JP7354556B2 - Energy storage element - Google Patents

Energy storage element Download PDF

Info

Publication number
JP7354556B2
JP7354556B2 JP2019039761A JP2019039761A JP7354556B2 JP 7354556 B2 JP7354556 B2 JP 7354556B2 JP 2019039761 A JP2019039761 A JP 2019039761A JP 2019039761 A JP2019039761 A JP 2019039761A JP 7354556 B2 JP7354556 B2 JP 7354556B2
Authority
JP
Japan
Prior art keywords
rough surface
shaft body
surface portion
protrusion
storage element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019039761A
Other languages
Japanese (ja)
Other versions
JP2020145045A (en
Inventor
憲利 前田
翔平 山尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2019039761A priority Critical patent/JP7354556B2/en
Publication of JP2020145045A publication Critical patent/JP2020145045A/en
Application granted granted Critical
Publication of JP7354556B2 publication Critical patent/JP7354556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、容器と、容器の壁部を貫通する軸体とを備える蓄電素子に関する。 The present invention relates to a power storage element that includes a container and a shaft that penetrates a wall of the container.

従来、容器と、容器の壁部を貫通する軸体とを備える蓄電素子が存在する。例えば、特許文献1には、電池容器及び外部端子を備える二次電池が開示されている。外部端子は、バスバー等に溶接接合される溶接接合部を有している。溶接接合部の下端面には、柱状の接続部が設けられている。接続部は、ガスケット、電池容器の蓋、絶縁板、及び集電板の基部を貫通孔した状態で先端部がかしめられる。これにより、外部端子は、絶縁板、及び集電板とともに、電池容器の蓋にかしめ固定される。 BACKGROUND ART Conventionally, there has been a power storage element that includes a container and a shaft that penetrates a wall of the container. For example, Patent Document 1 discloses a secondary battery including a battery container and an external terminal. The external terminal has a welded joint that is welded to a bus bar or the like. A columnar connecting portion is provided on the lower end surface of the welded joint. The tip of the connection part is caulked with the gasket, the lid of the battery container, the insulating plate, and the base of the current collector plate being penetrated. Thereby, the external terminal is caulked and fixed to the lid of the battery container together with the insulating plate and the current collecting plate.

特開2016-91720号公報JP2016-91720A

上記従来の技術における二次電池のように、容器の壁部を貫通した軸体と、容器の内部または外部の導電部材とを接合する手法として、かしめ接合のような機械的接合を用いた場合、接合部に不具合が生じる可能性がある。例えば、ガスケット等の樹脂部材の応力緩和、または、振動若しくは衝撃などの外部要因に起因して、軸体と導電部材との間の面圧低下が生じ、その結果、軸体と導電部材との接合部の電気抵抗が増加する可能性がある。このような問題に対して、例えば、軸体と導電部材とを接合するために、機械的接合と、レーザ溶接等の溶接との両方を行うことが考えられる。これにより、接合部における接合強度が向上する。しかしながら、この場合は、軸体と導電部材との接合工程の煩雑化、溶接時に生じるスパッタ等の異物の混入、または、溶接時の熱によるガスケット等の樹脂部材の損傷など、他の問題が生じる可能性がある。 When mechanical joining such as caulking is used to join the shaft that penetrates the wall of the container and the conductive member inside or outside the container, as in the case of the secondary battery in the conventional technology mentioned above. , there is a possibility that defects may occur at the joint. For example, due to stress relaxation in resin members such as gaskets, or external factors such as vibration or impact, the contact pressure between the shaft and the conductive member decreases, and as a result, the contact pressure between the shaft and the conductive member The electrical resistance of the joint may increase. To solve this problem, for example, it is conceivable to perform both mechanical joining and welding such as laser welding in order to join the shaft body and the conductive member. This improves the bonding strength at the bonded portion. However, in this case, other problems arise, such as complicating the process of joining the shaft body and the conductive member, contamination of foreign matter such as spatter generated during welding, and damage to resin members such as gaskets due to heat during welding. there is a possibility.

本発明は、本願発明者が上記課題に新たに着目することによってなされたものであり、簡易な構成で信頼性の高い蓄電素子を提供することを目的とする。 The present invention was achieved by the inventors of the present invention paying new attention to the above-mentioned problem, and an object of the present invention is to provide a highly reliable power storage element with a simple configuration.

上記目的を達成するために、本発明の一態様に係る蓄電素子は、電極体を収容する容器と、前記容器の壁部を貫通して配置され、前記電極体と電気的に接続された軸体と、前記軸体と接合された導電部材とを備え、前記軸体は、前記導電部材に設けられた貫通孔に挿入される挿入部と、前記挿入部の、貫通孔の外側の端部に配置された、前記軸体の径方向に突出する突出部と、を有し、前記導電部材は、前記突出部に接続される領域を含む粗面部であって、前記粗面部以外の面よりも粗い面を形成する粗面部を有する。 In order to achieve the above object, a power storage element according to one aspect of the present invention includes a container that accommodates an electrode body, and a shaft that is disposed through a wall of the container and is electrically connected to the electrode body. and a conductive member joined to the shaft, the shaft including an insertion portion inserted into a through hole provided in the conduction member, and an end of the insertion portion outside the through hole. a protrusion that protrudes in the radial direction of the shaft body, and the conductive member has a rough surface including a region connected to the protrusion, and the conductive member has a rough surface that includes a region connected to the protrusion, It also has a rough surface portion that forms a rough surface.

この構成によれば、例えば軸体の先端部をかしめることなどで突出部が形成される際に、突出部と導電部材との間の接触応力が局所的に増大する。これにより、接触界面において露出する新生面(酸化被膜が除去された面)同士を接触させることができる。その結果、導電部材と軸体との間の電気抵抗を低減させることができる。このように、本態様に係る蓄電素子は、簡易な構成で、かつ、信頼性の高い蓄電素子である。 According to this configuration, when the protrusion is formed by, for example, caulking the tip of the shaft, the contact stress between the protrusion and the conductive member increases locally. Thereby, the newly formed surfaces (surfaces from which the oxide film has been removed) exposed at the contact interface can be brought into contact with each other. As a result, the electrical resistance between the conductive member and the shaft body can be reduced. In this way, the power storage element according to this embodiment has a simple configuration and is highly reliable.

また、本発明の一態様に係る蓄電素子において、前記粗面部は、前記突出部に接続される領域である、前記導電部材の、前記軸体の軸方向から見た場合における前記突出部に覆われる範囲を含む、としてもよい。 Further, in the electricity storage element according to one aspect of the present invention, the rough surface portion covers the protruding portion of the conductive member, which is a region connected to the protruding portion, when viewed from the axial direction of the shaft body. It may be possible to include the range in which

この構成によれば、導電部材には、突出部に接続される領域の全域を含む、比較的に広い領域に粗面部が形成されている。そのため、例えば、突出部の大きさを一定にすることが難しい場合であっても、突出部と導電部材とが新生面同士で接合される可能性が高い。 According to this configuration, the rough surface portion is formed in the conductive member over a relatively wide area including the entire area connected to the protrusion. Therefore, for example, even if it is difficult to make the size of the protrusion constant, there is a high possibility that the protrusion and the conductive member will be joined to each other on their new surfaces.

また、本発明の一態様に係る蓄電素子において、前記粗面部は、前記貫通孔の周囲の内側領域であって、前記導電部材の、前記軸体の軸方向から見た場合における前記突出部に覆われる範囲よりも小さい内側領域を含み、前記内側領域は、前記内側領域の外側の領域よりも粗く形成されている、としてもよい。 Further, in the power storage element according to one aspect of the present invention, the rough surface portion is an inner region around the through hole, and is located at the protruding portion of the conductive member when viewed from the axial direction of the shaft body. It may include an inner region smaller than the covered area, and the inner region may be formed more roughly than an outer region of the inner region.

この構成によれば、例えば、かしめ接合等の機械的接合の作業において押圧力が作用しやすい貫通孔の周囲の領域(内側領域)の粗さが比較的に高い。これにより、突出部と導電部材とが新生面同士で接合される可能性が向上する。 According to this configuration, the roughness of the area around the through hole (inner area) where pressing force is likely to act during mechanical joining such as caulking is relatively high. This increases the possibility that the protruding portion and the conductive member will be joined to each other on their new surfaces.

また、本発明の一態様に係る蓄電素子において、前記軸体は、前記挿入部よりも前記径方向に張り出した段部であって、前記軸体の軸方向において、前記突出部とで前記導電部材を挟む段部を有し、前記粗面部は、前記導電部材の前記突出部側の表面の、前記軸方向から見た場合における前記段部と前記突出部とが重複する範囲を含む、としてもよい。 Further, in the power storage element according to one aspect of the present invention, the shaft body is a stepped portion that projects in the radial direction beyond the insertion portion, and the conductive portion is connected to the protruding portion in the axial direction of the shaft body. The rough surface portion includes a step portion sandwiching the member, and the rough surface portion includes a range where the step portion and the protrusion overlap when viewed from the axial direction of the surface of the conductive member on the protrusion side. Good too.

この構成によれば、導電部材の粗面部は、突出部と段部とで挟みこまれる状態となるため、導電部材と軸体とを接合する場合に、突出部は、粗面部における微細な凸部を効率よくつぶすこと(または微細な凸部に効率よくつぶされること)ができる。その結果、導電部材と軸体とが新生面同士で接合される可能性が向上する。 According to this configuration, the rough surface portion of the conductive member is sandwiched between the protrusion portion and the stepped portion, so that when the conductive member and the shaft body are joined, the protrusion portion is removed from the fine convex portion of the rough surface portion. can be efficiently crushed (or efficiently crushed into minute convex parts). As a result, the possibility that the conductive member and the shaft body will be joined to each other at their new surfaces is improved.

また、本発明の一態様に係る蓄電素子において、前記突出部は、前記軸体の前記挿入部の先端がかしめられることにより形成されたかしめ部である、としてもよい。 Further, in the power storage element according to one aspect of the present invention, the protruding portion may be a caulked portion formed by caulking a tip of the insertion portion of the shaft body.

この構成によれば、導電部材には、突出部の接合相手として粗面部が配置されていることで、突出部と導電部材とが新生面同士で接合される可能性が高い。そのため、例えば、通常よりも大きな力でかしめることなく、軸体と導電部材との接合の信頼性が向上される。従って、かしめ力による導電部材または容器等の変形が抑制される。このことも、蓄電素子の信頼性の向上に寄与する。 According to this configuration, since the rough surface portion is arranged on the conductive member as a joining partner of the protrusion, there is a high possibility that the protrusion and the conductive member will be joined with their new surfaces. Therefore, for example, the reliability of joining the shaft body and the conductive member is improved without caulking with a force larger than usual. Therefore, deformation of the conductive member, container, etc. due to the crimping force is suppressed. This also contributes to improving the reliability of the power storage element.

本発明によれば、簡易な構成で信頼性の高い蓄電素子を提供することができる。 According to the present invention, it is possible to provide a highly reliable power storage element with a simple configuration.

実施の形態に係る蓄電素子の外観を示す斜視図である。FIG. 1 is a perspective view showing the appearance of a power storage element according to an embodiment. 実施の形態に係る蓄電素子を、容器の蓋板と容器本体とを分離して示す斜視図である。FIG. 2 is a perspective view showing a power storage element according to an embodiment with a lid plate of a container and a container main body separated. 実施の形態に係る電極端子の蓋板への取り付け構造を示す分解斜視図である。FIG. 2 is an exploded perspective view showing a structure for attaching an electrode terminal to a cover plate according to an embodiment. 実施の形態に係る集電体の斜視図である。FIG. 2 is a perspective view of a current collector according to an embodiment. 図3のV-V線を通るXZ平面における電極端子及びその周辺の構造を示す断面図である。FIG. 4 is a cross-sectional view showing the structure of an electrode terminal and its surroundings in an XZ plane passing along the VV line in FIG. 3. FIG. 図4のVI-VI線を通るYZ平面における軸体の挿入部及びその周辺の構造を示す断面図である。FIG. 5 is a cross-sectional view showing the insertion portion of the shaft body and the structure around it in the YZ plane passing along the line VI-VI in FIG. 4. FIG. 実施の形態の変形例1に係る集電体の粗面部の配置領域を示す下面図である。FIG. 7 is a bottom view showing an arrangement area of a rough surface portion of a current collector according to Modification 1 of the embodiment. 実施の形態の変形例2に係る軸体及びその周辺の構造を示す断面図である。FIG. 7 is a cross-sectional view showing a structure of a shaft body and its surroundings according to a second modification of the embodiment. 実施の形態の変形例2に係る端子本体の粗面部の配置領域を示す上面図である。FIG. 7 is a top view showing an arrangement area of a rough surface portion of a terminal main body according to Modification 2 of the embodiment.

以下、図面を参照しながら、本発明の実施の形態及び変形例に係る蓄電素子について説明する。なお、各図は、模式図であり、必ずしも厳密に図示したものではない。 Hereinafter, power storage elements according to embodiments and modified examples of the present invention will be described with reference to the drawings. Note that each figure is a schematic diagram and is not necessarily strictly illustrated.

また、以下で説明する実施の形態及び変形例のそれぞれは、本発明の一具体例を示すものである。以下の実施の形態及び変形例で示される形状、材料、構成要素、構成要素の配置位置及び接続形態、製造工程の順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態及び変形例における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Further, each of the embodiments and modifications described below represents one specific example of the present invention. The shapes, materials, components, arrangement positions and connection forms of the components, order of manufacturing steps, etc. shown in the following embodiments and modified examples are merely examples, and do not limit the present invention. Furthermore, among the constituent elements in the following embodiments and modifications, constituent elements that are not described in the independent claims will be described as arbitrary constituent elements.

また、以下の説明及び図面中において、容器の蓋板の長手方向、または、容器の短側面の対向方向をX軸方向と定義する。また、容器の蓋板の短手方向、または、容器の長側面の対向方向をY軸方向と定義する。また、容器本体と蓋板との並び方向、または、容器の短側面の長手方向をZ軸方向と定義する。これらX軸方向、Y軸方向及びZ軸方向は、互いに交差(本実施の形態では直交)する方向である。また、本実施の形態では、Z軸方向を上下方向とし、かつ、Z軸方向プラス側を「上」として説明を行うが、このことは、実際の蓄電装置の使用時における姿勢を限定しない。また、各図面については、本発明を示すために、適宜強調、省略、または比率の調整を行うことで、実際の形状、位置関係、及び比率とは異なる場合がある。 In the following description and drawings, the longitudinal direction of the lid plate of the container or the direction in which the short sides of the container face each other is defined as the X-axis direction. Further, the lateral direction of the lid plate of the container or the opposing direction of the long side of the container is defined as the Y-axis direction. Further, the direction in which the container body and the lid plate are lined up or the longitudinal direction of the short side of the container is defined as the Z-axis direction. These X-axis direction, Y-axis direction, and Z-axis direction are directions that intersect with each other (orthogonal in this embodiment). Further, in this embodiment, the Z-axis direction is the up-down direction, and the positive side of the Z-axis direction is "up", but this does not limit the posture of the power storage device when it is actually used. Further, each drawing may be emphasized, omitted, or adjusted in proportion as appropriate in order to illustrate the present invention, and thus may differ from the actual shape, positional relationship, and proportion.

また、以下の実施の形態及び特許請求の範囲において、平行及び直交などの、相対的な方向または姿勢を示す表現が用いられる場合があるが、これらの表現は、厳密には、その方向または姿勢ではない場合も含む。例えば、2つの方向が直交する、とは、当該2つの方向がなす角が90°であることを意味するだけでなく、実質的に直交すること、すなわち、例えば数%程度の差異を含むことも意味する。また、以下の説明において、例えば、X軸方向プラス側とは、X軸の矢印方向側を示し、X軸方向マイナス側とは、X軸方向プラス側とは反対側を示す。Y軸方向及びZ軸方向についても同様である。 Furthermore, in the following embodiments and claims, expressions indicating relative directions or postures, such as parallel and perpendicular, may be used, but strictly speaking, these expressions do not mean the direction or posture. Including cases where it is not. For example, "two directions are orthogonal" does not only mean that the angle between the two directions is 90 degrees, but also that they are substantially orthogonal, that is, include a difference of, for example, several percent. also means Furthermore, in the following description, for example, the plus side in the X-axis direction refers to the side in the direction of the arrow of the X-axis, and the minus side in the X-axis direction refers to the side opposite to the plus side in the X-axis direction. The same applies to the Y-axis direction and the Z-axis direction.

(実施の形態)
[1.蓄電素子の全般的な説明]
まず、図1及び図2を用いて、実施の形態に係る蓄電素子10の全般的な説明を行う。図1は、実施の形態に係る蓄電素子10の外観を示す斜視図である。図2は、実施の形態に係る蓄電素子10の容器100内に配置されている構成要素を示す斜視図である。具体的には、図2は、蓄電素子10を、容器100の蓋板110と容器本体101とを分離して示す斜視図である。
(Embodiment)
[1. General explanation of energy storage elements]
First, a general description of the power storage element 10 according to the embodiment will be given using FIGS. 1 and 2. FIG. 1 is a perspective view showing the appearance of a power storage element 10 according to an embodiment. FIG. 2 is a perspective view showing the components arranged in the container 100 of the power storage element 10 according to the embodiment. Specifically, FIG. 2 is a perspective view showing the power storage element 10 with the lid plate 110 of the container 100 and the container body 101 separated.

蓄電素子10は、電気を充電し、また、電気を放電することのできる二次電池であり、より具体的には、リチウムイオン二次電池などの非水電解質二次電池である。蓄電素子10は、例えば、電気自動車(EV)、ハイブリッド電気自動車(HEV)、プラグインハイブリッド電気自動車(PHEV)若しくはガソリン自動車等の自動車、自動二輪車、ウォータークラフト、スノーモービル、農業機械、建設機械、または、電車、モノレール若しくはリニアモーターカー等の電気鉄道用の鉄道車両等の移動体の駆動用若しくはエンジン始動用のバッテリ等として用いられる。また、蓄電素子10は、家庭用若しくは発電機用に使用される定置用のバッテリ等として用いられる。なお、蓄電素子10は、非水電解質二次電池には限定されず、非水電解質二次電池以外の二次電池であってもよいし、キャパシタであってもよい。また、蓄電素子10は、使用者が充電をしなくても蓄えられている電気を使用できる一次電池であってもよい。また、蓄電素子10は、固体電解質を用いた電池であってもよい。 The power storage element 10 is a secondary battery that can charge and discharge electricity, and more specifically, is a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. The power storage element 10 is, for example, a vehicle such as an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), or a gasoline vehicle, a motorcycle, a watercraft, a snowmobile, an agricultural machine, a construction machine, Alternatively, it is used as a battery for driving a moving body such as a railway vehicle for electric railways such as a train, a monorail, or a linear motor car, or for starting an engine. Further, the power storage element 10 is used as a stationary battery or the like for home use or for a generator. Note that the power storage element 10 is not limited to a non-aqueous electrolyte secondary battery, and may be a secondary battery other than a non-aqueous electrolyte secondary battery, or a capacitor. Furthermore, the power storage element 10 may be a primary battery that allows the user to use the stored electricity without charging it. Further, the power storage element 10 may be a battery using a solid electrolyte.

図1に示すように、蓄電素子10は、容器100と、負極側の電極端子300及び正極側の電極端子200とを備えている。また、図2に示すように、容器100の内部には、正極側の集電体120と、負極側の集電体130と、電極体400とが収容されている。 As shown in FIG. 1, the power storage element 10 includes a container 100, an electrode terminal 300 on the negative electrode side, and an electrode terminal 200 on the positive electrode side. Further, as shown in FIG. 2, inside the container 100, a current collector 120 on the positive electrode side, a current collector 130 on the negative electrode side, and an electrode body 400 are accommodated.

なお、蓄電素子10は、上記の構成要素の他、集電体120及び130の側方に配置されるスペーサ、または、電極体400等を包み込む絶縁フィルムなどを備えてもよい。また、蓄電素子10の容器100の内部には電解液(非水電解質)などが封入されているが、その図示は省略する。容器100に封入される電解液としては、蓄電素子10の性能を損なうものでなければその種類に特に制限はなく、様々なものを選択することができる。 In addition to the above-mentioned components, the power storage element 10 may also include spacers placed on the sides of the current collectors 120 and 130, an insulating film that wraps around the electrode body 400, and the like. Furthermore, although an electrolytic solution (non-aqueous electrolyte) and the like are sealed inside the container 100 of the power storage element 10, illustration thereof is omitted. The type of electrolytic solution sealed in container 100 is not particularly limited as long as it does not impair the performance of power storage element 10, and various types can be selected.

容器100は、矩形筒状で底を備える容器本体101と、容器本体101の開口を閉塞する板状部材である蓋板110とで構成されている。容器100は、電極体400等を内部に収容後、蓋板110と容器本体101とが溶接等されることにより、内部を密封する構造を有している。なお、蓋板110及び容器本体101の材質は、特に限定されないが、例えばステンレス鋼、アルミニウム、またはアルミニウム合金など溶接可能な金属であるのが好ましい。 The container 100 includes a container body 101 having a rectangular cylindrical shape and a bottom, and a lid plate 110 that is a plate-like member that closes the opening of the container body 101. The container 100 has a structure in which the interior is sealed by welding the lid plate 110 and the container body 101 after accommodating the electrode body 400 and the like therein. The materials of the lid plate 110 and the container body 101 are not particularly limited, but are preferably weldable metals such as stainless steel, aluminum, or aluminum alloy.

電極体400は、正極板と負極板とセパレータとを備え、電気を蓄えることができる蓄電要素(発電要素)である。正極板は、アルミニウムまたはアルミニウム合金などからなる長尺帯状の集電箔である正極基材層上に正極活物質を含む合材層が形成された極板である。負極板は、銅または銅合金などからなる長尺帯状の集電箔である負極基材層上に負極活物質を含む合材層が形成された極板である。セパレータは、樹脂等からなる微多孔性のシートである。そして、電極体400は、正極板と負極板との間にセパレータが配置され巻回されて形成されている。 The electrode body 400 is a power storage element (power generation element) that includes a positive electrode plate, a negative electrode plate, and a separator and can store electricity. The positive electrode plate is an electrode plate in which a composite material layer containing a positive electrode active material is formed on a positive electrode base material layer, which is a long strip-shaped current collecting foil made of aluminum or an aluminum alloy. The negative electrode plate is an electrode plate in which a composite material layer containing a negative electrode active material is formed on a negative electrode base material layer, which is a long strip-shaped current collecting foil made of copper or a copper alloy. The separator is a microporous sheet made of resin or the like. The electrode body 400 is formed by winding a separator between a positive electrode plate and a negative electrode plate.

電極体400は、巻回軸方向(本実施の形態ではX軸方向)の一端(図2ではX軸方向マイナス側の端部)に、負極板の基材層が積層されて形成された負極側端部411aを有する。また、電極体400は、巻回軸方向の他端(図2ではX軸方向プラス側の端部)に、正極板の基材層が積層されて形成された正極側端部421aを有する。負極側端部411aは、集電体130と接合され、正極側端部421aは、集電体120と接合される。 The electrode body 400 is a negative electrode formed by laminating a base material layer of a negative electrode plate at one end (the end on the negative side in the X-axis direction in FIG. 2) in the winding axis direction (X-axis direction in this embodiment). It has a side end portion 411a. Further, the electrode body 400 has a positive electrode side end portion 421a formed by laminating the base material layer of the positive electrode plate at the other end in the winding axis direction (the end on the positive side in the X-axis direction in FIG. 2). The negative electrode side end portion 411a is joined to the current collector 130, and the positive electrode side end portion 421a is joined to the current collector 120.

なお、本実施の形態では、電極体400の断面形状として長円形状を図示しているが、楕円形状、円形状、多角形状などでもよい。また、電極体400の種類は巻回型に限定されない。例えば、平板状極板を積層した積層型の電極体、または、長尺帯状の極板を山折りと谷折りとの繰り返しによって積層した蛇腹状の構造を有する電極体が、蓄電素子10に備えられてもよい。 Note that in this embodiment, the cross-sectional shape of the electrode body 400 is shown as an oval shape, but it may also be an elliptical shape, a circular shape, a polygonal shape, or the like. Furthermore, the type of electrode body 400 is not limited to the wound type. For example, the power storage element 10 is equipped with a laminated electrode body in which flat plates are laminated, or an electrode body having a bellows-like structure in which long strip-shaped plates are laminated by repeating mountain folds and valley folds. It's okay to be hit.

電極端子200は、集電体120を介して電極体400の正極と電気的に接続された正極端子である。電極端子300は、集電体130を介して電極体400の負極と電気的に接続された負極端子である。電極端子200及び300は、電極体400の上方に配置された蓋板110に、上絶縁部材250及び350を介して取り付けられている。 The electrode terminal 200 is a positive terminal electrically connected to the positive electrode of the electrode body 400 via the current collector 120. The electrode terminal 300 is a negative electrode terminal electrically connected to the negative electrode of the electrode body 400 via the current collector 130. The electrode terminals 200 and 300 are attached to the cover plate 110 disposed above the electrode body 400 via upper insulating members 250 and 350.

なお、集電体120の材質は限定されないが、例えば、電極体400の正極基材層と同様に、アルミニウムまたはアルミニウム合金などで形成されている。また、集電体130についても、材質は限定されないが、例えば、電極体400の負極基材層と同様に、銅または銅合金などで形成されている。 Note that the material of the current collector 120 is not limited, but is made of, for example, aluminum or an aluminum alloy, like the positive electrode base material layer of the electrode body 400. Further, the material of the current collector 130 is not limited, but is made of, for example, copper or a copper alloy, like the negative electrode base material layer of the electrode body 400.

[2.電極端子の容器への取り付け構造]
次に、本実施の形態に係る蓄電素子10における、電極端子の蓋板110への取り付け構造について、図3~図6を用いて説明する。なお、本実施の形態では、電極端子200及び300それぞれの蓋板110への取り付け構造は共通している。そのため、以下では、正極の電極端子200の蓋板110への取り付け構造について説明し、負極側の電極端子300の蓋板110への取り付け構造についての図示及び説明は省略する。
[2. Structure for attaching electrode terminal to container]
Next, a structure for attaching the electrode terminal to the cover plate 110 in the power storage element 10 according to the present embodiment will be explained using FIGS. 3 to 6. In this embodiment, the structure for attaching the electrode terminals 200 and 300 to the cover plate 110 is the same. Therefore, below, the attachment structure of the positive electrode terminal 200 to the cover plate 110 will be explained, and the illustration and description of the attachment structure of the negative electrode terminal 300 to the cover plate 110 will be omitted.

図3は、実施の形態に係る電極端子200の蓋板110への取り付け構造を示す分解斜視図である。図4は、実施の形態に係る集電体120の斜視図である。図5は、図3のV-V線を通るXZ平面における電極端子200及びその周辺の構造を示す断面図である。なお、図3では、軸体210は、かしめられる前の状態が図示されており、図5では、軸体210は、かしめられた状態が図示されている。また、図3及び図4では、集電体120における粗面部124のおおよその配置領域が、ドットを付した領域で表されており、図5では、粗面部124のおおよその配置領域が太線の点線で模式的に表されている。図4では、集電体120の、突出部213に接続される領域である接続領域125が点線の円形で表され、さらに、貫通孔123の周囲の内側領域126が点線の円形で表されている。図6は、図4のVI-VI線を通るYZ平面における軸体210の挿入部211及びその周辺の構造を示す断面図である。 FIG. 3 is an exploded perspective view showing a structure for attaching the electrode terminal 200 to the cover plate 110 according to the embodiment. FIG. 4 is a perspective view of the current collector 120 according to the embodiment. FIG. 5 is a cross-sectional view showing the structure of the electrode terminal 200 and its surroundings in the XZ plane passing along the line VV in FIG. Note that in FIG. 3, the shaft body 210 is shown in a state before being caulked, and in FIG. 5, the shaft body 210 is shown in a caulked state. In addition, in FIGS. 3 and 4, the approximate placement area of the rough surface portion 124 in the current collector 120 is represented by a dotted area, and in FIG. 5, the approximate placement area of the rough surface portion 124 is indicated by a thick line. Schematically represented by a dotted line. In FIG. 4, a connection region 125 of the current collector 120 that is connected to the protrusion 213 is represented by a dotted circle, and an inner region 126 around the through hole 123 is represented by a dotted circle. There is. FIG. 6 is a cross-sectional view showing the structure of the insertion portion 211 of the shaft body 210 and its surroundings in the YZ plane passing along the line VI-VI in FIG.

図3~図6に示すように、電極端子200は、端子本体201と軸体210とを有する。本実施の形態では、軸体210及び端子本体201は電極端子200において一体に設けられている。電極端子200は、電極体400の正極基材層と同様に、アルミニウムまたはアルミニウム合金などで形成されている。 As shown in FIGS. 3 to 6, the electrode terminal 200 includes a terminal body 201 and a shaft body 210. In this embodiment, the shaft body 210 and the terminal body 201 are integrally provided in the electrode terminal 200. The electrode terminal 200, like the positive electrode base material layer of the electrode body 400, is made of aluminum, aluminum alloy, or the like.

電極端子200は、上絶縁部材250及び下絶縁部材280によって容器100と絶縁されている。具体的には、端子本体201と容器100の蓋板110との間に上絶縁部材250が配置される。蓋板110は、容器100が有する壁部の一例である。端子本体201に固定された軸体210は、上絶縁部材250の貫通孔252、蓋板110の貫通孔112、下絶縁部材280の貫通孔282、及び、集電体120の軸体接続部121に形成された貫通孔123を貫通し、図5に示すようにかしめられる。これにより、上絶縁部材250、下絶縁部材280、及び集電体120は、電極端子200とともに、蓋板110に固定される。 The electrode terminal 200 is insulated from the container 100 by an upper insulating member 250 and a lower insulating member 280. Specifically, the upper insulating member 250 is disposed between the terminal body 201 and the lid plate 110 of the container 100. The lid plate 110 is an example of a wall portion that the container 100 has. The shaft body 210 fixed to the terminal body 201 has a through hole 252 in the upper insulating member 250, a through hole 112 in the cover plate 110, a through hole 282 in the lower insulating member 280, and a shaft connecting portion 121 of the current collector 120. It passes through the through hole 123 formed in the hole 123 and is caulked as shown in FIG. Thereby, the upper insulating member 250, the lower insulating member 280, and the current collector 120 are fixed to the cover plate 110 together with the electrode terminal 200.

本実施の形態に係る上絶縁部材250は、貫通孔252を形成する筒状部259(図5参照)を有している。筒状部259は、軸体210と蓋板110の貫通孔112との間の気密を維持する役割を有している。つまり、上絶縁部材250は、いわゆるガスケットとしての役割も有している。また、上絶縁部材250は、図3及び図5に示すように、端子本体201の厚み方向(Z軸方向)と直交する方向の端面を囲む側壁部258を有している。側壁部258は、例えば、電極端子200と、蓄電素子10の近くに配置された外部の部材との導通を防止する部材として機能する。また、側壁部258は、例えば、蓄電素子10の製造時及び使用時において、電極端子200の回り止めとして機能する。 The upper insulating member 250 according to this embodiment has a cylindrical portion 259 (see FIG. 5) that forms a through hole 252. The cylindrical portion 259 has a role of maintaining airtightness between the shaft body 210 and the through hole 112 of the cover plate 110. That is, the upper insulating member 250 also has a role as a so-called gasket. Further, as shown in FIGS. 3 and 5, the upper insulating member 250 has a side wall portion 258 that surrounds an end surface in a direction perpendicular to the thickness direction (Z-axis direction) of the terminal body 201. Side wall portion 258 functions, for example, as a member that prevents conduction between electrode terminal 200 and an external member disposed near power storage element 10 . Further, the side wall portion 258 functions as a rotation stopper for the electrode terminal 200, for example, during manufacture and use of the power storage element 10.

なお、上絶縁部材250及び下絶縁部材280のそれぞれは、ポリプロピレン(PP)、ポリエチレン(PE)、ポリスチレン(PS)、ポリフェニレンサルファイド樹脂(PPS)、ポリフェニレンエーテル(PPE(変性PPEを含む))、ポリエチレンテレフタラート(PET)、ポリブチレンテレフタレート(PBT)、ポリエーテルエーテルケトン(PEEK)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル(PFA)、ポリテトラフルオロエチレン(PTFE)、ポリエーテルサルフォン(PES)、ABS樹脂、または、それらの複合材料等の絶縁部材等により形成されている。 Note that each of the upper insulating member 250 and the lower insulating member 280 is made of polypropylene (PP), polyethylene (PE), polystyrene (PS), polyphenylene sulfide resin (PPS), polyphenylene ether (PPE (including modified PPE)), polyethylene Terephthalate (PET), polybutylene terephthalate (PBT), polyetheretherketone (PEEK), tetrafluoroethylene perfluoroalkyl vinyl ether (PFA), polytetrafluoroethylene (PTFE), polyethersulfone (PES), ABS It is formed of an insulating member such as resin or a composite material thereof.

このように、上絶縁部材250を介して蓋板110に固定される電極端子200は、容器100の内部の集電体120と図5に示す状態で接合されている。具体的には、電極端子200は、軸体210の根元に設けられた、軸体210の外径よりも大きな径大部202を有し、径大部202は、上絶縁部材250に設けられた凹部251に埋設されている。径大部202は、例えば、電極端子200の強度を向上させる部位として機能する。また、軸体210は、軸体210よりも外径の小さな軸部である挿入部211を有し、挿入部211が、集電体120の貫通孔123に挿入され、貫通孔123の外側(容器100の内方側)でかしめられることで、突出部213(図5参照)が形成される。つまり、本実施の形態では、突出部213は、挿入部211の先端がかしめられることにより形成されたかしめ部である。 In this way, the electrode terminal 200 fixed to the cover plate 110 via the upper insulating member 250 is joined to the current collector 120 inside the container 100 in the state shown in FIG. 5. Specifically, the electrode terminal 200 has a large-diameter portion 202 provided at the base of the shaft body 210 that is larger than the outer diameter of the shaft body 210, and the large-diameter portion 202 is provided on the upper insulating member 250. It is buried in the recessed part 251. The large diameter portion 202 functions, for example, as a portion that improves the strength of the electrode terminal 200. Further, the shaft body 210 has an insertion portion 211 that is a shaft portion having a smaller outer diameter than the shaft body 210, and the insertion portion 211 is inserted into the through hole 123 of the current collector 120, and the insertion portion 211 is inserted into the through hole 123 of the current collector 120, and the outside of the through hole 123 ( The protrusion 213 (see FIG. 5) is formed by caulking the container 100 (inner side of the container 100). That is, in the present embodiment, the protruding portion 213 is a caulked portion formed by caulking the tip of the insertion portion 211.

より具体的には、集電体120は、軸体210と接続される部分である軸体接続部121と、軸体接続部121から、電極体400の側に延設された一対の脚部122とを有する。本実施の形態に係る集電体120は、軸体に接続される導電部材の一例である。一対の脚部122は、電極体400の正極側端部421aと、超音波接合等の所定の手法により接合される。一対の脚部122は、互いに対向する内面に、電極体400の正極側端部421aと接合される接合面部122aを有している。図4では、接合面部122aは、長円形状の点線で囲まれた領域として表されている。接合面部122aは、全域が電極体400と接合される必要はなく、電極体400の形状またはサイズ等に応じて、電極体400と接合される可能性がある領域として規定される。 More specifically, the current collector 120 includes a shaft connecting portion 121 that is a portion connected to the shaft 210 and a pair of legs extending from the shaft connecting portion 121 to the electrode body 400 side. 122. Current collector 120 according to this embodiment is an example of a conductive member connected to the shaft. The pair of legs 122 is joined to the positive electrode side end 421a of the electrode body 400 by a predetermined method such as ultrasonic joining. The pair of leg parts 122 has a joint surface part 122a joined to the positive electrode side end part 421a of the electrode body 400 on the inner surfaces facing each other. In FIG. 4, the joint surface portion 122a is represented as an oval region surrounded by dotted lines. The entire area of the bonding surface portion 122a does not need to be bonded to the electrode body 400, and is defined as a region that may be bonded to the electrode body 400 depending on the shape or size of the electrode body 400.

軸体接続部121は、貫通孔123を有する板状の部位であり、裏面121a(Z軸方向マイナス側の面)に粗面部124を有している。粗面部124は、突出部213に接続される領域を含み、粗面部124以外の面よりも粗い面を形成する部分である。本実施の形態では、図4に示すように、裏面121aにおける、貫通孔123の周縁を含むX軸方向に長尺状の領域に粗面部124が設けられている。このような態様の粗面部124は、例えば、集電体120の基材である金属板に、転造方式のローレット加工を施すことで形成される。つまり、ローレット加工によって、基材に微小な凹凸が並んで配置された帯状の凹凸部が形成される。さらに、帯状の凹凸部が形成された基材に対し、プレス加工等を施すことで、帯状の凹凸部の一部が粗面部124として設けられた集電体120が作製される。この工程によれば、それぞれが粗面部124を有する複数の集電体120を効率よく作製することができる。なお、粗面部124の形成の手法に特に限定はない。例えば、粗面部124を有しない集電体120の軸体接続部121に対し、微小な凹凸を有する金型を用いてプレス加工することで、軸体接続部121の裏面121aに、当該金型に応じた粗面部124が形成されてもよい。また、図4に示す粗面部124の配置領域の形状及びサイズは一例であり、粗面部124は、突出部213に接続される領域を含む範囲に形成されればよく、その形状及びサイズは適宜決定されてもよい。 The shaft connecting portion 121 is a plate-shaped portion having a through hole 123, and has a rough surface portion 124 on a back surface 121a (surface on the minus side in the Z-axis direction). The rough surface portion 124 is a portion that includes a region connected to the protrusion portion 213 and forms a surface rougher than surfaces other than the rough surface portion 124 . In this embodiment, as shown in FIG. 4, a rough surface portion 124 is provided in an elongated region in the X-axis direction that includes the periphery of the through hole 123 on the back surface 121a. The rough surface portion 124 in this manner is formed, for example, by subjecting a metal plate, which is the base material of the current collector 120, to knurling using a rolling method. That is, by knurling, a band-shaped uneven portion in which minute unevenness is arranged in a line is formed on the base material. Furthermore, the base material on which the strip-shaped uneven portion is formed is subjected to press processing, etc., thereby producing the current collector 120 in which a portion of the strip-shaped uneven portion is provided as the rough surface portion 124. According to this process, a plurality of current collectors 120 each having a rough surface portion 124 can be efficiently manufactured. Note that there is no particular limitation on the method of forming the rough surface portion 124. For example, by pressing the shaft connection portion 121 of the current collector 120 that does not have the rough surface portion 124 using a mold having minute irregularities, the back surface 121a of the shaft connection portion 121 may be The rough surface portion 124 may be formed in accordance with the above. Further, the shape and size of the arrangement area of the rough surface part 124 shown in FIG. may be determined.

このように、本実施の形態に係る蓄電素子10は、電極体400を収容する容器100と、容器100の壁部(蓋板110)を貫通して配置され、電極体400と電気的に接続された軸体210と、軸体210と接合された導電部材の一例である集電体120とを備える。軸体210は、集電体120に設けられた貫通孔123に挿入される挿入部211と、挿入部211の、貫通孔123の外側の端部に配置された、軸体210の径方向に突出する突出部213とを有する。集電体120は、突出部213に接続される領域を含む粗面部124であって、粗面部124以外の面よりも粗い面を形成する粗面部124を有する。 In this way, the power storage element 10 according to the present embodiment is arranged to penetrate the container 100 that houses the electrode body 400 and the wall (lid plate 110) of the container 100, and is electrically connected to the electrode body 400. A current collector 120, which is an example of a conductive member joined to the shaft body 210, is provided. The shaft body 210 includes an insertion portion 211 that is inserted into a through hole 123 provided in the current collector 120, and a radial direction of the shaft body 210, which is disposed at the outer end of the through hole 123 of the insertion portion 211. It has a protruding portion 213 that protrudes. The current collector 120 has a rough surface portion 124 that includes a region connected to the protrusion portion 213 and is rougher than the surface other than the rough surface portion 124 .

この構成によれば、軸体210の挿入部211の先端をかしめる等の機械的接合によって突出部213が形成される際に、突出部213と集電体120との間の接触応力が局所的に増大する。具体的には、本実施の形態では、軸体接続部121の裏面121aに形成された粗面部124には、図6に示すように複数の微小な凸部が並んで配置され、この粗面部124と突出部213とが、かしめ加工時の押圧力によって互いに圧接される。これにより、軸体210の基材と集電体120の基材とが同種の金属製である場合、粗面部124が有する複数の微小な凸部のそれぞれは、突出部213に食い込み、または/及び、突出部213につぶされる。つまり、突出部213と粗面部124とが接触する部分において、互いの表面における微小な破壊が生じやすい。その結果、軸体210と集電体120との接触界面において露出する基材の新生面(酸化被膜が除去された面)同士を接触させることができる。これにより、集電体120と軸体210との間の電気抵抗を低減させることができる。より詳細には、軸体210と集電体120との接触界面において新生面同士が接触することで、接触界面の少なくとも一部が固相接合された状態となる可能性もある。 According to this configuration, when the protruding part 213 is formed by mechanical joining such as caulking the tip of the insertion part 211 of the shaft body 210, the contact stress between the protruding part 213 and the current collector 120 is localized. increase. Specifically, in this embodiment, as shown in FIG. 6, a plurality of minute convex portions are arranged side by side on the rough surface portion 124 formed on the back surface 121a of the shaft connecting portion 121. 124 and the protrusion 213 are pressed against each other by the pressing force during caulking. As a result, when the base material of the shaft body 210 and the base material of the current collector 120 are made of the same kind of metal, each of the plurality of minute convex parts of the rough surface part 124 bites into the protrusion part 213 or/ Then, it is crushed by the protrusion 213. That is, in the portion where the protruding portion 213 and the rough surface portion 124 come into contact with each other, minute fractures are likely to occur on each other's surfaces. As a result, the newly formed surfaces (surfaces from which the oxide film has been removed) of the base material exposed at the contact interface between the shaft body 210 and the current collector 120 can be brought into contact with each other. Thereby, the electrical resistance between the current collector 120 and the shaft body 210 can be reduced. More specifically, by bringing the newly formed surfaces into contact with each other at the contact interface between the shaft body 210 and the current collector 120, there is a possibility that at least a portion of the contact interface will be in a solid-phase bonded state.

また、集電体120と軸体210との接合強度も向上させることができる。そのため、集電体120と軸体210との接合にレーザ溶接等の溶接を行う必要がなく、従って、溶接時の熱による下絶縁部材280等の樹脂部材の変形または損傷の可能性がない。これにより、容器100の軸体210が貫通している箇所における気密の信頼性が向上する。このように、本実施の形態に係る蓄電素子10は、簡易な構成で、かつ、信頼性の高い蓄電素子である。 Further, the bonding strength between the current collector 120 and the shaft body 210 can also be improved. Therefore, there is no need to perform welding such as laser welding to join the current collector 120 and the shaft body 210, and therefore there is no possibility of deformation or damage of the resin members such as the lower insulating member 280 due to heat during welding. This improves the reliability of airtightness at the location where the shaft body 210 of the container 100 penetrates. In this way, the power storage element 10 according to the present embodiment has a simple configuration and is a highly reliable power storage element.

なお、粗面部124における表面粗さの比較対象となる、集電体120における粗面部124以外の面としては、脚部122の接合面部122aが例示される。接合面部122aは、電極体400と接合される面を形成する部分であり、この接合には、例えば超音波接合が用いられる。そのため、接合精度の向上の観点、または、接合作業における金属粉(コンタミネーション)の発生の抑制の観点から、接合面部122aの粗さは小さい方が好ましい。これに対し、粗面部124は、例えばローレット加工等の金属加工を行うことで得られる部分であり、表面の粗さが意図的に大きくされた部分である。なお、表面の粗さが大きな基材を用いて集電体120を作製する場合、接合面部122aに対応する部分のみを、研磨等によって粗さを小さくすることで、集電体120が作製されてもよい。この場合であっても、粗面部124は、接合面部122aよりも粗い面を形成する部分として、集電体120に備えられる。 An example of the surface of the current collector 120 other than the rough surface portion 124 to which the surface roughness of the rough surface portion 124 is compared is the joint surface portion 122a of the leg portion 122. The bonding surface portion 122a is a portion that forms a surface to be bonded to the electrode body 400, and for example, ultrasonic bonding is used for this bonding. Therefore, from the viewpoint of improving the joining accuracy or suppressing the generation of metal powder (contamination) during the joining operation, it is preferable that the roughness of the joining surface portion 122a is small. On the other hand, the rough surface portion 124 is a portion obtained by performing metal processing such as knurling, and is a portion whose surface roughness is intentionally increased. Note that when the current collector 120 is manufactured using a base material with a large surface roughness, the current collector 120 is manufactured by reducing the roughness of only the portion corresponding to the bonding surface portion 122a by polishing or the like. It's okay. Even in this case, the rough surface portion 124 is provided in the current collector 120 as a portion forming a surface rougher than the bonding surface portion 122a.

また、本実施の形態において、粗面部124は、突出部213に接続される領域である、集電体120の、軸体210の軸方向(Z軸方向)から見た場合における突出部213に覆われる範囲を含んでいる。 In the present embodiment, the rough surface portion 124 is a region connected to the protrusion 213 of the current collector 120 when viewed from the axial direction (Z-axis direction) of the shaft body 210. Contains the area covered.

具体的には、図4において、集電体120の、突出部213に接続される領域(突出部213に覆われる範囲)である接続領域125は、点線の円形で表されており、接続領域125は粗面部124に含まれる。このことは、図6にも示されている。 Specifically, in FIG. 4, the connection area 125, which is the area of the current collector 120 that is connected to the protrusion 213 (the area covered by the protrusion 213), is represented by a dotted circle; 125 is included in the rough surface portion 124. This is also shown in FIG.

このように、本実施の形態では、接続領域125の全域を含む、比較的に広い領域に粗面部124が形成されている。そのため、例えば、かしめ加工によって形成される突出部213の大きさを一定にすることが難しい場合であっても、突出部213と集電体120とが新生面同士で接合される可能性が高い。具体的には、複数の蓄電素子10を製造する場合において、突出部213の大きさに個体差が生じることがある。しかし、本実施の形態に係る蓄電素子10では、集電体120には、比較的に広い領域に粗面部124が形成されているため、突出部213が、接続領域125をはみ出すような事態が生じ難い。つまり、複数の蓄電素子10のそれぞれにおいて、軸体210と集電体120との接合の信頼性が向上される。従って、複数の蓄電素子10を製造する場合において、それぞれの蓄電素子10の品質の維持または向上が図られる。 As described above, in this embodiment, the rough surface portion 124 is formed in a relatively wide area including the entire area of the connection area 125. Therefore, for example, even if it is difficult to make the size of the protrusion 213 formed by caulking constant, there is a high possibility that the protrusion 213 and the current collector 120 will be joined with their new surfaces. Specifically, when manufacturing a plurality of power storage elements 10, individual differences may occur in the size of the protrusion 213. However, in the power storage element 10 according to the present embodiment, since the rough surface portion 124 is formed in a relatively wide area on the current collector 120, there is no possibility that the protruding portion 213 protrudes beyond the connection area 125. Hard to occur. That is, in each of the plurality of power storage elements 10, the reliability of the connection between the shaft body 210 and the current collector 120 is improved. Therefore, when manufacturing a plurality of power storage elements 10, the quality of each power storage element 10 can be maintained or improved.

また、本実施の形態において、挿入部211は、軸体210の端部に配置された外径の小さな軸部であり、挿入部211の根元には外径の差による段部212が形成されている。つまり、軸体210は、図6に示すように、挿入部211よりも径方向に張り出した段部212を有している。段部212は、軸体210の軸方向(Z軸方向)において、段部212と突出部213とで集電体120の軸体接続部121を挟むように配置されている。粗面部124は、図5及び図6から分かるように、集電体120の突出部213側の面(裏面121a)の、軸体210の軸方向(Z軸方向)から見た場合における段部212と突出部213とが重複する範囲を含んでいる。 Furthermore, in this embodiment, the insertion portion 211 is a shaft portion with a small outer diameter arranged at the end of the shaft body 210, and a stepped portion 212 is formed at the base of the insertion portion 211 due to the difference in outer diameter. ing. That is, as shown in FIG. 6, the shaft body 210 has a stepped portion 212 that projects further in the radial direction than the insertion portion 211. The stepped portion 212 is arranged so that the shaft connecting portion 121 of the current collector 120 is sandwiched between the stepped portion 212 and the protruding portion 213 in the axial direction (Z-axis direction) of the shaft 210. As can be seen from FIGS. 5 and 6, the rough surface portion 124 is a stepped portion on the surface (back surface 121a) of the current collector 120 on the side of the protrusion 213 when viewed from the axial direction (Z-axis direction) of the shaft body 210. 212 and the protrusion 213 include an overlapping range.

この構成によれば、集電体120の粗面部124は、突出部213と段部212とで挟みこまれる状態となる。そのため、集電体120と軸体210とを接合する場合に、突出部213は、粗面部124における微細な凸部を効率よくつぶすこと(または微細な凸部により効率よくつぶされること)ができる。より具体的には、突出部213を形成する際のかしめ力は、集電体120の軸体接続部121を挟んで突出部213と対向する位置にある段部212によって受けられる状態となる。従って、かしめ力が、突出部213と粗面部124とを接合するための力として効率よく作用する。その結果、集電体120と軸体210とが新生面同士で接合される可能性が向上する。 According to this configuration, the rough surface portion 124 of the current collector 120 is sandwiched between the protruding portion 213 and the stepped portion 212. Therefore, when joining the current collector 120 and the shaft body 210, the protruding portion 213 can efficiently crush the fine convex portions on the rough surface portion 124 (or be efficiently crushed by the fine convex portions). . More specifically, the caulking force when forming the protrusion 213 is received by the stepped portion 212 located at a position facing the protrusion 213 with the shaft connection portion 121 of the current collector 120 interposed therebetween. Therefore, the caulking force efficiently acts as a force for joining the protruding portion 213 and the rough surface portion 124. As a result, the possibility that the current collector 120 and the shaft body 210 will be joined at their new surfaces is improved.

また、本実施の形態において、突出部213は、軸体210の挿入部211の先端がかしめられることにより形成されたかしめ部である。 Furthermore, in the present embodiment, the protruding portion 213 is a caulked portion formed by caulking the tip of the insertion portion 211 of the shaft body 210.

つまり、本実施の形態では、集電体120には、突出部213の接合相手として粗面部124が配置されていることで、突出部213と集電体120とが新生面同士で接合される可能性が高い。そのため、例えば、通常よりも大きな力でかしめることなく、軸体210と集電体120との接合の信頼性が向上される。従って、かしめ力による集電体120または容器100等の変形が抑制される。このことも、蓄電素子10の信頼性の向上に寄与する。 That is, in the present embodiment, the rough surface portion 124 is disposed on the current collector 120 as a joining partner of the protruding portion 213, so that the protruding portion 213 and the current collector 120 can be joined with their new surfaces. Highly sexual. Therefore, for example, the reliability of joining the shaft body 210 and the current collector 120 is improved without caulking with a force larger than usual. Therefore, deformation of the current collector 120, the container 100, etc. due to the crimping force is suppressed. This also contributes to improving the reliability of power storage element 10.

ここで、粗面部124は、粗面部124の全域が均等な粗さである必要はない。例えば、粗面部124は、集電体120の貫通孔123の周囲の内側領域126(図4参照)であって、集電体120の、軸体210の軸方向(Z軸方向)から見た場合における突出部213に覆われる範囲(図4の接続領域125)よりも小さい内側領域126を含み、内側領域126は、内側領域126の外側の領域よりも粗く形成されている、としてもよい。 Here, the rough surface portion 124 does not need to have uniform roughness over the entire region of the rough surface portion 124. For example, the rough surface portion 124 is the inner region 126 (see FIG. 4) around the through hole 123 of the current collector 120, and is the rough surface portion 124 when viewed from the axial direction (Z-axis direction) of the shaft body 210 of the current collector 120. The inner region 126 may be smaller than the range covered by the protrusion 213 (the connection region 125 in FIG. 4) in the case, and the inner region 126 may be formed more roughly than the region outside the inner region 126.

内側領域は126、かしめ接合等の機械的接合の作業において押圧力が作用しやすい貫通孔123の周囲の領域である。そのため、内側領域126の粗さがその外側よりも大きいことで、突出部213と集電体120とが新生面同士で接合される可能性が向上する。なお、本実施の形態では、図5及び図6に示すように、軸体210は段部212を有しており、粗面部124の、図5及び図6における段部212の直下の領域が、最も大きな押圧力を受ける領域である。従って、粗面部124において、軸体210の軸方向から見た場合における段部212と重複する領域の粗さが、他の領域の粗さよりも大きいことが好ましい。すなわち、粗面部124における段部212と重複する領域が、内側領域126として設けられていてもよい。 The inner region 126 is a region around the through hole 123 where pressing force is likely to act during mechanical joining operations such as caulking. Therefore, since the roughness of the inner region 126 is greater than that of the outer region, the possibility that the protruding portion 213 and the current collector 120 will be joined to each other on their new surfaces is improved. In this embodiment, as shown in FIGS. 5 and 6, the shaft body 210 has a stepped portion 212, and the area of the rough surface portion 124 immediately below the stepped portion 212 in FIGS. , is the area that receives the greatest pressing force. Therefore, in the rough surface portion 124, it is preferable that the roughness in the region overlapping with the step portion 212 is greater than the roughness in other regions when viewed from the axial direction of the shaft body 210. That is, a region of the rough surface portion 124 that overlaps with the step portion 212 may be provided as the inner region 126.

なお、粗面部124は、内側領域126のみで構成されてもよい。つまり、集電体120における、突出部213と接続される部分の全域に、粗面部124が配置されている必要はない。粗面部124は、少なくとも、機械的接合の作業において押圧力が作用しやすい貫通孔123の周囲に形成されていることで、突出部213と集電体120とが新生面同士で接合される可能性を向上させることができる。すなわち、蓄電素子10の信頼性を向上させることができる。 Note that the rough surface portion 124 may be composed of only the inner region 126. In other words, the rough surface portion 124 does not need to be disposed over the entire region of the current collector 120 that is connected to the protruding portion 213 . The rough surface portion 124 is formed at least around the through hole 123 where pressing force is likely to act during mechanical bonding work, thereby reducing the possibility that the protruding portion 213 and the current collector 120 will be bonded to each other on their new surfaces. can be improved. That is, the reliability of power storage element 10 can be improved.

以上、実施の形態に係る蓄電素子10について説明したが、蓄電素子10は、図2~図6に示す態様とは異なる態様の軸体210または集電体120を備えてもよい。そこで、以下に、蓄電素子10における軸体210または集電体120についての変形例を、上記実施の形態との差分を中心に説明する。 Although the power storage element 10 according to the embodiment has been described above, the power storage element 10 may include the shaft body 210 or the current collector 120 in a different form from that shown in FIGS. 2 to 6. Therefore, modifications of the shaft body 210 or the current collector 120 in the power storage element 10 will be described below, focusing on the differences from the above embodiment.

(変形例1)
図7は、実施の形態の変形例1に係る集電体120aの粗面部124aの配置領域を示す下面図である。具体的には、図7では、Z軸方向マイナス側から見た場合の集電体120aが図示されており、粗面部124aのおおよその配置領域がドットを付した領域で表されている。また、図7では、接続領域125及び内側領域126のそれぞれが点線の円形で表されている。
(Modification 1)
FIG. 7 is a bottom view showing the arrangement area of the rough surface portion 124a of the current collector 120a according to Modification 1 of the embodiment. Specifically, in FIG. 7, the current collector 120a is illustrated when viewed from the negative side in the Z-axis direction, and the approximate arrangement area of the rough surface portion 124a is represented by a dotted area. Further, in FIG. 7, each of the connection area 125 and the inner area 126 is represented by a dotted circle.

図7に示す本変形例に係る集電体120aでは、軸体接続部121の裏面121aにおいて、貫通孔123を中心とする円形の領域に粗面部124aが配置されている。粗面部124aは、このような形状及びサイズに形成された場合であっても、軸体210と集電体120aとの接触界面において露出する新生面同士を接触させることができる。これにより、集電体120aと軸体210との間の電気抵抗を低減させることができる。 In the current collector 120a according to the present modification shown in FIG. 7, a rough surface portion 124a is arranged in a circular region centered on the through hole 123 on the back surface 121a of the shaft connection portion 121. Even when the rough surface portion 124a is formed in such a shape and size, the new surfaces exposed at the contact interface between the shaft body 210 and the current collector 120a can be brought into contact with each other. Thereby, the electrical resistance between the current collector 120a and the shaft body 210 can be reduced.

また、本変形例では、粗面部124aは、突出部213に接続される領域であって、突出部213に覆われる範囲である接続領域125を含んでいる。そのため、突出部213が、接続領域125をはみ出すような事態が生じ難い。従って、複数の蓄電素子10を製造する場合において、それぞれの蓄電素子10の品質の維持または向上が図られる。 Furthermore, in this modification, the rough surface portion 124a includes a connection region 125 that is a region connected to the protrusion 213 and covered by the protrusion 213. Therefore, a situation in which the protruding portion 213 protrudes beyond the connection area 125 is unlikely to occur. Therefore, when manufacturing a plurality of power storage elements 10, the quality of each power storage element 10 can be maintained or improved.

また、本変形例において、粗面部124aは、貫通孔123の周囲の内側領域126を含んでおり、内側領域126は、内側領域の外側の領域よりも粗く形成されている。つまり、機械的接合の作業において押圧力が作用しやすい貫通孔123の周囲の内側領域126の粗さが比較的に大きい。そのため、突出部213と集電体120aとが新生面同士で接合される可能性が向上する。なお、粗面部124aは、実施の形態に係る粗面部124と同じく、内側領域126のみで構成されてもよい。 Furthermore, in this modification, the rough surface portion 124a includes an inner region 126 around the through hole 123, and the inner region 126 is formed rougher than the region outside the inner region. In other words, the roughness of the inner region 126 around the through hole 123, on which pressing force is likely to act during the mechanical joining operation, is relatively large. Therefore, the possibility that the protruding portion 213 and the current collector 120a will be joined to each other at their newly formed surfaces is improved. In addition, the rough surface part 124a may be comprised only of the inner area|region 126 similarly to the rough surface part 124 based on embodiment.

(変形例2)
図8は、実施の形態の変形例2に係る軸体210a及びその周辺の構造を示す断面図である。なお、図8における断面の位置は、図5における断面の位置に準ずる。図9は、実施の形態の変形例2に係る端子本体201aの粗面部204の配置領域を示す上面図である。具体的には、図9では、Z軸方向プラス側から見た場合の電極端子200aの端子本体201aが図示されており、粗面部204のおおよその配置領域が、ドットを付した領域で表されている。また、図7では、突出部213aに接続される領域であって、突出部213aに覆われる範囲である接続領域225が点線の円形で表されている。
(Modification 2)
FIG. 8 is a sectional view showing a structure of a shaft body 210a and its surroundings according to a second modification of the embodiment. Note that the position of the cross section in FIG. 8 corresponds to the position of the cross section in FIG. 5. FIG. 9 is a top view showing the arrangement area of the rough surface portion 204 of the terminal main body 201a according to the second modification of the embodiment. Specifically, FIG. 9 shows the terminal main body 201a of the electrode terminal 200a when viewed from the positive side in the Z-axis direction, and the approximate placement area of the rough surface portion 204 is represented by a dotted area. ing. Further, in FIG. 7, a connection region 225, which is a region connected to the protrusion 213a and is a range covered by the protrusion 213a, is represented by a dotted circle.

図7及び図8に示すように、本変形例に係る蓄電素子10aでは、集電体120bに、容器100の壁部(蓋板110)を貫通する軸体210aが備えられており、容器100の外側に配置された端子本体201aに、軸体210aが接続される。つまり、本変形例では、端子本体201aは、軸体に接続される導電部材の一例である。なお、軸体210aは、端子本体201aと蓋板110との間に配置されたか上絶縁部材250aを貫通して配置されている。また、下絶縁部材280が有する筒状部289によって、軸体210aと蓋板110の貫通孔112との間の気密が維持されている。 As shown in FIGS. 7 and 8, in the power storage element 10a according to the present modification, the current collector 120b is provided with a shaft 210a that penetrates the wall (cover plate 110) of the container 100. A shaft body 210a is connected to a terminal main body 201a disposed on the outside of the terminal body 201a. That is, in this modification, the terminal body 201a is an example of a conductive member connected to the shaft. The shaft body 210a is disposed between the terminal main body 201a and the cover plate 110, and is disposed so as to penetrate through the upper insulating member 250a. Further, the cylindrical portion 289 of the lower insulating member 280 maintains airtightness between the shaft body 210a and the through hole 112 of the cover plate 110.

本変形例において、軸体210aは、端子本体201aに設けられた貫通孔205に挿入される挿入部211aと、挿入部211aの、貫通孔205の外側の端部に配置された、軸体210aの径方向に突出する突出部213aとを有する。端子本体201aは、突出部213aに接続される領域を含む粗面部204であって、粗面部204以外の面よりも粗い面を形成する粗面部204を有する。 In this modification, the shaft body 210a includes an insertion portion 211a inserted into the through hole 205 provided in the terminal body 201a, and a shaft body 210a disposed at the outer end of the through hole 205 of the insertion portion 211a. It has a protrusion 213a that protrudes in the radial direction. The terminal main body 201a has a rough surface portion 204 that includes a region connected to the protruding portion 213a and is rougher than surfaces other than the rough surface portion 204.

より具体的には、本変形例では、軸体210aと端子本体201aとはかしめ加工によって接続されており、突出部213aは挿入部211aの先端がかしめられることで形成されたかしめ部である。つまり、本変形例では、容器100の外部の端子本体201aと、容器100の内部の集電体120bとは、軸体210aを、容器100の外側でかしめることで機械的及び電気的に接続されている。 More specifically, in this modification, the shaft body 210a and the terminal main body 201a are connected by caulking, and the protruding portion 213a is a caulked portion formed by caulking the tip of the insertion portion 211a. That is, in this modification, the terminal main body 201a outside the container 100 and the current collector 120b inside the container 100 are mechanically and electrically connected by caulking the shaft body 210a outside the container 100. has been done.

この場合であっても、端子本体201aには、突出部213aの接合相手として粗面部204が配置されている。これにより、突出部213aと端子本体201aとが新生面同士で接合される可能性が向上し、その結果、端子本体201aと軸体210aとの間の電気抵抗を低減させることができる。 Even in this case, the rough surface portion 204 is arranged on the terminal main body 201a as a mating partner of the protruding portion 213a. This increases the possibility that the protruding portion 213a and the terminal main body 201a will be joined with their new surfaces, and as a result, the electrical resistance between the terminal main body 201a and the shaft body 210a can be reduced.

また、本変形例に係る蓄電素子10aは、接続領域225の全域を含む、比較的に広い領域に粗面部204が形成されている等、実施の形態に係る蓄電素子10と同じ特徴を有することができる。つまり、蓄電素子10aによれば、実施の形態に係る蓄電素子10の各特徴による効果と同じ効果を得ることができる。 Furthermore, the power storage element 10a according to this modification has the same characteristics as the power storage element 10 according to the embodiment, such as the rough surface portion 204 being formed in a relatively wide area including the entire area of the connection region 225. I can do it. That is, according to the power storage element 10a, the same effects as those achieved by the characteristics of the power storage element 10 according to the embodiment can be obtained.

このように、集電体120bが備える軸体210aが端子本体201aの外側でかしめられる構造を有する蓄電素子10aにおいて、端子本体201aが粗面部204を有することで、端子本体201aと軸体210aとの接合の信頼性が向上する。その結果、信頼性が向上された蓄電素子10aを得ることができる。 In this way, in the power storage element 10a having a structure in which the shaft body 210a of the current collector 120b is caulked on the outside of the terminal body 201a, since the terminal body 201a has the rough surface portion 204, the terminal body 201a and the shaft body 210a can be separated. The reliability of the joints is improved. As a result, a power storage element 10a with improved reliability can be obtained.

(他の実施の形態)
以上、本発明に係る蓄電素子について、実施の形態及びその変形例に基づいて説明した。しかしながら、本発明は、上記実施の形態及び変形例に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を上記実施の形態または変形例に施したものも、あるいは、上記説明された複数の構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
(Other embodiments)
The power storage device according to the present invention has been described above based on the embodiment and its modification. However, the present invention is not limited to the above embodiments and modifications. Unless departing from the spirit of the present invention, the present invention also includes various modifications that can be thought of by those skilled in the art to the above-described embodiments or modified examples, or forms constructed by combining a plurality of the above-described components. Included within the scope of.

例えば、軸体210が有する突出部213は、かしめ部には限定されない。例えば、軸体が挿入されるネジ穴を有する雌ねじ部材(例えばナット)によって突出部が形成されてもよい。つまり、集電体120と軸体とを接続する機械的接合の手法として、軸体とナットとによる締結が用いられてもよい。この場合であっても、ナットを締め付けることよる締結力が、突出部であるナットと集電体120との接合力として作用する。これにより、集電体120に配置された粗面部124とナットとが圧接され、その結果、ナットと集電体120とが新生面同士で接合される可能性が向上する。また、変形例2のように、軸体210aが端子本体201aを貫通する場合においても同様であり、端子本体201aと軸体とを接続する機械的接合の手法として、軸体とナットとによる締結が用いられてもよい。 For example, the protruding portion 213 of the shaft body 210 is not limited to a caulking portion. For example, the protrusion may be formed by a female threaded member (for example, a nut) having a threaded hole into which the shaft body is inserted. That is, as a mechanical joining method for connecting the current collector 120 and the shaft, fastening using the shaft and a nut may be used. Even in this case, the fastening force generated by tightening the nut acts as a bonding force between the nut, which is a protrusion, and the current collector 120. As a result, the rough surface portion 124 disposed on the current collector 120 and the nut are brought into pressure contact with each other, and as a result, the possibility that the nut and the current collector 120 will be joined to each other on their new surfaces is improved. The same applies when the shaft body 210a passes through the terminal body 201a as in Modification 2, and as a mechanical joining method for connecting the terminal body 201a and the shaft body, fastening using the shaft body and a nut is possible. may be used.

また、蓄電素子10の正極側及び負極側の両方に、図3~図9に示す粗面部124等の構成が採用されなくてもよい。蓄電素子10の正極側及び負極側のいずれか一方に粗面部124等の構成が採用されることで、少なくとも当該一方における軸体と導電部材(集電体または端子本体)との接合の信頼性は向上される。 Further, the configurations such as the rough surface portions 124 shown in FIGS. 3 to 9 may not be employed on both the positive electrode side and the negative electrode side of the power storage element 10. By employing a configuration such as the rough surface portion 124 on either the positive electrode side or the negative electrode side of the power storage element 10, the reliability of the connection between the shaft body and the conductive member (current collector or terminal body) on at least one of the positive electrode sides and the negative electrode side is improved. will be improved.

なお、図3~図9に示す粗面部124等の構成は、例えば以下のような理由により、正極側及び負極側のうちの正極側に採用される方が効果的である。 Note that the structure of the rough surface portion 124 and the like shown in FIGS. 3 to 9 is more effective when adopted on the positive electrode side of the positive electrode side and the negative electrode side, for example, for the following reasons.

すなわち、蓄電素子10において、正極に使用されるアルミニウムと負極に使用される銅とを比較した場合、アルミニウムの方が銅よりも電気抵抗が大きい。その一方で、アルミニウム製部材は銅製部材よりも一般的に耐力が小さいことからカシメなどの締結の際に、表面粗さに追従しやすく、その結果、本発明の効果が奏されやすくなる。このことから、リチウムイオン二次電池において一般的にアルミニウム部材で構成される正極側に本発明を適用する方が、一般的に銅部材で構成される負極側に本発明を適用する場合よりも、本発明の効果が得られやすい。また、正極側及び負極側の両方に本発明に係る粗面部等を採用する場合と比較して、より低コストで比較的大きな効果を得ることができる。 That is, when comparing aluminum used for the positive electrode and copper used for the negative electrode in the power storage element 10, aluminum has a higher electrical resistance than copper. On the other hand, since aluminum members generally have lower yield strength than copper members, they can easily follow surface roughness during fastening such as caulking, and as a result, the effects of the present invention can be more easily achieved. For this reason, in a lithium ion secondary battery, it is better to apply the present invention to the positive electrode side, which is generally made of an aluminum member, than to apply the present invention to the negative electrode side, which is generally made of a copper member. , it is easy to obtain the effects of the present invention. Further, compared to the case where the rough surface portion according to the present invention is employed on both the positive electrode side and the negative electrode side, relatively large effects can be obtained at lower cost.

また、電極端子200は、端子本体201と軸体210とを一体に備えているが、互いに別体である端子本体と軸体とが組み合わされることで、電極端子200が構成されてもよい。例えば、端子本体に設けられた有底または無底の穴に軸体の端部が圧入されることで、端子本体及び軸体を備える電極端子が作製されてもよい。 Further, although the electrode terminal 200 integrally includes a terminal body 201 and a shaft body 210, the electrode terminal 200 may be configured by combining a terminal body and a shaft body that are separate from each other. For example, an electrode terminal including a terminal body and a shaft body may be produced by press-fitting the end of the shaft body into a bottomed or bottomless hole provided in the terminal body.

本発明は、リチウムイオン二次電池などの蓄電素子等に適用できる。 The present invention can be applied to power storage elements such as lithium ion secondary batteries.

10、10a 蓄電素子
100 容器
110 蓋板
120、120a、120b、130 集電体
122a 接合面部
124、124a、204 粗面部
125、225 接続領域
126 内側領域
200、200a、300 電極端子
201、201a 端子本体
210、210a 軸体
211、211a 挿入部
212 段部
213、213a 突出部
400 電極体
10, 10a Energy storage element 100 Container 110 Cover plate 120, 120a, 120b, 130 Current collector 122a Joint surface portion 124, 124a, 204 Rough surface portion 125, 225 Connection area 126 Inner area 200, 200a, 300 Electrode terminal 201, 201a Terminal body 210, 210a Shaft body 211, 211a Insertion part 212 Step part 213, 213a Projection part 400 Electrode body

Claims (4)

電極体を収容する容器と、
前記容器の壁部を貫通して配置され、前記電極体と電気的に接続された軸体と、
前記軸体と接合された導電部材とを備え、
前記軸体は、
前記導電部材に設けられた貫通孔に挿入される挿入部と、
前記挿入部の、貫通孔の外側の端部に配置された、前記軸体の径方向に突出する突出部と、を有し、
前記導電部材は、圧接によって前記突出部に接続される領域を含む粗面部であって、前記粗面部以外の面よりも粗い面を形成する粗面部を有し、
前記粗面部は、前記貫通孔の周囲の内側領域であって、前記導電部材の、前記軸体の軸方向から見た場合における前記突出部に覆われる範囲よりも小さい内側領域を含み、
前記内側領域は、前記内側領域の外側かつ前記粗面部内の領域よりも粗く形成されている、
蓄電素子。
a container containing an electrode body;
a shaft body disposed through the wall of the container and electrically connected to the electrode body;
comprising a conductive member joined to the shaft,
The shaft body is
an insertion portion inserted into a through hole provided in the conductive member;
a protrusion that protrudes in the radial direction of the shaft body and is disposed at an outer end of the through hole of the insertion portion;
The conductive member has a rough surface portion that includes a region connected to the protrusion portion by pressure contact, and has a rough surface portion that is rougher than a surface other than the rough surface portion;
The rough surface portion includes an inner region around the through hole that is smaller than a range of the conductive member covered by the protrusion when viewed from the axial direction of the shaft body,
The inner region is formed to be rougher than a region outside the inner region and within the rough surface portion,
Energy storage element.
前記粗面部は、前記突出部に接続される領域である、前記導電部材の、前記軸体の軸方向から見た場合における前記突出部に覆われる範囲を含む、
請求項1記載の蓄電素子。
The rough surface portion is a region connected to the protrusion, and includes a range of the conductive member covered by the protrusion when viewed from the axial direction of the shaft body.
The electricity storage element according to claim 1 .
前記軸体は、前記挿入部よりも前記径方向に張り出した段部であって、前記軸体の軸方向において、前記突出部とで前記導電部材を挟む段部を有し、
前記粗面部は、前記導電部材の前記突出部側の面の、前記軸方向から見た場合における前記段部と前記突出部とが重複する範囲を含む、
請求項1または2記載の蓄電素子。
The shaft body has a step portion that protrudes in the radial direction beyond the insertion portion, and has a step portion that sandwiches the conductive member with the protrusion in the axial direction of the shaft body;
The rough surface portion includes a range where the step portion and the protrusion overlap when viewed from the axial direction of the surface of the conductive member on the protrusion side.
The electricity storage element according to claim 1 or 2 .
前記突出部は、前記軸体の前記挿入部の先端がかしめられることにより形成されたかしめ部である、
請求項1~のいずれか一項に記載の蓄電素子。
The protruding portion is a caulked portion formed by caulking the tip of the insertion portion of the shaft body.
The electricity storage element according to any one of claims 1 to 3 .
JP2019039761A 2019-03-05 2019-03-05 Energy storage element Active JP7354556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019039761A JP7354556B2 (en) 2019-03-05 2019-03-05 Energy storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019039761A JP7354556B2 (en) 2019-03-05 2019-03-05 Energy storage element

Publications (2)

Publication Number Publication Date
JP2020145045A JP2020145045A (en) 2020-09-10
JP7354556B2 true JP7354556B2 (en) 2023-10-03

Family

ID=72353703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019039761A Active JP7354556B2 (en) 2019-03-05 2019-03-05 Energy storage element

Country Status (1)

Country Link
JP (1) JP7354556B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219027A (en) 2009-03-16 2010-09-30 Sb Limotive Co Ltd Battery module
JP2014035828A (en) 2012-08-07 2014-02-24 Toyota Industries Corp Power storage device
JP2016173907A (en) 2015-03-16 2016-09-29 日立オートモティブシステムズ株式会社 Square secondary battery
JP2020140887A (en) 2019-02-28 2020-09-03 トヨタ自動車株式会社 Sealed battery and battery pack

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219027A (en) 2009-03-16 2010-09-30 Sb Limotive Co Ltd Battery module
JP2014035828A (en) 2012-08-07 2014-02-24 Toyota Industries Corp Power storage device
JP2016173907A (en) 2015-03-16 2016-09-29 日立オートモティブシステムズ株式会社 Square secondary battery
JP2020140887A (en) 2019-02-28 2020-09-03 トヨタ自動車株式会社 Sealed battery and battery pack

Also Published As

Publication number Publication date
JP2020145045A (en) 2020-09-10

Similar Documents

Publication Publication Date Title
JP5868265B2 (en) Single cells and batteries
JP6427462B2 (en) Square secondary battery
JP7163932B2 (en) Storage element
WO2014118965A1 (en) Electricity storage device
WO2022071298A1 (en) Power storage element
JP2020107473A (en) Power storage element
JP2020140863A (en) Power storage element
JP2022049725A (en) Secondary battery terminal and method of manufacturing the same
US11610743B2 (en) Energy storage device
JP7354556B2 (en) Energy storage element
JP7056560B2 (en) Power storage element and manufacturing method of power storage element
JP2022164957A (en) Power storage element
KR20220127753A (en) Terminal component and electricity storage device
JP2022055684A (en) Power storage element
JP2020166969A (en) Power storage element and method for manufacturing the same
JP2022049728A (en) Secondary battery, secondary battery terminal, and method of manufacturing secondary battery terminal
US20230015845A1 (en) Terminal component and method for manufacturing the same
US12002999B2 (en) Energy storage device
JP7346856B2 (en) Energy storage element and its manufacturing method
JP7413784B2 (en) Energy storage element
JP7296996B2 (en) Electrode terminal and its use
JP7334215B2 (en) Horns, terminal parts and secondary batteries
JP2023038811A (en) Power storage element
JP2023150049A (en) Power storage element
JP7331573B2 (en) Storage element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230522

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230904

R150 Certificate of patent or registration of utility model

Ref document number: 7354556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150