JP2021192347A - Manufacturing method of power storage element and power storage element - Google Patents

Manufacturing method of power storage element and power storage element Download PDF

Info

Publication number
JP2021192347A
JP2021192347A JP2020098699A JP2020098699A JP2021192347A JP 2021192347 A JP2021192347 A JP 2021192347A JP 2020098699 A JP2020098699 A JP 2020098699A JP 2020098699 A JP2020098699 A JP 2020098699A JP 2021192347 A JP2021192347 A JP 2021192347A
Authority
JP
Japan
Prior art keywords
electrode
current collector
temporary attachment
laminated
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020098699A
Other languages
Japanese (ja)
Inventor
健太郎 赤津
Kentaro Akatsu
尚樹 岡田
Naoki Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2020098699A priority Critical patent/JP2021192347A/en
Publication of JP2021192347A publication Critical patent/JP2021192347A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

To provide a power storage element capable of improving the quality of welding between an electrode body and a current collector.SOLUTION: A manufacturing method of a power storage element 10 including an electrode body 300 having a laminated portion 320 in which electrode plates 301 are laminated in the stacking direction, and a current collector 400 bonded to the laminated portion 320 includes a temporary attachment step of temporarily attaching the electrode plates 301 laminated in the laminated portion 320 using heat to form a temporary attachment portion 710 in which the electrode plates 301 are temporarily attached to each other, and a laser welding step of irradiating a portion in which the temporary attachment portion 710 and the current collector 400 overlap with a laser beam L to laser-weld the temporary attachment portion 710 and the current collector 400.SELECTED DRAWING: Figure 6

Description

本発明は、極板が積層された電極体と電極体に接合される集電体とを備える蓄電素子の製造方法、及び、蓄電素子に関する。 The present invention relates to a method for manufacturing a power storage element including an electrode body on which electrode plates are laminated and a current collector bonded to the electrode body, and a power storage element.

従来、極板が積層された積層部を有する電極体と、積層部に接合される集電体とを備える蓄電素子の製造方法が広く知られている。例えば、特許文献1には、電極板(極板)から突出形成された電極タップ(電極体の積層部)と、電極タップを外部端子と電気的に連結するリード部(集電体)とを抵抗溶接で連結するメイン溶接段階を含む電極タップ溶接方法(蓄電素子の製造方法)が開示されている。 Conventionally, a method for manufacturing a power storage element including an electrode body having a laminated portion in which electrode plates are laminated and a current collector bonded to the laminated portion is widely known. For example, in Patent Document 1, an electrode tap (stacked portion of an electrode body) formed so as to project from an electrode plate (electrode plate) and a lead portion (current collector) for electrically connecting the electrode tap to an external terminal are provided. An electrode tap welding method (method for manufacturing a power storage element) including a main welding step of connecting by resistance welding is disclosed.

特表2016−531405号公報Special Table 2016-531405 Gazette

上記従来の蓄電素子の製造方法では、電極体の積層部と集電体とを抵抗溶接で接合している。これに対し、レーザ溶接は、一般的に、短時間で深くまで溶接可能で、熱影響も少なく安定した溶接が可能であるため、上記従来の蓄電素子の製造方法において、電極体の積層部と集電体とをレーザ溶接で接合するのが、溶接の品質の向上を図る上で好ましい場合がある。しかしながら、積層部と集電体とをレーザ溶接で接合する場合、溶接箇所において極板間に空気層があるとスパッタが発生したりブローホールができたりして、溶接の品質が低下するおそれがある。 In the conventional method for manufacturing a power storage element, the laminated portion of the electrode body and the current collector are joined by resistance welding. On the other hand, in laser welding, in general, it is possible to weld deeply in a short time, and stable welding is possible with little influence of heat. It may be preferable to join the current collector by laser welding in order to improve the quality of welding. However, when the laminated portion and the current collector are joined by laser welding, if there is an air layer between the plates at the welded part, spatter or blow holes may occur and the welding quality may deteriorate. be.

本発明は、本願発明者が上記課題に新たに着目することによってなされたものであり、電極体と集電体との溶接の品質の向上を図ることができる蓄電素子の製造方法、及び、蓄電素子を提供することを目的とする。 The present invention has been made by the inventor of the present application paying new attention to the above-mentioned problems, and is a method for manufacturing a power storage element capable of improving the quality of welding between an electrode body and a current collector, and power storage. The purpose is to provide an element.

上記目的を達成するために、本発明の一態様に係る蓄電素子の製造方法は、極板が積層方向に積層された積層部を有する電極体と、前記積層部に接合される集電体とを備える蓄電素子の製造方法であって、前記積層部において積層された極板同士を熱を用いて仮付けし、当該極板同士が仮付けされた仮付部を形成する仮付工程と、前記仮付部と前記集電体とが重ね合わされた部分に向けてレーザ光を照射し、前記仮付部と前記集電体とをレーザ溶接するレーザ溶接工程と、を含む。 In order to achieve the above object, the method for manufacturing a power storage element according to one aspect of the present invention includes an electrode body having a laminated portion in which electrode plates are laminated in the stacking direction, and a current collector bonded to the laminated portion. A method for manufacturing a power storage element, comprising: The present invention includes a laser welding step of irradiating a portion where the temporary attachment portion and the current collector are overlapped with a laser beam and laser welding the temporary attachment portion and the current collector.

これによれば、蓄電素子の製造方法は、電極体の積層部において積層された極板同士を熱を用いて仮付けし仮付部を形成する仮付工程と、仮付部と集電体とをレーザ溶接するレーザ溶接工程と、を含む。このように、積層部の極板同士を熱を用いて仮付けして仮付部を形成することで、極板を押さえるための複雑な装置や治具を用いることなく、極板間に空気層が生じるのを容易に抑制することができる。また、仮付部と集電体とをレーザ溶接することで、極板間に空気層が生じるのが抑制された箇所で、レーザ溶接を行うことができる。これにより、電極体と集電体との溶接において、極板間に空気層がある箇所でレーザ溶接が行われるのを抑制することができるため、電極体と集電体との溶接の品質の向上を図ることができる。 According to this, the method of manufacturing the power storage element includes a temporary attachment step of temporarily attaching the laminated electrode plates to each other in the laminated portion of the electrode body by using heat to form a temporary attachment portion, and a temporary attachment portion and a current collector. Includes a laser welding process for laser welding and. In this way, by temporarily attaching the plates of the laminated portion to each other using heat to form the temporary attachment portion, air is provided between the plates without using a complicated device or jig for holding the plates. The formation of layers can be easily suppressed. Further, by laser welding the temporary attachment portion and the current collector, laser welding can be performed at a place where the formation of an air layer between the plates is suppressed. As a result, in the welding between the electrode body and the current collector, it is possible to suppress laser welding at a place where there is an air layer between the electrode plates, so that the quality of welding between the electrode body and the current collector can be improved. It can be improved.

また、前記仮付工程では、前記極板同士と、前記極板及び前記集電体とを熱を用いて仮付けし、前記極板同士と、前記極板及び前記集電体とが仮付けされた前記仮付部を形成することにしてもよい。 Further, in the temporary attachment step, the electrode plates, the electrode plates, and the current collector are temporarily attached to each other by using heat, and the electrode plates, the electrode plates, and the current collector are temporarily attached to each other. The temporary attachment portion may be formed.

これによれば、仮付工程では、極板同士と、極板及び集電体とを熱を用いて仮付けし、仮付部を形成する。このように、仮付工程において、極板同士に加え、極板及び集電体も仮付けすることで、レーザ溶接を行う箇所において極板と集電体との間に空気層が生じるのを抑制することができる。これにより、電極体と集電体との溶接において、極板と集電体との間に空気層がある箇所でレーザ溶接が行われるのを抑制することができるため、電極体と集電体との溶接の品質の向上を図ることができる。 According to this, in the temporary attachment step, the electrode plates are temporarily attached to each other, and the electrode plates and the current collector are temporarily attached using heat to form a temporary attachment portion. In this way, in the temporary attachment process, by temporarily attaching the plates and the current collector in addition to the plates, an air layer is generated between the plates and the current collector at the location where laser welding is performed. It can be suppressed. As a result, in the welding between the electrode body and the current collector, it is possible to suppress laser welding at a place where there is an air layer between the electrode plate and the current collector, so that the electrode body and the current collector can be suppressed. It is possible to improve the quality of welding with.

また、前記仮付工程では、前記積層部に前記積層方向に電流を通電することにより発生する熱を用いて、前記仮付部を形成することにしてもよい。 Further, in the temporary attachment step, the temporary attachment portion may be formed by using the heat generated by energizing the laminated portion with an electric current in the stacking direction.

これによれば、仮付工程では、電極体の積層部に電流を通電することにより発生する熱を用いて、仮付部を形成する。これにより、積層部に対して低出力の抵抗溶接を行うことにより、仮付部を容易に形成することができるため、電極体と集電体との溶接の品質の向上を容易に図ることができる。 According to this, in the temporary attachment step, the temporary attachment portion is formed by using the heat generated by applying an electric current to the laminated portion of the electrode body. As a result, the temporary attachment portion can be easily formed by performing low output resistance welding to the laminated portion, so that the quality of welding between the electrode body and the current collector can be easily improved. can.

また、前記レーザ溶接工程では、前記レーザ光の照射方向から見て、前記極板同士が接触した領域内に溶接部が形成されるように、前記仮付部と前記集電体とをレーザ溶接することにしてもよい。 Further, in the laser welding step, the temporary attachment portion and the current collector are laser welded so that the welded portion is formed in the region where the plates are in contact with each other when viewed from the irradiation direction of the laser beam. You may decide to do it.

これによれば、レーザ溶接工程では、極板同士が接触した領域内に溶接部が形成されるように、仮付部と集電体とをレーザ溶接する。このように、極板同士が接触した領域内でレーザ溶接を行うことで、極板間に空気層が生じるのがより確実に抑制された箇所で、レーザ溶接を行うことができる。これにより、電極体と集電体との溶接の品質の向上を図ることができる。 According to this, in the laser welding step, the temporary attachment portion and the current collector are laser welded so that the welded portion is formed in the region where the plates are in contact with each other. By performing laser welding in the region where the plates are in contact with each other in this way, laser welding can be performed at a location where the formation of an air layer between the plates is more reliably suppressed. This makes it possible to improve the quality of welding between the electrode body and the current collector.

また、本発明の一態様に係る蓄電素子は、極板が積層方向に積層された積層部を有する電極体と、前記積層部に接合される集電体とを備える蓄電素子であって、前記積層部と前記集電体との接合部は、前記積層部において積層された極板同士が仮付けされた仮付部と、前記仮付部と前記集電体とが重ね合わされた部分において、前記仮付部と前記集電体とがレーザ溶接されたレーザ溶接部と、を有する。 Further, the power storage element according to one aspect of the present invention is a power storage element including an electrode body having a laminated portion in which electrode plates are laminated in the stacking direction and a current collector bonded to the laminated portion. The joint portion between the laminated portion and the current collector is a temporary attachment portion in which the laminated plates are temporarily attached to each other in the laminated portion, and a portion in which the temporary attachment portion and the current collector are overlapped. It has a laser-welded portion in which the temporary attachment portion and the current collector are laser-welded.

これによれば、蓄電素子において、電極体の積層部と集電体との接合部は、積層部において積層された極板同士が仮付けされた仮付部と、仮付部と集電体とがレーザ溶接されたレーザ溶接部と、を有している。このように、極板同士が仮付けされた仮付部と集電体とがレーザ溶接されてレーザ溶接部が形成されていることで、極板間に空気層が生じるのが抑制された箇所で、レーザ溶接が行われている。これにより、レーザ溶接部において、極板間に空気層がある箇所でレーザ溶接が行われるのを抑制することができているため、電極体と集電体との溶接の品質の向上を図ることができている。 According to this, in the power storage element, the joint portion between the laminated portion of the electrode body and the current collector is a temporary attachment portion in which the laminated plates are temporarily attached to each other in the laminated portion, and the temporary attachment portion and the current collector. It has a laser welded portion and a laser welded portion. In this way, the temporary attachment portion where the plates are temporarily attached and the current collector are laser welded to form the laser welded portion, so that the formation of an air layer between the plates is suppressed. So, laser welding is being performed. As a result, in the laser welded portion, it is possible to suppress laser welding at a place where there is an air layer between the electrode plates, so that the quality of welding between the electrode body and the current collector can be improved. Is done.

なお、本発明は、このような蓄電素子の製造方法、及び、蓄電素子として実現することができるだけでなく、電極体と集電体との接合方法、電極体と集電体との組み合わせ、または、電極体と集電体との接合部としても実現することができる。 It should be noted that the present invention can be realized not only as a method for manufacturing such a power storage element and as a power storage element, but also as a method for joining an electrode body and a current collector, a combination of an electrode body and a current collector, or , It can also be realized as a joint portion between an electrode body and a current collector.

本発明における蓄電素子の製造方法によれば、電極体と集電体との溶接の品質の向上を図ることができる。 According to the method for manufacturing a power storage element in the present invention, it is possible to improve the quality of welding between the electrode body and the current collector.

実施の形態に係る蓄電素子の外観を示す斜視図である。It is a perspective view which shows the appearance of the power storage element which concerns on embodiment. 実施の形態に係る蓄電素子の容器内方に配置されている構成要素を示す斜視図である。It is a perspective view which shows the component arranged in the container of the power storage element which concerns on embodiment. 実施の形態に係る蓄電素子を分解して各構成要素を示す分解斜視図である。It is an exploded perspective view which shows each component by disassembling the power storage element which concerns on embodiment. 実施の形態に係る電極体と集電体とを接合して接合部が形成された状態での構成を示す正面図である。It is a front view which shows the structure in the state which the electrode body and the current collector which concerns on embodiment are joined and the joint part is formed. 実施の形態に係る電極体、集電体、当て板及び接合部の構成を示す正面図及び断面図である。It is a front view and the sectional view which shows the structure of the electrode body, the current collector, the backing plate and the joint part which concerns on embodiment. 実施の形態に係る電極体と集電体とを接合して接合部を形成する方法を示す断面図である。It is sectional drawing which shows the method of joining the electrode body and the current collector which concerns on embodiment to form a joint part. 実施の形態の変形例に係る接合部の構成を示す正面図及び断面図である。It is a front view and sectional drawing which shows the structure of the joint part which concerns on the modification of embodiment.

以下、図面を参照しながら、本発明の実施の形態(及びその変形例)に係る蓄電素子及びその製造方法について説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、製造工程、製造工程の順序などは、一例であり、本発明を限定する主旨ではない。また、各図において、寸法等は厳密に図示したものではない。さらに、各図において、同一または同様な構成要素については同じ符号を付している。 Hereinafter, the power storage element and the manufacturing method thereof according to the embodiment (and its modification) of the present invention will be described with reference to the drawings. It should be noted that all of the embodiments described below are comprehensive or specific examples. The numerical values, shapes, materials, components, arrangement positions and connection forms of the components, manufacturing processes, order of manufacturing processes, etc. shown in the following embodiments are examples, and are not intended to limit the present invention. Further, in each figure, the dimensions and the like are not exactly shown. Further, in each figure, the same or similar components are designated by the same reference numerals.

以下の説明及び図面中において、蓄電素子が有する一対(正極側及び負極側、以下同様)の電極端子の並び方向、一対の集電体の並び方向、または、容器の短側面の対向方向を、X軸方向と定義する。容器の長側面の対向方向、容器の厚さ方向、電極体と集電体との接合部における極板の積層方向、当該接合部における集電体と電極体と当て板との並び方向、または、当該接合部におけるレーザ光の照射方向を、Y軸方向と定義する。蓄電素子の容器本体と蓋体との並び方向、集電体の脚部(電極体接続部)の延設方向、または、上下方向を、Z軸方向と定義する。これらX軸方向、Y軸方向及びZ軸方向は、互いに交差(本実施の形態では直交)する方向である。なお、使用態様によってはZ軸方向が上下方向にならない場合も考えられるが、以下では説明の便宜のため、Z軸方向を上下方向として説明する。 In the following description and drawings, the arrangement direction of the pair of electrode terminals (positive electrode side and negative electrode side, the same applies hereinafter) of the power storage element, the arrangement direction of the pair of current collectors, or the facing direction of the short side surface of the container. It is defined as the X-axis direction. The opposite direction of the long side surface of the container, the thickness direction of the container, the stacking direction of the electrode plates at the joint between the electrode body and the current collector, the alignment direction of the current collector, the electrode body and the backing plate at the joint, or , The irradiation direction of the laser beam at the joint is defined as the Y-axis direction. The alignment direction between the container body and the lid of the power storage element, the extension direction of the leg portion (electrode body connection portion) of the current collector, or the vertical direction is defined as the Z-axis direction. These X-axis directions, Y-axis directions, and Z-axis directions intersect each other (orthogonally in the present embodiment). Depending on the usage mode, the Z-axis direction may not be the vertical direction, but for convenience of explanation, the Z-axis direction will be described below as the vertical direction.

また、以下の説明において、例えば、X軸プラス方向とは、X軸の矢印方向を示し、X軸マイナス方向とは、X軸プラス方向とは反対方向を示す。Y軸方向及びZ軸方向についても同様である。さらに、平行及び直交などの、相対的な方向または姿勢を示す表現は、厳密には、その方向または姿勢ではない場合も含む。例えば、2つの方向が直交している、とは、当該2つの方向が完全に直交していることを意味するだけでなく、実質的に直交していること、すなわち、例えば数%程度の差異を含むことも意味する。 Further, in the following description, for example, the X-axis plus direction indicates the arrow direction of the X-axis, and the X-axis minus direction indicates the direction opposite to the X-axis plus direction. The same applies to the Y-axis direction and the Z-axis direction. Further, expressions indicating relative directions or postures such as parallel and orthogonal include cases where they are not strictly the directions or postures. For example, the fact that two directions are orthogonal not only means that the two directions are completely orthogonal, but also that they are substantially orthogonal, that is, a difference of, for example, about several percent. It also means to include.

(実施の形態)
[1 蓄電素子10の全般的な説明]
まず、図1〜図3を用いて、本実施の形態における蓄電素子10の全般的な説明を行う。図1は、本実施の形態に係る蓄電素子10の外観を示す斜視図である。図2は、本実施の形態に係る蓄電素子10の容器100内方に配置されている構成要素を示す斜視図である。具体的には、図2は、蓄電素子10から容器本体110を分離した状態での構成を示す斜視図であり、電極体300に集電体400を接合した後の状態を示している。図3は、本実施の形態に係る蓄電素子10を分解して各構成要素を示す分解斜視図である。具体的には、図3は、図2に示した容器本体110以外の構成要素を分解して示す斜視図であり、電極体300に集電体400を接合する前の状態を示している。
(Embodiment)
[1 General description of the power storage element 10]
First, with reference to FIGS. 1 to 3, a general description of the power storage element 10 according to the present embodiment will be given. FIG. 1 is a perspective view showing the appearance of the power storage element 10 according to the present embodiment. FIG. 2 is a perspective view showing components arranged inside the container 100 of the power storage element 10 according to the present embodiment. Specifically, FIG. 2 is a perspective view showing a configuration in a state where the container body 110 is separated from the power storage element 10, and shows a state after the current collector 400 is joined to the electrode body 300. FIG. 3 is an exploded perspective view showing each component by disassembling the power storage element 10 according to the present embodiment. Specifically, FIG. 3 is a perspective view showing components other than the container body 110 shown in FIG. 2 in an exploded manner, and shows a state before the current collector 400 is joined to the electrode body 300.

蓄電素子10は、電気を充電し、また、電気を放電することのできる二次電池(単電池)であり、具体的には、リチウムイオン二次電池等の非水電解質二次電池である。蓄電素子10は、例えば、自動車、自動二輪車、ウォータークラフト、船舶、スノーモービル、農業機械、建設機械、または、電気鉄道用の鉄道車両等の移動体の駆動用またはエンジン始動用等のバッテリ等として用いられる。上記の自動車としては、電気自動車(EV)、ハイブリッド電気自動車(HEV)、プラグインハイブリッド電気自動車(PHEV)及びガソリン自動車が例示される。上記の電気鉄道用の鉄道車両としては、電車、モノレール、リニアモーターカー、並びに、ディーゼル機関及び電気モーターの両方を備えるハイブリッド電車が例示される。また、蓄電素子10は、家庭用または発電機用等に使用される定置用のバッテリ等としても用いることができる。 The power storage element 10 is a secondary battery (cell battery) capable of charging electricity and discharging electricity, and specifically, is a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. The power storage element 10 is, for example, a battery for driving a moving body such as an automobile, a motorcycle, a watercraft, a ship, a snowmobile, an agricultural machine, a construction machine, or a railroad vehicle for an electric railway, or for starting an engine. Used. Examples of the above-mentioned vehicle include an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and a gasoline vehicle. Examples of the above-mentioned railway vehicle for electric railways include trains, monorails, linear motor cars, and hybrid trains including both diesel engines and electric motors. Further, the power storage element 10 can also be used as a stationary battery or the like used for home use, a generator, or the like.

なお、蓄電素子10は、非水電解質二次電池には限定されず、非水電解質二次電池以外の二次電池であってもよいし、キャパシタであってもよい。蓄電素子10は、二次電池ではなく、使用者が充電をしなくても蓄えられている電気を使用できる一次電池であってもよい。蓄電素子10は、固体電解質を用いた電池であってもよい。蓄電素子10は、パウチタイプの蓄電素子であってもよい。本実施の形態では、扁平な直方体形状(角形)の蓄電素子10を図示しているが、蓄電素子10の形状は、直方体形状には限定されず、円柱形状、長円柱形状または直方体以外の多角柱形状等であってもよい。 The power storage element 10 is not limited to the non-aqueous electrolyte secondary battery, and may be a secondary battery other than the non-aqueous electrolyte secondary battery, or may be a capacitor. The power storage element 10 may be a primary battery that can use the stored electricity without being charged by the user, instead of the secondary battery. The power storage element 10 may be a battery using a solid electrolyte. The power storage element 10 may be a pouch-type power storage element. In the present embodiment, the power storage element 10 having a flat rectangular parallelepiped shape (square shape) is shown, but the shape of the power storage element 10 is not limited to the rectangular parallelepiped shape, and is not limited to a cylindrical shape, a long cylindrical shape, or a rectangular parallelepiped shape. It may have a rectangular parallelepiped shape or the like.

図1に示すように、蓄電素子10は、容器100と、一対(正極側及び負極側)の電極端子200と、一対(正極側及び負極側)の上部ガスケット210と、を備えている。図2及び図3に示すように、容器100の内方には、一対(正極側及び負極側)の下部ガスケット220と、電極体300と、一対(正極側及び負極側)の集電体400(401及び402)と、一対(正極側及び負極側)の当て板500と、が収容されている。なお、容器100の内部には、電解液(非水電解質)が封入されているが、図示は省略する。当該電解液としては、蓄電素子10の性能を損なうものでなければその種類に特に制限はなく、様々なものを選択することができる。上記の構成要素の他、電極体300の側方または下方等に配置されるスペーサ、電極体300等を包み込む絶縁フィルム等が配置されていてもよい。 As shown in FIG. 1, the power storage element 10 includes a container 100, a pair of (positive electrode side and negative electrode side) electrode terminals 200, and a pair (positive electrode side and negative electrode side) upper gasket 210. As shown in FIGS. 2 and 3, inside the container 100, a pair (positive electrode side and negative electrode side) lower gasket 220, an electrode body 300, and a pair (positive electrode side and negative electrode side) current collector 400. (401 and 402) and a pair of backing plates 500 (positive electrode side and negative electrode side) are housed. An electrolytic solution (non-aqueous electrolyte) is sealed inside the container 100, but the illustration is omitted. The type of the electrolytic solution is not particularly limited as long as it does not impair the performance of the power storage element 10, and various types can be selected. In addition to the above components, a spacer arranged on the side or below of the electrode body 300, an insulating film for wrapping the electrode body 300, and the like may be arranged.

容器100は、開口が形成された容器本体110と、容器本体110の当該開口を閉塞する蓋体120と、を有する直方体形状(角形または箱形)のケースである。容器本体110は、容器100の本体部を構成する矩形筒状で底を備える部材である。容器本体110は、X軸方向両側の側面(短側面)に一対の平板状かつ矩形状の短側壁部111を有し、Y軸方向両側の側面(長側面)に一対の平板状かつ矩形状の長側壁部112を有し、Z軸マイナス方向側に平板状かつ矩形状の底壁部113を有している。蓋体120は、容器100の蓋部を構成する矩形状の板状部材であり、容器本体110のZ軸プラス方向側にX軸方向に延設されて配置されている。蓋体120には、容器100内方の圧力が上昇した場合に当該圧力を開放するガス排出弁121、及び、容器100の内方に電解液を注液するための注液部122等が設けられている。 The container 100 is a rectangular parallelepiped (square or box-shaped) case having a container body 110 in which an opening is formed and a lid body 120 that closes the opening of the container body 110. The container main body 110 is a rectangular tubular member having a bottom that constitutes the main body portion of the container 100. The container body 110 has a pair of flat plate-shaped and rectangular short side wall portions 111 on both side surfaces (short side surfaces) in the X-axis direction, and a pair of flat plate-shaped and rectangular side surfaces (long side surfaces) on both side surfaces in the Y-axis direction. It has a long side wall portion 112 of the above, and has a flat plate-shaped and rectangular bottom wall portion 113 on the negative direction side of the Z-axis. The lid body 120 is a rectangular plate-shaped member constituting the lid portion of the container 100, and is arranged so as to extend in the X-axis direction on the Z-axis plus direction side of the container body 110. The lid 120 is provided with a gas discharge valve 121 that releases the pressure when the pressure inside the container 100 rises, a liquid injection unit 122 for injecting the electrolytic solution inside the container 100, and the like. Has been done.

このような構成により、容器100は、電極体300等を容器本体110の内部に収容後、容器本体110と蓋体120とが溶接等によって接合されることにより、内部が密封される構造となっている。なお、容器100(容器本体110及び蓋体120)の材質は特に限定されず、例えばステンレス鋼、アルミニウム、アルミニウム合金、鉄など溶接可能な金属とすることができるが、樹脂を用いることもできる。 With such a configuration, the container 100 has a structure in which the electrode body 300 and the like are housed inside the container body 110, and then the container body 110 and the lid body 120 are joined by welding or the like to seal the inside. ing. The material of the container 100 (container body 110 and lid 120) is not particularly limited, and may be a weldable metal such as stainless steel, aluminum, aluminum alloy, or iron, but a resin may also be used.

電極体300は、正極板と負極板とセパレータとを備え、電気を蓄えることができる蓄電要素(発電要素)である。正極板は、アルミニウムまたはアルミニウム合金等からなる長尺帯状の集電箔である正極基材層上に正極活物質層が形成された極板である。負極板は、銅または銅合金等からなる長尺帯状の集電箔である負極基材層上に負極活物質層が形成された極板である。なお、上記集電箔として、ニッケル、鉄、ステンレス鋼、チタン、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金など、適宜公知の材料を用いることもできる。正極活物質層及び負極活物質層に用いられる正極活物質及び負極活物質としては、リチウムイオンを吸蔵放出可能な活物質であれば、適宜公知の材料を使用できる。セパレータは、樹脂からなる微多孔性のシートまたは不織布等を用いることができる。 The electrode body 300 includes a positive electrode plate, a negative electrode plate, and a separator, and is a power storage element (power generation element) capable of storing electricity. The positive electrode plate is an electrode plate in which a positive electrode active material layer is formed on a positive electrode base material layer which is a long strip-shaped current collecting foil made of aluminum, an aluminum alloy, or the like. The negative electrode plate is an electrode plate in which a negative electrode active material layer is formed on a negative electrode base material layer which is a long strip-shaped current collecting foil made of copper, a copper alloy, or the like. As the current collector foil, known materials such as nickel, iron, stainless steel, titanium, calcined carbon, conductive polymer, conductive glass, and Al—Cd alloy can also be used as appropriate. As the positive electrode active material and the negative electrode active material used for the positive electrode active material layer and the negative electrode active material layer, known materials can be appropriately used as long as they are active materials that can occlude and release lithium ions. As the separator, a microporous sheet made of resin, a non-woven fabric, or the like can be used.

電極体300は、正極板と負極板とセパレータとが積層されて形成されている。具体的には、電極体300は、正極板と負極板との間にセパレータが配置され巻回されて形成されている。さらに具体的には、電極体300は、正極板と負極板とが、セパレータを介して、巻回軸の方向に互いにずらして巻回されている。巻回軸とは、正極板及び負極板等を巻回する際の中心軸となる仮想的な軸であり、本実施の形態では、電極体300の中心を通る、X軸方向に平行な直線である。そして、正極板及び負極板は、それぞれのずらされた方向の端部に、活物質が形成(塗工)されず基材層が露出した部分(活物質層非形成部)を有している。 The electrode body 300 is formed by laminating a positive electrode plate, a negative electrode plate, and a separator. Specifically, the electrode body 300 is formed by arranging and winding a separator between the positive electrode plate and the negative electrode plate. More specifically, in the electrode body 300, the positive electrode plate and the negative electrode plate are wound so as to be displaced from each other in the direction of the winding axis via the separator. The winding axis is a virtual axis that serves as a central axis when winding a positive electrode plate, a negative electrode plate, or the like, and in the present embodiment, a straight line passing through the center of the electrode body 300 and parallel to the X-axis direction. Is. The positive electrode plate and the negative electrode plate each have a portion (active material layer non-forming portion) where the active material is not formed (coated) and the base material layer is exposed at the end portions in the shifted directions. ..

これにより、電極体300は、巻回軸方向の一端部に、正極板の活物質層非形成部が積層されて束ねられた正極側の積層部320を有し、巻回軸方向の他端部に、負極板の活物質層非形成部が積層されて束ねられた負極側の積層部320を有している。積層部320は、極板(正極板または負極板)が積層方向(Y軸方向)に積層された部位である。つまり、電極体300は、電極体300の本体を構成する電極体本体部310と、電極体本体部310からX軸方向両側に突出した一対(正極側及び負極側)の積層部320と、を有している。電極体本体部310は、正極板及び負極板の活物質層が形成(塗工)された部分とセパレータとが巻回されて形成された長円形状の部位(活物質層形成部)である。なお、本実施の形態では、電極体300(電極体本体部310)の断面形状として長円形状を図示しているが、円形状、楕円形状、または、多角形状等でもよい。 As a result, the electrode body 300 has a laminated portion 320 on the positive electrode side in which the active material layer non-forming portion of the positive electrode plate is laminated and bundled at one end in the winding axis direction, and the other end in the winding axis direction. The portion has a laminated portion 320 on the negative electrode side in which the active material layer non-forming portion of the negative electrode plate is laminated and bundled. The laminated portion 320 is a portion where the electrode plates (positive electrode plate or negative electrode plate) are laminated in the laminating direction (Y-axis direction). That is, the electrode body 300 includes an electrode body main body 310 constituting the main body of the electrode body 300 and a pair of laminated portions 320 (positive electrode side and negative electrode side) protruding from the electrode body main body 310 on both sides in the X-axis direction. Have. The electrode body main body 310 is an oval-shaped portion (active material layer forming portion) formed by winding a separator and a portion of the positive electrode plate and the negative electrode plate on which the active material layer is formed (coated). .. In the present embodiment, the cross-sectional shape of the electrode body 300 (electrode body main body 310) is shown as an oval shape, but a circular shape, an elliptical shape, a polygonal shape, or the like may be used.

電極端子200は、集電体400を介して、電極体300に電気的に接続される端子部材(正極端子及び負極端子)である。つまり、電極端子200は、電極体300に蓄えられている電気を蓄電素子10の外部空間に導出し、また、電極体300に電気を蓄えるために蓄電素子10の内部空間に電気を導入するための金属製の部材である。電極端子200は、アルミニウム、アルミニウム合金、銅または銅合金等の金属等の導電部材で形成されている。電極端子200は、かしめ等によって、集電体400に接続(接合)され、かつ、蓋体120に取り付けられている。 The electrode terminal 200 is a terminal member (positive electrode terminal and negative electrode terminal) electrically connected to the electrode body 300 via the current collector 400. That is, the electrode terminal 200 leads the electricity stored in the electrode body 300 to the external space of the power storage element 10, and also introduces electricity into the internal space of the power storage element 10 in order to store electricity in the electrode body 300. It is a metal member of. The electrode terminal 200 is formed of a conductive member such as aluminum, an aluminum alloy, copper, or a metal such as a copper alloy. The electrode terminal 200 is connected (bonded) to the current collector 400 by caulking or the like, and is attached to the lid body 120.

具体的には、図3に示すように、電極端子200は、軸部201が、上部ガスケット210の貫通孔211と、蓋体120の貫通孔123と、下部ガスケット220の貫通孔221と、集電体400の貫通孔411とに挿入されて、かしめられることにより、集電体400とともに蓋体120に固定される。なお、電極端子200と集電体400とを接続(接合)する手法は、かしめ接合には限定されず、超音波接合、レーザ溶接若しくは抵抗溶接等の溶接、または、ねじ締結等のかしめ以外の機械的接合等が用いられてもよい。 Specifically, as shown in FIG. 3, in the electrode terminal 200, the shaft portion 201 collects the through hole 211 of the upper gasket 210, the through hole 123 of the lid 120, and the through hole 221 of the lower gasket 220. By being inserted into the through hole 411 of the electric body 400 and crimped, it is fixed to the lid 120 together with the current collector 400. The method of connecting (bonding) the electrode terminal 200 and the current collector 400 is not limited to caulking, and is not limited to ultrasonic bonding, welding such as laser welding or resistance welding, or caulking such as screw fastening. Mechanical bonding or the like may be used.

上部ガスケット210は、容器100の蓋体120と電極端子200との間に配置され、蓋体120と電極端子200との間を絶縁し、かつ封止する板状かつ矩形状の部材(正極上部ガスケット及び負極上部ガスケット)である。上部ガスケット210の中央部には、上述の電極端子200の軸部201が挿入される貫通孔211が形成されている。下部ガスケット220は、容器100の蓋体120と集電体400との間に配置され、蓋体120と集電体400との間を絶縁する板状かつ矩形状の部材(正極下部ガスケット及び負極下部ガスケット)である。下部ガスケット220の中央部には、上述の電極端子200の軸部201が挿入される貫通孔221が形成されている。 The upper gasket 210 is arranged between the lid 120 of the container 100 and the electrode terminal 200, and is a plate-shaped and rectangular member (upper part of the positive electrode) that insulates and seals between the lid 120 and the electrode terminal 200. Gasket and negative electrode upper gasket). A through hole 211 into which the shaft portion 201 of the above-mentioned electrode terminal 200 is inserted is formed in the central portion of the upper gasket 210. The lower gasket 220 is arranged between the lid 120 of the container 100 and the current collector 400, and is a plate-shaped and rectangular member (positive positive lower gasket and negative electrode) that insulates between the lid 120 and the current collector 400. Lower gasket). A through hole 221 into which the shaft portion 201 of the above-mentioned electrode terminal 200 is inserted is formed in the central portion of the lower gasket 220.

上部ガスケット210及び下部ガスケット220は、絶縁性を有していればどのような素材で形成されてもよいが、例えば、ポリプロピレン(PP)、ポリエチレン(PE)、ポリスチレン(PS)、ポリフェニレンサルファイド樹脂(PPS)、ポリフェニレンエーテル(PPE(変性PPEを含む))、ポリエチレンテレフタラート(PET)、ポリブチレンテレフタレート(PBT)、ポリエーテルエーテルケトン(PEEK)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル(PFA)、ポリテトラフルオロエチレン(PTFE)、ポリエーテルサルフォン(PES)、ABS樹脂、若しくは、それらの複合材料等の絶縁部材により形成されている。 The upper gasket 210 and the lower gasket 220 may be made of any material as long as they have insulating properties. For example, polypropylene (PP), polyethylene (PE), polystyrene (PS), polyphenylene sulfide resin ( PPS), polyphenylene ether (PPE (including modified PPE)), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyether ether ketone (PEEK), tetrafluoroethylene / perfluoroalkyl vinyl ether (PFA), poly It is formed of an insulating member such as tetrafluoroethylene (PTFE), polyether sulfone (PES), ABS resin, or a composite material thereof.

集電体400は、電極体300のX軸方向両側に配置され、電極体300の積層部320と電極端子200とに接続(接合)されて、電極体300と電極端子200とを電気的に接続する導電性と剛性とを備えた集電部材(正極集電体及び負極集電体)である。具体的には、集電体400は、容器本体110の側壁から蓋体120に亘って当該側壁及び蓋体120に沿って屈曲状態で配置される板状部材である。また、集電体400は、蓋体120に固定的に接続(接合)される。この構成により、電極体300が、集電体400によって蓋体120から吊り下げられた状態で保持(支持)され、振動や衝撃等による揺れが抑制される。集電体400の材質は特に限定されないが、例えば、正極側の集電体400は、電極体300の正極基材層と同様、アルミニウムまたはアルミニウム合金等で形成され、負極側の集電体400は、電極体300の負極基材層と同様、銅または銅合金等で形成されている。 The current collector 400 is arranged on both sides of the electrode body 300 in the X-axis direction, is connected (bonded) to the laminated portion 320 of the electrode body 300 and the electrode terminal 200, and electrically connects the electrode body 300 and the electrode terminal 200. It is a current collector member (positive electrode current collector and negative electrode current collector) having conductivity and rigidity to be connected. Specifically, the current collector 400 is a plate-shaped member arranged in a bent state along the side wall and the lid 120 from the side wall of the container body 110 to the lid 120. Further, the current collector 400 is fixedly connected (joined) to the lid 120. With this configuration, the electrode body 300 is held (supported) in a state of being suspended from the lid body 120 by the current collector 400, and vibration due to vibration, impact, or the like is suppressed. The material of the current collector 400 is not particularly limited, but for example, the current collector 400 on the positive electrode side is formed of aluminum or an aluminum alloy, like the positive electrode base material layer of the electrode body 300, and the current collector 400 on the negative electrode side is formed. Is made of copper, a copper alloy, or the like, like the negative electrode base material layer of the electrode body 300.

図3に示すように、正極側及び負極側の集電体400のうちのX軸プラス方向側の集電体401とX軸マイナス方向側の集電体402とは、YZ平面に対して対称な形状を有している。そして、それぞれの集電体400(集電体401及び402)は、端子接続部410と、端子接続部410からZ軸マイナス方向に向けて延設された電極接続部420と、を有している。 As shown in FIG. 3, of the positive electrode side and negative electrode side current collectors 400, the current collector 401 on the X-axis plus direction side and the current collector 402 on the X-axis minus direction side are symmetrical with respect to the YZ plane. Has a unique shape. Each of the current collectors 400 (current collectors 401 and 402) has a terminal connection portion 410 and an electrode connection portion 420 extending from the terminal connection portion 410 in the negative direction of the Z axis. There is.

端子接続部410は、電極端子200に接続(接合)される集電体400の基部である。具体的には、端子接続部410は、集電体400の電極端子200側(上側、Z軸プラス方向)に配置される、上述の円形状の貫通孔411が形成されたXY平面に平行な平板状の部位であり、電極端子200に電気的及び機械的に接続(接合)される。電極接続部420は、電極体300に接続(接合)される集電体400の脚部である。つまり、電極接続部420は、集電体400の電極体300側(下側、Z軸マイナス方向)に配置される部位であり、電極体300に電気的及び機械的に接続(接合)される。具体的には、電極接続部420は、端子接続部410のY軸プラス方向の端部からZ軸マイナス方向に延びる長尺状かつ平板状の部位であり、電極体300の積層部320のY軸プラス方向に配置されて、積層部320に接合される。 The terminal connection portion 410 is the base of the current collector 400 connected (bonded) to the electrode terminal 200. Specifically, the terminal connection portion 410 is parallel to the XY plane on which the above-mentioned circular through hole 411 is formed, which is arranged on the electrode terminal 200 side (upper side, Z-axis plus direction) of the current collector 400. It is a flat plate-shaped portion and is electrically and mechanically connected (bonded) to the electrode terminal 200. The electrode connecting portion 420 is a leg portion of the current collector 400 connected (bonded) to the electrode body 300. That is, the electrode connecting portion 420 is a portion of the current collector 400 arranged on the electrode body 300 side (lower side, Z-axis minus direction), and is electrically and mechanically connected (bonded) to the electrode body 300. .. Specifically, the electrode connecting portion 420 is a long and flat plate-shaped portion extending in the negative direction of the Z axis from the positive end of the terminal connecting portion 410 in the positive direction of the Y axis, and the Y of the laminated portion 320 of the electrode body 300. It is arranged in the positive direction of the axis and is joined to the laminated portion 320.

当て板500は、集電体400とで電極体300を挟む位置に配置され、集電体400とで電極体300を挟んだ状態で、集電体400とともに電極体300に接合される部材である。つまり、当て板500は、電極接続部420とで、積層部320を挟む位置に配置された、積層部320を保護するカバーである。具体的には、当て板500は、積層部320のY軸マイナス方向に配置され、積層部320に沿ってZ軸方向に延びる平板状かつ矩形状の金属製の部材である。当て板500の材質は特に限定されないが、例えば、正極側の当て板500は、電極体300の正極基材層と同様、アルミニウムまたはアルミニウム合金等で形成され、負極側の当て板500は、電極体300の負極基材層と同様、銅または銅合金等で形成されている。 The backing plate 500 is a member that is arranged at a position where the electrode body 300 is sandwiched between the current collector 400 and is joined to the electrode body 300 together with the current collector 400 in a state where the electrode body 300 is sandwiched between the current collector 400 and the current collector 400. be. That is, the backing plate 500 is a cover that protects the laminated portion 320, which is arranged at a position sandwiching the laminated portion 320 with the electrode connecting portion 420. Specifically, the backing plate 500 is a flat plate-shaped and rectangular metal member that is arranged in the Y-axis minus direction of the laminated portion 320 and extends in the Z-axis direction along the laminated portion 320. The material of the backing plate 500 is not particularly limited, but for example, the backing plate 500 on the positive electrode side is formed of aluminum or an aluminum alloy, like the positive electrode base material layer of the electrode body 300, and the backing plate 500 on the negative electrode side is an electrode. Like the negative electrode base material layer of the body 300, it is made of copper, a copper alloy, or the like.

このような構成により、電極接続部420と当て板500とで積層部320を挟んだ状態で、電極接続部420と積層部320と当て板500とが接合されて、接合部700(図2参照)が形成される。本実施の形態では、1つの電極接続部420に対して、Z軸方向に並ぶ2つの接合部700が形成される。つまり、1つの集電体400において2つの接合部700が形成され、1つの蓄電素子10において4つの接合部700が形成される。 With such a configuration, the electrode connection portion 420, the laminated portion 320, and the backing plate 500 are joined to each other with the laminated portion 320 sandwiched between the electrode connecting portion 420 and the backing plate 500, and the joining portion 700 (see FIG. 2). ) Is formed. In the present embodiment, two joints 700 arranged in the Z-axis direction are formed for one electrode connection portion 420. That is, two junctions 700 are formed in one current collector 400, and four junctions 700 are formed in one storage element 10.

[2 接合部700の説明]
[2.1 接合部700の構成の説明]
次に、電極体300の積層部320と集電体400の電極接続部420との接合部700の構成について、詳細に説明する。図4は、本実施の形態に係る電極体300と集電体400とを接合して接合部700が形成された状態での構成を示す正面図である。具体的には、図4は、図2に示した状態をY軸マイナス方向から見た場合の構成を示す平面図である。図5は、本実施の形態に係る電極体300、集電体400、当て板500及び接合部700の構成を示す正面図及び断面図である。具体的には、図5の(a)は、図4に示した接合部700及びその周囲の構成を拡大して示す正面図であり、図5の(b)は、図5の(a)の構成をV(b)−V(b)断面で切断した場合の構成を示す断面図である。なお、図5では、図4に示した接合部700のうちのX軸プラス方向側の接合部700及びその周囲の構成について示しているが、その他の接合部700及びその周囲の構成についても、同様の構成を有している。
[2 Explanation of joint 700]
[2.1 Explanation of the configuration of the joint 700]
Next, the configuration of the joint portion 700 between the laminated portion 320 of the electrode body 300 and the electrode connection portion 420 of the current collector 400 will be described in detail. FIG. 4 is a front view showing a configuration in a state where the electrode body 300 and the current collector 400 according to the present embodiment are joined to form a joint portion 700. Specifically, FIG. 4 is a plan view showing a configuration when the state shown in FIG. 2 is viewed from the Y-axis minus direction. FIG. 5 is a front view and a cross-sectional view showing the configurations of the electrode body 300, the current collector 400, the backing plate 500, and the joint portion 700 according to the present embodiment. Specifically, FIG. 5A is a front view showing an enlarged structure of the joint portion 700 shown in FIG. 4 and its surroundings, and FIG. 5B is an enlarged front view, and FIG. 5B is FIG. 5A. It is sectional drawing which shows the structure when the structure of is cut by the cross section of V (b) -V (b). Note that FIG. 5 shows the configuration of the joint portion 700 on the X-axis plus direction side and its surroundings among the joint portions 700 shown in FIG. 4, but other joint portions 700 and their surrounding configurations are also shown. It has a similar configuration.

これらの図に示すように、電極体300の積層部320のY軸プラス方向に集電体400の電極接続部420が配置され、かつ、積層部320のY軸マイナス方向に当て板500が配置されて、電極体300、集電体400及び当て板500が接合された接合部700が形成されている。図5に示すように、接合部700は、仮付部710と、レーザ溶接部720と、を有している。 As shown in these figures, the electrode connection portion 420 of the current collector 400 is arranged in the Y-axis positive direction of the laminated portion 320 of the electrode body 300, and the backing plate 500 is arranged in the Y-axis negative direction of the laminated portion 320. A joint portion 700 to which the electrode body 300, the current collector 400, and the backing plate 500 are joined is formed. As shown in FIG. 5, the joint portion 700 has a temporary attachment portion 710 and a laser welded portion 720.

仮付部710は、積層部320において積層された極板301同士が仮付け(仮止め)された部位である。極板301は、正極板または負極板であり、詳細には、正極板または負極板の基材層(活物質層非形成部)である。極板301同士が仮付け(仮止め)されたとは、極板301同士が強固に接合された状態ではなく、極板301同士が弱い力で接合され、極板301同士が少なくとも一時的に接触した状態(極板301間への隙間の形成が抑制された状態)になっていたことをいう。例えば、極板301の内部までは溶融することなく極板301の表面が溶融して、極板301同士が弱い力で接合されている。これにより、仮付部710は、その全体において極板301同士が接触した状態になっていてもよいし、一部のみにおいて極板301同士が接触した状態になっていてもよい。 The temporary attachment portion 710 is a portion where the electrode plates 301 laminated in the laminated portion 320 are temporarily attached (temporarily fixed) to each other. The electrode plate 301 is a positive electrode plate or a negative electrode plate, and more specifically, is a base material layer (active material layer non-forming portion) of the positive electrode plate or the negative electrode plate. Temporarily attaching (temporarily fixing) the electrode plates 301 does not mean that the electrode plates 301 are firmly joined to each other, but the electrode plates 301 are joined to each other with a weak force, and the electrode plates 301 are in contact with each other at least temporarily. (A state in which the formation of a gap between the electrode plates 301 is suppressed). For example, the surface of the electrode plate 301 is melted without melting to the inside of the electrode plate 301, and the electrode plates 301 are joined to each other with a weak force. As a result, the temporary attachment portion 710 may be in a state where the electrode plates 301 are in contact with each other as a whole, or may be in a state where the electrode plates 301 are in contact with each other only in a part thereof.

具体的には、当て板500の仮付部710に対応する位置に、Y軸方向から見て円形状の、Y軸プラス方向に膨出する膨出部510が形成されている。膨出部510は、当て板500のY軸プラス方向の面がY軸プラス方向に突出し、かつ、Y軸マイナス方向の面がY軸プラス方向に凹んだ膨出状の部位である。当て板500に膨出部510が形成されて、積層部320のY軸マイナス方向の面が凹むことにより、仮付部710は、積層部320のうちのY軸方向の厚みが薄い円柱状の部位となっている。つまり、仮付部710は、極板301同士がY軸方向に圧接されて仮付けされている。 Specifically, a bulging portion 510 having a circular shape when viewed from the Y-axis direction and bulging in the Y-axis plus direction is formed at a position corresponding to the temporary attachment portion 710 of the backing plate 500. The bulging portion 510 is a bulging portion in which the surface of the backing plate 500 in the plus direction of the Y axis protrudes in the plus direction of the Y axis and the surface in the minus direction of the Y axis is recessed in the plus direction of the Y axis. The bulging portion 510 is formed on the backing plate 500, and the surface of the laminated portion 320 in the negative direction in the Y-axis direction is recessed. It is a part. That is, in the temporary attachment portion 710, the electrode plates 301 are pressed against each other in the Y-axis direction and temporarily attached.

本実施の形態では、極板301同士に加え、積層部320に含まれるY軸プラス方向端部の極板301、及び、集電体400の電極接続部420も、仮付けされている。さらに、積層部320に含まれるY軸マイナス方向端部の極板301、及び、当て板500の膨出部510も、仮付けされている。つまり、仮付部710は、極板301同士と、極板301及び集電体400と、極板301及び当て板500とが仮付けされた部位である。具体的には、仮付部710は、極板301同士と、極板301及び集電体400と、極板301及び当て板500とが、圧接されて仮付けされた部位である。さらに具体的には、仮付部710は、圧接され、かつ、熱を用いて仮付けされた部位であるが、詳細については後述する。 In the present embodiment, in addition to the electrode plates 301, the electrode plate 301 at the end in the plus direction of the Y-axis included in the laminated portion 320 and the electrode connecting portion 420 of the current collector 400 are also temporarily attached. Further, the electrode plate 301 at the end in the minus direction of the Y-axis included in the laminated portion 320 and the bulging portion 510 of the backing plate 500 are also temporarily attached. That is, the temporary attachment portion 710 is a portion where the electrode plates 301 are temporarily attached to each other, the electrode plates 301 and the current collector 400, and the electrode plates 301 and the backing plate 500 are temporarily attached. Specifically, the temporary attachment portion 710 is a portion where the electrode plates 301, the electrode plates 301 and the current collector 400, and the electrode plates 301 and the backing plate 500 are pressure-welded and temporarily attached. More specifically, the temporary attachment portion 710 is a portion that is pressure-welded and temporarily attached using heat, and the details will be described later.

レーザ溶接部720は、仮付部710と集電体400とが重ね合わされた部分において、仮付部710と集電体400とがレーザ溶接されて形成された溶接部である。具体的には、レーザ溶接部720は、仮付部710と集電体400の電極接続部420の対向部421とが重ね合わされた部分において、仮付部710と対向部421とがレーザ溶接されて形成されたレーザ溶接痕である。対向部421は、電極接続部420のうちの、Y軸方向において仮付部710と対向する円柱状の部位である。本実施の形態では、レーザ溶接部720は、当て板500の膨出部510と仮付部710と対向部421とが、レーザ溶接されて形成されたレーザ溶接痕である。 The laser welded portion 720 is a welded portion formed by laser welding the temporary attachment portion 710 and the current collector 400 at a portion where the temporary attachment portion 710 and the current collector 400 are overlapped with each other. Specifically, in the laser welded portion 720, the temporary attachment portion 710 and the facing portion 421 are laser-welded at the portion where the temporary attachment portion 710 and the facing portion 421 of the electrode connection portion 420 of the current collector 400 are overlapped with each other. It is a laser welding mark formed by the above. The facing portion 421 is a columnar portion of the electrode connecting portion 420 facing the temporary attachment portion 710 in the Y-axis direction. In the present embodiment, the laser welded portion 720 is a laser weld mark formed by laser welding the bulging portion 510 of the backing plate 500, the temporary attachment portion 710, and the facing portion 421.

具体的には、レーザ溶接部720は、Y軸方向から見て、極板301同士が接触した領域内に形成されている。さらに具体的には、レーザ溶接部720は、極板301同士と、極板301及び対向部421と、極板301及び膨出部510とが接触した領域内に形成されている。本実施の形態では、レーザ溶接部720は、Y軸方向から見て、仮付部710の中央部(対向部421及び膨出部510の中央部)に形成されている。また、レーザ溶接部720は、膨出部510のY軸マイナス方向の表面から、仮付部710を貫通し、対向部421の内部まで溶融した溶融痕である。 Specifically, the laser welded portion 720 is formed in a region where the electrode plates 301 are in contact with each other when viewed from the Y-axis direction. More specifically, the laser welded portion 720 is formed in a region where the electrode plates 301 are in contact with each other, the electrode plates 301 and the facing portion 421, and the electrode plates 301 and the bulging portion 510 are in contact with each other. In the present embodiment, the laser welded portion 720 is formed at the central portion of the temporary attachment portion 710 (the central portion of the facing portion 421 and the bulging portion 510) when viewed from the Y-axis direction. Further, the laser welded portion 720 is a melting mark that penetrates the temporary attachment portion 710 from the surface of the bulging portion 510 in the minus direction of the Y axis and melts to the inside of the facing portion 421.

集電体400は、対向部421がY軸方向に圧接されることにより、対向部421のY軸方向の両面に、凹部等の圧接痕(図示せず)が形成される。つまり、集電体400は、対向部421が、対向部421の周囲よりもY軸方向に突出していない。なお、集電体400は、対向部421のY軸方向の両面に圧接痕が形成されておらず、Y軸方向の両面が平面状となっていてもよい。 In the current collector 400, the facing portion 421 is pressure-welded in the Y-axis direction, so that pressure-welding marks (not shown) such as recesses are formed on both sides of the facing portion 421 in the Y-axis direction. That is, in the current collector 400, the facing portion 421 does not protrude in the Y-axis direction from the periphery of the facing portion 421. In the current collector 400, pressure contact marks are not formed on both sides of the facing portion 421 in the Y-axis direction, and both sides in the Y-axis direction may be flat.

[2.2 接合部700の形成方法の説明]
次に、蓄電素子10の製造方法のうち、上述した接合部700の形成方法、つまり、電極体300と集電体400との接合方法について、詳細に説明する。図6は、本実施の形態に係る電極体300と集電体400とを接合して接合部700を形成する方法を示す断面図である。具体的には、図6の(a)は、蓄電素子10の製造方法(接合部700の形成方法)のうちの仮付工程前の状態を示し、図6の(b)は、仮付工程を示し、図6の(c)は、レーザ溶接工程を示している。
[2.2 Description of Method for Forming Joint 700]
Next, among the methods for manufacturing the power storage element 10, the method for forming the joint portion 700 described above, that is, the method for joining the electrode body 300 and the current collector 400 will be described in detail. FIG. 6 is a cross-sectional view showing a method of joining the electrode body 300 and the current collector 400 according to the present embodiment to form a joint portion 700. Specifically, FIG. 6A shows a state before the temporary attachment step in the method for manufacturing the power storage element 10 (method for forming the joint portion 700), and FIG. 6B shows the temporary attachment step. 6 (c) shows a laser welding process.

まず、図6の(a)に示すように、電極体300に集電体400を配置する。具体的には、電極体300の積層部320のY軸プラス方向に集電体400の電極接続部420を配置し、積層部320のY軸マイナス方向に当て板500を配置して、積層部320を、極板301の積層方向(Y軸方向)において電極接続部420と当て板500とで挟み込む。 First, as shown in FIG. 6A, the current collector 400 is arranged on the electrode body 300. Specifically, the electrode connection portion 420 of the current collector 400 is arranged in the Y-axis plus direction of the laminated portion 320 of the electrode body 300, and the backing plate 500 is arranged in the Y-axis minus direction of the laminated portion 320. The 320 is sandwiched between the electrode connecting portion 420 and the backing plate 500 in the stacking direction (Y-axis direction) of the electrode plates 301.

そして、図6の(b)に示すように、仮付工程として、積層部320において積層された極板301同士を熱を用いて仮付けし、極板301同士が仮付けされた仮付部710を形成する。具体的には、仮付工程では、極板301同士と、極板301及び集電体400とを熱を用いて仮付けし、極板301同士と、極板301及び集電体400とが仮付けされた仮付部710を形成する。さらに具体的には、仮付工程では、積層部320に積層方向に電流を通電することにより発生する熱を用いて、仮付部710を形成する。 Then, as shown in FIG. 6B, as a temporary attachment step, the electrode plates 301 laminated in the laminated portion 320 are temporarily attached to each other by using heat, and the temporary attachment portions to which the electrode plates 301 are temporarily attached to each other are temporarily attached. Form 710. Specifically, in the temporary attachment process, the electrode plates 301, the electrode plates 301, and the current collector 400 are temporarily attached to each other by using heat, and the electrode plates 301, the electrode plates 301, and the current collector 400 are attached to each other. The temporarily attached temporary attachment portion 710 is formed. More specifically, in the temporary attachment step, the temporary attachment portion 710 is formed by using the heat generated by energizing the laminated portion 320 with an electric current in the stacking direction.

本実施の形態では、電極接続部420と当て板500とで積層部320を挟んだ状態で、電極接続部420のY軸プラス方向及び当て板500のY軸マイナス方向に、仮付器具20(21及び22)が配置される。仮付器具20は、例えば、抵抗溶接用の電極(タングステン製の電極先端チップ)である。具体的には、当て板500側に仮付器具21が配置され、かつ、電極接続部420側に仮付器具22が配置されて、仮付器具21と仮付器具22とを近付けることにより、当て板500、積層部320及び電極接続部420を圧接(圧縮)する。これにより、当て板500に膨出部510が形成され、かつ、積層部320の膨出部510と対向する位置に厚みの薄い部位が形成される。 In the present embodiment, with the laminated portion 320 sandwiched between the electrode connecting portion 420 and the backing plate 500, the temporary attachment device 20 (in the Y-axis plus direction of the electrode connecting portion 420 and the Y-axis minus direction of the backing plate 500) 21 and 22) are arranged. The temporary attachment device 20 is, for example, an electrode for resistance welding (an electrode tip tip made of tungsten). Specifically, the temporary attachment device 21 is arranged on the backing plate 500 side, and the temporary attachment instrument 22 is arranged on the electrode connection portion 420 side, so that the temporary attachment instrument 21 and the temporary attachment instrument 22 are brought close to each other. The backing plate 500, the laminated portion 320, and the electrode connecting portion 420 are pressure-welded (compressed). As a result, the bulging portion 510 is formed on the backing plate 500, and a thin portion is formed at a position facing the bulging portion 510 of the laminated portion 320.

また、仮付器具21と仮付器具22との間に、通常の抵抗溶接時よりも小さい電流値の電流Iが流れることで、膨出部510と対向部421との間に電流Iが流れて、比較的低温の熱が発生し、低出力の抵抗溶接が行われる。電流Iの電流値は、小さいほど好ましく、抵抗溶接によって、積層部320内の極板301同士の間、極板301及び対向部421の間、及び、極板301及び膨出部510の間の隙間がなくなる程度の電流値であるのが好ましい。これにより、積層部320内の極板301同士と、極板301及び対向部421と、極板301及び膨出部510とが低出力で抵抗溶接されて仮付けされた仮付部710が形成される。 Further, a current I having a current value smaller than that during normal resistance welding flows between the temporary attachment device 21 and the temporary attachment device 22, so that a current I flows between the bulging portion 510 and the facing portion 421. Therefore, relatively low temperature heat is generated, and low output resistance welding is performed. The smaller the current value of the current I is, the more preferable it is. By resistance welding, between the electrode plates 301 in the laminated portion 320, between the electrode plates 301 and the facing portion 421, and between the electrode plates 301 and the bulging portion 510. It is preferable that the current value is such that there is no gap. As a result, a temporary attachment portion 710 is formed in which the electrode plates 301 in the laminated portion 320, the electrode plates 301 and the facing portion 421, and the electrode plate 301 and the bulging portion 510 are resistance welded at a low output and temporarily attached. Will be done.

次に、図6の(c)に示すように、レーザ溶接工程として、仮付部710と集電体400とが重ね合わされた部分に向けてレーザ光Lを照射し、仮付部710と集電体400とをレーザ溶接して、レーザ溶接部720を形成する。具体的には、レーザ溶接工程では、レーザ光Lの照射方向から見て、極板301同士が接触した領域内に溶接部が形成されるように、仮付部710と集電体400とをレーザ溶接する。さらに具体的には、レーザ溶接工程では、レーザ光Lの照射方向から見て、極板301同士と、極板301及び集電体400と、極板301及び当て板500とが接触した領域内に溶接部が形成されるように、仮付部710と集電体400とをレーザ溶接する。 Next, as shown in FIG. 6 (c), as a laser welding step, the laser beam L is irradiated toward the portion where the temporary attachment portion 710 and the current collector 400 are overlapped, and the temporary attachment portion 710 and the current collector 400 are collected. Laser welded to the electric body 400 to form a laser welded portion 720. Specifically, in the laser welding step, the temporary attachment portion 710 and the current collector 400 are provided so that the welded portion is formed in the region where the electrode plates 301 are in contact with each other when viewed from the irradiation direction of the laser beam L. Laser welding. More specifically, in the laser welding process, in the region where the electrode plates 301 are in contact with each other, the electrode plates 301 and the current collector 400, and the electrode plates 301 and the backing plate 500 are in contact with each other when viewed from the irradiation direction of the laser beam L. The temporary attachment portion 710 and the current collector 400 are laser-welded so that the welded portion is formed on the surface.

本実施の形態では、レーザ光Lの照射方向(Y軸方向)から見て、膨出部510、仮付部710及び対向部421の中央部が、仮付部710内の極板301同士と、極板301及び対向部421と、極板301及び膨出部510とが接触している。このため、レーザ光Lの照射方向(Y軸方向)から見て、膨出部510、仮付部710及び対向部421の中央部に、Y軸プラス方向に向けて膨出部510側からレーザ光Lが照射される。これにより、膨出部510、仮付部710及び対向部421がレーザ溶接されて、レーザ溶接部720が形成される。 In the present embodiment, when viewed from the irradiation direction (Y-axis direction) of the laser beam L, the central portion of the bulging portion 510, the temporary attachment portion 710, and the facing portion 421 is with the electrode plates 301 in the temporary attachment portion 710. , The electrode plate 301 and the facing portion 421 are in contact with the electrode plate 301 and the bulging portion 510. Therefore, when viewed from the irradiation direction (Y-axis direction) of the laser beam L, the laser is applied to the central portion of the bulging portion 510, the temporary attachment portion 710, and the facing portion 421 from the bulging portion 510 side toward the Y-axis plus direction. Light L is irradiated. As a result, the bulging portion 510, the temporary attachment portion 710, and the facing portion 421 are laser welded to form the laser welded portion 720.

レーザ溶接部720は、膨出部510、仮付部710及び対向部421が溶融して一体化された部位である。本実施の形態では、Y軸方向から見て、膨出部510の中央部と、仮付部710の中央部と、対向部421の中央部かつ仮付部710側の部分とが溶融して、レーザ溶接部720が形成される。具体的には、膨出部510、仮付部710及び対向部421は、キーホール(深溶込み)溶接によりレーザ溶接される。キーホール(深溶込み)溶接は、レーザ光のパワー密度を高くして、材料にキーホールを形成することにより、ビード幅が狭く溶込みが深い溶接部を形成する手法である。これにより、仮付部710と集電体400とを深い位置まで高速でスポット的に溶接できる。 The laser welded portion 720 is a portion where the bulging portion 510, the temporary attachment portion 710, and the facing portion 421 are melted and integrated. In the present embodiment, when viewed from the Y-axis direction, the central portion of the bulging portion 510, the central portion of the temporary attachment portion 710, and the central portion of the facing portion 421 and the portion on the temporary attachment portion 710 side are melted. , Laser welded portion 720 is formed. Specifically, the bulging portion 510, the temporary attachment portion 710, and the facing portion 421 are laser-welded by keyhole (deep penetration) welding. Keyhole (deep penetration) welding is a method of forming a welded portion with a narrow bead width and deep penetration by increasing the power density of the laser beam and forming a keyhole in the material. As a result, the temporary attachment portion 710 and the current collector 400 can be spot-welded to a deep position at high speed.

[3 効果の説明]
以上のように、本発明の実施の形態に係る蓄電素子10の製造方法は、電極体300の積層部320において積層された極板301同士を熱を用いて仮付けし仮付部710を形成する仮付工程と、仮付部710と集電体400とをレーザ溶接するレーザ溶接工程と、を含む。このように、積層部320の極板301同士を熱を用いて仮付けして仮付部710を形成することで、極板301を押さえるための複雑な装置や治具を用いることなく、極板301間に空気層が生じるのを容易に抑制することができる。また、仮付部710と集電体400とをレーザ溶接することで、極板301間に空気層が生じるのが抑制された箇所で、レーザ溶接を行うことができる。これにより、電極体300と集電体400との溶接において、極板301間に空気層がある箇所でレーザ溶接が行われるのを抑制することができるため、電極体300と集電体400との溶接の品質の向上を図ることができる。
[3 Explanation of effect]
As described above, in the method for manufacturing the power storage element 10 according to the embodiment of the present invention, the electrode plates 301 laminated in the laminated portion 320 of the electrode body 300 are temporarily attached to each other by using heat to form the temporary attachment portion 710. The temporary attachment step is included, and a laser welding step of laser welding the temporary attachment portion 710 and the current collector 400 is included. In this way, by temporarily attaching the electrode plates 301 of the laminated portion 320 to each other using heat to form the temporary attachment portion 710, the poles can be formed without using a complicated device or jig for holding the electrode plates 301. It is possible to easily suppress the formation of an air layer between the plates 301. Further, by laser welding the temporary attachment portion 710 and the current collector 400, laser welding can be performed at a position where the formation of an air layer between the electrode plates 301 is suppressed. As a result, in the welding between the electrode body 300 and the current collector 400, it is possible to suppress laser welding at a place where there is an air layer between the electrode plates 301. Therefore, the electrode body 300 and the current collector 400 It is possible to improve the quality of welding.

また、仮付工程では、極板301同士と、極板301及び集電体400とを熱を用いて仮付けし、仮付部710を形成する。このように、仮付工程において、極板301同士に加え、極板301及び集電体400も仮付けすることで、レーザ溶接を行う箇所において極板301と集電体400との間に空気層が生じるのを抑制することができる。これにより、電極体300と集電体400との溶接において、極板301と集電体400との間に空気層がある箇所でレーザ溶接が行われるのを抑制することができるため、電極体300と集電体400との溶接の品質の向上を図ることができる。 Further, in the temporary attachment step, the electrode plates 301, the electrode plates 301, and the current collector 400 are temporarily attached using heat to form the temporary attachment portion 710. In this way, in the temporary attachment process, by temporarily attaching the electrode plates 301 and the current collector 400 in addition to the electrode plates 301, air is provided between the electrode plates 301 and the current collector 400 at the location where laser welding is performed. It is possible to suppress the formation of layers. As a result, in the welding of the electrode body 300 and the current collector 400, it is possible to suppress laser welding at a position where there is an air layer between the electrode plate 301 and the current collector 400, so that the electrode body can be suppressed. It is possible to improve the quality of welding between the 300 and the current collector 400.

また、仮付工程では、電極体300の積層部320に電流Iを通電することにより発生する熱を用いて、仮付部710を形成する。これにより、積層部320に対して低出力の抵抗溶接を行うことにより、仮付部710を容易に形成することができるため、上述した電極体300と集電体400との溶接の品質の向上を図る構成を容易に実現することができる。また、低出力で抵抗溶接を行うことにより、抵抗溶接用の電極(仮付器具20等)の磨耗を抑制することができるため、当該電極の交換頻度を長くすることができる。さらに、低出力で抵抗溶接を行うことにより、仮付け時に熱が発生するのを抑制することができるため、電極体300(特にセパレータ)等に与える影響(例えば、セパレータが溶ける等)を低減することができる。 Further, in the temporary attachment step, the temporary attachment portion 710 is formed by using the heat generated by energizing the laminated portion 320 of the electrode body 300 with the current I. As a result, the temporary attachment portion 710 can be easily formed by performing low output resistance welding to the laminated portion 320, so that the quality of welding between the electrode body 300 and the current collector 400 described above is improved. It is possible to easily realize the configuration for this purpose. Further, by performing resistance welding at a low output, wear of an electrode for resistance welding (temporary attachment 20 or the like) can be suppressed, so that the frequency of replacement of the electrode can be lengthened. Further, by performing resistance welding at a low output, it is possible to suppress the generation of heat at the time of temporary attachment, so that the influence on the electrode body 300 (particularly the separator) and the like (for example, the separator melts) is reduced. be able to.

また、レーザ溶接工程では、極板301同士が接触した領域内に溶接部が形成されるように、仮付部710と集電体400とをレーザ溶接する。このように、極板301同士が接触した領域内でレーザ溶接を行うことで、極板301間に空気層が生じるのがより確実に抑制された箇所で、レーザ溶接を行うことができる。これにより、電極体300と集電体400との溶接の品質の向上を図ることができる。 Further, in the laser welding step, the temporary attachment portion 710 and the current collector 400 are laser welded so that the welded portion is formed in the region where the electrode plates 301 are in contact with each other. By performing laser welding in the region where the electrode plates 301 are in contact with each other in this way, laser welding can be performed at a position where the formation of an air layer between the electrode plates 301 is more reliably suppressed. As a result, the quality of welding between the electrode body 300 and the current collector 400 can be improved.

また、本発明の実施の形態に係る蓄電素子10によれば、電極体300の積層部320と集電体400との接合部700は、積層部320において積層された極板301同士が仮付けされた仮付部710と、仮付部710と集電体400とがレーザ溶接されたレーザ溶接部720と、を有している。このように、極板301同士が仮付けされた仮付部710と集電体400とがレーザ溶接されてレーザ溶接部720が形成されていることで、極板301間に空気層が生じるのが抑制された箇所で、レーザ溶接が行われている。これにより、レーザ溶接部720において、極板301間に空気層がある箇所でレーザ溶接が行われるのを抑制することができているため、電極体300と集電体400との溶接の品質の向上を図ることができている。 Further, according to the power storage element 10 according to the embodiment of the present invention, the joint portion 700 between the laminated portion 320 of the electrode body 300 and the current collector 400 is temporarily attached to the electrode plates 301 laminated in the laminated portion 320. It has a temporary attachment portion 710, and a laser welding portion 720 in which the temporary attachment portion 710 and the current collector 400 are laser-welded. In this way, the temporary attachment portion 710 to which the electrode plates 301 are temporarily attached to each other and the current collector 400 are laser welded to form the laser welded portion 720, so that an air layer is generated between the electrode plates 301. Laser welding is performed at the place where the pressure is suppressed. As a result, in the laser welded portion 720, it is possible to suppress laser welding at a place where there is an air layer between the electrode plates 301, so that the quality of welding between the electrode body 300 and the current collector 400 can be improved. We are able to improve.

また、集電体400は、仮付部710と対向する対向部421の両面が対向部421の周囲よりも突出していない。このため、仮付部710を形成するために、かしめ接合のような集電体400を変形する強固な接合が行われたのではなく、熱等による簡易な手法が行われたものと推認できる。このように、簡易に仮付部710を形成することにより、容易に、電極体300及び集電体400の溶接の品質の向上を図ることができる。 Further, in the current collector 400, both sides of the facing portion 421 facing the temporary attachment portion 710 do not protrude from the periphery of the facing portion 421. Therefore, in order to form the temporary attachment portion 710, it can be inferred that a simple method using heat or the like was performed instead of a strong joint that deforms the current collector 400 such as a caulking joint. .. By simply forming the temporary attachment portion 710 in this way, it is possible to easily improve the welding quality of the electrode body 300 and the current collector 400.

[4 変形例の説明]
次に、上記実施の形態の変形例について、説明する。図7は、本実施の形態の変形例に係る接合部701の構成を示す正面図及び断面図である。具体的には、図7は、図5に対応する図である。
[4 Explanation of modified example]
Next, a modified example of the above embodiment will be described. FIG. 7 is a front view and a cross-sectional view showing the configuration of the joint portion 701 according to the modified example of the present embodiment. Specifically, FIG. 7 is a diagram corresponding to FIG.

図7に示すように、本変形例における接合部701は、上記実施の形態における接合部700のレーザ溶接部720に代えて、レーザ溶接部721を有している。レーザ溶接部721は、上記実施の形態におけるレーザ溶接部720よりも、Y軸方向から見た場合の面積が大きい。つまり、上記実施の形態では、仮付部710と集電体400とがキーホール(深溶込み)溶接によりレーザ溶接されてレーザ溶接部720が形成されることとしたが、本変形例では、仮付部710と集電体400とが熱伝導溶接によりレーザ溶接されてレーザ溶接部721が形成される。熱伝導溶接は、比較的パワー密度の低いレーザ光を材料表面で吸収させて熱に変換し、融解させて冷やし固めることにより、ビード幅が広い溶接部を形成する手法である。 As shown in FIG. 7, the joint portion 701 in this modification has a laser welded portion 721 instead of the laser welded portion 720 of the joint portion 700 in the above embodiment. The laser welded portion 721 has a larger area when viewed from the Y-axis direction than the laser welded portion 720 in the above embodiment. That is, in the above embodiment, the temporary attachment portion 710 and the current collector 400 are laser welded by keyhole (deep penetration) welding to form the laser welded portion 720. The temporary attachment portion 710 and the current collector 400 are laser welded by heat conduction welding to form the laser welded portion 721. Thermal conduction welding is a method of forming a welded portion with a wide bead width by absorbing laser light with a relatively low power density on the surface of the material, converting it into heat, melting it, cooling it, and hardening it.

なお、レーザ溶接部721は、Y軸方向における溶接の深さが、レーザ溶接部720と同等でもよいし、レーザ溶接部720よりも浅くてもよい。本変形例のその他の構成については、上記実施の形態と同様であるため、詳細な説明は省略する。 The laser welded portion 721 may have a welding depth in the Y-axis direction equivalent to that of the laser welded portion 720 or shallower than that of the laser welded portion 720. Since other configurations of this modification are the same as those of the above embodiment, detailed description thereof will be omitted.

以上のように、本変形例に係る蓄電素子及びその製造方法によれば、上記実施の形態と同様の効果を奏することができる。特に、本変形例では、仮付部710と集電体400とが熱伝導溶接によりレーザ溶接されるため、溶接に多少時間を要するものの、溶接時にスパッタが発生しにくくなる。また、体積が比較的大きなレーザ溶接部721が形成されるため、接合部701における接合の電気的及び機械的な安定性を向上させることができる。これにより、電極体300と集電体400との溶接の品質の向上を図ることができる。 As described above, according to the power storage element and the manufacturing method thereof according to the present modification, the same effect as that of the above-described embodiment can be obtained. In particular, in this modification, since the temporary attachment portion 710 and the current collector 400 are laser-welded by heat conduction welding, it takes some time for welding, but spatter is less likely to occur during welding. Further, since the laser welded portion 721 having a relatively large volume is formed, the electrical and mechanical stability of the junction at the junction portion 701 can be improved. As a result, the quality of welding between the electrode body 300 and the current collector 400 can be improved.

(その他の変形例)
以上、本発明の実施の形態(その変形例も含む)に係る蓄電素子及びその製造方法について説明したが、本発明は、この実施の形態に限定されない。つまり、今回開示された実施の形態は全ての点で例示であり、本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれる。
(Other variants)
Although the power storage element and the manufacturing method thereof according to the embodiment of the present invention (including its modification) have been described above, the present invention is not limited to this embodiment. That is, the embodiments disclosed this time are exemplified in all respects, the scope of the present invention is shown by the scope of claims, and includes all modifications within the meaning and scope equivalent to the scope of claims. ..

例えば、上記実施の形態では、極板301同士と、極板301及び集電体400と、極板301及び当て板500とを圧接し、かつ、熱を加えて仮付けすることとした。しかし、これらを圧接することなく、熱を加えて仮付けすることにしてもよい。この場合、当て板500には、膨出部510が形成されていなくてもよい。 For example, in the above embodiment, the electrode plates 301 are pressed against each other, the electrode plates 301 and the current collector 400, and the electrode plates 301 and the backing plate 500 are pressed against each other, and heat is applied to temporarily attach them. However, heat may be applied to temporarily attach them without pressing them together. In this case, the backing plate 500 may not have the bulging portion 510 formed.

上記実施の形態では、極板301同士と、極板301及び集電体400と、極板301及び当て板500とが仮付けされることとした。しかし、極板301及び集電体400が仮付けされなくてもよいし、極板301及び当て板500が仮付けされなくてもよい。つまり、積層部320内の極板301同士を仮付けした後、積層部320に集電体400及び当て板500を重ねてレーザ溶接してもよい。極板301及び集電体400、並びに、極板301及び当て板500も仮付けするのが好ましいが、これらが仮付けされなくても、極板301同士を仮付けすれば、電極体300と集電体400との溶接の品質の向上を図る効果を得ることはできる。 In the above embodiment, the electrode plates 301 are temporarily attached to each other, the electrode plates 301 and the current collector 400, and the electrode plates 301 and the backing plate 500 are temporarily attached. However, the electrode plate 301 and the current collector 400 may not be temporarily attached, and the electrode plate 301 and the backing plate 500 may not be temporarily attached. That is, after the electrode plates 301 in the laminated portion 320 are temporarily attached to each other, the current collector 400 and the backing plate 500 may be superposed on the laminated portion 320 and laser welded. It is preferable to temporarily attach the electrode plate 301 and the current collector 400, and the electrode plate 301 and the backing plate 500, but even if these are not temporarily attached, if the electrode plates 301 are temporarily attached to each other, the electrode body 300 and the electrode body 300 can be attached. It is possible to obtain the effect of improving the quality of welding with the current collector 400.

上記実施の形態では、電流を通電することにより発生する熱を用いて、仮付部710を形成することとした。しかし、電流を通電することなく熱を用いて仮付部710を形成することにしてもよい。例えば、低出力での超音波接合を行ったり、熱した器具で挟み込んだりして発生する熱を用いて、仮付部710を形成することにしてもよい。超音波接合を行う場合、極板301に接触する面がフラット(平坦)なホーンを用いるのが好ましく、これによって、仮付けできる領域を大きくできる。または、熱を用いることなく仮付けを行うことができれば、熱を用いることなく、仮付部710を形成することにしてもよい。これらの場合、極板301同士を固相接合することで、仮付部710を形成することにしてもよい。 In the above embodiment, the heat generated by energizing the electric current is used to form the temporary attachment portion 710. However, the temporary attachment portion 710 may be formed by using heat without energizing the electric current. For example, the temporary attachment portion 710 may be formed by using heat generated by ultrasonic bonding at a low output or by sandwiching it with a heated instrument. When ultrasonic bonding is performed, it is preferable to use a horn having a flat surface in contact with the electrode plate 301, whereby a region that can be temporarily attached can be increased. Alternatively, if the temporary attachment can be performed without using heat, the temporary attachment portion 710 may be formed without using heat. In these cases, the temporary attachment portion 710 may be formed by solid-phase joining the electrode plates 301 to each other.

上記実施の形態では、当て板500(膨出部510)側からレーザ光Lを照射して接合部700(または701)を形成することとした。しかし、集電体400(電極接続部420)側からレーザ光Lを照射して、接合部700(または701)を形成することにしてもよい。 In the above embodiment, the laser beam L is irradiated from the backing plate 500 (bulging portion 510) side to form the joint portion 700 (or 701). However, the laser beam L may be irradiated from the current collector 400 (electrode connection portion 420) side to form the joint portion 700 (or 701).

上記実施の形態では、レーザ溶接部720(または721)は、レーザ光Lの照射方向(Y軸方向)から見て、極板301同士等が接触した領域内、具体的には、仮付部710の中央部に形成されていることとした。しかし、極板301同士等が仮付部710の端部等で接触していれば、レーザ溶接部720(または721)は、仮付部710の当該端部等に形成されていてもよい。また、レーザ溶接部720(または721)は、極板301同士等が接触した領域外に形成されていてもよい。 In the above embodiment, the laser welded portion 720 (or 721) is located in a region where the electrode plates 301 and the like are in contact with each other when viewed from the irradiation direction (Y-axis direction) of the laser beam L, specifically, a temporary attachment portion. It was decided that it was formed in the central part of 710. However, the laser welded portion 720 (or 721) may be formed at the end portion or the like of the temporary attachment portion 710 as long as the electrode plates 301 or the like are in contact with each other at the end portion or the like of the temporary attachment portion 710. Further, the laser welded portion 720 (or 721) may be formed outside the region where the electrode plates 301 and the like are in contact with each other.

上記実施の形態では、集電体400に1つの電極接続部420が設けられ、1つの電極接続部420に対して、1枚の当て板500が配置されて、2つの接合部700(または701)が形成されることとした。しかし、集電体400に設けられる電極接続部420の数、1つの電極接続部420に形成される接合部700(または701)の数、及び、1つの電極接続部420に配置される当て板500の枚数は、特に限定されない。 In the above embodiment, one electrode connection portion 420 is provided in the current collector 400, one backing plate 500 is arranged for one electrode connection portion 420, and two joint portions 700 (or 701) are arranged. ) Was to be formed. However, the number of electrode connection portions 420 provided in the current collector 400, the number of joint portions 700 (or 701) formed in one electrode connection portion 420, and the backing plate arranged in one electrode connection portion 420. The number of 500 sheets is not particularly limited.

上記実施の形態では、膨出部510、対向部421、接合部700(または701)、仮付部710、及び、レーザ溶接部720(または721)等は、Y軸方向から見て円形状を有していることとした。しかし、これらの形状は特に限定されず、Y軸方向から見て、楕円形状、長円形状、矩形状、または、その他の多角形状等であってもよい。 In the above embodiment, the bulging portion 510, the facing portion 421, the joining portion 700 (or 701), the temporary attachment portion 710, the laser welded portion 720 (or 721), and the like have a circular shape when viewed from the Y-axis direction. I decided to have it. However, these shapes are not particularly limited, and may be an elliptical shape, an oval shape, a rectangular shape, or any other polygonal shape when viewed from the Y-axis direction.

上記実施の形態では、集電体400と電極体300と当て板500とが接合されることとしたが、これら以外の部材も一緒に接合されてもよい。または、当て板500は設けられておらず、電極体300及び集電体400が接合されることにしてもよい。 In the above embodiment, the current collector 400, the electrode body 300, and the backing plate 500 are joined, but members other than these may also be joined together. Alternatively, the backing plate 500 may not be provided, and the electrode body 300 and the current collector 400 may be joined.

上記実施の形態では、電極体300は、巻回軸が蓋体120に平行となるいわゆる縦巻きの巻回型電極体であることとした。しかし、電極体300は、巻回軸が蓋体120に垂直となるいわゆる横巻きの巻回型電極体であってもよい。また、電極体300の形状は巻回型に限らず、平板状極板を積層したスタック型、または、極板及び/又はセパレータを蛇腹状に折り畳んだ形状(セパレータを蛇腹状にして矩形の極板を挟む形態、極板とセパレータとを重ねた後に蛇腹状にする形態等)等であってもよい。この場合、積層部320は、電極体300の電極体本体部310から突出するタブであってもよい。 In the above embodiment, the electrode body 300 is a so-called vertically wound winding type electrode body whose winding axis is parallel to the lid body 120. However, the electrode body 300 may be a so-called horizontal winding type electrode body in which the winding axis is perpendicular to the lid body 120. Further, the shape of the electrode body 300 is not limited to the winding type, but is a stack type in which flat plate-shaped electrode plates are laminated, or a shape in which the electrode plate and / or the separator is folded in a bellows shape (rectangular pole with the separator in a bellows shape). It may be in a form of sandwiching a plate, a form in which a plate and a separator are overlapped and then formed into a bellows shape, etc.). In this case, the laminated portion 320 may be a tab protruding from the electrode body main body portion 310 of the electrode body 300.

上記実施の形態では、全ての接合部700(または701)について上記の構成が適用されることとしたが、いずれかの接合部700(または701)については上記の構成が適用されないことにしてもよい。 In the above embodiment, the above configuration is applied to all the joints 700 (or 701), but the above configuration is not applied to any of the joints 700 (or 701). good.

上記実施の形態及びその変形例に含まれる構成要素を任意に組み合わせて構築される形態も、本発明の範囲内に含まれる。 Also included within the scope of the present invention is a form constructed by arbitrarily combining the components included in the above-described embodiment and its modifications.

本発明は、このような蓄電素子の製造方法、及び、蓄電素子として実現することができるだけでなく、電極体300と集電体400との接合方法、電極体300と集電体400との組み合わせ、または、電極体300と集電体400との接合部としても実現することができる。 The present invention can be realized not only as a method for manufacturing such a power storage element and as a power storage element, but also a method for joining the electrode body 300 and the current collector 400, and a combination of the electrode body 300 and the current collector 400. Alternatively, it can also be realized as a joint portion between the electrode body 300 and the current collector 400.

本発明は、リチウムイオン二次電池などの蓄電素子の製造方法に適用できる。 The present invention can be applied to a method for manufacturing a power storage element such as a lithium ion secondary battery.

10 蓄電素子
20、21、22 仮付器具
100 容器
110 容器本体
120 蓋体
200 電極端子
300 電極体
301 極板
310 電極体本体部
320 積層部
400、401、402 集電体
410 端子接続部
420 電極接続部
421 対向部
500 当て板
510 膨出部
700、701 接合部
710 仮付部
720、721 レーザ溶接部
10 Power storage element 20, 21, 22 Temporary attachment 100 Container 110 Container body 120 Lid body 200 Electrode terminal 300 Electrode body 301 Electrode plate 310 Electrode body body 320 Laminated part 400, 401, 402 Current collector 410 Terminal connection part 420 Electrode Connection part 421 Opposite part 500 Support plate 510 Swelling part 700, 701 Joint part 710 Temporary attachment part 720, 721 Laser welded part

Claims (5)

極板が積層方向に積層された積層部を有する電極体と、前記積層部に接合される集電体とを備える蓄電素子の製造方法であって、
前記積層部において積層された極板同士を熱を用いて仮付けし、当該極板同士が仮付けされた仮付部を形成する仮付工程と、
前記仮付部と前記集電体とが重ね合わされた部分に向けてレーザ光を照射し、前記仮付部と前記集電体とをレーザ溶接するレーザ溶接工程と、
を含む蓄電素子の製造方法。
A method for manufacturing a power storage element including an electrode body having a laminated portion in which electrode plates are laminated in a laminated direction and a current collector bonded to the laminated portion.
A temporary attachment step of temporarily attaching the laminated electrode plates to each other in the laminated portion by using heat to form a temporary attachment portion to which the electrode plates are temporarily attached to each other.
A laser welding step of irradiating a portion where the temporary attachment portion and the current collector are overlapped with a laser beam and laser welding the temporary attachment portion and the current collector.
A method for manufacturing a power storage element including.
前記仮付工程では、前記極板同士と、前記極板及び前記集電体とを熱を用いて仮付けし、前記極板同士と、前記極板及び前記集電体とが仮付けされた前記仮付部を形成する
請求項1に記載の蓄電素子の製造方法。
In the temporary attachment step, the plates, the plates, and the current collector are temporarily attached to each other by using heat, and the plates, the plates, and the current collector are temporarily attached to each other. The method for manufacturing a power storage element according to claim 1, wherein the temporary attachment portion is formed.
前記仮付工程では、前記積層部に前記積層方向に電流を通電することにより発生する熱を用いて、前記仮付部を形成する
請求項1または2に記載の蓄電素子の製造方法。
The method for manufacturing a power storage element according to claim 1 or 2, wherein in the temporary attachment step, heat generated by energizing the laminated portion with an electric current in the stacking direction is used to form the temporary attachment portion.
前記レーザ溶接工程では、前記レーザ光の照射方向から見て、前記極板同士が接触した領域内に溶接部が形成されるように、前記仮付部と前記集電体とをレーザ溶接する
請求項1〜3のいずれか1項に記載の蓄電素子の製造方法。
In the laser welding step, the temporary attachment portion and the current collector are laser welded so that a welded portion is formed in a region where the electrode plates are in contact with each other when viewed from the irradiation direction of the laser beam. Item 6. The method for manufacturing a power storage element according to any one of Items 1 to 3.
極板が積層方向に積層された積層部を有する電極体と、前記積層部に接合される集電体とを備える蓄電素子であって、
前記積層部と前記集電体との接合部は、
前記積層部において積層された極板同士が仮付けされた仮付部と、
前記仮付部と前記集電体とが重ね合わされた部分において、前記仮付部と前記集電体とがレーザ溶接されたレーザ溶接部と、を有する
蓄電素子。
A power storage element including an electrode body having a laminated portion in which electrode plates are laminated in the stacking direction and a current collector bonded to the laminated portion.
The joint between the laminated portion and the current collector is
A temporary attachment portion in which the laminated plates are temporarily attached to each other in the laminated portion, and a temporary attachment portion.
A power storage element having a laser-welded portion in which the temporary attachment portion and the current collector are laser-welded in a portion where the temporary attachment portion and the current collector are overlapped.
JP2020098699A 2020-06-05 2020-06-05 Manufacturing method of power storage element and power storage element Pending JP2021192347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020098699A JP2021192347A (en) 2020-06-05 2020-06-05 Manufacturing method of power storage element and power storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020098699A JP2021192347A (en) 2020-06-05 2020-06-05 Manufacturing method of power storage element and power storage element

Publications (1)

Publication Number Publication Date
JP2021192347A true JP2021192347A (en) 2021-12-16

Family

ID=78890708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020098699A Pending JP2021192347A (en) 2020-06-05 2020-06-05 Manufacturing method of power storage element and power storage element

Country Status (1)

Country Link
JP (1) JP2021192347A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023152916A1 (en) * 2022-02-10 2023-08-17 ビークルエナジージャパン株式会社 Battery and method for producing battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023152916A1 (en) * 2022-02-10 2023-08-17 ビークルエナジージャパン株式会社 Battery and method for producing battery

Similar Documents

Publication Publication Date Title
JP5649996B2 (en) Square sealed secondary battery and method for manufacturing the same
JP2016178025A (en) Power storage element
WO2006035597A1 (en) Sealed battery and sealed battery manufacturing method
JP2020140863A (en) Power storage element
US10615447B2 (en) Secondary cell and manufacturing method thereof
JP2021192347A (en) Manufacturing method of power storage element and power storage element
JP2019061892A (en) Power storage element
JP2020136244A (en) Power storage element
JP7056560B2 (en) Power storage element and manufacturing method of power storage element
JP2019061881A (en) Power storage element
JP2022055684A (en) Power storage element
JP2020166969A (en) Power storage element and method for manufacturing the same
JP7413784B2 (en) Energy storage element
JP2023150049A (en) Power storage element
JP2022043692A (en) Power storage element
JP7331573B2 (en) Storage element
JP7346856B2 (en) Energy storage element and its manufacturing method
JP2019061893A (en) Power storage element
JP2019057444A (en) Power storage element
JP2023038811A (en) Power storage element
JP7059548B2 (en) Power storage element
JP2021057168A (en) Power storage element
JP2023135284A (en) Power storage element
JP2021153016A (en) Power storage element
JP6926899B2 (en) Power storage element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240327

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240523