各種の装備品を含む。BMU12は、蓄電デバイス10を管理する機能を有する。BMU12は、蓄電デバイス10の状態を推定する機能、蓄電デバイス10における異常を検知する機能などを有しており、推定した蓄電デバイス10の状態に関する情報、検知した異常に関する情報などを車両ECU30へ通知する。
充電システム20は、充電ECU21と、オルタネータ22とを含む。オルタネータ22は、図に示していないエンジンの出力軸に連結される発電機であり、出力軸が回転することによって発電するよう構成されている。オルタネータ22の発電によって得られる電力は、充電ECU21からの制御により、蓄電デバイス10及び車両Cが備える負荷に供給される。オルタネータ22は、車両Cが減速しているときに発電する回生制御を行うことにより、エンジン出力軸の回転に対する負荷となって車両Cに制動力を与えると共に、発電した電力を蓄電デバイス10及び車両Cが備える負荷へ供給する。
図2は蓄電デバイス10の内部構成を示すブロック図である。蓄電デバイス10は、蓄電素子11及びBMU12に加え、電流センサ13、電圧センサ14、温度センサ15、リレー16などを備える。蓄電素子11は、例えば、直列に接続された複数のリチウムイオン二次電池(電池セル)から構成される。
電流センサ13は、蓄電素子11と負極端子10Aとの間に設けられており、蓄電素子11に流れ込む電流を計測する。本実施の形態において、電流センサ13は接続先の状態に依存しないセンサの一例である。電流センサ13は、計測結果をBMU12へ出力する。
電圧センサ14は、蓄電素子11に並列に接続されており、蓄電素子11の両端電圧を計測する。電圧センサ14は、計測結果をBMU12へ出力する。
温度センサ15は、蓄電デバイス10の内部又は外部に設けられており、温度を計測する。温度センサ15は複数設けられてもよい。温度センサ15が計測する温度は、例えば蓄電素子11の温度である。この場合、温度センサ15は蓄電素子11の近傍(蓄電デバイスの内部)に設けられる。温度センサ15が計測する温度は、蓄電デバイス10が設置されている環境の温度(環境温度)であってもよい。この場合、温度センサ15は蓄電デバイス10の近傍に設けられる。以下の説明では、蓄電素子11の温度と、環境温度とを区別せずに、蓄電デバイス10の温度と表記する。温度センサ15は、計測結果をBMU12へ出力する。
リレー16は、蓄電素子11と正極端子10Bとの間に設けられており、BMU12からの制御指令に応じて、蓄電素子11の充放電経路を遮断又は接続するための回路要素である。本実施の形態において、リレー16は蓄電デバイス10の通電状態と非通電状態とを切り替えるスイッチの一例である。蓄電デバイス10が正常に機能している場合、充放電経路は接続され、外部から蓄電素子11への充電、及び蓄電素子11から負荷への給電(放電)が可能である。一方、蓄電デバイス10において過充電や過放電などの異常が検知された場合、BMU12からの制御指令により、充放電経路は遮断され、蓄電素子11への充電、及び負荷への給電(放電)が停止される。
本実施の形態において、リレー16は充放電経路を遮断又は接続するための回路要素の一例である。代替的に、FETなどの半導体スイッチを用いて充放電経路を遮断又は接続する構成としてもよい。
BMU12は、蓄電デバイス10の状態を管理するための装置であり、例えば、制御部121、記憶部122、接続部123、通信部124を備える。制御部121は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)などを備える。制御部121が備えるCPUは、ROMに予め格納される制御プログラムを実行することにより、蓄電デバイス10の状態を推定する機能、蓄電デバイス10における異常を検知する機能などを実現する。RAMは、CPUによる演算の実行中に生成される各種の情報を一時的に記憶する。記憶部122は、EEPROM(Electronically Erasable Programmable Read Only Memory)などにより構成されており、制御に必要なデータなどを記憶する。接続部123には、電流センサ13、電圧センサ14、温度センサ15、リレー16などが接続される。通信部124は、CANやLINなどの車内回線を介して、車両ECU30と通信可能に接続される。
BMU12の制御部121は、接続部123を通じて、電流センサ13により計測される電流値、電圧センサ14により計測される電圧値、温度センサ15により計測される温度を取得し、これらのデータに基づき、蓄電デバイス10のSOC(State Of Charge)やOCV(Open Circuit Voltage)を推定する。SOCの推定には例えば電流積算法が用いられる。電流積算法は、蓄電デバイス10の充放電電流を電流センサ13によって常時計測して蓄電デバイス10に出入りする電力量を求め、これを初期容量値から加減することによってSOCを推定する手法である。また、OCVはSOCと相関があるので、SOCを推定することによってOCVを推定できる。制御部121は、推定したSOCやOCVの情報を、通信部124を通じて車両ECU30へ通知する。また、制御部121は、推定したOCVが所定の上限値以上まで上昇した場合、又は所定の下限値まで低下した場合、蓄電デバイス10における異常を検知したと判断し、充放電経路を遮断する制御指令をリレー16へ出力する。
このリレー16が故障して開かない場合、蓄電デバイス10を異常から保護できない。このため、BMU12は、リレー16を開閉して故障診断(リレー自己診断)を実施する。例えば、BMU12は、リレー16を開いて電流センサ13によって電流値を計測する。リレー16が故障していなければ、リレー16が開くので、電流センサ13によって計測される電流値は0A(ゼロアンペア)になるはずである。これに対し、リレー16が故障している場合には、リレー16が開かないので電流センサ13によって計測される電流値は0Aより大きくなる。BMU12の制御部121は、電流センサ13によって計測された電流値が0Aの場合はリレー16が故障していないと判断し、0Aより大きい場合はリレー16が故障していると判断する。
BMU12の制御部121は、電流センサ13が計測する電流値のキャリブレーションを実施する。暗電流が存在する場合、上述したリレー自己診断において誤診断が発生したり、SOCの推定精度が劣化したりする可能性がある。このため、BMU12の制御部121は、リレー16を開いた状態において電流センサ13によって電流値を計測し、このときの電流値が0Aとなるように、電流センサ13のキャリブレーションを実施する。
本実施の形態では、蓄電デバイス10がBMU12を内蔵する構成とした。代替的に、BMU12は蓄電デバイス10の外部に設けられてもよい。
車両Cは例えば車両メーカによって開発・製造され、蓄電デバイス10は例えば電池メーカによって開発・製造される。車両Cの仕様と、車両Cに組み込まれた蓄電デバイス10の仕様とが適合していなかった場合、蓄電デバイス10におけるリレー自己診断や電流キャリブレーションが正常に実施できない可能性がある。蓄電デバイス10を車両Cに組み込み、車両全体を総合検証した時点において、上述のような不具合が見つかった場合、仕様を見直す必要が生じたり、車両Cに組み込む蓄電デバイス10の種類を変更する必要が生じたりするので、早期に仕様の合意に達することができない。
本実施の形態では、車両Cとは独立したコンピュータ(開発支援装置100:図3参照)において、蓄電デバイス10を模擬するモデルと、車両Cを模擬するモデルとを用いたシミュレーションを実行し、蓄電デバイス10と車両Cとの適合性を判定する。本実施の形態では、リレー自己診断及び電流キャリブレーションの成否を判定することによって、診断中又はキャリブレーション中の電力供給状態において、車両Cを駆動できるか否かを判断する。
図3は本実施の形態に係る開発支援装置100の内部構成を説明するブロック図である。開発支援装置100は、汎用又は専用のコンピュータであり、制御部101、記憶部102、通信部103、操作部104、表示部105等を備える。
制御部101は、CPU、ROM、RAMなどにより構成される。制御部101が備えるCPUは、ROMまたは記憶部102に記憶されている各種コンピュータプログラムをRAM上に展開して実行することにより、装置全体を本願の判定装置として機能させる。
制御部101は、上記の構成に限定されるものではなく、複数のCPU、マルチコアCPU、GPU(Graphics Processing Unit)、マイコン、揮発性または不揮発性のメモリ等を備える任意の処理回路または演算回路であってもよい。また、制御部101は、計測開始指示を与えてから計測終了指示を与えるまでの経過時間を計測するタイマ、数をカウントするカウンタ、日時情報を出力するクロック等の機能を備えていてもよい。
記憶部102は、HDD(Hard Disk Drive)、SSD(Solid State Drive)等を用いた記憶装置を備える。記憶部102には、制御部101によって実行される各種コンピュータプログラム、及びコンピュータプログラムの実行に必要なデータ等が記憶される。記憶部102に記憶されるコンピュータプログラムは、蓄電デバイス10を模擬するバッテリモデルBMと、車両Cを模擬する車両モデルCMとを用いたシミュレーションによって、リレー自己診断及び電流キャリブレーションの成否を判定する判定プログラムPGを含む。判定プログラムPGは単一のコンピュータプログラムであってもよく、複数のプログラムから構成されるプログラム群であってもよい。
記憶部102に記憶されるコンピュータプログラムは、例えば、当該コンピュータプログラムを読み取り可能に記録した非一時的な記録媒体Mにより提供される。記録媒体Mは、CD-ROM、USB(Universal Serial Bus)メモリ、SD(Secure Digital)カード、マイクロSDカード、コンパクトフラッシュ(登録商標)などの可搬型のメモリである。この場合、制御部101は、不図示の読取装置を用いて記録媒体Mからコンピュータプログラムを読み取り、読み取ったコンピュータプログラムを記憶部102にインストールすればよい。代替的に、記憶部102に記憶されるコンピュータプログラムは、通信部103を介した通信により提供されてもよい。この場合、制御部101は、通信部103を通じてコンピュータプログラムを取得し、取得したコンピュータプログラムを記憶部102にインストールすればよい。
記憶部102には、コンピュータプログラムの他に各種のデータが記憶される。例えば、記憶部102には、蓄電デバイス10を模擬するバッテリモデルBM、及び車両Cを模擬する車両モデルCMが記憶される。バッテリモデルBMは、蓄電素子11やリレー16の等価回路を含む。記憶部102は、等価回路の回路構成に関する情報や等価回路を構成する各素子の値などを記憶する。バッテリモデルBMは、更にBMU12の動作を模擬するBMUモデルを含む。本実施の形態において、BMUモデルは、リレー自己診断及び電流キャリブレーションのロジックを模擬できればよい。車両モデルCMは、車両Cの等価回路により表現される。記憶部102は、等価回路の回路構成に関する情報や等価回路を構成する各素子の値などを記憶する。
記憶部102は、蓄電デバイス10を識別する識別子に関連付けて、当該蓄電デバイス10の情報を記憶する電池テーブルBTを有していてもよい。電池テーブルBTに登録される電池情報は、例えば、正極及び負極の情報、電解液の情報、タブの情報などを含む。正極及び負極の情報とは、正極及び負極の活物質名、厚み、幅、奥行き、開回路電位などの情報である。電解液及びタブの情報とは、イオン種、輸率、拡散係数、導電率などの情報である。また、電池テーブルBTに登録される情報は、蓄電デバイス10を構成する構成部品等の情報が含まれていてもよい。電池テーブルBTに記憶されている情報は、上述したシミュレーションを実行する際に、パラメータの一部として利用される。
通信部103は、図に示してない通信網を通じて外部装置と通信を行うための通信インタフェースを備える。外部装置は、例えば、ユーザが使用するコンピュータやスマートフォンなどの情報処理端末である。通信部103は、外部装置へ送信すべき情報が制御部101から入力された場合、入力された情報を外部装置へ送信する共に、通信網を通じて受信した外部装置からの情報を制御部101へ出力する。
通信部103は、車両ECU30や蓄電デバイス10が備えるBMU12と通信可能に構成されてもよい。制御部101は、通信部103を通じて、車両Cの走行状態に関する情報、蓄電デバイス10にて計測される各種計測値などを取得し、取得した情報に基づきシミュレーションを実行してもよい。
操作部104は、キーボード、マウス、タッチパネルなどの入力インタフェースを備えており、ユーザによる操作を受付ける。表示部105は、液晶ディスプレイ装置などを備えており、ユーザに対して報知すべき情報を表示する。なお、本実施の形態では、開発支援装置100が操作部104及び表示部105を備える構成としたが、操作部104及び表示部105は必須ではなく、開発支援装置100の外部に接続されたコンピュータを通じて操作を受付け、通知すべき情報を外部のコンピュータへ出力する構成であってもよい。
以下、シミュレーションモデルの構成について説明する。
図4は開発支援装置100が用いるシミュレーションモデルの構成を示すブロック図である。開発支援装置100は、車両Cを模擬する車両モデルCMと、蓄電デバイス10を模擬するバッテリモデルBMとを用いたシミュレーションを実行することにより、車両システムの挙動を推定し、推定結果に基づきリレー自己診断及び電流キャリブレーションの成否を判定する。
本実施の形態では、車両Cの容量値と暗電流とが模擬できればよいので、車両モデルCMは、例えば、容量素子及び抵抗素子のRC並列回路により記述される。このRC並列回路における容量素子の値が車両Cの容量値を表し、抵抗素子に流れる電流が暗電流を表す。
バッテリモデルBMは、蓄電デバイス10を模擬するモデルであり、蓄電素子11を模擬する等価回路、及びBMU12が実行するリレー自己診断や電流キャリブレーションのロジックを模擬する論理回路を含む。図5は蓄電素子11を模擬する等価回路の一例を示す回路図である。蓄電素子11の等価回路モデルは、例えば、抵抗素子R0、抵抗素子R1と容量素子C1とを並列に接続してなる第1RC並列回路、抵抗素子R2と容量素子C2とを並列に接続してなる第2RC並列回路、及び定電圧源V0によって記述される。
抵抗素子R0は、蓄電素子11の直流抵抗成分(直流インピーダンス)を表す。蓄電素子11の直流抵抗成分は、例えば蓄電素子11における電極の抵抗に対応する。抵抗素子R0の抵抗値は放電電流、充電電圧、SOC、温度などによって変化する値である。抵抗素子R0の抵抗値が定まれば、この等価回路モデルに電流I(t)が流れたときに抵抗素子R0の両端に発生する電圧を計算できる。抵抗素子R0の両端に発生する電圧を直流抵抗電圧Vdc(t)とする。
2つのRC並列回路は、蓄電デバイス10の過渡的な分極特性を記述するための回路要素である。第1RC並列回路を構成する抵抗素子R1及び容量素子C1、並びに第2RC並列回路を構成する抵抗素子R2及び容量素子C2の各値は、蓄電デバイス10のSOCに応じて変動する値として与えられる。これらの値が決まれば、第1RC並列回路及び第2RC並列回路におけるインピーダンスが定まる。インピーダンスが定まれば、この等価回路モデルに電流I(t)が流れたときに第1RC並列回路及び第2RC並列回路に発生する電圧(分極電圧Vp(t))を計算できる。分極電圧Vp(t)は、第1RC並列回路に発生する分極電圧Vp1(t)と、第2RC並列回路に発生する分極電圧Vp2(t)との合計電圧である。
ここで、第1RC並列回路における時定数をτ1とし、第2RC並列回路における時定数をτ2とする。時定数τ1は、第1RC並列回路を構成する抵抗素子R1の抵抗値と容量素子C1の容量値とを乗じた値として定められる。時定数τ1は、第1RC並列回路に発生する分極電圧Vp1(t)の時間変化に反映される。同様に、時定数τ2は、第2RC並列回路を構成する抵抗素子R2の抵抗値と容量素子C2の容量値とを乗じた値として定められる。時定数τ2は、第2RC並列回路に発生する分極電圧Vp2(t)の時間変化に反映される。時定数τ1,τ2を異ならせることにより、蓄電素子11内で生じる様々な現象を表現することができる。
定電圧源V0は、直流電圧を出力する電圧源である。定電圧源V0が出力する電圧は、蓄電素子11の開放電圧(OCV)を表し、Vo(t)と記載する。開放電圧Vo(t)は、SOC、温度などの関数として与えられる。
正極端子PTと負極端子NTとの間の端子電圧V(t)は、直流抵抗電圧Vdc(t)、分極電圧Vp(t)、及び開放電圧Vo(t)を用いて、
V(t)=Vdc(t)+Vp(t)+Vo(t)
として与えられる。
蓄電素子11の等価回路モデルを構成する各素子の値は、例えば実測の結果に基づき、電流やSOCなどの関係を考慮して設定される。
開発支援装置100の制御部101は、バッテリモデルBMと車両モデルCMとを用いたシミュレーションを実行し、リレー自己診断及び電流キャリブレーションの成否を判定して判定結果を出力する。例えば、車両モデルCMに設定される容量値及び暗電流値の大きさによっては、リレー自己診断に要する時間が長くなる場合やゼロ負荷(リレー16が開いた状態)となる時間が短いために電流キャリブレーションが実施できない場合がある。制御部101は、リレー自己診断に要する時間やゼロ負荷となる時間をシミュレーションにより求める。制御部101は、求めた時間を予め設定した閾値と比較することによって、リレー自己診断及び電流キャリブレーションの成否を判断する。
図6は開発支援装置100が実行する処理の手順を示すフローチャートである。開発支援装置100の制御部101は、車両Cを模擬する車両モデルCMと、車両Cに搭載される蓄電デバイス10を模擬するバッテリモデルBMとを設定する(ステップS101)。このとき、車両モデルCMを構成する容量素子及び抵抗素子の各値、車両Cの暗電流値、蓄電素子11の等価回路に含まれる各素子の値などが設定される。これらの値は、事前に設定されて記憶部102に記憶されていてもよく、シミュレーションを実行する際に操作部104を通じて受付けてもよい。
次いで、制御部101は、車両モデルCMとバッテリモデルBMとを用いたシミュレーションを実行し、車両システムの挙動を推定する(ステップS102)。
車両システムの挙動を推定する過程で、制御部101は、蓄電デバイス10が備えるリレー16の自己診断に要する時間を推定し(ステップS103)、推定した時間が第1閾値未満であるか否かを判断する(ステップS104)。第1閾値は事前に設定され、記憶部102に記憶されていればよい。
制御部101は、推定した時間が第1閾値未満であると判断した場合(S104:YES)、設定された時間内に診断が完了するので、リレー自己診断は成功と判定する(ステップS105)。一方、制御部101は、推定した時間が第1閾値以上であると判断した場合(S104:NO)、設定された時間内に診断が完了しないので、リレー自己診断は失敗と判定する(ステップS106)。
制御部101は、判定結果に基づき、リレー自己診断の成否に係る情報を出力する(ステップS107)。リレー自己診断の成否に係る情報は、表示部105に表示されてもよく、通信部103を通じて外部に通知されてもよい。
また、車両システムの挙動を推定する過程で、制御部101は、蓄電デバイス10がゼロ負荷となる時間を推定し(ステップS108)、推定した時間が第2閾値未満であるか否かを判断する(ステップS109)。第2閾値は第1閾値とは無関係に事前に設定され、記憶部102に記憶されていればよい。
制御部101は、推定した時間が第2閾値以上であると判断した場合(S109:NO)、ゼロ負荷時に流れる電流(暗電流)の計測が可能であるため、電流キャリブレーションは成功と判定する(ステップS110)。一方、推定した時間が第2閾値未満であると判断した場合(S109:YES)、ゼロ負荷時に流れる電流(暗電流)の計測が不能であるため、電流キャリブレーションは失敗と判定する(ステップS111)。
制御部101は、判定結果に基づき、電流キャリブレーションの成否に係る情報を出力する(ステップS112)。電流キャリブレーションの成否に係る情報は、表示部105に表示されてもよく、通信部103を通じて外部に通知されてもよい。
図6に示すフローチャートでは、便宜的に、リレー自己診断の成否を判定した後、電流キャリブレーションの成否を判定する手順とした。代替的に、制御部101は、電流キャリブレーションの成否を判定した後に、リレー自己診断の成否を判定してもよい。また、制御部101は、リレー自己診断及び電流キャリブレーションの何れか一方を実施してもよい。
以上のように、本実施の形態では、蓄電デバイス10を模擬するバッテリモデルBMと、車両Cを模擬する車両モデルCMとを用いたシミュレーションを実行することによって、車両システムの挙動を推定し、推定結果に基づき、リレー自己診断及び電流キャリブレーションの成否を判定する。よって、蓄電デバイス10及び車両Cの実機又は試作品を用いた検証を実施する必要はなく、シミュレーションにより、リレー自己診断及び電流キャリブレーションの成否を判定できる。その結果、開発支援装置100は、車両C及び車両Cに搭載される蓄電デバイス10の仕様を製品開発の初期段階において決定できる。
今回開示された実施形態は、全ての点において例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
例えば、本実施の形態では、通電状態と非通電状態とを切り替えるスイッチの例として、蓄電デバイス10がリレー16を備える構成について説明した。代替的に、スイッチは、FETなどの半導体素子、ブレーカ、マグネットコンタクタなどであってもよい。また、本実施の形態では、接続先の状態に依存するセンサの一例として、蓄電デバイス10が電流センサ13を備える構成について説明した。代替的に、センサは、電圧センサ14、温度センサ15などであってもよい。
また、本実施の形態では、蓄電デバイス10は車両用の電源であるとして説明した。車両は、四輪車に限らず、二輪車であってもよい。代替的に、電車であってもよく、AGV、無人飛行体(ドローン)、航空機などの移動体であってもよい。蓄電デバイス10は、車両駆動用の高電圧電源(数百V)や駆動以外の電源を供給する補機用電池(12V又は24V)であってもよく、エンジン始動用電池(12V又は24V)やマイルドハイブリッド用電池(48V)であってもよい。車両の充電システムの一例としては、車両の減速時に回収される回生電力、屋根等に搭載されるソーラ発電、駐車して充電する100V電源や200Vの急速充電器、再使用された電池を組み込む蓄電システムなどが挙げられるが、これらに限定されない。代替的に、蓄電デバイス10は、電子機器用の電源であってもよく、電力貯蔵用の電源であってもよい。これらの場合、開発支援装置100は、電子機器又は電力貯蔵施設が備える充電システムと蓄電デバイスとの適合性を判定すればよい。
また、本実施の形態では、複数のリチウムイオン二次電池からなる蓄電素子11の構成について説明した。代替的に、蓄電デバイス10は、複数のセルが接続されたモジュール、複数のモジュールを接続したバンク、複数のバンクを接続したドメイン等であってもよい。また、リチウムイオン二次電池に代えて、全固体リチウムイオン電池、亜鉛空気電池、ナトリウムイオン電池、鉛電池などの任意の電池を採用してもよい。
10 蓄電デバイス
20 充電システム
21 充電ECU
22 オルタネータ
23 電動モータ
30 車両ECU
100 開発支援装置
101 制御部
102 記憶部
103 通信部
104 操作部
105 表示部
BM バッテリモデル
CM 車両モデル

Claims (11)

  1. コンピュータに、
    通電状態と非通電状態とを切り替えるスイッチを備え、前記スイッチの自己診断機能を有する蓄電デバイスと、前記蓄電デバイスから供給される電力によって駆動する駆動体とを含むシステムについて、前記蓄電デバイスを模擬するバッテリモデルと、前記駆動体を模擬する駆動体モデルとを用いて、前記スイッチの自己診断に関するシミュレーションを実行し、
    前記シミュレーションの実行結果に基づき、前記蓄電デバイスと前記駆動体との適合性を判定する
    処理を実行させるためのコンピュータプログラム。
  2. 前記コンピュータに、
    前記シミュレーションによって、前記スイッチの自己診断に要する時間を推定し、
    推定した時間の長短に応じて、前記蓄電デバイスと前記駆動体との適合性を判定する
    処理を実行させるための請求項1に記載のコンピュータプログラム。
  3. 前記コンピュータに、
    前記シミュレーションによって、推定した時間の長短に応じて前記スイッチの自己診断の成否を判定する
    処理を実行させるための請求項1又は請求項2に記載のコンピュータプログラム。
  4. コンピュータに、
    接続先の状態に依存するセンサを備え、前記センサの校正機能を備えた蓄電デバイスと、前記蓄電デバイスから供給される電力によって駆動する駆動体とを含むシステムについて、前記蓄電デバイスを模擬するバッテリモデルと、前記駆動体を模擬する駆動体モデルとを用いて、前記センサの校正に関するシミュレーションを実行し、
    前記シミュレーションの実行結果に基づき、前記蓄電デバイスと前記駆動体との適合性を判定する
    処理を実行させるためのコンピュータプログラム。
  5. 前記コンピュータに、
    前記シミュレーションによって、前記蓄電デバイスがゼロ負荷となる時間を推定し、
    推定した時間の長短に応じて、前記蓄電デバイスと前記駆動体との適合性を判定する
    処理を実行させるための請求項4に記載のコンピュータプログラム。
  6. 前記コンピュータに、
    前記シミュレーションによって、推定した時間の長短に応じて前記センサの校正の成否を判定する
    処理を実行させるための請求項4又は請求項5に記載のコンピュータプログラム。
  7. 前記駆動体モデルは、前記駆動体を容量素子及び抵抗素子の並列回路により記述してある
    請求項1から請求項6の何れか1つに記載のコンピュータプログラム。
  8. 通電状態と非通電状態とを切り替えるスイッチを備え、前記スイッチの自己診断機能を有する蓄電デバイスと、前記蓄電デバイスから供給される電力によって駆動する駆動体とを含むシステムについて、前記蓄電デバイスを模擬するバッテリモデルと、前記駆動体を模擬する駆動体モデルとを用いて、前記スイッチの自己診断に関するシミュレーションを実行する実行部と、
    前記シミュレーションの実行結果に基づき、前記蓄電デバイスと前記駆動体との適合性を判定する判定部と
    を備える判定装置。
  9. 接続先の状態に依存するセンサを備え、前記センサの校正機能を備えた蓄電デバイスと、前記蓄電デバイスから供給される電力によって駆動する駆動体とを含むシステムについて、前記蓄電デバイスを模擬するバッテリモデルと、前記駆動体を模擬する駆動体モデルとを用いて、前記センサの校正に関するシミュレーションを実行する実行部と、
    前記シミュレーションの実行結果に基づき、前記蓄電デバイスと前記駆動体との適合性を判定する判定部と
    を備える判定装置。
  10. コンピュータを用いて、
    通電状態と非通電状態とを切り替えるスイッチを備え、前記スイッチの自己診断機能を有する蓄電デバイスと、前記蓄電デバイスから供給される電力によって駆動する駆動体とを含むシステムについて、前記蓄電デバイスを模擬するバッテリモデルと、前記駆動体を模擬する駆動体モデルとを用いて、前記スイッチの自己診断に関するシミュレーションを実行し、
    前記シミュレーションの実行結果に基づき、前記蓄電デバイスと前記駆動体との適合性を判定する
    判定方法。
  11. コンピュータを用いて、
    接続先の状態に依存するセンサを備え、前記センサの校正機能を備えた蓄電デバイスと、前記蓄電デバイスから供給される電力によって駆動する駆動体とを含むシステムについて、前記蓄電デバイスを模擬するバッテリモデルと、前記駆動体を模擬する駆動体モデルとを用いて、前記センサの校正に関するシミュレーションを実行し、
    前記シミュレーションの実行結果に基づき、前記蓄電デバイスと前記駆動体との適合性を判定する
    判定方法。
JP2020167188A 2020-10-01 2020-10-01 コンピュータプログラム、判定装置及び判定方法 Active JP7501290B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020167188A JP7501290B2 (ja) 2020-10-01 2020-10-01 コンピュータプログラム、判定装置及び判定方法
PCT/JP2021/031067 WO2022070686A1 (ja) 2020-10-01 2021-08-25 コンピュータプログラム、判定装置及び判定方法
CN202180067620.5A CN116420263A (zh) 2020-10-01 2021-08-25 计算机程序、判断装置以及判断方法
US18/247,208 US20230382231A1 (en) 2020-10-01 2021-08-25 Computer program, determination device, and determination method
DE112021005120.2T DE112021005120T5 (de) 2020-10-01 2021-08-25 Computerprogramm, eine Bestimmungsvorrichtung und ein Bestimmungsverfahren

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020167188A JP7501290B2 (ja) 2020-10-01 2020-10-01 コンピュータプログラム、判定装置及び判定方法

Publications (2)

Publication Number Publication Date
JP2022059439A true JP2022059439A (ja) 2022-04-13
JP7501290B2 JP7501290B2 (ja) 2024-06-18

Family

ID=80951285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020167188A Active JP7501290B2 (ja) 2020-10-01 2020-10-01 コンピュータプログラム、判定装置及び判定方法

Country Status (5)

Country Link
US (1) US20230382231A1 (ja)
JP (1) JP7501290B2 (ja)
CN (1) CN116420263A (ja)
DE (1) DE112021005120T5 (ja)
WO (1) WO2022070686A1 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011062018A (ja) 2009-09-11 2011-03-24 Sumitomo Electric Ind Ltd 電源システムおよびコンバータユニット
US20120283970A1 (en) 2009-11-19 2012-11-08 Andre Boehm Method and device for error-compensated current measurement of an electrical accumulator
JP7000172B2 (ja) 2018-01-18 2022-01-19 株式会社デンソーテン 電源管理装置および電源管理方法
EP3781431B1 (en) 2018-04-20 2023-09-06 CPS Technology Holdings LLC System and method for battery selection

Also Published As

Publication number Publication date
JP7501290B2 (ja) 2024-06-18
DE112021005120T5 (de) 2023-09-28
CN116420263A (zh) 2023-07-11
WO2022070686A1 (ja) 2022-04-07
US20230382231A1 (en) 2023-11-30

Similar Documents

Publication Publication Date Title
CN107850643B (zh) 用于诊断开关元件的故障的装置和方法
US11738663B2 (en) Method predictive battery power limit estimation systems and methods
CN102736031B (zh) 用于确定电池的充电状态的方法和装置
JP4510753B2 (ja) 電源装置、及びその制御方法
KR20160138562A (ko) 충전 상태 밸런싱 시스템을 포함하는 배터리의 배터리 관리 방법, 그리고 배터리 관리 시스템
KR101847685B1 (ko) 배터리의 상태 추정 장치 및 방법
CN109874349B (zh) 电池模型及控制应用校准系统和方法
CN112786981B (zh) 利用较弱单元电池监测的分布式电池功率估计
KR101498764B1 (ko) 배터리의 저항측정방법 및 장치, 이를 이용한 배터리 관리 시스템
KR20200087494A (ko) 배터리 관리 방법 및 장치
Barreras et al. Functional analysis of Battery Management Systems using multi-cell HIL simulator
KR20130126231A (ko) 배터리 수명 추정 장치 및 배터리 수명 추정 방법
CN112912745A (zh) 根据开路电压图形确定电化学电池的充电状态和老化状态的方法
JP7389217B2 (ja) 電池状態予測装置および電池状態予測方法
Becherif et al. Initial state of charge estimation of battery using impedance measurement for electrical vehicle applications
WO2022070686A1 (ja) コンピュータプログラム、判定装置及び判定方法
WO2022071048A1 (ja) コンピュータプログラム、判定装置及び判定方法
CN114791563A (zh) 用于诊断电池故障的装置和方法
JP2022059437A (ja) コンピュータプログラム、判定装置及び判定方法
JP2022059438A (ja) コンピュータプログラム、判定装置及び判定方法
KR20210051539A (ko) 배터리 절연 진단 장치
Luder et al. Current developments of battery management systems
Lee et al. Development of Battery Hardware-In-the-Loop System Implemented with Reduced-Order Electrochemistry Li-Ion Battery Models
Cordoba-Arenas et al. Aging propagation in interconnected systems with an application to advanced automotive battery packs
Weller et al. Battery Development and Testing including Simulation and Function Development at ElringKlinger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240520