JP2022055793A - Power storage element - Google Patents

Power storage element Download PDF

Info

Publication number
JP2022055793A
JP2022055793A JP2020163424A JP2020163424A JP2022055793A JP 2022055793 A JP2022055793 A JP 2022055793A JP 2020163424 A JP2020163424 A JP 2020163424A JP 2020163424 A JP2020163424 A JP 2020163424A JP 2022055793 A JP2022055793 A JP 2022055793A
Authority
JP
Japan
Prior art keywords
current collector
power storage
storage element
electrode
electrode body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020163424A
Other languages
Japanese (ja)
Inventor
謙志 河手
Kenji Kawate
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2020163424A priority Critical patent/JP2022055793A/en
Publication of JP2022055793A publication Critical patent/JP2022055793A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

To provide a power storage element, equipped with a collector for electrically connecting an electrode body to an electrode terminal, which has improved safety.SOLUTION: A power storage element 10 comprises: an electrode body 200; an electrode terminal 130; and a collector 300 for electrically connecting the electrode body 200 to the electrode terminal 130. The collector 300 has: a terminal connection part 310 which is connected to the electrode terminal 130 and is disposed at a position side by side in a Z-axis direction with the electrode body 200; and a leg part 320 which is erected from the terminal connection part 310 in the Z-axis direction and is bonded to the electrode body 200. A high-rigidity part 325 having rigidity higher than that of the terminal connection part 310 is formed between the terminal connection part 310 and a bonding part 330 which is a portion, of the leg part 320, bonded to the electrode body 200.SELECTED DRAWING: Figure 4

Description

本発明は、電極体と電極端子とを電気的に接続する集電体を備える蓄電素子に関する。 The present invention relates to a power storage element including a current collector that electrically connects an electrode body and an electrode terminal.

特許文献1には、電池に備えられる集電端子であって、電極体の集電箔に接合される集電端子が開示されている。この集電端子では、集電箔との接合面の反対側に補強部材が配置されている。 Patent Document 1 discloses a current collecting terminal provided in a battery and bonded to a current collecting foil of an electrode body. In this current collector terminal, a reinforcing member is arranged on the opposite side of the joint surface with the current collector foil.

特開2019-125486号公報JP-A-2019-125486

上記従来の技術における集電端子(集電体)では、電極体と接合される面の反対側に補強部材を配置することで、電極体との圧接時における集電体の塑性変形の抑制を図っている。しかしながら、蓄電素子に備えられる集電体は、例えば容器に固定された電極端子と連結された状態で配置される。つまり、集電体は、容器内において長手方向の一端が固定端であり他端が自由端となる状態で配置され、かつ、電極体を支持する。従って、例えば蓄電素子に衝撃が与えられた場合、電極体の慣性力により、集電体における容器側の根元(固定端)に近い部分に応力集中が生じやすい。その結果、集電体が塑性変形し、集電体による電極体の損傷等の、不安全事象の発生要因となる問題が生じる。このような問題に関し、上記従来の技術における補強部材は、集電体における電極体との接合部分に配置されるため、上記の応力集中に起因する集電体の塑性変形を抑制する効果は期待できない。 In the current collector terminal (current collector) in the above-mentioned conventional technique, by arranging a reinforcing member on the opposite side of the surface to be joined to the electrode body, plastic deformation of the current collector during pressure contact with the electrode body can be suppressed. I'm trying. However, the current collector provided in the power storage element is arranged in a state of being connected to, for example, an electrode terminal fixed to a container. That is, the current collector is arranged in the container so that one end in the longitudinal direction is a fixed end and the other end is a free end, and supports the electrode body. Therefore, for example, when an impact is applied to the power storage element, stress concentration tends to occur in a portion of the current collector near the root (fixed end) on the container side due to the inertial force of the electrode body. As a result, the current collector is plastically deformed, which causes a problem that causes an unsafe event such as damage to the electrode body due to the current collector. Regarding such a problem, since the reinforcing member in the above-mentioned conventional technique is arranged at the joint portion with the electrode body in the current collector, the effect of suppressing the plastic deformation of the current collector due to the above-mentioned stress concentration is expected. Can not.

本発明は、本願発明者が上記課題に新たに着目することによってなされたものであり、電極体と電極端子とを電気的に接続する集電体を備える蓄電素子であって、安全性が向上された蓄電素子を提供することを目的とする。 The present invention has been made by the inventor of the present application paying new attention to the above-mentioned problems, and is a power storage element provided with a current collector that electrically connects an electrode body and an electrode terminal, and has improved safety. It is an object of the present invention to provide a power storage element.

本発明の一態様に係る蓄電素子は、電極体と、電極端子と、前記電極体及び前記電極端子を電気的に接続する集電体とを備える蓄電素子であって、前記集電体は、前記電極端子と接続され、第一方向において前記電極体と並ぶ位置に配置された端子接続部と、前記端子接続部から前記第一方向に沿って立設され、前記電極体と接合された脚部とを有し、前記脚部における前記電極体と接合された部分である接合部と、前記端子接続部との間に、前記端子接続部よりも硬度の高い高硬度部が形成されている。 The power storage element according to one aspect of the present invention is a power storage element including an electrode body, an electrode terminal, and a current collector for electrically connecting the electrode body and the electrode terminal. A terminal connection portion connected to the electrode terminal and arranged at a position aligned with the electrode body in the first direction, and a leg erected from the terminal connection portion along the first direction and joined to the electrode body. A high-hardness portion having a portion higher than that of the terminal connection portion is formed between the joint portion, which is a portion of the leg portion that is joined to the electrode body, and the terminal connection portion. ..

この構成によれば、例えば蓄電素子に衝撃が与えられた場合において電極体に生じる慣性力が直接的に作用する接合部と、集電体の固定端を形成する端子接続部との間に、端子接続部よりも硬度が高い高硬度部が設けられる。従って、例えば、脚部に形状的な工夫を加えることなく、電極体に接合された脚部の変形を効果的に抑制することができ、その結果、脚部が塑性変形する可能性が低減される。これにより、例えば、変形した脚部が電極体を損傷させるような不具合の発生が低減される。このように、本態様に係る蓄電素子は、電極体と電極端子とを電気的に接続する集電体を備える蓄電素子であって、安全性が向上された蓄電素子である。 According to this configuration, for example, when an impact is applied to the power storage element, an inertial force generated on the electrode body acts directly between the joint portion and the terminal connection portion forming the fixed end of the current collector. A high hardness portion having a hardness higher than that of the terminal connection portion is provided. Therefore, for example, it is possible to effectively suppress the deformation of the leg portion joined to the electrode body without adding a shape modification to the leg portion, and as a result, the possibility of the leg portion being plastically deformed is reduced. To. As a result, for example, the occurrence of defects such as the deformed leg portion damaging the electrode body is reduced. As described above, the power storage element according to this aspect is a power storage element including a current collector that electrically connects the electrode body and the electrode terminal, and is a power storage element with improved safety.

前記高硬度部は、前記脚部の前記端子接続部側の端部を含む範囲に形成されている、としてもよい。 The high hardness portion may be formed in a range including the end portion of the leg portion on the terminal connection portion side.

この構成によれば、接合部が外力を受けた場合に、脚部における最も応力が集中しやすい端子接続部側の端部を含む範囲に、高硬度部が形成される。従って、脚部の変形をより効果的に抑制することができ、これにより、脚部が塑性変形する可能性がさらに低減される。 According to this configuration, when the joint portion receives an external force, a high hardness portion is formed in a range including the end portion on the terminal connection portion side where stress is most likely to be concentrated in the leg portion. Therefore, the deformation of the leg can be suppressed more effectively, which further reduces the possibility of the leg being plastically deformed.

前記脚部は、前記接合部を有する脚部本体と、前記端部に設けられた幅広部であって、前記脚部本体の厚み方向及び前記第一方向に交差する第二方向の幅が、前記端子接続部に近づくほど広くなる幅広部とを有し、前記高硬度部は、前記脚部本体と前記幅広部とに連続する領域に形成されている、としてもよい。 The leg portion is a wide portion provided at the end portion of the leg portion main body having the joint portion, and the width in the thickness direction of the leg portion main body and the width in the second direction intersecting the first direction are as follows. It may have a wide portion that becomes wider as it approaches the terminal connection portion, and the high hardness portion may be formed in a region continuous with the leg portion main body and the wide portion.

この構成によれば、脚部の根元部分に幅広部が設けられていることで、脚部本体が外力を受けた場合の脚部の変形が抑制される。さらに、この構造において応力の集中しやすい部分である、脚部本体と幅広部との境界をまたぐように高硬度部が設けられる。そのため、高硬度部による脚部の変形の抑制効果がさらに向上され、その結果、脚部が塑性変形する可能性がさらに低減される。 According to this configuration, since the wide portion is provided at the base portion of the leg portion, the deformation of the leg portion when the leg portion main body receives an external force is suppressed. Further, a high hardness portion is provided so as to straddle the boundary between the leg portion main body and the wide portion, which is a portion where stress is easily concentrated in this structure. Therefore, the effect of suppressing the deformation of the leg portion by the high hardness portion is further improved, and as a result, the possibility of the leg portion being plastically deformed is further reduced.

前記集電体において、前記脚部と前記端子接続部との接続部分には、湾曲状または屈曲状に形成された曲げ部が設けられており、前記高硬度部は、前記第一方向において、前記曲げ部よりも前記電極体の側に形成されている、としてもよい。 In the current collector, the connecting portion between the leg portion and the terminal connecting portion is provided with a bent portion formed in a curved or bent shape, and the high hardness portion is provided in the first direction. It may be formed on the side of the electrode body with respect to the bent portion.

この構成によれば、例えば、板状の部材を折り曲げることで端子接続部と脚部との接続部分である曲げ部が形成されるため、この曲げ部を避けて高硬度部が形成されていることで、曲げ部を形成するための曲げ加工が、高硬度部によって妨げられることがない。つまり、脚部の塑性変形を抑制する構成を有し、かつ、曲げを伴う作製工程を効率よく行うことができる。すなわち、安全性が向上された蓄電素子を効率よく製造することができる。 According to this configuration, for example, by bending a plate-shaped member, a bent portion which is a connection portion between the terminal connection portion and the leg portion is formed, so that the bent portion is avoided and the high hardness portion is formed. Therefore, the bending process for forming the bent portion is not hindered by the high hardness portion. That is, it has a structure that suppresses the plastic deformation of the leg portion, and the manufacturing process that involves bending can be efficiently performed. That is, it is possible to efficiently manufacture a power storage element with improved safety.

前記高硬度部は、前記集電体における高硬度部以外の部分よりも薄く形成されている、としてもよい。 The high-hardness portion may be formed thinner than the portion other than the high-hardness portion in the current collector.

この構成によれば、例えば、金属板の一部をプレス加工で薄くすることによる加工硬化によって、高硬度部における高い硬度を実現することができる。従って、例えば一般に流通するアルミニウム合金等の金属板を用いて容易に高硬度部を有する集電体を作製することができる。すなわち、安全性が向上された蓄電素子を効率よく製造することができる。 According to this configuration, for example, high hardness in a high hardness portion can be realized by work hardening by thinning a part of a metal plate by press working. Therefore, for example, a current collector having a high hardness portion can be easily produced by using a metal plate such as an aluminum alloy that is generally distributed. That is, it is possible to efficiently manufacture a power storage element with improved safety.

なお、本発明は、このような蓄電素子として実現することができるだけでなく、当該蓄電素子が備える集電体としても実現することができる。 It should be noted that the present invention can be realized not only as such a power storage element but also as a current collector included in the power storage element.

本発明によれば、電極体と電極端子とを電気的に接続する集電体を備える蓄電素子であって、安全性が向上された蓄電素子を提供することができる。 According to the present invention, it is possible to provide a power storage element provided with a current collector that electrically connects an electrode body and an electrode terminal, and has improved safety.

実施の形態に係る蓄電素子の外観を示す斜視図である。It is a perspective view which shows the appearance of the power storage element which concerns on embodiment. 実施の形態に係る蓄電素子の第1の分解斜視図である。It is a 1st exploded perspective view of the power storage element which concerns on embodiment. 実施の形態に係る蓄電素子の第2の分解斜視図である。It is a second exploded perspective view of the power storage element which concerns on embodiment. 実施の形態に係る集電体の構成を示す斜視図である。It is a perspective view which shows the structure of the current collector which concerns on embodiment. 実施の形態に係る集電体の側面図である。It is a side view of the current collector which concerns on embodiment. 実施の形態に係る集電体の背面図である。It is a rear view of the current collector which concerns on embodiment. 実施の形態に係る集電体の端子接続部側の端部を示す拡大斜視図である。It is an enlarged perspective view which shows the end part on the terminal connection part side of the current collector which concerns on embodiment. 実施の形態の変形例に係る集電体の構成を示す斜視図である。It is a perspective view which shows the structure of the current collector which concerns on the modification of embodiment.

以下、図面を参照しながら、本発明の実施の形態(その変形例も含む)に係る蓄電素子について説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、製造工程、製造工程の順序などは一例であり、本発明を限定する主旨ではない。また、各図において、寸法等は厳密に図示したものではない。さらに、各図において、同一または同様な構成要素については同じ符号を付している。 Hereinafter, the power storage element according to the embodiment of the present invention (including a modification thereof) will be described with reference to the drawings. It should be noted that all of the embodiments described below show comprehensive or specific examples. The numerical values, shapes, materials, components, arrangement positions and connection forms of the components, manufacturing processes, order of manufacturing processes, etc. shown in the following embodiments are examples, and are not intended to limit the present invention. Further, in each figure, the dimensions and the like are not exactly shown. Further, in each figure, the same or similar components are designated by the same reference numerals.

以下の説明及び図面中において、蓄電素子が有する一対(正極及び負極、以下同様)の電極端子の並び方向、一対の集電体の並び方向、電極体の巻回軸方向、または、容器の短側面の対向方向をX軸方向と定義する。容器の長側面の対向方向、容器の短側面の短手方向、または、容器の厚さ方向をY軸方向と定義する。蓄電素子の容器本体と蓋体との並び方向、容器の短側面の長手方向、または、集電体の脚部の延設方向をZ軸方向と定義する。これらX軸方向、Y軸方向及びZ軸方向は、互いに交差(本実施の形態では直交)する方向である。 In the following description and drawings, the arrangement direction of the pair of electrode terminals (positive electrode and negative electrode, the same applies hereinafter) of the power storage element, the arrangement direction of the pair of current collectors, the winding axis direction of the electrode body, or the short of the container. The facing direction of the side surfaces is defined as the X-axis direction. The direction opposite to the long side surface of the container, the short side direction of the short side surface of the container, or the thickness direction of the container is defined as the Y-axis direction. The alignment direction between the container body and the lid of the current collector element, the longitudinal direction of the short side surface of the container, or the extension direction of the legs of the current collector is defined as the Z-axis direction. These X-axis directions, Y-axis directions, and Z-axis directions intersect each other (orthogonally in the present embodiment).

また、以下の説明において、例えば、X軸プラス方向とは、X軸の矢印方向を示し、X軸マイナス方向とは、X軸プラス方向とは反対方向を示す。Y軸方向及びZ軸方向についても同様である。また、以下では、Z軸方向を第一方向と呼び、X軸方向を第二方向と呼ぶ場合がある。さらに、平行及び直交などの、相対的な方向または姿勢を示す表現は、厳密には、その方向または姿勢ではない場合も含む。例えば、2つの方向が平行である、とは、当該2つの方向が完全に平行であることを意味するだけでなく、実質的に平行であること、すなわち、例えば数%程度の差異を含むことも意味する。 Further, in the following description, for example, the X-axis plus direction indicates the arrow direction of the X-axis, and the X-axis minus direction indicates the direction opposite to the X-axis plus direction. The same applies to the Y-axis direction and the Z-axis direction. Further, in the following, the Z-axis direction may be referred to as a first direction, and the X-axis direction may be referred to as a second direction. Further, expressions indicating relative directions or postures such as parallel and orthogonal include cases where they are not strictly the directions or postures. For example, the fact that two directions are parallel not only means that the two directions are completely parallel, but also that they are substantially parallel, that is, that they include a difference of, for example, about several percent. Also means.

(実施の形態)
[1.蓄電素子の全般的な説明]
まず、図1~図3を用いて、本実施の形態に係る蓄電素子10の全般的な説明を行う。図1は、実施の形態に係る蓄電素子10の外観を示す斜視図である。また、図2は、実施の形態に係る蓄電素子10の第1の分解斜視図であり、図3は、実施の形態に係る蓄電素子10の第2の分解斜視図である。具体的には、図2は、蓄電素子10から容器本体110を分離した状態を示す斜視図である。図3は、図2に示した容器本体110以外の構成要素を分解した状態を示す斜視図である。
(Embodiment)
[1. General explanation of power storage element]
First, with reference to FIGS. 1 to 3, a general description of the power storage element 10 according to the present embodiment will be given. FIG. 1 is a perspective view showing the appearance of the power storage element 10 according to the embodiment. Further, FIG. 2 is a first exploded perspective view of the power storage element 10 according to the embodiment, and FIG. 3 is a second exploded perspective view of the power storage element 10 according to the embodiment. Specifically, FIG. 2 is a perspective view showing a state in which the container body 110 is separated from the power storage element 10. FIG. 3 is a perspective view showing a state in which components other than the container body 110 shown in FIG. 2 are disassembled.

蓄電素子10は、電気を充電し、また、電気を放電することのできる二次電池(単電池)であり、より具体的には、リチウムイオン二次電池等の非水電解質二次電池である。蓄電素子10は、例えば、自動車、自動二輪車、ウォータークラフト、船舶、スノーモービル、農業機械、建設機械、または、電気鉄道用の鉄道車両等の移動体の駆動用またはエンジン始動用等のバッテリ等として用いられる。上記の自動車としては、電気自動車(EV)、ハイブリッド電気自動車(HEV)、プラグインハイブリッド電気自動車(PHEV)及びガソリン自動車が例示される。上記の電気鉄道用の鉄道車両としては、電車、モノレール、リニアモーターカー、並びに、ディーゼル機関及び電気モーターの両方を備えるハイブリッド電車が例示される。また、蓄電素子10は、家庭用または発電機用等に使用される定置用のバッテリ等としても用いることができる。 The power storage element 10 is a secondary battery (single battery) capable of charging electricity and discharging electricity, and more specifically, a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. .. The power storage element 10 is, for example, a battery for driving a moving body such as an automobile, a motorcycle, a watercraft, a ship, a snowmobile, an agricultural machine, a construction machine, or a railroad vehicle for an electric railway, or for starting an engine. Used. Examples of the above-mentioned vehicle include an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and a gasoline vehicle. Examples of the railcars for electric railways include trains, monorails, maglev trains, and hybrid trains equipped with both diesel engines and electric motors. Further, the power storage element 10 can also be used as a stationary battery or the like used for home use, a generator, or the like.

なお、蓄電素子10は、非水電解質二次電池には限定されず、非水電解質二次電池以外の二次電池であってもよいし、キャパシタであってもよい。また、蓄電素子10は、二次電池ではなく、使用者が充電をしなくても蓄えられている電気を使用できる一次電池であってもよい。さらに、蓄電素子10は、固体電解質を用いた電池であってもよい。また、本実施の形態では、直方体形状(角形)の蓄電素子10を図示しているが、蓄電素子10の形状は、直方体形状には限定されず、円柱形状、長円柱形状または直方体以外の多角柱形状等であってもよい。 The power storage element 10 is not limited to the non-aqueous electrolyte secondary battery, and may be a secondary battery other than the non-aqueous electrolyte secondary battery, or may be a capacitor. Further, the power storage element 10 may be a primary battery that can use the stored electricity without being charged by the user, instead of the secondary battery. Further, the power storage element 10 may be a battery using a solid electrolyte. Further, in the present embodiment, the rectangular parallelepiped (square) power storage element 10 is shown, but the shape of the power storage element 10 is not limited to the rectangular parallelepiped shape, and is not limited to the rectangular parallelepiped shape, the oblong columnar shape, or many other than the rectangular parallelepiped shape. It may have a rectangular parallelepiped shape or the like.

図1に示すように、蓄電素子10は、容器100と、正極及び負極の電極端子130と、正極及び負極の上部ガスケット140とを備えている。また、図2及び図3に示すように、容器100の内方には、正極及び負極の下部ガスケット150と、電極体200と、正極及び負極の集電体300とが収容されている。なお、容器100の内部には、電解液(非水電解質)が封入されているが、図示は省略する。当該電解液としては、蓄電素子10の性能を損なうものでなければその種類に特に制限はなく、様々なものを選択することができる。さらに容器100の内部に、図示しないスペーサ及び絶縁フィルム等が配置されていてもよい。 As shown in FIG. 1, the power storage element 10 includes a container 100, electrode terminals 130 for positive and negative electrodes, and an upper gasket 140 for positive and negative electrodes. Further, as shown in FIGS. 2 and 3, the inner side of the container 100 houses the lower gasket 150 of the positive electrode and the negative electrode, the electrode body 200, and the current collector 300 of the positive electrode and the negative electrode. An electrolytic solution (non-aqueous electrolyte) is sealed inside the container 100, but the illustration is omitted. The type of the electrolytic solution is not particularly limited as long as it does not impair the performance of the power storage element 10, and various types can be selected. Further, a spacer (not shown), an insulating film, or the like may be arranged inside the container 100.

容器100は、開口が形成された容器本体110と、容器本体110の開口を閉塞する蓋体120とを有する直方体形状(角形)の容器である。容器本体110は、容器100の本体部を構成する矩形筒状で底を備える部材であり、X軸方向の両側に短側面部111を有し、Y軸方向の両側に長側面部112を有し、Z軸マイナス方向側に底壁部113を有している。短側面部111は、容器100の短側面を形成する矩形状かつ板状の壁部であり、長側面部112は、容器100の長側面を形成する壁部である。 The container 100 is a rectangular parallelepiped (square) container having a container body 110 in which an opening is formed and a lid body 120 that closes the opening of the container body 110. The container main body 110 is a rectangular cylindrical member having a bottom constituting the main body portion of the container 100, has short side surface portions 111 on both sides in the X-axis direction, and has long side surface portions 112 on both sides in the Y-axis direction. However, the bottom wall portion 113 is provided on the negative direction side of the Z axis. The short side surface portion 111 is a rectangular and plate-shaped wall portion forming the short side surface of the container 100, and the long side surface portion 112 is a wall portion forming the long side surface of the container 100.

蓋体120は、容器100の蓋部を構成する矩形状の板状部材であり、容器本体110のZ軸プラス方向側に配置されている。つまり、蓋体120は、底壁部113に対向し、かつ、短側面部111及び長側面部112に隣接する壁部である。本実施の形態では、蓋体120には、正極側及び負極側の電極端子130が固定されており、さらに、容器100内方の圧力が上昇した場合に当該圧力を開放するガス排出弁121も設けられている。 The lid body 120 is a rectangular plate-shaped member constituting the lid portion of the container 100, and is arranged on the Z-axis plus direction side of the container body 110. That is, the lid 120 is a wall portion facing the bottom wall portion 113 and adjacent to the short side surface portion 111 and the long side surface portion 112. In the present embodiment, the electrode terminals 130 on the positive electrode side and the negative electrode side are fixed to the lid 120, and further, a gas discharge valve 121 that releases the pressure when the pressure inside the container 100 rises is also provided. It is provided.

このような構成により、容器100は、一対の集電体300が接続された状態の電極体200を容器本体110の内部に収容後、容器本体110と蓋体120とが溶接等によって接合されることにより、内部が密封される構造となっている。なお、容器本体110及び蓋体120の材質は特に限定されず、例えばステンレス鋼、アルミニウム、アルミニウム合金など溶接可能な金属とすることができるが、樹脂を用いることもできる。 With such a configuration, in the container 100, the electrode body 200 in a state where the pair of current collectors 300 are connected is housed inside the container body 110, and then the container body 110 and the lid body 120 are joined by welding or the like. As a result, the inside is sealed. The material of the container body 110 and the lid 120 is not particularly limited, and can be a weldable metal such as stainless steel, aluminum, or an aluminum alloy, but a resin can also be used.

電極体200は、正極板と負極板とセパレータとを備え、電気を蓄えることができる蓄電要素(発電要素)である。正極板は、アルミニウムやアルミニウム合金などからなる長尺帯状の集電箔である正極基材層上に正極活物質を含む合材層が形成された極板である。負極板は、銅や銅合金などからなる長尺帯状の集電箔である負極基材層上に負極活物質を含む合材層が形成された極板である。なお、上記集電箔として、ニッケル、鉄、ステンレス鋼、チタン、焼成炭素、導電性高分子、導電性ガラス、Al-Cd合金など、適宜公知の材料を用いることができる。また、合材層に用いられる正極活物質及び負極活物質としては、リチウムイオンを吸蔵放出可能な活物質であれば、適宜公知の材料を使用できる。また、セパレータは、例えば樹脂からなる微多孔性のシートや、不織布を用いることができる。 The electrode body 200 includes a positive electrode plate, a negative electrode plate, and a separator, and is a power storage element (power generation element) capable of storing electricity. The positive electrode plate is an electrode plate in which a mixture layer containing a positive electrode active material is formed on a positive electrode base material layer which is a long strip-shaped current collecting foil made of aluminum, an aluminum alloy, or the like. The negative electrode plate is an electrode plate in which a mixture layer containing a negative electrode active material is formed on a negative electrode base material layer which is a long strip-shaped current collecting foil made of copper, a copper alloy, or the like. As the current collector foil, known materials such as nickel, iron, stainless steel, titanium, calcined carbon, conductive polymer, conductive glass, and Al—Cd alloy can be used as appropriate. Further, as the positive electrode active material and the negative electrode active material used for the mixture layer, known materials can be appropriately used as long as they are active materials that can occlude and release lithium ions. Further, as the separator, for example, a microporous sheet made of resin or a non-woven fabric can be used.

本実施の形態では、電極体200は、正極板と負極板との間にセパレータが配置され巻回されて形成された巻回型の電極体200である。具体的には、電極体200は、正極板と負極板とが、セパレータを介して、巻回軸W(本実施の形態ではX軸方向に平行な仮想軸)の方向に互いにずらして巻回されている。そして、正極板及び負極板は、それぞれのずらされた方向の端部に、活物質を含む合材が塗工されず(合材層が形成されず)基材層が露出した部分(合材層非形成部)を有している。 In the present embodiment, the electrode body 200 is a winding type electrode body 200 formed by arranging and winding a separator between a positive electrode plate and a negative electrode plate. Specifically, in the electrode body 200, the positive electrode plate and the negative electrode plate are wound by shifting each other in the direction of the winding axis W (virtual axis parallel to the X-axis direction in the present embodiment) via the separator. Has been done. Then, in the positive electrode plate and the negative electrode plate, a portion (mixture material) in which the base material layer is exposed without coating the mixture material containing the active material (the mixture material layer is not formed) at the end portions in the shifted directions. It has a layer non-forming portion).

つまり、電極体200は、合材層が形成された本体部である電極体本体部210と、電極体本体部210からX軸プラス方向またはX軸マイナス方向に突出する電極体端部220とを有している。これら2つの電極体端部220のうちの一方の電極体端部220に、正極板の合材層非形成部が積層されて束ねられた正極集束部が設けられている。また、他方の電極体端部220に、負極板の合材層非形成部が積層されて束ねられた負極集束部が設けられる。なお、本実施の形態では、断面形状が長円形状である電極体200を図示しているが、電極体200の断面形状は円形状または楕円形状等でもよい。 That is, the electrode body 200 includes an electrode body main body 210, which is a main body on which a composite material layer is formed, and an electrode body end 220 projecting from the electrode body main body 210 in the X-axis positive direction or the X-axis negative direction. Have. The electrode body end 220 of one of these two electrode body end portions 220 is provided with a positive electrode focusing portion in which a mixture layer non-forming portion of the positive electrode plate is laminated and bundled. Further, the other electrode body end portion 220 is provided with a negative electrode focusing portion in which a mixture layer non-forming portion of the negative electrode plate is laminated and bundled. In the present embodiment, the electrode body 200 having an oval cross-sectional shape is shown, but the cross-sectional shape of the electrode body 200 may be a circular shape, an elliptical shape, or the like.

電極端子130は、集電体300を介して、電極体200の正極板及び負極板に電気的に接続される端子(正極端子及び負極端子)である。つまり、電極端子130は、電極体200に蓄えられている電気を蓄電素子10の外部空間に導出し、また、電極体200に電気を蓄えるために蓄電素子10の内部空間に電気を導入するための金属製の部材である。また、電極端子130は、電極体200の上方に配置された蓋体120に固定されている。具体的には、電極端子130は、軸部131が、上部ガスケット140の貫通孔140aと、蓋体120の貫通孔120aと、下部ガスケット150の貫通孔150aと、集電体300の貫通孔311とに挿入されて、かしめられることにより、集電体300とともに蓋体120に固定される。なお、正極側の電極端子130は、アルミニウムまたはアルミニウム合金などで形成されており、負極側の電極端子130は、銅または銅合金などで形成されている。 The electrode terminal 130 is a terminal (positive electrode terminal and negative electrode terminal) electrically connected to the positive electrode plate and the negative electrode plate of the electrode body 200 via the current collector 300. That is, the electrode terminal 130 leads the electricity stored in the electrode body 200 to the external space of the power storage element 10, and also introduces electricity into the internal space of the power storage element 10 in order to store electricity in the electrode body 200. It is a metal member of. Further, the electrode terminal 130 is fixed to the lid 120 arranged above the electrode body 200. Specifically, in the electrode terminal 130, the shaft portion 131 has a through hole 140a of the upper gasket 140, a through hole 120a of the lid body 120, a through hole 150a of the lower gasket 150, and a through hole 311 of the current collector 300. By being inserted into and crimped, it is fixed to the lid 120 together with the current collector 300. The electrode terminal 130 on the positive electrode side is made of aluminum or an aluminum alloy, and the electrode terminal 130 on the negative electrode side is made of copper or a copper alloy.

集電体300は、電極体200のX軸方向両側に配置され、電極体端部220に接続される部材(正極集電体及び負極集電体)である。具体的には集電体300は、絶縁部材の一例である下部ガスケット150とともに容器100に固定された端部であって、電極端子130に接続された端部である端子接続部310と、端子接続部310から延設された一対の脚部320とを有する。正極側の集電体300の一対の脚部320は、正極側の電極体端部220に接合され、負極側の集電体300の一対の脚部320は、負極側の電極体端部220に接合される。つまり、一対の脚部320のそれぞれには、電極体端部220と接合された部分である接合部330が形成される。なお、図2以降の図では、集電体300における接合部330のおおよその配置範囲が、ドットが付された領域で表されている。このドットが付された領域の全てが電極体端部220と接合されている必要はなく、当該領域内に、脚部320と電極体端部220とが接合された部分が分散して配置されていてもよい。また、図2等に示す接合部330の位置、形状、及びサイズは一例であり、これら接合部330の位置等は、脚部320のサイズまたは形状等に応じて適宜決定されてもよい。 The current collector 300 is a member (positive electrode current collector and negative electrode current collector) arranged on both sides of the electrode body 200 in the X-axis direction and connected to the electrode body end portion 220. Specifically, the current collector 300 is an end portion fixed to the container 100 together with a lower gasket 150 which is an example of an insulating member, and is a terminal connection portion 310 which is an end portion connected to the electrode terminal 130 and a terminal. It has a pair of legs 320 extending from the connecting portion 310. The pair of leg portions 320 of the current collector 300 on the positive electrode side are joined to the electrode body end portion 220 on the positive electrode side, and the pair of leg portions 320 of the current collector 300 on the negative electrode side are the electrode body end portions 220 on the negative electrode side. Is joined to. That is, a joint portion 330, which is a portion joined to the electrode body end portion 220, is formed on each of the pair of leg portions 320. In the drawings after FIG. 2, the approximate arrangement range of the joint portion 330 in the current collector 300 is represented by the area with dots. It is not necessary that all of the regions with the dots are joined to the electrode body end 220, and the portions where the legs 320 and the electrode body end 220 are joined are dispersedly arranged in the region. May be. Further, the position, shape, and size of the joint portion 330 shown in FIG. 2 and the like are examples, and the position and the like of these joint portions 330 may be appropriately determined according to the size or shape of the leg portion 320 and the like.

集電体300と電極体端部220との接合の手法としては、超音波溶接またはかしめ接合等が採用される。この構成により、電極体200が、2つの集電体300によって蓋体120から吊り下げられた状態で保持(支持)される。なお、集電体300の材質は限定されないが、例えば、正極側の集電体300は、電極体200の正極基材層と同様、アルミニウムまたはアルミニウム合金などの金属で形成されている。負極側の集電体300は、電極体200の負極基材層と同様、銅または銅合金などの金属で形成されている。 As a method of joining the current collector 300 and the electrode body end 220, ultrasonic welding, caulking or the like is adopted. With this configuration, the electrode body 200 is held (supported) in a state of being suspended from the lid body 120 by the two current collectors 300. The material of the current collector 300 is not limited, but for example, the current collector 300 on the positive electrode side is made of a metal such as aluminum or an aluminum alloy, like the positive electrode base material layer of the electrode body 200. The current collector 300 on the negative electrode side is made of a metal such as copper or a copper alloy, like the negative electrode base material layer of the electrode body 200.

上部ガスケット140は、容器100の蓋体120と電極端子130との間に配置され、蓋体120と電極端子130との間を絶縁し、かつ封止する部材である。具体的には、上部ガスケット140は、矩形状の略板状部材の中央部分に、電極端子130の軸部131が挿入される貫通孔140aが形成された形状を有しており、貫通孔140aに軸部131が挿入されてかしめられることにより、上部ガスケット140が蓋体120に固定される。 The upper gasket 140 is a member that is arranged between the lid 120 of the container 100 and the electrode terminal 130, and insulates and seals between the lid 120 and the electrode terminal 130. Specifically, the upper gasket 140 has a shape in which a through hole 140a into which the shaft portion 131 of the electrode terminal 130 is inserted is formed in the central portion of the rectangular substantially plate-shaped member, and the through hole 140a is formed. The upper gasket 140 is fixed to the lid 120 by inserting and caulking the shaft portion 131.

下部ガスケット150は、容器100の蓋体120と集電体300との間に配置され、蓋体120と集電体300との間を絶縁する部材である。具体的には、下部ガスケット150は、矩形状の略板状部材の略中央部分に、電極端子130の軸部131が挿入される貫通孔150aが形成された形状を有しており、貫通孔150aに軸部131が挿入されてかしめられることにより、下部ガスケット150が蓋体120に固定される。 The lower gasket 150 is a member that is arranged between the lid 120 of the container 100 and the current collector 300, and insulates between the lid 120 and the current collector 300. Specifically, the lower gasket 150 has a shape in which a through hole 150a into which the shaft portion 131 of the electrode terminal 130 is inserted is formed in a substantially central portion of a rectangular substantially plate-shaped member. The lower gasket 150 is fixed to the lid 120 by inserting and crimping the shaft portion 131 into the 150a.

上部ガスケット140及び下部ガスケット150は、例えば、ポリプロピレン(PP)、ポリエチレン(PE)、ポリフェニレンサルファイド樹脂(PPS)、ポリエチレンテレフタラート(PET)、ポリエーテルエーテルケトン(PEEK)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル(PFA)、ポリテトラフルオロエチレン(PTFE)、ポリブチレンテレフタレート(PBT)、ポリ・エーテル・サルフォン(PES)等の、電気的な絶縁性を有する樹脂材料によって形成されている。 The upper gasket 140 and the lower gasket 150 are, for example, polypropylene (PP), polyethylene (PE), polyphenylene sulfide resin (PPS), polyethylene terephthalate (PET), polyetheretherketone (PEEK), tetrafluoroethylene / perfluoroalkyl. It is formed of an electrically insulating resin material such as vinyl ether (PFA), polytetrafluoroethylene (PTFE), polybutylene terephthalate (PBT), and poly ether sulfone (PES).

[2.集電体の構成]
次に、実施の形態に係る集電体300の構成について、図2及び図3に加え、図4~図7を参照しながら説明する。なお、本実施の形態では、X軸に並ぶ一対の集電体300は互いに共通する構成を有しているため、以下では、X軸プラス方向側の集電体300(図2参照)に着目しその図示及び説明を行う。
[2. Current collector configuration]
Next, the configuration of the current collector 300 according to the embodiment will be described with reference to FIGS. 4 to 7 in addition to FIGS. 2 and 3. In the present embodiment, since the pair of current collectors 300 arranged on the X-axis have a configuration common to each other, the present focus will be on the current collector 300 on the plus direction side of the X-axis (see FIG. 2). The illustration and explanation will be given.

図4は、実施の形態に係る集電体300の構成を示す斜視図である。図5は、実施の形態に係る集電体300をY軸マイナス方向側から見た場合の図(側面図)である。図6は、実施の形態に係る集電体300をX軸プラス方向側から見た場合の図(背面図)である。図7は、実施の形態に係る集電体300の端子接続部310側の端部を示す拡大斜視図である。 FIG. 4 is a perspective view showing the configuration of the current collector 300 according to the embodiment. FIG. 5 is a view (side view) of the current collector 300 according to the embodiment as viewed from the Y-axis minus direction side. FIG. 6 is a view (rear view) when the current collector 300 according to the embodiment is viewed from the X-axis plus direction side. FIG. 7 is an enlarged perspective view showing an end portion of the current collector 300 according to the embodiment on the terminal connection portion 310 side.

図4~図7に示すように、実施の形態に係る集電体300は、XY平面に沿う略平板状に形成された端子接続部310と、端子接続部310から立設された、Y軸方向に並ぶ一対の脚部320とを有する。一対の脚部320は、互いに共通する構成を有しているため、以下では、主として、一対の脚部320の内の一方の脚部320について説明するが、その説明内容は、他方の脚部320にも適用される。 As shown in FIGS. 4 to 7, the current collector 300 according to the embodiment has a terminal connection portion 310 formed in a substantially flat plate shape along an XY plane and a Y-axis erected from the terminal connection portion 310. It has a pair of legs 320 arranged in a direction. Since the pair of legs 320 have a structure common to each other, the following mainly describes one leg 320 of the pair of legs 320, but the description thereof is the other leg. It also applies to 320.

脚部320は、端子接続部310から、端子接続部310と電極体200との並び方向である第一方向(本実施の形態ではZ軸方向と同じ)に沿って立設された、Z軸方向に長尺状の部分である。脚部320は、例えば長手方向の中央部を含む所定の範囲に接合部330が形成されている。脚部320は、接合部330において電極体端部220(図3参照)と接合されていることで、電極体200と電気的に接続した状態で、電極体200を機械的に支持することができる。つまり、集電体300は、全体としてZ軸方向に長尺状の部材であり、長手方向の一端が容器100に固定されることで、容器100内において片持ちの状態で電極体200を支持している。従って、例えば、蓄電素子10の短側面側(X軸方向の一方側)から衝撃が与えられた場合、脚部320が電極体200の慣性力を受けてX軸方向に変形する可能性がある。より具体的には、大きな慣性力が脚部320に与えられることで、脚部320の変形量が弾性限界を超えた場合、脚部320に塑性変形が生じる。仮に脚部320が塑性変形した場合、脚部320による電極体200の損傷等の不安全事象の発生要因となる問題が生じる。 The leg portion 320 is erected from the terminal connecting portion 310 along the first direction (same as the Z-axis direction in the present embodiment) which is the alignment direction of the terminal connecting portion 310 and the electrode body 200, and is the Z axis. It is a long part in the direction. The leg portion 320 has a joint portion 330 formed in a predetermined range including, for example, a central portion in the longitudinal direction. Since the leg portion 320 is joined to the electrode body end portion 220 (see FIG. 3) at the joint portion 330, the electrode body 200 can be mechanically supported in a state of being electrically connected to the electrode body 200. can. That is, the current collector 300 is a long member in the Z-axis direction as a whole, and one end in the longitudinal direction is fixed to the container 100 to support the electrode body 200 in a cantilevered state in the container 100. are doing. Therefore, for example, when an impact is applied from the short side surface side (one side in the X-axis direction) of the power storage element 10, the leg portion 320 may be deformed in the X-axis direction by receiving the inertial force of the electrode body 200. .. More specifically, when a large inertial force is applied to the leg portion 320 and the amount of deformation of the leg portion 320 exceeds the elastic limit, plastic deformation occurs in the leg portion 320. If the leg portion 320 is plastically deformed, there arises a problem that causes an unsafe event such as damage to the electrode body 200 due to the leg portion 320.

しかしながら、本実施の形態に係る集電体300は、脚部320に、端子接続部310よりも硬度が高い高硬度部325が形成されている。これにより、外力による脚部320の変形が抑制され、その結果、脚部320に塑性変形が生じる可能性が低減される。 However, in the current collector 300 according to the present embodiment, a high hardness portion 325 having a hardness higher than that of the terminal connecting portion 310 is formed on the leg portion 320. As a result, the deformation of the leg portion 320 due to the external force is suppressed, and as a result, the possibility of plastic deformation of the leg portion 320 is reduced.

すなわち、本実施の形態に係る蓄電素子10は、電極体200と、電極端子130と、電極体200及び電極端子130を電気的に接続する集電体300とを備える。集電体300は、電極端子130と接続され、第一方向(Z軸方向)において電極体200と並ぶ位置に配置された端子接続部310と、端子接続部310からZ軸方向に沿って立設され、電極体200と接合された脚部320とを有する。脚部320における電極体200と接合された部分である接合部330と、端子接続部310との間に、端子接続部310よりも硬度の高い高硬度部325が形成されている。 That is, the power storage element 10 according to the present embodiment includes an electrode body 200, an electrode terminal 130, and a current collector 300 that electrically connects the electrode body 200 and the electrode terminal 130. The current collector 300 is connected to the electrode terminal 130 and stands along the Z-axis direction from the terminal connection portion 310 and the terminal connection portion 310 arranged at a position aligned with the electrode body 200 in the first direction (Z-axis direction). It has a leg portion 320 provided and joined to the electrode body 200. A high hardness portion 325 having a hardness higher than that of the terminal connection portion 310 is formed between the joint portion 330, which is a portion of the leg portion 320 that is joined to the electrode body 200, and the terminal connection portion 310.

このように、本実施の形態では、蓄電素子10に衝撃が与えられた場合において電極体200に生じる慣性力が直接的に作用する接合部330と、集電体300の固定端を形成する端子接続部310との間に、端子接続部310よりも硬度が高い高硬度部325が設けられる。従って、例えば、脚部320に形状的な工夫を加えることなく、電極体200に接合された脚部320の変形を効果的に抑制することができ、その結果、脚部320が塑性変形する可能性が低減される。これにより、例えば、変形した脚部320が電極体200を損傷させるような不具合の発生が低減される。このように、本態様に係る蓄電素子10によれば、集電体300の変形が抑制され、これにより、安全性が向上される。なお、「硬度が高い」は、例えば、耐力が大きい等と言い換えることができる。つまり、集電体300の脚部320における端子接続部310側の一部に、他の部分よりも塑性変形が生じ難い部分である高硬度部325が設けられており、これにより、脚部320の塑性変形が抑制される。また、端子接続部310及び高硬度部325それぞれの硬度は、例えば、端子接続部310及び高硬度部325のそれぞれに対して所定の測定手法(例えばビッカース硬さ試験)を行うことで得ることができる。この硬度は、複数箇所で測定された硬度の平均値でもよい。 As described above, in the present embodiment, the joint portion 330 on which the inertial force generated in the electrode body 200 directly acts when the power storage element 10 is impacted, and the terminal forming the fixed end of the current collector 300. A high hardness portion 325 having a hardness higher than that of the terminal connection portion 310 is provided between the connection portion 310 and the connection portion 310. Therefore, for example, the deformation of the leg portion 320 joined to the electrode body 200 can be effectively suppressed without modifying the leg portion 320, and as a result, the leg portion 320 can be plastically deformed. Plasticity is reduced. As a result, for example, the occurrence of a defect that the deformed leg portion 320 damages the electrode body 200 is reduced. As described above, according to the power storage element 10 according to this aspect, the deformation of the current collector 300 is suppressed, thereby improving the safety. In addition, "high hardness" can be rephrased as, for example, high yield strength. That is, a part of the leg portion 320 of the current collector 300 on the terminal connection portion 310 side is provided with a high hardness portion 325 which is a portion where plastic deformation is less likely to occur than the other portions, whereby the leg portion 320 is provided. Plastic deformation is suppressed. Further, the hardness of each of the terminal connection portion 310 and the high hardness portion 325 can be obtained by, for example, performing a predetermined measurement method (for example, Vickers hardness test) for each of the terminal connection portion 310 and the high hardness portion 325. can. This hardness may be an average value of hardness measured at a plurality of points.

また、高硬度部325の硬度は、端子接続部310の複数箇所のそれぞれで計測された硬度の全てに対して高い必要はない。つまり、高硬度部325の硬度は、端子接続部310の一部の硬度以下であってもよい。例えば、端子接続部310には、電極端子130の軸部131が挿入される貫通孔311(図3参照)が形成されており、貫通孔311に挿入された軸部131がかしめられることで、軸部131と端子接続部310とが接合される。この場合、端子接続部310において、貫通孔311の周縁ではかしめ力によって加工硬化が生じ、その結果、当該貫通孔311の周縁の硬度が、高硬度部325の硬度以上となる場合がある。そこで、端子接続部310の、貫通孔311の周縁のかしめ力が及んでいる範囲をかしめ部とした場合、高硬度部325の硬度は、端子接続部310における、かしめ部以外の平坦部(図4におけるXY平面に平行な部分)の硬度よりも高い、と説明することもできる。 Further, the hardness of the high hardness portion 325 does not have to be higher than all of the hardness measured at each of the plurality of locations of the terminal connection portion 310. That is, the hardness of the high hardness portion 325 may be equal to or lower than the hardness of a part of the terminal connection portion 310. For example, the terminal connection portion 310 is formed with a through hole 311 (see FIG. 3) into which the shaft portion 131 of the electrode terminal 130 is inserted, and the shaft portion 131 inserted into the through hole 311 is crimped. The shaft portion 131 and the terminal connection portion 310 are joined. In this case, in the terminal connection portion 310, work hardening occurs at the peripheral edge of the through hole 311 due to the caulking force, and as a result, the hardness of the peripheral edge of the through hole 311 may be equal to or higher than the hardness of the high hardness portion 325. Therefore, when the range covered by the caulking force of the peripheral edge of the through hole 311 of the terminal connection portion 310 is set as the caulking portion, the hardness of the high hardness portion 325 is the flat portion other than the caulking portion in the terminal connection portion 310 (FIG. It can also be explained that the hardness is higher than the hardness of the portion parallel to the XY plane in 4.

本実施の形態では、具体的には、図4~図6に示すように、集電体300における、接合部330と端子接続部310との間の部分から、脚部320の先端部(Z軸マイナス方向側の端部)までの範囲に高硬度部325が形成されている。これにより、脚部320における広い範囲で高硬度部325による変形抑制効果を得ることができる。 In the present embodiment, specifically, as shown in FIGS. 4 to 6, the tip portion (Z) of the leg portion 320 is formed from the portion between the joint portion 330 and the terminal connection portion 310 in the current collector 300. A high hardness portion 325 is formed in the range up to the end portion on the minus side of the shaft). Thereby, the deformation suppressing effect by the high hardness portion 325 can be obtained in a wide range in the leg portion 320.

このような高硬度部325は、具体的には、集電体300における高硬度部325以外の部分よりも薄く形成された部分として、脚部320に設けられている。本実施の形態では、図7に示すように、高硬度部325の厚み(平坦な部分の平均値)をTaとし、高硬度部325以外の部分の厚み(平坦な部分の平均値)をTbとした場合、Ta<Tbである。また、Tbは0.6mm~2mm程度である。Tbに対するTaの比率(Ta/Tb)は、0.7~0.95程度であり、より好ましくは0.8~0.9程度である。 Specifically, such a high hardness portion 325 is provided on the leg portion 320 as a portion formed thinner than the portion other than the high hardness portion 325 in the current collector 300. In the present embodiment, as shown in FIG. 7, the thickness of the high hardness portion 325 (average value of the flat portion) is Ta, and the thickness of the portion other than the high hardness portion 325 (average value of the flat portion) is Tb. If, then Ta <Tb. Further, Tb is about 0.6 mm to 2 mm. The ratio of Ta to Tb (Ta / Tb) is about 0.7 to 0.95, more preferably about 0.8 to 0.9.

つまり、高硬度部325は、例えば、集電体300の材料である金属板の一部をプレス加工で薄くすることによる加工硬化によって形成することができる。従って、例えば一般に流通するアルミニウム合金等の金属板を用いて容易に高硬度部325を有する集電体300を作製することができる。すなわち、安全性が向上された蓄電素子10を効率よく製造することができる。 That is, the high hardness portion 325 can be formed, for example, by work hardening by thinning a part of the metal plate which is the material of the current collector 300 by press working. Therefore, for example, a current collector 300 having a high hardness portion 325 can be easily manufactured by using a metal plate such as an aluminum alloy that is generally distributed. That is, the power storage element 10 with improved safety can be efficiently manufactured.

なお、例えば集電体300の脚部320に立体的な形状を持たせることで脚部320の剛性を向上させ、これにより脚部320の変形を抑制することも考えられる。しかしながら、脚部320が立体形状を有する場合と比較すると、本態様に係る高硬度部325は、集電体300のサイズ若しくは重量を増加させない点、または、煩雑な加工が不要な点等で有利である。さらに、脚部320と電極体端部220との接合性の良さという観点からも、脚部320が立体的な形状である場合よりも、平板状に形成可能な高硬度部325の方が有利である。 For example, it is conceivable to improve the rigidity of the leg portion 320 by giving the leg portion 320 of the current collector 300 a three-dimensional shape, thereby suppressing the deformation of the leg portion 320. However, as compared with the case where the leg portion 320 has a three-dimensional shape, the high hardness portion 325 according to this embodiment is advantageous in that it does not increase the size or weight of the current collector 300, or that complicated processing is not required. Is. Further, from the viewpoint of good bondability between the leg portion 320 and the electrode body end portion 220, the high hardness portion 325 that can be formed into a flat plate shape is more advantageous than the case where the leg portion 320 has a three-dimensional shape. Is.

また、本実施の形態では、より詳細には、高硬度部325は、図4~図7に示すように、脚部320の端子接続部310側の端部322を含む範囲に形成されている。 Further, in the present embodiment, more specifically, the high hardness portion 325 is formed in a range including the end portion 322 on the terminal connection portion 310 side of the leg portion 320, as shown in FIGS. 4 to 7. ..

つまり、接合部330が外力を受けた場合に、脚部320における最も応力が集中しやすい端子接続部310側の端部322を含む範囲に、高硬度部325が形成さている。従って、脚部320の塑性変形をより効果的に抑制することができ、これにより、脚部320が塑性変形する可能性がさらに低減される。 That is, when the joint portion 330 receives an external force, the high hardness portion 325 is formed in the range including the end portion 322 on the terminal connection portion 310 side where the stress is most likely to be concentrated in the leg portion 320. Therefore, the plastic deformation of the leg portion 320 can be suppressed more effectively, which further reduces the possibility of the leg portion 320 being plastically deformed.

また、本実施の形態では、脚部320は、端子接続部310側に位置する端部322と、接合部330が形成された脚部本体321とに区分され、端部322には幅広部323が設けられており、高硬度部325の一部は幅広部323に形成されている。つまり、脚部320は、接合部330を有する脚部本体321と、端部322に設けられた幅広部323であって、脚部本体321の厚み方向(Y軸方向)及び第一方向(Z軸方向)に交差する第二方向(X軸方向)の幅が、端子接続部310に近づくほど広くなる幅広部323とを有する。高硬度部325は、図4~図7に示すように、脚部本体321と幅広部323とに連続する領域に形成されている。 Further, in the present embodiment, the leg portion 320 is divided into an end portion 322 located on the terminal connection portion 310 side and a leg portion main body 321 on which the joint portion 330 is formed, and the end portion 322 has a wide portion 323. Is provided, and a part of the high hardness portion 325 is formed in the wide portion 323. That is, the leg portion 320 is a leg portion main body 321 having a joint portion 330 and a wide portion 323 provided at the end portion 322, and is a thickness direction (Y-axis direction) and a first direction (Z) of the leg portion main body 321. It has a wide portion 323 in which the width in the second direction (X-axis direction) intersecting the axial direction becomes wider as it approaches the terminal connection portion 310. As shown in FIGS. 4 to 7, the high hardness portion 325 is formed in a region continuous with the leg main body 321 and the wide portion 323.

このように、本実施の形態では、集電体300の脚部320の根元部分に幅広部323が設けられていることで、脚部本体321が外力を受けた場合の脚部320の変形が抑制される。しかし、この場合は、脚部本体321と幅広部323との境界に応力が集中すると考えられる。そこで、本実施の形態では、この構造において応力の集中しやすい部分である、脚部本体321と幅広部323との境界をまたぐように高硬度部325が設けられる。これにより、高硬度部325による脚部320の変形の抑制効果がさらに向上され、その結果、脚部320が塑性変形する可能性がさらに低減される。 As described above, in the present embodiment, since the wide portion 323 is provided at the base portion of the leg portion 320 of the current collector 300, the leg portion 320 is deformed when the leg portion main body 321 receives an external force. It is suppressed. However, in this case, it is considered that the stress is concentrated on the boundary between the leg body 321 and the wide portion 323. Therefore, in the present embodiment, the high hardness portion 325 is provided so as to straddle the boundary between the leg portion main body 321 and the wide portion 323, which is a portion where stress is easily concentrated in this structure. As a result, the effect of suppressing the deformation of the leg portion 320 by the high hardness portion 325 is further improved, and as a result, the possibility of the leg portion 320 being plastically deformed is further reduced.

また、本実施の形態では、集電体300において、脚部320と端子接続部310との間には、図6及び図7に示すように、湾曲状に形成された曲げ部340が設けられている。高硬度部325は、Z軸方向において、曲げ部340よりも電極体200の側(つまり、Z軸マイナス方向側)に形成されている。 Further, in the present embodiment, in the current collector 300, a bent portion 340 formed in a curved shape is provided between the leg portion 320 and the terminal connecting portion 310 as shown in FIGS. 6 and 7. ing. The high hardness portion 325 is formed on the side of the electrode body 200 (that is, the Z-axis minus direction side) with respect to the bent portion 340 in the Z-axis direction.

この曲げ部340は、例えば、集電体300の材料である板状の部材を折り曲げることで、端子接続部310と脚部320との接続部分に形成される。そのため、この曲げ部340を避けて高硬度部325が形成されていることで、曲げ部340を形成するための曲げ加工が、高硬度部325によって妨げられることがない。つまり、脚部320の塑性変形を抑制する高硬度部325を有し、かつ、曲げを伴う作製工程を効率よく行うことができる。すなわち、安全性が向上された蓄電素子10を効率よく製造することができる。 The bent portion 340 is formed at the connection portion between the terminal connecting portion 310 and the leg portion 320, for example, by bending a plate-shaped member which is a material of the current collector 300. Therefore, since the high hardness portion 325 is formed avoiding the bent portion 340, the bending process for forming the bent portion 340 is not hindered by the high hardness portion 325. That is, it has a high hardness portion 325 that suppresses plastic deformation of the leg portion 320, and can efficiently perform a manufacturing process that involves bending. That is, the power storage element 10 with improved safety can be efficiently manufactured.

なお、曲げ部340は、湾曲状に形成されていなくてもよく、例えば、屈曲状に形成されていてもよい。また、曲げ部340は、端子接続部310と脚部320との接続部分において、その厚み方向を、Z軸方向(端子接続部310の厚み方向)からY軸方向(脚部320の厚み方向)に変化させる部分と表現することもできる。 The bent portion 340 may not be formed in a curved shape, and may be formed in a bent shape, for example. Further, the bending portion 340 has a thickness direction of the connection portion between the terminal connection portion 310 and the leg portion 320 from the Z-axis direction (thickness direction of the terminal connection portion 310) to the Y-axis direction (thickness direction of the leg portion 320). It can also be expressed as a part that changes to.

以上、本発明の実施の形態に係る蓄電素子10について説明したが、蓄電素子10は、図3~図7に示す構成とは異なる構成を有する集電体を備えてもよい。そこで、集電体の構成についての変形例を、上記実施の形態との差分を中心に、図8を用いて説明する。 Although the power storage element 10 according to the embodiment of the present invention has been described above, the power storage element 10 may include a current collector having a configuration different from the configurations shown in FIGS. 3 to 7. Therefore, a modified example of the configuration of the current collector will be described with reference to FIG. 8, focusing on the difference from the above embodiment.

[3.変形例]
図8は、実施の形態の変形例に係る集電体300aの構成を示す斜視図である。図8に示す集電体300aは、実施の形態に係る集電体300に換えて蓄電素子10に備えることができる集電体の一例である。本変形例に係る集電体300aは、電極端子130(図3参照)と接続され、第一方向(Z軸方向)において電極体200と並ぶ位置に配置された端子接続部310aと、端子接続部310aからZ軸方向に沿って立設され、電極体200と接合された脚部320aとを有する。脚部320aにおける電極体200と接合された部分である接合部330aと、端子接続部310aとの間に、端子接続部310aよりも硬度の高い高硬度部325aが形成されている。高硬度部325aは、具体的には、集電体300aにおける高硬度部325a以外の部分よりも薄く形成された部分として、脚部320aに設けられている。より詳細には、高硬度部325aは、脚部320aの端子接続部310a側の端部322aを含む範囲に形成されている。
[3. Modification example]
FIG. 8 is a perspective view showing the configuration of the current collector 300a according to the modified example of the embodiment. The current collector 300a shown in FIG. 8 is an example of a current collector that can be provided in the power storage element 10 in place of the current collector 300 according to the embodiment. The current collector 300a according to this modification is connected to the electrode terminal 130 (see FIG. 3), and is connected to the terminal connection portion 310a arranged at a position aligned with the electrode body 200 in the first direction (Z-axis direction). It has a leg portion 320a that is erected from the portion 310a along the Z-axis direction and is joined to the electrode body 200. A high hardness portion 325a having a hardness higher than that of the terminal connecting portion 310a is formed between the joining portion 330a, which is a portion of the leg portion 320a that is joined to the electrode body 200, and the terminal connecting portion 310a. Specifically, the high hardness portion 325a is provided on the leg portion 320a as a portion of the current collector 300a formed thinner than the portion other than the high hardness portion 325a. More specifically, the high hardness portion 325a is formed in a range including the end portion 322a on the terminal connection portion 310a side of the leg portion 320a.

すなわち、本変形例に係る集電体300aは、実施の形態に係る集電体300と共通する構成を有している。従って、本変形例に係る集電体300aによれば、実施の形態に係る集電体300と同じく、例えば、蓄電素子10に衝撃が与えられた場合において、電極体200に接合された脚部320aの変形が効果的に抑制され、その結果、脚部320aが塑性変形する可能性が低減される。これにより、蓄電素子10の安全性が向上される。また、高硬度部325aにおける高い硬度は、例えば、金属板の一部をプレス加工で薄くすることによる加工硬化によって実現することができるため、安全性が向上された蓄電素子10を効率よく製造することができる。さらに、高硬度部325aは、脚部320aにおける最も応力が集中しやすい端子接続部310a側の端部322aを含む範囲に形成さている。従って、脚部320aの塑性変形をより効果的に抑制することができ、これにより、脚部320aが塑性変形する可能性がさらに低減される。 That is, the current collector 300a according to the present modification has a configuration common to that of the current collector 300 according to the embodiment. Therefore, according to the current collector 300a according to the present modification, as in the current collector 300 according to the embodiment, for example, when an impact is applied to the power storage element 10, the legs joined to the electrode body 200 are joined. The deformation of the 320a is effectively suppressed, and as a result, the possibility of the leg portion 320a being plastically deformed is reduced. This improves the safety of the power storage element 10. Further, since the high hardness in the high hardness portion 325a can be realized by work hardening by, for example, thinning a part of the metal plate by press working, the power storage element 10 with improved safety can be efficiently manufactured. be able to. Further, the high hardness portion 325a is formed in a range including the end portion 322a on the terminal connecting portion 310a side in the leg portion 320a where stress is most likely to be concentrated. Therefore, the plastic deformation of the leg portion 320a can be suppressed more effectively, which further reduces the possibility of the leg portion 320a being plastically deformed.

すなわち、本変形例に係る集電体300aは、幅広部等を有していないことにより、実施の形態に係る集電体300(図4参照)とは異なる形状を有している。さらに、本変形例に係る集電体300aは、実施の形態に係る集電体300とは異なり、高硬度部325aは、脚部320aにおいて接合部330aよりも上(端子接続部310a側)のみに形成されている。しかし、脚部320aにおける、接合部330aと端子接続部310aとの間に高硬度部325aが配置されている等の構造上の特徴は、実施の形態に係る集電体300と共通している。従って、本変形例に係る集電体300aによれば、上記のように、実施の形態に係る集電体300と同じく、脚部320aの変形抑制効果等を得ることができる。 That is, the current collector 300a according to the present modification has a shape different from that of the current collector 300 (see FIG. 4) according to the embodiment because it does not have a wide portion or the like. Further, the current collector 300a according to the present modification is different from the current collector 300 according to the embodiment, and the high hardness portion 325a is only above the joint portion 330a (on the terminal connection portion 310a side) in the leg portion 320a. Is formed in. However, the structural features of the leg portion 320a, such as the arrangement of the high hardness portion 325a between the joint portion 330a and the terminal connection portion 310a, are common to the current collector 300 according to the embodiment. .. Therefore, according to the current collector 300a according to the present modification, as described above, the deformation suppressing effect of the leg portion 320a can be obtained as in the current collector 300 according to the embodiment.

[4.他の変形例]
以上、本発明の実施の形態及びその変形例に係る蓄電素子について説明したが、本発明は、この実施の形態及びその変形例に限定されるものではない。つまり、今回開示された実施の形態及びその変形例は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
[4. Other variants]
Although the power storage element according to the embodiment of the present invention and the modified example thereof has been described above, the present invention is not limited to the embodiment and the modified example thereof. That is, it should be considered that the embodiments disclosed this time and examples thereof are exemplary in all respects and are not restrictive. The scope of the present invention is shown not by the above description but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

例えば、集電体300は、2つの脚部320を有しているが、集電体300が有する脚部320の数は1以上であればよい。例えば、集電体300が脚部320を1つのみ有する場合であっても、脚部320は、電極体200との電気的な接続と、電極体200の機械的な支持の役割を担うことができる。従って、脚部320に、変形を抑制するための高硬度部325を設けることは、蓄電素子10の安全性の向上の観点から有用である。 For example, the current collector 300 has two legs 320, but the number of legs 320 of the current collector 300 may be one or more. For example, even when the current collector 300 has only one leg 320, the leg 320 plays a role of electrical connection with the electrode body 200 and mechanical support of the electrode body 200. Can be done. Therefore, it is useful to provide the leg portion 320 with a high hardness portion 325 for suppressing deformation from the viewpoint of improving the safety of the power storage element 10.

また、集電体300が複数の脚部320を有する場合、少なくとも1つの脚部320が高硬度部325を有すればよく、これにより、高硬度部325を有する当該少なくとも1つの脚部320の変形が抑制される。その結果、全ての脚部320が高硬度部325を有しない場合と比較すると、蓄電素子10に衝撃が与えられた場合における電極体200の損傷等の不具合の発生が抑制される。 Further, when the current collector 300 has a plurality of leg portions 320, at least one leg portion 320 may have a high hardness portion 325, whereby the at least one leg portion 320 having the high hardness portion 325 may be provided. Deformation is suppressed. As a result, as compared with the case where all the leg portions 320 do not have the high hardness portion 325, the occurrence of defects such as damage to the electrode body 200 when an impact is applied to the power storage element 10 is suppressed.

また、高硬度部325は、加工硬化によって形成されることは必須ではない。例えば、脚部320における高硬度部325の少なくとも一部が、端子接続部310を構成する金属よりも硬度が高い金属で形成されていてもよい。例えば、集電体300の、アルミニウム合金等で形成された基材に、基材よりも硬度の高い鋼鉄を拡散接合またはロウ付け等によって接合することで、高硬度部325が設けられてもよい。 Further, it is not essential that the high hardness portion 325 is formed by work hardening. For example, at least a part of the high hardness portion 325 of the leg portion 320 may be made of a metal having a hardness higher than that of the metal constituting the terminal connection portion 310. For example, a high hardness portion 325 may be provided by joining a base material of the current collector 300, which is made of an aluminum alloy or the like, with steel having a hardness higher than that of the base material by diffusion bonding, brazing, or the like. ..

また、蓄電素子10が備える電極体の種類は巻回型に限定されない。例えば、平板状極板を積層した積層型の電極体、または、長尺帯状の極板を山折りと谷折りとの繰り返しによって蛇腹状に積層した構造を有する電極体が、蓄電素子10に備えられてもよい。 Further, the type of the electrode body included in the power storage element 10 is not limited to the winding type. For example, the power storage element 10 is provided with a laminated electrode body in which flat plate-shaped electrode plates are laminated, or an electrode body having a structure in which long strip-shaped electrode plates are laminated in a bellows shape by repeating mountain folds and valley folds. May be done.

また、蓄電素子10は、高硬度部325を有する集電体300を、正極側及び負極側の双方に備えなくてもよい。蓄電素子10は、例えば、正極側及び負極側の一方に集電体300を備え、他方に、高硬度部325を有しない集電体を備えてもよい。 Further, the power storage element 10 does not have to include the current collector 300 having the high hardness portion 325 on both the positive electrode side and the negative electrode side. The power storage element 10 may be provided with a current collector 300 on one of the positive electrode side and the negative electrode side, and may be provided on the other side with a current collector having no high hardness portion 325.

また、上記で説明された、実施の形態に係る集電体300に関する各種の補足事項は、変形例に係る集電体300aに適用されてもよい。また、上記実施の形態及びその変形例に含まれる構成要素を任意に組み合わせて構築される形態も、本発明の範囲内に含まれる。また、本発明は、このような蓄電素子として実現することができるだけでなく、当該蓄電素子が備える集電体としても実現することができる。 Further, various supplementary items regarding the current collector 300 according to the embodiment described above may be applied to the current collector 300a according to a modified example. Further, a form constructed by arbitrarily combining the components included in the above-described embodiment and its modifications is also included in the scope of the present invention. Further, the present invention can be realized not only as such a power storage element but also as a current collector included in the power storage element.

本発明は、リチウムイオン二次電池などの蓄電素子等に適用できる。 The present invention can be applied to a power storage element such as a lithium ion secondary battery.

10 蓄電素子
130 電極端子
200 電極体
210 電極体本体部
220 電極体端部
300、300a 集電体
310、310a 端子接続部
320、320a 脚部
321 脚部本体
322、322a 端部
323 幅広部
325、325a 高硬度部
330、330a 接合部
340 曲げ部
10 Power storage element 130 Electrode terminal 200 Electrode body 210 Electrode body body 220 Electrode body end 300, 300a Collector 310, 310a Terminal connection 320, 320a Leg 321 Leg body 322, 322a End 323 Wide part 325, 325a High hardness part 330, 330a Joint part 340 Bending part

Claims (5)

電極体と、電極端子と、前記電極体及び前記電極端子を電気的に接続する集電体とを備える蓄電素子であって、
前記集電体は、
前記電極端子と接続され、第一方向において前記電極体と並ぶ位置に配置された端子接続部と、
前記端子接続部から前記第一方向に沿って立設され、前記電極体と接合された脚部とを有し、
前記脚部における前記電極体と接合された部分である接合部と、前記端子接続部との間に、前記端子接続部よりも硬度の高い高硬度部が形成されている、
蓄電素子。
A power storage element including an electrode body, an electrode terminal, and a current collector for electrically connecting the electrode body and the electrode terminal.
The current collector
A terminal connection portion connected to the electrode terminal and arranged at a position aligned with the electrode body in the first direction,
It has a leg portion that is erected from the terminal connection portion along the first direction and is joined to the electrode body.
A high hardness portion having a hardness higher than that of the terminal connection portion is formed between the joint portion of the leg portion, which is a portion joined to the electrode body, and the terminal connection portion.
Power storage element.
前記高硬度部は、前記脚部の前記端子接続部側の端部を含む範囲に形成されている、
請求項1記載の蓄電素子。
The high hardness portion is formed in a range including the end portion of the leg portion on the terminal connection portion side.
The power storage element according to claim 1.
前記脚部は、
前記接合部を有する脚部本体と、
前記端部に設けられた幅広部であって、前記脚部本体の厚み方向及び前記第一方向に交差する第二方向の幅が、前記端子接続部に近づくほど広くなる幅広部とを有し、
前記高硬度部は、前記脚部本体と前記幅広部とに連続する領域に形成されている、
請求項2記載の蓄電素子。
The legs
With the leg body having the joint,
It has a wide portion provided at the end portion, wherein the width in the thickness direction of the leg body and the width in the second direction intersecting the first direction becomes wider as it approaches the terminal connection portion. ,
The high hardness portion is formed in a region continuous with the leg body and the wide portion.
The power storage element according to claim 2.
前記集電体において、前記脚部と前記端子接続部との接続部分には、湾曲状または屈曲状に形成された曲げ部が設けられており、
前記高硬度部は、前記第一方向において、前記曲げ部よりも前記電極体の側に形成されている、
請求項1~3のいずれか一項に記載の蓄電素子。
In the current collector, the connecting portion between the leg portion and the terminal connecting portion is provided with a bent portion formed in a curved or bent shape.
The high hardness portion is formed on the side of the electrode body with respect to the bent portion in the first direction.
The power storage element according to any one of claims 1 to 3.
前記高硬度部は、前記集電体における高硬度部以外の部分よりも薄く形成されている、
請求項1~4のいずれか一項に記載の蓄電素子。
The high-hardness portion is formed thinner than the portion other than the high-hardness portion in the current collector.
The power storage element according to any one of claims 1 to 4.
JP2020163424A 2020-09-29 2020-09-29 Power storage element Pending JP2022055793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020163424A JP2022055793A (en) 2020-09-29 2020-09-29 Power storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020163424A JP2022055793A (en) 2020-09-29 2020-09-29 Power storage element

Publications (1)

Publication Number Publication Date
JP2022055793A true JP2022055793A (en) 2022-04-08

Family

ID=80998928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020163424A Pending JP2022055793A (en) 2020-09-29 2020-09-29 Power storage element

Country Status (1)

Country Link
JP (1) JP2022055793A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024066105A1 (en) * 2022-09-29 2024-04-04 宁德时代新能源科技股份有限公司 Connecting member, battery cell, battery, and electric device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024066105A1 (en) * 2022-09-29 2024-04-04 宁德时代新能源科技股份有限公司 Connecting member, battery cell, battery, and electric device

Similar Documents

Publication Publication Date Title
JP2020140863A (en) Power storage element
JP2022055793A (en) Power storage element
JP2021192347A (en) Manufacturing method of power storage element and power storage element
JP2020136244A (en) Power storage element
JP2020149952A (en) Power storage element
JP2022055684A (en) Power storage element
JP6984408B2 (en) Manufacturing method of power storage element and power storage element
JP2020166969A (en) Power storage element and method for manufacturing the same
JP2020149897A (en) Power storage element
JP2016126905A (en) Power storage element
JP2020149850A (en) Power storage element
JP7334215B2 (en) Horns, terminal parts and secondary batteries
JP7415397B2 (en) Energy storage element
JP7402202B2 (en) Terminal components and terminal component manufacturing method
JP2022071733A (en) Power storage element
JP7331573B2 (en) Storage element
JP2019061880A (en) Power storage element
JP2023150049A (en) Power storage element
US12002999B2 (en) Energy storage device
WO2022163636A1 (en) Power storage element
JP7354556B2 (en) Energy storage element
JP2023038811A (en) Power storage element
JP2023047908A (en) Power storage element
JP2021111514A (en) Power storage element
JP2020166968A (en) Power storage element