JP2022054535A - Soil type waste water treatment system - Google Patents

Soil type waste water treatment system Download PDF

Info

Publication number
JP2022054535A
JP2022054535A JP2020161636A JP2020161636A JP2022054535A JP 2022054535 A JP2022054535 A JP 2022054535A JP 2020161636 A JP2020161636 A JP 2020161636A JP 2020161636 A JP2020161636 A JP 2020161636A JP 2022054535 A JP2022054535 A JP 2022054535A
Authority
JP
Japan
Prior art keywords
soil
tank
treated water
water
treatment system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020161636A
Other languages
Japanese (ja)
Inventor
孝洋 新井
Takahiro Arai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Green Heart Int Kk
GREEN HEART INTERNATIONAL KK
Original Assignee
Green Heart Int Kk
GREEN HEART INTERNATIONAL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Green Heart Int Kk, GREEN HEART INTERNATIONAL KK filed Critical Green Heart Int Kk
Priority to JP2020161636A priority Critical patent/JP2022054535A/en
Publication of JP2022054535A publication Critical patent/JP2022054535A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

To provide a waste water treatment system that effectively purifies excreta and waste water discharged and is easy in a maintenance management.SOLUTION: A soil type waste water treatment system comprises: an original water tank 10 for purifying sewage supplied from a toilet building; a precipitation and separation tank 20 for purifying treated water passing through the original water tank under anaerobic conditions to suppress occurrence of bad odor, scum and sludge; a contact aeration tank 30 for purifying the treated water through the precipitation and separation tank using a transpiration tube and a microbial carrier under favorable conditions; a filtration settling tank 40 for filtering a floating material from the treated water through the contact aeration tank to return the treated water of high oxygen concentration to the original water tank; a decolorizing sterilization tank 45 for decolorizing and sterilizing the treated water through the filtration settling tank; a flow rate control tank 50 to which the treated water via the decolorization sterilization tank is supplied; a soil treatment tank 60 that decomposes organic materials, chemical substances and floating substances contained in the treated water via the flow rate control tank to absorb a coloring component; an aquarium tank 70 for storing the treated water via the soil treatment layer; and a unit for supplying the treated water in the aquarium tank via a water supply unit to supply to a toilet building.SELECTED DRAWING: Figure 1

Description

この発明は、土壌式の汚水処理システムに関するものである。 The present invention relates to a soil-based sewage treatment system.

一般的に上下水道管路が整備されていない山小屋や寺院、登山路、川辺、海辺、散策路、その他野営地等に設置されている公衆トイレは、便器への洗浄水の供給が難しく汚水の排出に伴う悪臭及び水質等の環境汚染問題があり、独立的に浄化処理できる能力を備えた無放流循環水洗式トイレの必要性が叫ばれている。 In general, public toilets installed in mountain huts and temples, mountain trails, riversides, seasides, walking paths, and other campsites where water and sewage pipelines are not maintained are difficult to supply flush water to toilet bowls and are sewage. There are problems of environmental pollution such as bad odor and water quality due to discharge, and the need for a non-discharge circulating flush toilet with the ability to independently purify is being called for.

しかし、普及している大部分のトイレは天然発酵汲み取り式であり、夏季にはひどい悪臭と害虫の繁殖に悩まされている(たとえば、特許文献1参照)。この原因は限定された空間に多くの処理槽が設置されており、流入汚水量に対する処理槽の容量不足によって処理効率が低下するためである。これにより、最終処理水の水質が低下して悪臭が残り処理水の色相も悪くなる。 However, most of the popular toilets are of the natural fermentation pumping type, and in the summer they suffer from a terrible stink and the breeding of pests (see, for example, Patent Document 1). The reason for this is that many treatment tanks are installed in a limited space, and the treatment efficiency is lowered due to insufficient capacity of the treatment tank with respect to the amount of inflowing sewage. As a result, the quality of the final treated water deteriorates, a bad odor remains, and the hue of the treated water also deteriorates.

このようなトイレから排出される汚水は、渓谷や河川の水質を汚染させるだけでなく、トイレ利用者に不快感を抱かせるためトイレ利用を避けるようになり、遂にはトイレの稼働を中止するか施設を閉鎖する事態に至る。 The sewage discharged from such toilets not only pollutes the water quality of valleys and rivers, but also makes toilet users uncomfortable, so they avoid using the toilet and finally stop the operation of the toilet. It leads to the situation that the facility is closed.

したがって、公衆トイレから排出される糞尿や汚水を処理するには、有機物、窒素,燐及び悪臭を効果的に除去し、清浄な処理水を確保するための研究が必要である。 Therefore, in order to treat manure and sewage discharged from public toilets, research is needed to effectively remove organic matter, nitrogen, phosphorus and foul odors and to secure clean treated water.

特開2006-57417号公報Japanese Unexamined Patent Publication No. 2006-57417

本発明が解決しようとする技術的課題は、排出される糞尿や汚水を効果的に浄化処理し、維持管理が容易な汚水処理システムを提供することにある。 A technical problem to be solved by the present invention is to provide a sewage treatment system that effectively purifies discharged manure and sewage and is easy to maintain.

上記目的を達成するため、本発明に係る土壌式汚水処理システムは、
トイレ棟から供給される汚水を浄化処理する原水槽と、
上記原水槽を経由した処理水が供給され、嫌気条件下にて処理水を浄化し悪臭とスカム及び汚泥の発生を抑制する沈殿分離槽と、
上記沈殿分離槽を経由した処理水が供給され、好機条件下において散気管と微生物担体を利用して処理水を浄化する接触曝気槽と、
上記接触曝気槽を経由した処理水が供給され、浮遊物を濾過し高酸素濃度の処理水を上記原水槽に返送する濾過沈殿槽と、
上記濾過沈殿槽を経由した処理水が供給され、処理水を脱色及び殺菌する脱色殺菌槽と、
脱色殺菌槽を経由した処理水が供給される流量調整槽と、
上記流量調整槽を経由した処理水が供給され、処理水に含まれる有機物と化学物質及び浮遊物質を分解し、色素成分を吸着する土壌処理槽と、
上記土壌処理槽を経由した処理水を貯蔵する集水槽と、
給水装置を通じて集水槽内の処理水をトイレ棟に供給する装置とを含んだ
ことを特徴とする。
In order to achieve the above object, the soil-type sewage treatment system according to the present invention is used.
A raw water tank that purifies the sewage supplied from the toilet building,
A sedimentation separation tank in which treated water is supplied via the raw water tank, purifies the treated water under anaerobic conditions, and suppresses the generation of stinks, scum, and sludge.
A contact aeration tank in which treated water is supplied via the precipitation separation tank and the treated water is purified using an air diffuser and a microbial carrier under favorable conditions.
A filtration settling tank in which treated water is supplied via the contact aeration tank, filters floating matter, and returns the treated water having a high oxygen concentration to the raw water tank.
A decolorization sterilization tank in which treated water is supplied via the above filtration and settling tank to decolorize and sterilize the treated water.
A flow rate control tank in which treated water is supplied via a decolorization sterilization tank, and
A soil treatment tank in which treated water is supplied via the above flow control tank, decomposes organic substances, chemical substances and suspended solids contained in the treated water, and adsorbs pigment components.
A water collection tank that stores treated water that has passed through the above soil treatment tank,
It is characterized by including a device for supplying the treated water in the water collecting tank to the toilet building through a water supply device.

そして、その好適な実施態様として以下の構成が採用される。
(1)上記沈殿分離槽は、下部が汚水に浸っているグレイチングと、上記グレイチングの上部に汚水に接触するよう設置され、汚水の悪臭を吸収するスカム及び汚泥の発生を抑制する被覆土壌層と、上記グレイチングの上部に上記被覆土壌層を包み、汚水が透過される不織布を含むことを特徴とする。
(2)上記被覆土壌層は、上記沈殿分離槽内の処理水に5~8cm浸っていることを特徴とする。
(3)上記被覆土壌層は、全体容積対比が、真砂土75~80%、腐葉土10~15%、木炭5~10%及び軽石5~10%の比率で混合して形成されることを特徴とする。
(4)上記被覆土壌層を構成する上記真砂土の有効径は、0.075~0.250mmであり、当該真砂土の含水率は11~14%であることを特徴とする。
(5)上記被覆土壌層の硬度は、山中式土壌硬度計基準で11.0~15.0mmであることを特徴とする。
(6)上記濾過沈殿槽は、処理水のpH調整のため貝殻を濾材として使用することを特徴とする。
(7)上記土壌処理槽は、上記流量調整槽から供給された処理水を均等に散水する散水管と、上記散水管の下部に配置され、処理水が浸透し水平方向に並んで複数配置されるとともに、高さ方向に多段に積層され、処理水に含まれている有機物と化学物質および浮遊物質を分解し、色素成分を吸着する土壌ブロック類と、上記土壌ブロック類の間に配置され、処理水が通過する通水層とを含むことを特徴とする。
(8)上記土壌ブロックは、土壌ブロック枠と、上記土壌ブロック枠の内部に処理水に接触して設置され、処理水に含まれる有機物と化学物質および浮遊物を分解し、色素成分を吸着する混合土壌と、上記土壌ブロック枠の内部に、上記混合土壌を包んで処理水が透過される不織布とを含むことを特徴とする。
(9)上記混合土壌は、全体容積対比が、真砂土75~80%、腐葉土10~15%、木炭5~10%及び軽石5~10%の比率で混合して形成されることを特徴とする。
(10)上記混合土壌を構成する上記真砂土の有効径は、0.075~0.250mであり、当該真砂土の含水率は11~14%であることを特徴とする。
(11)上記混合土壌の硬度は、山中式土壌硬度式基準で11.0~15.0mmであることを特徴とする。
(12)上記土壌処理槽は、上記土壌ブロック類の間に配置され上記土壌ブロック類の間に空気を供給する散気管を含むことを特徴とする。
(13)上記土壌処理槽は、交互に使用できるよう上記コンテナの内部に複数系列に設置されていることを特徴とする。
(14)上記原水槽は、上記集水槽に貯蔵された処理水が供給され、処理水に残存する色素成分を吸着し、再度上記集水槽に処理水を共有する活性炭濾過筒を含むことを特徴とする。
(15)上記沈殿分離槽は、沈殿分離された汚泥が収容され、オゾンを供給し汚泥を分解する汚泥処理槽を含むことを特徴とする。
(16)上記集水槽に貯蔵された処理水が供給され、処理水に残存する色相成分を吸着し、再び集水槽に処理水を供給する活性炭濾過筒と、上記集水槽から余剰水が供給され、余剰水を蒸発させる蒸発槽とを含むことを特徴とする。
The following configuration is adopted as a preferred embodiment thereof.
(1) The sedimentation separation tank is installed so as to contact the sewage at the lower part of the glazing and the sewage at the upper part of the glazing, and the covered soil that suppresses the generation of scum and sludge that absorbs the bad odor of the sewage. It is characterized by wrapping the coated soil layer on the layer and the upper part of the glazing, and containing a non-woven fabric through which sewage is permeated.
(2) The covered soil layer is characterized in that it is immersed in the treated water in the sedimentation separation tank by 5 to 8 cm.
(3) The covered soil layer is characterized in that the total volume ratio is a mixture of decomposed granite soil 75 to 80%, humus soil 10 to 15%, charcoal 5 to 10%, and pumice stone 5 to 10%. And.
(4) The effective diameter of the decomposed granite soil constituting the covered soil layer is 0.075 to 0.250 mm, and the water content of the decomposed granite soil is 11 to 14%.
(5) The hardness of the covered soil layer is 11.0 to 15.0 mm based on the Yamanaka soil hardness tester.
(6) The filtration settling tank is characterized in that a shell is used as a filter medium for adjusting the pH of the treated water.
(7) The soil treatment tank is arranged in a sprinkler pipe for evenly sprinkling the treated water supplied from the flow rate adjusting tank and a plurality of water sprinkler pipes arranged below the sprinkler pipe so that the treated water permeates and is arranged side by side in the horizontal direction. At the same time, it is stacked in multiple stages in the height direction, decomposes organic substances, chemical substances and suspended solids contained in the treated water, and is placed between the soil blocks that adsorb pigment components and the above soil blocks. It is characterized by including a water passage layer through which treated water passes.
(8) The soil block is installed in contact with the treated water inside the soil block frame and the soil block frame, decomposes organic substances, chemical substances and suspended matter contained in the treated water, and adsorbs pigment components. It is characterized by containing a mixed soil and a non-woven fabric that wraps the mixed soil and allows treated water to permeate inside the soil block frame.
(9) The mixed soil is characterized in that the total volume is mixed at a ratio of decomposed granite soil of 75 to 80%, humus soil of 10 to 15%, charcoal of 5 to 10%, and pumice of 5 to 10%. do.
(10) The effective diameter of the decomposed granite soil constituting the mixed soil is 0.075 to 0.250 m, and the water content of the decomposed granite soil is 11 to 14%.
(11) The hardness of the mixed soil is 11.0 to 15.0 mm based on the Yamanaka soil hardness formula.
(12) The soil treatment tank is characterized by being arranged between the soil blocks and including an air diffuser for supplying air between the soil blocks.
(13) The soil treatment tanks are characterized in that they are installed in a plurality of series inside the container so that they can be used alternately.
(14) The raw water tank is characterized in that the treated water stored in the water collecting tank is supplied, the dye component remaining in the treated water is adsorbed, and the water collecting tank again includes an activated carbon filter tube that shares the treated water. And.
(15) The sedimentation separation tank is characterized by containing a sludge treatment tank in which the sludge separated by sedimentation is housed and ozone is supplied to decompose the sludge.
(16) The treated water stored in the water collecting tank is supplied, the activated carbon filter cylinder that adsorbs the hue component remaining in the treated water and supplies the treated water to the water collecting tank again, and the surplus water is supplied from the water collecting tank. It is characterized by including an evaporation tank for evaporating excess water.

本発明によれば、稼働初期に清水を供給しなければならないが、供用開始後には給水が必要ではない、無給水方式であり有機物等を自立的に除去処理する為、糞尿などを別途に除去する必要がなく、糞尿及び汚水から発生する悪臭を除去し、汚水の色度を清水水準に浄化処理することができ、最終処理水をトイレの洗浄水として再利用し河川等に放流しないので、河川等の汚染を防止することができる。 According to the present invention, fresh water must be supplied at the initial stage of operation, but water supply is not required after the start of operation. It is not necessary to do so, it is possible to remove bad odors generated from manure and sewage, purify the color of sewage to the level of fresh water, and reuse the final treated water as flush water for toilets and do not discharge it into rivers. It is possible to prevent pollution of rivers and the like.

また、本発明によれば、土壌接触式の沈殿分離槽によりスカムと汚泥の発生が抑制され、汚泥処理槽により少量の汚泥さえもオゾンにより分解されるので、汚泥の搬出が必要でない。 Further, according to the present invention, the generation of scum and sludge is suppressed by the soil contact type sedimentation separation tank, and even a small amount of sludge is decomposed by ozone in the sludge treatment tank, so that it is not necessary to carry out the sludge.

また、本発明によれば、土壌処理槽の散水方式が加圧によらない重力浸透式なので、省エネ性に優れ維持管理が容易である。 Further, according to the present invention, since the watering method of the soil treatment tank is a gravity infiltration method that does not rely on pressurization, it is excellent in energy saving and easy to maintain.

本発明の実施例に基づく土壌式汚水処理システムの概略構成と汚水処理手順の一例を示すブロック図を兼ねたフロー図である。It is a flow diagram which also serves as the block diagram which shows the schematic structure of the soil type sewage treatment system based on the Example of this invention, and an example of the sewage treatment procedure. 本発明に係る土壌式汚水処理システムの原水槽の一例を示す断面図である。It is sectional drawing which shows an example of the raw water tank of the soil type sewage treatment system which concerns on this invention. 本発明に係る土壌式汚水処理システムの沈殿分離槽の一例を示す断面図である。It is sectional drawing which shows an example of the sedimentation separation tank of the soil type sewage treatment system which concerns on this invention. 本発明に係る土壌式汚水処理システムの土壌処理槽の一例を示す断面図である。It is sectional drawing which shows an example of the soil treatment tank of the soil type sewage treatment system which concerns on this invention. 本発明の実施例に基づく土壌処理槽を構成する真砂土の通過質量百分率を表すグラフである。It is a graph which shows the passing mass percentage of the decomposed granite soil which constitutes the soil treatment tank based on the Example of this invention. 本発明の実施例に基づく土壌処理槽の生物学的酸素要求量(BOD)除去能を表すグラフである。It is a graph which shows the biochemical oxygen demand (BOD) removal ability of the soil treatment tank based on the Example of this invention. 本発明の実施例に基づく土壌処理槽の化学的酸素要求量(COD)除去能を表すグラフである。It is a graph which shows the chemical oxygen demand (COD) removal ability of the soil treatment tank based on the Example of this invention. 本発明の実施例に基づく浮遊物質濃度(SS)除去能を表すグラフである。It is a graph which shows the suspended solids concentration (SS) removal ability based on the Example of this invention. 本発明の実施例に基づく総リン(T-P)除去能を表すグラフである。It is a graph which shows the total phosphorus (TP) removal ability based on the Example of this invention. 本発明の実施例に基づく総窒素(T-N)およびアンモニア態窒素(NH4)除去能を表すグラフである。It is a graph which shows the total nitrogen (TN) and ammonia nitrogen (NH 4 ) removal ability based on the Example of this invention. 本発明の実施例に基づく大腸菌除去能を表すグラフである。It is a graph which shows the Escherichia coli removal ability based on the Example of this invention.

以下、本発明の実施形態を図面に基づいて詳細に説明する。各図面に提示された同一の参照符号は同一な部材を表す。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The same reference numeral presented in each drawing represents the same member.

図1を参照すると、本発明の実施例に基づく土壌式汚水処理システム100は、原水槽10、沈殿分離槽20、接触曝気槽30、濾過沈殿槽40、脱色殺菌槽45、流量調整槽50、土壌処理槽60、集水槽70、活性炭濾過筒75、蒸発槽80、汚泥処理槽85を含む。 Referring to FIG. 1, the soil-type sewage treatment system 100 based on the embodiment of the present invention includes a raw water tank 10, a settling separation tank 20, a contact aeration tank 30, a filtration settling tank 40, a decolorization sterilization tank 45, and a flow rate adjusting tank 50. It includes a soil treatment tank 60, a water collection tank 70, an activated carbon filter cylinder 75, an evaporation tank 80, and a sludge treatment tank 85.

本発明の実施例に基づく土壌式汚水処理システム100は、供用開始初期には清水を供給しなければならないが、供用開始後は別途給水が必要なく、汚水に含まれる有機物と富栄養価原因物質である窒素とリンおよび悪臭などを除去し、汚水の色度を清水水準に浄化することができ、あわせて最終処理水を外部に放流せず、循環再利用することにより、河川などの汚染を防止することのできる親環境的システムである。また、本発明の実施例に基づく土壌式汚水処理システム100においては、浄化された最終処理水の水質は、修景用水基準を達成するこができる親環境的なシステムである。 The soil-type sewage treatment system 100 based on the embodiment of the present invention must supply fresh water at the initial stage of service, but does not require a separate water supply after the start of service, and organic substances and eutrophication-causing substances contained in the sewage. It can remove nitrogen, phosphorus and bad odors, and purify the color of sewage to the level of fresh water. At the same time, it does not discharge the final treated water to the outside and recycles it to contaminate rivers. It is a pro-environmental system that can be prevented. Further, in the soil-type sewage treatment system 100 based on the embodiment of the present invention, the water quality of the purified final treated water is an environmentally friendly system capable of achieving the landscape water standard.

原水槽10は、汚水発生源であるトイレ内の便器などから供給される糞尿、トイレットペーパーなどを含む汚水が貯蔵され、貯蔵された汚水を次のプロセスにおいて容易に処理される役割を果たす。水洗式トイレの普及とともにトイレットペーパーの普及は増加しており、多量のトイレットペーパーが塊の状態で原水槽に流れ込む場合は、システム内の配管が詰まる現象が頻繁に起きている。これに対して本実施例による原水槽10は、トイレから流れ込む汚水に含まれるトイレットペーパーの塊によるシステム内の配管が詰まる現象を防止するとともに、汚水から発散される悪臭を除去および希釈する。 The raw water tank 10 serves to store sewage containing manure, toilet paper, etc. supplied from a toilet bowl or the like in a toilet, which is a source of sewage, and to easily treat the stored sewage in the next process. With the spread of flush toilets, the spread of toilet paper is increasing, and when a large amount of toilet paper flows into the raw water tank in the form of a lump, the phenomenon that the piping in the system is clogged frequently occurs. On the other hand, the raw water tank 10 according to the present embodiment prevents the phenomenon that the piping in the system is clogged by the lump of toilet paper contained in the sewage flowing from the toilet, and removes and dilutes the malodor emitted from the sewage.

本実施例に基づく原水槽10は、3つの槽(S1,S2,S3)に仕切られ、第1槽S1と第2槽S2の底部には散気管13が配置され、上部には散水管14が配置される。図2に示すように、散気管13は圧縮空気を供給するブロワーと連結しており、上部には濾過沈殿槽40から返送された高酸素濃度の処理水が下方に激しく散水される。 The raw water tank 10 based on this embodiment is divided into three tanks (S1, S2, S3), an air diffuser pipe 13 is arranged at the bottom of the first tank S1 and the second tank S2, and a sprinkler pipe 14 is arranged at the top. Is placed. As shown in FIG. 2, the air diffuser 13 is connected to a blower that supplies compressed air, and the treated water having a high oxygen concentration returned from the filtration settling tank 40 is vigorously sprinkled downward on the upper part.

トイレ棟から原水槽10に汚水とともに流れ込むトイレットペーパーの塊は、第1及び第2槽S1,S2の底面に配置された散気管13で発生する微細気泡によりトイレットペーパーの塊は拡散される。また、濾過沈殿槽40から返送される高酸素濃度の処理水が第1及び第2槽S1,S2の上部に配置された散水管14から下方に散水され、汚水内に含まれているアンモニア性窒素を硝酸性窒素に変化させ、悪臭を除去および希釈する。そして第3槽S3に到達した汚水はポンプにより排水口16を通過して沈殿分離槽20に圧送される。 The lump of toilet paper that flows from the toilet building into the raw water tank 10 together with the sewage is diffused by the fine air bubbles generated in the air diffuser tubes 13 arranged on the bottom surfaces of the first and second tanks S1 and S2. Further, the treated water having a high oxygen concentration returned from the filtration settling tank 40 is sprinkled downward from the sprinkler pipe 14 arranged at the upper part of the first and second tanks S1 and S2, and is ammoniacal contained in the sewage. Converts nitrogen to nitrate nitrogen to remove and dilute malodor. Then, the sewage that has reached the third tank S3 is pumped through the drain port 16 and pumped to the settling separation tank 20.

本実施例に基づく沈殿分離槽20は嫌気条件下において、嫌気性微生物などが有機物を除去し、汚泥の発生を抑制するため汚泥の発生量が縮減される。そして沈殿分離槽20は、処理量に従い複数系列設置することができる。また沈殿分離槽20には、冬季に処理水が凍結することを防止するための保温用ヒーターが設置される。 In the settling separation tank 20 based on this embodiment, under anaerobic conditions, anaerobic microorganisms and the like remove organic substances and suppress the generation of sludge, so that the amount of sludge generated is reduced. A plurality of series of sedimentation separation tanks 20 can be installed according to the treatment amount. Further, the settling separation tank 20 is provided with a heat insulating heater for preventing the treated water from freezing in winter.

図3に示すように沈殿分離槽20は、下部がグレイチング21により支持され、グレイチング21の上部には被覆土壌層25を包み込むための不織布23が敷設され、被覆土壌層25がグレイチング21の外部に流出するのを防止している。被覆土壌層25は高さが約40cmであり下部の5~8cmは常時湛水状態を維持する。 As shown in FIG. 3, the lower portion of the settling separation tank 20 is supported by the glazing 21, a non-woven fabric 23 for wrapping the coated soil layer 25 is laid on the upper portion of the glazing 21, and the coated soil layer 25 is the glazing 21. It prevents it from leaking to the outside. The covered soil layer 25 has a height of about 40 cm, and the lower 5 to 8 cm is constantly flooded.

処理水の上部表面と被覆土壌層25との境界面に発生するスカムは、被覆土壌層25に棲息する土壌微生物の栄養分として補足され、分解されることにより沈殿分離槽20内のスカム発生が抑制される。 The scum generated at the interface between the upper surface of the treated water and the covered soil layer 25 is supplemented as a nutrient for soil microorganisms living in the covered soil layer 25, and is decomposed to suppress the generation of scum in the sedimentation separation tank 20. Will be done.

被覆土壌層25は全体容積対比が、真砂土75~80%、腐葉土10~15%、木炭5~10%及び軽石5~10%の比率で混合して形成される。上記真砂土の有効径は0.075~0.25mmであり、この真砂土の含水率は11~14%である。上記被覆土壌層25の硬度は山中式硬度計基準では11~15mmである。
なお、本実施例に示す沈殿分離槽20には、後述するように、沈殿分離した汚泥を収容し、オゾンを供給して汚泥を分解する汚泥処理槽85が併設されている(詳細は後述する)。
The covered soil layer 25 is formed by mixing the total volume of decomposed granite soil with 75 to 80%, humus with 10 to 15%, charcoal with 5 to 10%, and pumice with 5 to 10%. The effective diameter of the decomposed granite soil is 0.075 to 0.25 mm, and the water content of the decomposed granite soil is 11 to 14%. The hardness of the covered soil layer 25 is 11 to 15 mm according to the Yamanaka hardness tester standard.
As will be described later, the sedimentation separation tank 20 shown in this embodiment is provided with a sludge treatment tank 85 that accommodates the sludge separated by sedimentation and supplies ozone to decompose the sludge (details will be described later). ).

沈殿分離槽20を通過した処理水は接触曝気槽30に供給される。本実施例に基づく接触曝気槽30は、下部に設置された散気管から微細気泡状態の酸素を供給する。接触曝気槽30内に棲息する硝酸菌は、この供給された酸素を用いて流入水中のアンモニア態窒素を硝酸態窒素に変換する。また、接触曝気槽30の内部には有機物の捕捉性のよい微生物担体が充填されており槽内微生物の活性化を促進する。ここで微生物担体は、比表面積と微細気泡が豊富に形成された発泡担体を用いる。 The treated water that has passed through the settling separation tank 20 is supplied to the contact aeration tank 30. The contact aeration tank 30 based on this embodiment supplies oxygen in the state of fine bubbles from a diffuser tube installed at the lower part. The nitrifying bacteria living in the contact aeration tank 30 use the supplied oxygen to convert ammonia nitrogen in the inflow water into nitrate nitrogen. Further, the inside of the contact aeration tank 30 is filled with a microbial carrier having a good ability to capture organic substances, which promotes the activation of microorganisms in the tank. Here, as the microbial carrier, a foamed carrier having a specific surface area and abundant fine bubbles is used.

接触曝気槽30を通過した処理水は、濾過沈殿槽40に送られる。本実施例に基づく濾過沈殿槽40は接触曝気槽30を通過した処理水に含まれている微細浮遊物質を濾過する。また、濾過沈殿槽40は処理水に含まれている汚泥を沈殿安定化させ固形物を除去する抑制的機能を果たす。濾過沈殿槽40は高酸素濃度の処理水を原水槽10の散水管14に返送する。 The treated water that has passed through the contact aeration tank 30 is sent to the filtration settling tank 40. The filtration settling tank 40 based on this embodiment filters fine suspended solids contained in the treated water that has passed through the contact aeration tank 30. In addition, the filtration settling tank 40 fulfills a suppressive function of stabilizing the sludge contained in the treated water by settling and removing solid matter. The filtration settling tank 40 returns the treated water having a high oxygen concentration to the sprinkler pipe 14 of the raw water tank 10.

そして濾過沈殿槽40は、接触曝気槽30を通過した処理水のpHを調整する。濾過沈殿槽40は貝殻類を濾材として用い、貝殻類のカルシウムにより処理水のpHを調整する。これは、接触曝気槽30と濾過沈殿槽40で硝酸化反応が進行するとアルカリが消費され処理水のpHが低くなるので濾過沈殿槽40で貝殻類のカルシウムが処理水にアルカリを補充して酸性化を防止する。 Then, the filtration settling tank 40 adjusts the pH of the treated water that has passed through the contact aeration tank 30. The filtration settling tank 40 uses shells as a filter medium, and adjusts the pH of the treated water with calcium from the shells. This is because when the nitrate reaction proceeds in the contact aeration tank 30 and the filtration settling tank 40, the alkali is consumed and the pH of the treated water becomes low. Prevents the change.

濾過沈殿槽40を通過した処理水は、脱色殺菌槽45に送られる。本実施例に基づく脱色殺菌槽45は、濾過沈殿槽40から供給された処理水を一定時間貯蔵する間、オゾンを吹き込み処理水に含まれる有害病原菌を殺菌する。このために本実施例においては、オゾン発生器(非図示)とオゾン溶存器(非図示)を利用し、処理水にマイクロバブルを供給して処理水内のオゾン溶解度を高め、脱色殺菌槽45に貯蔵された有害病原菌を効果的に殺菌すると同時に脱色作用も行う。 The treated water that has passed through the filtration settling tank 40 is sent to the decolorization sterilization tank 45. The decolorization sterilization tank 45 based on this embodiment blows ozone to sterilize harmful pathogens contained in the treated water while the treated water supplied from the filtration settling tank 40 is stored for a certain period of time. Therefore, in this embodiment, an ozone generator (not shown) and an ozone solubilizer (not shown) are used to supply microbubbles to the treated water to increase the ozone solubility in the treated water, and the decolorization sterilization tank 45 It effectively sterilizes harmful pathogens stored in the water and at the same time decolorizes.

次いで、脱色殺菌槽45を通過した処理水は、流量調整槽50に送られる。本実施例に基づく流量調整槽50は、脱色殺菌槽45から供給された処理水を貯蔵しながら、後述する土壌処理槽60の単位処理量に相応する一定量を土壌処理槽60に間欠的に送水する。 Next, the treated water that has passed through the decolorization sterilization tank 45 is sent to the flow rate adjusting tank 50. The flow rate adjusting tank 50 based on this embodiment intermittently supplies a certain amount corresponding to the unit treatment amount of the soil treatment tank 60, which will be described later, to the soil treatment tank 60 while storing the treated water supplied from the decolorization sterilization tank 45. Send water.

本実施例に基づく土壌処理槽60は、流量調整槽50を通過した処理水を高度処理化するものであり、処理水に含まれる有機物質、化学物質および浮遊物質を効果的に低減することができる。また、土壌処理槽60は処理水に含まれる色素成分を吸着する。土壌処理槽60は、加圧による多段膜処理方式ではなく重力浸透式であるため、省エネ性に優れ維持管理が容易である。 The soil treatment tank 60 based on this embodiment is for highly treating the treated water that has passed through the flow rate adjusting tank 50, and can effectively reduce organic substances, chemical substances and suspended solids contained in the treated water. can. Further, the soil treatment tank 60 adsorbs the pigment component contained in the treated water. Since the soil treatment tank 60 is a gravity permeation type rather than a multi-stage membrane treatment method by pressurization, it is excellent in energy saving and easy to maintain.

図4に示しているように、土壌処理槽60は、流量調整槽50から処理水が供給される散水管61と、散水管61の下部に配置され処理水が浸透し浄化される土壌ブロック65と、土壌ブロック65の間に配置され処理水が通過する通水層63と、土壌ブロック65により浄化された処理水が排出される排出口69を含む。 As shown in FIG. 4, the soil treatment tank 60 includes a sprinkler pipe 61 to which the treated water is supplied from the flow rate adjusting tank 50 and a soil block 65 arranged below the sprinkler pipe 61 to permeate and purify the treated water. A water passage layer 63 arranged between the soil blocks 65 and through which the treated water passes, and a discharge port 69 through which the treated water purified by the soil block 65 is discharged are included.

散水管61は、土壌処理槽60の上部に配置され、ポンプ(非図示)により流量調整槽50から送られてきた処理水を下方に均等に散水する。散水管61は中空管であり、流量調整槽50から供給された処理水が下方に落下されるように複数の排出孔が長さ方向に所定の間隔で配置されている。 The sprinkler pipe 61 is arranged in the upper part of the soil treatment tank 60, and the treated water sent from the flow rate adjusting tank 50 by a pump (not shown) is evenly sprinkled downward. The sprinkler pipe 61 is a hollow pipe, and a plurality of discharge holes are arranged at predetermined intervals in the length direction so that the treated water supplied from the flow rate adjusting tank 50 is dropped downward.

散水管61は、最上部に位置した土壌ブロック65の上段に水平方向に縦列に並んで複数系列配置されている。このような散水管61は、各段通水層の間に設置することも可能である。上記の散水管61から散水された処理水は、下部に配置された土壌ブロック65を透過しながら浄化される。 A plurality of sprinkler pipes 61 are arranged in a row in a horizontal row on the upper stage of the soil block 65 located at the uppermost part. Such a sprinkler pipe 61 can also be installed between the water flow layers of each stage. The treated water sprinkled from the sprinkler pipe 61 is purified while permeating through the soil block 65 arranged at the bottom.

前述したように、土壌ブロック65は土壌処理槽60の内部に水平方向に並んで複数配置され、処理土壌層62を形成する。続いて処理土壌層62を全て覆うように、一定高さの通水層63を敷設する。その後、通水層63上に再度、処理土壌層62を水平方向に配置する。このような処理土壌層62と通水層63の敷設過程を反復実施することで、土壌ブロック65が多段に積層された汚水処理装置が完成する。 As described above, a plurality of soil blocks 65 are arranged horizontally side by side inside the soil treatment tank 60 to form the treated soil layer 62. Subsequently, a water flow layer 63 having a constant height is laid so as to cover the entire treated soil layer 62. Then, the treated soil layer 62 is arranged horizontally again on the water passage layer 63. By repeatedly laying the treated soil layer 62 and the water flow layer 63, a sewage treatment device in which the soil blocks 65 are laminated in multiple stages is completed.

一方、土壌処理槽60は、多段に積層された処理土壌層62の間にブロワーから空気を供給することで土壌ブロック65内に棲息する好気性微生物に酸素を供給する。土壌ブロック内に棲息する土壌微生物は、処理水に残っている有機物を餌とし結果的に生物学的酸素要求量(BOD)、化学的酸素要求量(COD)、浮遊物質(SS)濃度を低減し、また、処理水の色素成分を吸着する。即ち、土壌ブロック65は濾過作用により有機物を補足し土壌微生物に餌を提供する。 On the other hand, the soil treatment tank 60 supplies oxygen to aerobic microorganisms living in the soil block 65 by supplying air from a blower between the treated soil layers 62 stacked in multiple stages. The soil microorganisms that live in the soil block feed on the organic substances remaining in the treated water, resulting in reduction of biological oxygen demand (BOD), chemical oxygen demand (COD), and suspended solids (SS) concentration. Also, it adsorbs the pigment component of the treated water. That is, the soil block 65 supplements organic matter by a filtering action and provides food to soil microorganisms.

濾過または吸着作用は、後述する土壌ブロック65を構成する混合土壌67が担当しており、土壌ブロック65の主な浄化作用は、土壌ブロック65に棲息する微生物が行う有機物の分解作用である。 The mixed soil 67 constituting the soil block 65, which will be described later, is in charge of the filtration or adsorption action, and the main purification action of the soil block 65 is the decomposition action of organic matter performed by the microorganisms living in the soil block 65.

土壌ブロック65は、土壌ブロック枠66と土壌ブロック枠66内に充填された混合土壌67と、混合土壌67を包んで処理水が透過される不織布68を含む。処理土壌層62は、混合土壌67をブロック化(一体化)し、複数個水平に配置された処理槽である。 The soil block 65 includes a soil block frame 66, a mixed soil 67 filled in the soil block frame 66, and a non-woven fabric 68 that wraps the mixed soil 67 and allows the treated water to permeate. The treated soil layer 62 is a treatment tank in which the mixed soil 67 is blocked (integrated) and a plurality of them are horizontally arranged.

土壌ブロック枠66は、内部に混合土壌67が充填された空間を提供する。本実施例に基づく土壌ブロック枠66は、上部が解放された直6面体形状として図示されているが、本発明の権利範囲はこれに限定されるものではなく、多様な形状を持つことができる。そして、土壌ブロック枠66の内部に不織布68を用意し、不織布68が混合土壌67を包むことで、混合土壌67が土壌ブロック枠66の外部に流出することを防止する。 The soil block frame 66 provides a space filled with the mixed soil 67 inside. The soil block frame 66 based on the present embodiment is shown as a straight hexahedron shape with an open upper portion, but the scope of rights of the present invention is not limited to this, and can have various shapes. .. Then, the non-woven fabric 68 is prepared inside the soil block frame 66, and the non-woven fabric 68 wraps the mixed soil 67 to prevent the mixed soil 67 from flowing out of the soil block frame 66.

また、不織布68を透過した処理水は、該当土壌ブロック65の下部に配置された別の土壌ブロック65、あるいは通水層63に伝達される。このように、土壌ブロック枠66の内部に不織布68を敷設し、不織布68に混合土壌67が充填されることによって土壌ブロック65が製造される。 Further, the treated water that has permeated the nonwoven fabric 68 is transmitted to another soil block 65 arranged under the corresponding soil block 65 or a water passage layer 63. In this way, the non-woven fabric 68 is laid inside the soil block frame 66, and the mixed soil 67 is filled in the non-woven fabric 68 to manufacture the soil block 65.

本実施例における土壌ブロック65は、土壌処理槽60の内部に高さ方向に9層積層されるよう図示されているが、本発明の権利範囲がこれによって限定されるものではない。 The soil block 65 in the present embodiment is shown so that nine layers are laminated in the height direction inside the soil treatment tank 60, but the scope of rights of the present invention is not limited thereto.

土壌処理槽60の単位処理量と浄化能力を効果的に高める為には、混合土壌67の組成と混合土壌67の母材となる真砂土の有効径および含水率と混合土壌67の硬度が最適化されねばならない。本実施例における混合土壌67は、真砂土、腐葉土、木炭及び軽石で構成される。 In order to effectively increase the unit treatment amount and purification capacity of the soil treatment tank 60, the composition of the mixed soil 67, the effective diameter and moisture content of the decomposed granite soil as the base material of the mixed soil 67, and the hardness of the mixed soil 67 are optimal. Must be transformed. The mixed soil 67 in this example is composed of decomposed granite soil, humus soil, charcoal and pumice.

真砂土は、混合土壌67の母材であり透水性に優れ粒径管理が容易である。
腐葉土は、土壌微生物の生息空間を提供すると同時に、土壌微生物の餌となる。腐葉土は2~3か月が経過すると土壌微生物によって完全に分解され、分解された腐葉土は混合土壌67に空隙を提供する。
Decomposed granite soil is the base material of the mixed soil 67, has excellent water permeability, and is easy to control the particle size.
Humus provides a habitat for soil microorganisms and at the same time feeds on soil microorganisms. The humus is completely decomposed by soil microorganisms after 2 to 3 months, and the decomposed humus provides voids in the mixed soil 67.

軽石は、混合土壌67の水分を調整する役割を果たす。軽石は豊富な空隙を保有しており、混合土壌内の水分が多い場合、一定量の水分は軽石に貯蔵され、混合土壌67が乾燥した場合は軽石に貯蔵された水分を放出することで、混合土壌内の水分を一定に維持する。また、このような軽石の機能を通じて、真砂土がぬかるむ現象を回避することができる。 Pumice stones serve to regulate the water content of the mixed soil 67. The pumice stone has abundant voids, and when the water content in the mixed soil is high, a certain amount of water is stored in the pumice stone, and when the mixed soil 67 is dry, the water stored in the pumice stone is released. Keep the moisture in the mixed soil constant. In addition, through the function of such pumice stones, it is possible to avoid the phenomenon that decomposed granite soil becomes muddy.

木炭は、混合土壌67に透水性と通気性を提供する役割を果たすと同時に、脱色・脱臭・脱リンの機能を持っている。 Charcoal serves to provide water permeability and breathability to the mixed soil 67, and at the same time, has decolorization, deodorization, and dephosphorization functions.

混合土壌の組成は、全体体積対比で、真砂土75~80%、腐葉土10~15%、木炭5~10%及び軽石5~10%の比率で混合されている。 The composition of the mixed soil is a mixture of decomposed granite soil 75 to 80%, humus soil 10 to 15%, charcoal 5 to 10%, and pumice stone 5 to 10% in terms of the total volume.

腐葉土が混合土壌67の全体体積比10%未満であると、土壌微生物による浄化効果が不足し、15%を超えると腐葉土による空隙が多く形成され、処理土壌層62が沈下する危険性がある。 If the humus soil is less than 10% of the total volume of the mixed soil 67, the purification effect by the soil microorganisms is insufficient, and if it exceeds 15%, many voids are formed by the humus soil, and there is a risk that the treated soil layer 62 will sink.

一方、木炭が、混合土壌67の5%未満であると土壌ブロック65の透水性と通気性が低下するとともに、汚水の色素成分を吸着し脱色・脱臭・脱リンを効果的に達成できなくなり、10%を超過すると経済性が落ちる。 On the other hand, if the amount of charcoal is less than 5% of the mixed soil 67, the water permeability and air permeability of the soil block 65 are lowered, and the pigment component of the sewage is adsorbed, so that decolorization, deodorization and dephosphorization cannot be effectively achieved. If it exceeds 10%, the economy will drop.

次に、真砂土の有効径について説明する。
土壌を利用して汚水を浄化する際、汚水を浄化する主体は土壌微生物であるが、処理量を決定する因子は土壌の粒径および間隙率である。
Next, the effective diameter of decomposed granite soil will be described.
When purifying sewage using soil, soil microorganisms are the main constituents of purifying sewage, but the factors that determine the amount of treatment are the particle size and porosity of the soil.

土壌間隙を通過する流体の透水性は、土壌の粒度分布に大きな影響を受ける。土壌の有効径は、通過質量百分率の10%に該当する粒径を指し、土壌の透水係数は有効径(D10)により決定される。より正確には、土壌の透水係数は有効径D10の二乗に比例する。 The permeability of the fluid passing through the soil gap is greatly affected by the particle size distribution of the soil. The effective diameter of the soil refers to the particle size corresponding to 10% of the passing mass percentage, and the hydraulic conductivity of the soil is determined by the effective diameter (D 10 ). More precisely, the hydraulic conductivity of soil is proportional to the square of the effective diameter D 10 .

真砂土の有効径は、一時的には原水の水質、計画処理量、単位処理量を考慮し決定されるが、これと同時に混合土壌67の配合条件、材質条件、土壌ブロックの積層数条件等、多様な条件における土壌処理槽60の設計条件を考慮して決定されねばならない。 The effective diameter of decomposed granite soil is temporarily determined by considering the quality of raw water, planned treatment amount, unit treatment amount, but at the same time, the mixing conditions, material conditions, soil block stacking number conditions, etc. of the mixed soil 67, etc. , Must be determined in consideration of the design conditions of the soil treatment tank 60 under various conditions.

このため、本出願人は、下記の表1のような条件で実験を行った。下記の表1は、混合土壌67の配合条件、材質条件、土壌ブロックの積層数条件と多様な条件下における多様な真砂土の有効径を適用して実験を行った。 Therefore, the applicant conducted the experiment under the conditions shown in Table 1 below. In Table 1 below, experiments were conducted by applying various effective diameters of decomposed granite soil under various conditions such as the compounding conditions of the mixed soil 67, the material conditions, and the number of layers of soil blocks.

Figure 2022054535000002
Figure 2022054535000002

また、下記の表2は真砂土の粒径による通過質量(%)を表している。
表2および図5を参照すると、通過質量10%範囲に属することが好ましく通過質量10%範囲内に該当する真砂土の有効径は、0.075~0.250mmである。したがって真砂土の最適有効径は0.075~0.250mmに設計することが好ましい。
In addition, Table 2 below shows the passing mass (%) according to the particle size of decomposed granite soil.
With reference to Table 2 and FIG. 5, the effective diameter of decomposed granite soil, which preferably belongs to the range of 10% passing mass and falls within the range of 10% passing mass, is 0.075 to 0.250 mm. Therefore, it is preferable to design the optimum effective diameter of decomposed granite soil to be 0.075 to 0.250 mm.

Figure 2022054535000003
Figure 2022054535000003

次に、本実施例による真砂土の含水率について説明する。
本実施例による混合土壌67を構成する真砂土は、11~14%の含水率を持っていることが望ましい。真砂土の含水率が11%より小さいか14%を越えた場合、真砂土、軽石、木炭の一体化がよく行われなくなり、11~14%の含水率を通じて混合土壌67との一体化がなされるとともに、汚水の移動を可能にする混合土壌67内の間隙を確保することができる。
Next, the moisture content of decomposed granite soil according to this example will be described.
It is desirable that the decomposed granite soil constituting the mixed soil 67 according to this embodiment has a water content of 11 to 14%. When the moisture content of decomposed granite soil is less than 11% or exceeds 14%, the decomposed granite soil, pumice stone, and charcoal are not well integrated, and the decomposed granite soil is integrated with the mixed soil 67 through the moisture content of 11-14%. At the same time, it is possible to secure a gap in the mixed soil 67 that enables the movement of sewage.

次に、本実施例による混合土壌67の硬度について説明する。
本実施例による土壌ブロック65を構成する混合土壌67は、一定水準の硬度が要求される。混合土壌67の硬度は、混合土壌67の締固め作業によって得られる。即ち、土壌ブロック65内に混合土壌67を充填した状態で混合土壌67を一定強度に締固め、混合土壌67に硬度を与えることができる。
Next, the hardness of the mixed soil 67 according to this example will be described.
The mixed soil 67 constituting the soil block 65 according to this embodiment is required to have a certain level of hardness. The hardness of the mixed soil 67 is obtained by compacting the mixed soil 67. That is, the mixed soil 67 can be compacted to a constant strength in a state where the mixed soil 67 is filled in the soil block 65 to give hardness to the mixed soil 67.

締固めを行わない場合、即ち、混合土壌67の硬度が低い場合は、自然圧密により処理土壌層62の沈下が発生する。そして、処理土壌層62の沈下は、通水層63を含む全体土壌処理槽60の沈下を誘発する。半面、締固めを過度に行った場合、混合土壌67の硬度が基準よりも大きいと、空隙が閉塞され透水性と通気性が悪化し、浄化が行われなくなる。 When compaction is not performed, that is, when the hardness of the mixed soil 67 is low, subsidence of the treated soil layer 62 occurs due to natural consolidation. Then, the subsidence of the treated soil layer 62 induces the subsidence of the entire soil treatment tank 60 including the water passage layer 63. On the other hand, when the compaction is excessively performed, if the hardness of the mixed soil 67 is larger than the standard, the voids are closed, the water permeability and the air permeability are deteriorated, and the purification is not performed.

このような点を考慮し、本実施例により混合土壌67の硬度は、山中式硬度計基準で11~15mmに設計することが望ましい。山中式硬度計を利用した混合土壌67の硬度測定は、山中式硬度計を混合土壌67に突き刺した後、硬度計に貫入した目盛りを確認して測定することができる。参考として山中式硬度計を利用した硬度測定方法は、土壌の硬度を測定する分野では広く知られている測定方法である。 In consideration of these points, it is desirable to design the hardness of the mixed soil 67 to be 11 to 15 mm based on the Yamanaka hardness tester according to this embodiment. The hardness of the mixed soil 67 using the Yamanaka hardness tester can be measured by piercing the mixed soil 67 with the Yamanaka hardness tester and then confirming the scale penetrating the hardness tester. As a reference, the hardness measuring method using the Yamanaka hardness tester is a widely known measuring method in the field of measuring the hardness of soil.

以下、土壌ブロック65の製造方法を説明する。
まず、土壌ブロック65を製造するために、混合土壌67を準備する。
Hereinafter, a method for producing the soil block 65 will be described.
First, the mixed soil 67 is prepared to produce the soil block 65.

混合土壌67は全体容積比として、真砂土75~80%、腐葉土10~15%、木炭5~10%及び軽石5~10%の比率で配合して準備する。そして混合土壌67を構成する真砂土の有効径は0.075~0.25mmであり、真砂土の含水率は11~14%の条件を満足しなければならない。 The mixed soil 67 is prepared by blending the decomposed granite soil 75 to 80%, the humus soil 10 to 15%, the charcoal 5 to 10%, and the pumice stone 5 to 10% as the total volume ratio. The effective diameter of the decomposed granite soil constituting the mixed soil 67 is 0.075 to 0.25 mm, and the water content of the decomposed granite soil must satisfy the condition of 11 to 14%.

そして、土壌ブロック枠65を準備し、土壌ブロック65内部に不織布68を敷設した後、不織布68内に混合土壌67を充填する。 Then, the soil block frame 65 is prepared, the nonwoven fabric 68 is laid inside the soil block 65, and then the mixed soil 67 is filled in the nonwoven fabric 68.

土壌ブロック65に充填された混合土壌67に対して、締固め作業を行い混合土壌67の硬度が11.0~15.0mmであることを確認して土壌ブロック65を完成させる。 The mixed soil 67 filled in the soil block 65 is compacted, and the hardness of the mixed soil 67 is confirmed to be 11.0 to 15.0 mm to complete the soil block 65.

そして、土壌ブロック65を利用した土壌処理槽60の製造方法は以下の通りである。
土壌処理槽60の内部に支持板としてグレイチング(図示せず)を設置した後、その上に複数の土壌ブロック65を図4のように水平方向に配置して処理土壌層62を形成する。そして、処理土壌層62を全て覆うように一定高さの通水層63を敷設する。通水層63の上に再度処理土壌層62を水平方向に敷設する。このように複数の土壌ブロック65を水平方向に配置し、水平方向に配置された土壌ブロック65類の上に通水層63を敷設する作業を反復実施し、土壌ブロック65が高さ方向に多段積層された土壌処理槽60を完成させる。
The method for manufacturing the soil treatment tank 60 using the soil block 65 is as follows.
After grating (not shown) is installed as a support plate inside the soil treatment tank 60, a plurality of soil blocks 65 are arranged horizontally on the soil block 65 as shown in FIG. 4 to form a treated soil layer 62. Then, a water flow layer 63 having a constant height is laid so as to cover the entire treated soil layer 62. The treated soil layer 62 is laid horizontally on the water flow layer 63 again. In this way, a plurality of soil blocks 65 are arranged in the horizontal direction, and the work of laying the water passage layer 63 on the soil blocks 65 arranged in the horizontal direction is repeatedly carried out, and the soil blocks 65 are multi-staged in the height direction. The laminated soil treatment tank 60 is completed.

一方、土壌ブロック65類を高さ方向に多段に積層する途中、通水層63の間に空気を供給する散気管64が配置される。最上段土壌ブロック65の上部に処理水を下方に均等に散水する散水管61を設置する。このように土壌ブロック65を用いて形成された土壌処理槽60の効果を以下に実施例を通じて述べる。 On the other hand, in the middle of stacking the soil blocks 65 in multiple stages in the height direction, an air diffuser pipe 64 for supplying air is arranged between the water passage layers 63. A sprinkler pipe 61 for evenly sprinkling the treated water downward is installed on the upper part of the uppermost soil block 65. The effect of the soil treatment tank 60 formed by using the soil block 65 in this way will be described below through Examples.

<実施例1:実験方法>
本実施例による土壌ブロック65を利用した原水に対する浄化処理を実施し、生物学的酸素要求量(BOD)、化学的酸素要求量(COD)、浮遊物質(SS)、リン、窒素及び、大腸菌の除去能を評価した。
<Example 1: Experimental method>
Purification treatment of raw water using the soil block 65 according to this example was carried out, and biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), phosphorus, nitrogen, and Escherichia coli were treated. The removal ability was evaluated.

本実施例の土壌ブロック65は、ステンレス製土壌ブロック枠66を利用し不織布68で混合土壌67を包む。土壌ブロック65はW200 x L400 x H50mmの大きさを持つように設計され、土壌処理槽60の全体寸法は、W1.30 x L0.80 x H2.00mに設計した。土壌ブロック65類の間の通水層63には軽石を敷設した。ここに、全体処理土壌層62は9層を積層した。本実施例による混合土壌67は、全体容積対比真砂土75%、腐葉土10%、木炭10%、軽石5%で構成されている。原水は、BOD20.0mg/l、SS10.0mg/l、T-P3.0mg/l、T-N18.3mg/lの性状をもつ2次処理水を利用した。散水期間は2017年8月20日から12月16日であり土壌処理槽60に7.0~10.0m3/dayの原水を供給した。また、土壌処理槽60に7.0L/m2.minの空気を24時間連続して供給した。 The soil block 65 of this embodiment uses a stainless steel soil block frame 66 and wraps the mixed soil 67 with a non-woven fabric 68. The soil block 65 was designed to have a size of W200 x L400 x H50 mm, and the overall dimensions of the soil treatment tank 60 were designed to be W1.30 x L0.80 x H2.00 m. Pumice stones were laid in the water flow layer 63 between the soil blocks 65. Here, 9 layers of the whole treated soil layer 62 were laminated. The mixed soil 67 according to this example is composed of decomposed granite soil 75%, humus soil 10%, charcoal 10%, and pumice stone 5% in comparison with the total volume. As the raw water, secondary treated water having the properties of BOD 20.0 mg / l, SS 10.0 mg / l, T-P 3.0 mg / l, and T-N 18.3 mg / l was used. The watering period was from August 20 to December 16, 2017, and 7.0 to 10.0 m 3 / day of raw water was supplied to the soil treatment tank 60. In addition, 7.0 L / m 2. min of air was continuously supplied to the soil treatment tank 60 for 24 hours.

<実施例2:単位汚水処理量>
108日間土壌処理槽60を運転した結果、土壌処理槽60の日平均処理量、すなわち単位処理量は、8.4m3/m2.dayであった。土壌処理槽60の期間別処理水量は下記の表3の通りである。
<Example 2: Unit sewage treatment amount>
As a result of operating the soil treatment tank 60 for 108 days, the daily average treatment amount of the soil treatment tank 60, that is, the unit treatment amount was 8.4 m 3 / m 2 .day. The amount of treated water for each period of the soil treatment tank 60 is shown in Table 3 below.

Figure 2022054535000004
Figure 2022054535000004

<実施例3:一般項目に対する水質分析>
水温、pH、ORP(Oxidation-Reduction Potential)は、原水と処理水は、全て似たような数値を示した。溶存酸素量(DO)は原水より処理水の方が高い数値を示したが、これは土壌処理槽60に7.0L/m2.minの空気を24時間連続して供給したことに起因する。
<Example 3: Water quality analysis for general items>
The water temperature, pH, and ORP (Oxidation-Reduction Potential) showed similar values for raw water and treated water. The dissolved oxygen content (DO) was higher in the treated water than in the raw water, which is due to the continuous supply of 7.0 L / m 2. min of air to the soil treatment tank 60 for 24 hours. ..

<実施例4:生物学的酸素要求量(BOD)除去能>
下記の表4は、土壌処理槽60のBOD除去能を表す。
<Example 4: Biochemical oxygen demand (BOD) removing ability>
Table 4 below shows the BOD removal ability of the soil treatment tank 60.

Figure 2022054535000005
Figure 2022054535000005

表4及び図6を参照すると、初期に7.5m3/m2dayの負荷量で稼働した結果、土壌処理槽60は安定的なBOD除去能を示した。以後、9月19日に負荷量を8.5m3/m2dayに増加して約5週間実験を継続した結果、BOD除去能は2.0mg/l以下を示し、目標値(5.0mg/L)を満足した。次いで、10月16日に負荷量を10m3/m2dayに上げ4週間実験を継続した結果、BOD除去能は2mg/l以下を示し目標値(5mg/l)を満足した。 Referring to Table 4 and FIG. 6, the soil treatment tank 60 showed a stable BOD removal ability as a result of operating at an initial load of 7.5 m 3 / m 2 day. After that, on September 19, the load was increased to 8.5 m 3 / m 2 day and the experiment was continued for about 5 weeks. As a result, the BOD removal ability was 2.0 mg / l or less, which was the target value (5.0 mg). / L) was satisfied. Then, on October 16, the load was increased to 10 m 3 / m 2 day and the experiment was continued for 4 weeks. As a result, the BOD removing ability was 2 mg / l or less, and the target value (5 mg / l) was satisfied.

一方、原水の温度とBOD除去能間の関係をみると、夏から秋にかけて気温と水温が比較的高く、土壌微生物の生物活性が高く維持される条件下では、負荷量が10m3/m2dayであり、原水のBODが20mg/lを超えたとしても処理水のBODは5mg/l以下を達成した。そして、水温が15度よりも低い冬季では土壌微生物の生物活性が低下し、処理水のBODは目標値である5mg/lを超える結果が現れた。しかし、冬季の場合でも、原水のBODが20mg/lを維持されれば処理水のBODを目標値に合わせることができると推測される。また、土壌処理槽60が地下に埋設され外部温度による影響が小さくなる場合では、冬季においても処理水のBODを目標値に合わせられることが期待される。 On the other hand, looking at the relationship between the temperature of raw water and the ability to remove BOD, the load is 10 m 3 / m 2 under the conditions where the temperature and water temperature are relatively high from summer to autumn and the biological activity of soil microorganisms is maintained high. It was day, and even if the BOD of the raw water exceeded 20 mg / l, the BOD of the treated water achieved 5 mg / l or less. In winter, when the water temperature was lower than 15 degrees Celsius, the biological activity of soil microorganisms decreased, and the BOD of the treated water exceeded the target value of 5 mg / l. However, even in winter, it is presumed that the BOD of treated water can be adjusted to the target value if the BOD of raw water is maintained at 20 mg / l. Further, when the soil treatment tank 60 is buried underground and the influence of the external temperature is small, it is expected that the BOD of the treated water can be adjusted to the target value even in winter.

一方、負荷量とBOD除去能間の関係を見てみると、負荷量が7.5~10m3/m2dayに増加しても、BOD除去能は90%以上を維持できることが確認された。 On the other hand, looking at the relationship between the load amount and the BOD removal ability, it was confirmed that the BOD removal ability can be maintained at 90% or more even if the load amount increases to 7.5 to 10 m 3 / m 2 day. ..

負荷量10m3/m2dayに設定した後、11月下旬まではBOD除去能には大きな影響はなく安定的な処理水質を維持できた。しかし、12月に入りBOD除去能が低下する傾向が見えたがこれは主に、低温による生物活性の低下が原因であると判断される。 After setting the load to 10 m 3 / m 2 day, stable treated water quality could be maintained until the end of November without any significant effect on the BOD removal ability. However, in December, the BOD removal ability tended to decrease, which is considered to be mainly due to the decrease in biological activity due to low temperature.

<実施例5:化学的酸素要求量(COD)及び浮遊物濃度(SS)除去能>
図7は、化学的酸素要求量(COD)除去能を表し、原水の化学的酸素要求量(COD)は30~40mg/lでありBOD除去能と同じように冬季には除去効率が低くなった。図8を参照すると、運転開始後11月11日まで原水の浮遊物(SS)濃度は90%以上除去されたが、冬季の場合、原水の浮遊物(SS)濃度は約70%に低下した。
<Example 5: Chemical oxygen demand (COD) and suspended matter concentration (SS) removing ability>
FIG. 7 shows the chemical oxygen demand (COD) removing ability, and the chemical oxygen demand (COD) of raw water is 30 to 40 mg / l, and the removing efficiency becomes low in winter like the BOD removing ability. rice field. Referring to FIG. 8, the concentration of suspended matter (SS) in raw water was removed by 90% or more until November 11 after the start of operation, but in winter, the concentration of suspended matter (SS) in raw water decreased to about 70%. ..

負荷量とCODおよびSS除去能間の関係を見ると、BOD除去能と同じように負荷量が7.5~10m3/m2dayに増加した場合でも安定的にCODおよびSS除去能特性を示した。 Looking at the relationship between the load amount and the COD and SS removal ability, the COD and SS removal ability characteristics are stably maintained even when the load amount increases to 7.5 to 10 m 3 / m 2 day, similar to the BOD removal ability. Indicated.

<実施例6:リンの除去能>
下記の表5は、負荷量による土壌処理槽60の総リン(T-P)除去量及び除去率を表しており、図9は測定機関によるに土壌処理槽60の総リン(T-P)除去量を表している。
<Example 6: Phosphorus removing ability>
Table 5 below shows the total phosphorus (TP) removal amount and removal rate of the soil treatment tank 60 according to the load amount, and FIG. 9 shows the total phosphorus (TP) removal amount of the soil treatment tank 60 according to the measuring institution. It represents the amount of removal.

Figure 2022054535000006
Figure 2022054535000006

表5を参照すると、負荷量が8.5m3/m2day未満の場合、総リン(T-P)除去率は10~20%であったが負荷量が10m3/m2day以上になる場合、総リン(T-P)はほとんど除去されなかった。 Referring to Table 5, when the load was less than 8.5 m 3 / m 2 day, the total phosphorus (TP) removal rate was 10 to 20%, but the load was 10 m 3 / m 2 day or more. If so, total phosphorus (TP) was scarcely removed.

また、図9を参照すると10月16日から負荷量を10m3/m2dayを10m3に増加して4週間処理した後再び負荷量を7m3/m2dayに減少して処理を行ったが、リンはほとんど除去されなかった。 Also, referring to FIG. 9, from October 16th, the load was increased to 10 m 3 / m 2 day and treated for 4 weeks, and then the load was reduced to 7 m 3 / m 2 day again for treatment. However, little phosphorus was removed.

<実施例7:窒素除去能>
土壌処理槽60の窒素除去能に対する分析を行った。下記の表6は、土壌処理層60の窒素除去能を表した実験結果であり、分析対象窒素項目としては総窒素(T-N)、NH4、NO3を設定した。図10は、測定機関に従う土壌処理槽60の総窒素(T-N)、NH4、NO3除去能を示す実験結果である。
<Example 7: Nitrogen removing ability>
The nitrogen removal ability of the soil treatment tank 60 was analyzed. Table 6 below shows the experimental results showing the nitrogen removing ability of the soil treatment layer 60, and total nitrogen (TN), NH 4 , and NO 3 were set as the nitrogen items to be analyzed. FIG. 10 shows the experimental results showing the total nitrogen (TN), NH 4 , and NO 3 removal ability of the soil treatment tank 60 according to the measuring institution.

Figure 2022054535000007
Figure 2022054535000007

土壌処理槽60の窒素除去能実験を行った結果、表6及び図10を参照すると、原水内のアンモニア態窒素(NH4-N)および亜硝酸態窒素(NO2-N)は大部分硝酸態窒素(NO3-N)に変換されたことを確認した。 As a result of conducting a nitrogen removal capacity experiment of the soil treatment tank 60, referring to Table 6 and FIG. 10, most of the ammonium nitrogen (NH4-N) and nitrite nitrogen (NO 2 -N) in the raw water are nitrate. It was confirmed that it was converted to nitrogen (NO 3 -N).

原水内のアンモニア態窒素(NH4-N)及び亜硝酸態窒素は(NO2-N)は硝酸態窒素(NO2-N)への硝酸化反応を経由するが、最終的に硝酸態窒素(NO2-N)は、窒素ガス(N2)に変換される。しかし、本実験においては硝酸化反応が安定的に進行されることは確認をしたが、窒素ガス(N2)への脱窒反応は微々たるものであり、処理水には硝酸態窒素(NO2-N)が多量に含まれていることが確認された。 Ammonia nitrogen (NH 4 -N) and nitrite nitrogen in raw water (NO 2 -N) go through the nitrate reaction to nitrate nitrogen (NO 2 -N), but finally nitrate nitrogen. (NO 2 -N) is converted to nitrogen gas (N 2 ). However, although it was confirmed that the nitrate reaction proceeded stably in this experiment, the denitrification reaction to nitrogen gas (N 2 ) was insignificant, and nitrate nitrogen (NO) was used in the treated water. It was confirmed that 2 -N) was contained in a large amount.

このように原水と処理水の総窒素は負荷量に関係なく似た数値を示した。表6及び図10に示したようにアンモニアの除去率は89.4%と非常に高い数値を示している。これは処理水の溶存酸素量(DO)が毎分7mg/l以上あることに起因しており、土壌処理槽60の運転条件が散気管による外部空気が供給され、高い好機条件下により硝酸化反応が活発に進行したことによるものである。 In this way, the total nitrogen in the raw water and the treated water showed similar values regardless of the load. As shown in Table 6 and FIG. 10, the removal rate of ammonia is 89.4%, which is a very high value. This is due to the fact that the dissolved oxygen content (DO) of the treated water is 7 mg / l or more per minute, and the operating conditions of the soil treatment tank 60 are that external air is supplied by the diffuser pipe and nitrification is performed under high opportunity conditions. This is due to the active progress of the reaction.

一方、硝酸態窒素が窒素ガスに変換されるためには、嫌気性微生物による脱窒反応が要求されるが、脱窒反応を起こすためには土壌処理層60内は嫌気的になり、脱窒に必要な炭素源(水素供与体)が要求される。 On the other hand, in order to convert nitrate nitrogen into nitrogen gas, a denitrification reaction by anaerobic microorganisms is required, but in order to cause a denitrification reaction, the inside of the soil treatment layer 60 becomes anaerobic and denitrification. The necessary carbon source (hydrogen donor) is required.

実験中盤期までは好気条件に形成され、原水の有機物濃度が低く、脱窒反応に必要な条件が整わず、硝酸態窒素(NO2-N)のまま留まり、総窒素濃度はそれほど変化しなかった。実験の後半期すなわち冬季に入り、気温と水温が低下し原水のBOD濃度が高くなり、負荷量が10.0m3/m2dayに増加するにつれ10~15%の総窒素除去が進行した。実験後半期に脱窒反応が一定量進行した理由は以下のように推測される。 Until the middle of the experiment, it was formed under aerobic conditions, the organic matter concentration in the raw water was low, the conditions required for the denitrification reaction were not met, the nitrate nitrogen (NO 2 -N) remained, and the total nitrogen concentration changed so much. I didn't. In the latter half of the experiment, that is, in winter, the total nitrogen removal of 10 to 15% progressed as the air temperature and water temperature decreased, the BOD concentration of raw water increased, and the load increased to 10.0 m 3 / m 2 day. The reason why the denitrification reaction progressed by a certain amount in the latter half of the experiment is presumed as follows.

冬季の場合、水温の低下により原水のBOD値が高くなり、処理されない有機物が脱窒反応に必要な水素供用体として利用されたものと推測される。また原水のSSが土壌処理槽60内部に蓄積されることで負荷量が増加し、土壌処理槽60の内部が一部嫌気条件に変わったものと判断される。 In winter, the BOD value of raw water increases due to the decrease in water temperature, and it is presumed that untreated organic matter was used as a hydrogen supply required for the denitrification reaction. Further, it is determined that the SS of the raw water is accumulated in the soil treatment tank 60, so that the load is increased and the inside of the soil treatment tank 60 is partially changed to the anaerobic condition.

<実施例8:大腸菌除去能>
図11は、水質検査機関による土壌処理槽の大腸菌除去能を表す実験結果である。図11を参照すると、原水の大腸菌群数は300~3600mlであるが、土壌処理槽60の処理水内大腸菌群数は100~1000個/mlを示し、放流水基準をクリアしている。一方、先に述べた土壌処理槽60を長時間運転した場合、目詰りが発生することがあるので、土壌処理槽60は交互運転をしなければならない。つまり、本実施例においては、土壌処理槽60を複数系列設置し交互に使用した。例として、下記の表7のように、3系列の土壌処理槽60を使用する場合は、それぞれの土壌処理槽60は2ヵ月運転後1か月休止する交互運転を行った。表7は土壌処理槽60の運転方式である。
<Example 8: Escherichia coli removing ability>
FIG. 11 shows the experimental results showing the E. coli removing ability of the soil treatment tank by a water quality inspection organization. Referring to FIG. 11, the number of coliform bacteria in the raw water is 300 to 3600 ml, but the number of coliform bacteria in the treated water of the soil treatment tank 60 is 100 to 1000 / ml, which clears the effluent standard. On the other hand, if the soil treatment tank 60 described above is operated for a long time, clogging may occur, so the soil treatment tank 60 must be operated alternately. That is, in this embodiment, a plurality of series of soil treatment tanks 60 were installed and used alternately. As an example, as shown in Table 7 below, when three series of soil treatment tanks 60 were used, each soil treatment tank 60 was operated alternately for two months and then rested for one month. Table 7 shows the operation method of the soil treatment tank 60.

Figure 2022054535000008
Figure 2022054535000008

単位処理量が多い場合や冬季には、集水槽70に循環ポンプ(非図示)を設置して、集水槽70内に貯蔵された処理水を土壌処理槽60に循環させ、処理水を再度浄化処理するとともに、処理水の凍結を防止する。また、冬季の土壌処理槽60の処理能が低下することを防止するよう、土壌処理槽60の外壁に断熱材(非図示)を設置し、土壌微生物の活性が低下することを防止することもできる。 When the unit treatment amount is large or in winter, a circulation pump (not shown) is installed in the water collection tank 70 to circulate the treated water stored in the water collection tank 70 to the soil treatment tank 60 to purify the treated water again. Treat and prevent freezing of treated water. In addition, in order to prevent the treatment capacity of the soil treatment tank 60 from decreasing in winter, a heat insulating material (not shown) may be installed on the outer wall of the soil treatment tank 60 to prevent the activity of soil microorganisms from decreasing. can.

土壌処理槽60を通過した処理水は、土壌処理槽60の下部に設置された排出口69を通じて集水槽70に送られる。集水槽70に貯蔵された処理水は、給水装置Pを通じてトイレTが備えられたトイレ棟に設置された給水ユニットに送られ、トイレ棟内の便器の洗浄水に使用される。 The treated water that has passed through the soil treatment tank 60 is sent to the water collection tank 70 through the discharge port 69 installed at the bottom of the soil treatment tank 60. The treated water stored in the water collecting tank 70 is sent to a water supply unit installed in the toilet building provided with the toilet T through the water supply device P, and is used as flush water for the toilet bowl in the toilet building.

一方、集水槽70に貯蔵された処理水は、トイレ棟に送られる前に処理水の色度をより向上させるため、本実施例においては集水槽70に貯蔵された処理水を活性炭濾過筒75に送り、活性炭濾過筒75で処理水に残っている色素成分と浮遊物を吸着・濾過される。 On the other hand, in order to further improve the color of the treated water before being sent to the toilet building, the treated water stored in the water collecting tank 70 is used as the treated water stored in the water collecting tank 70 in the activated carbon filter tube 75 in this embodiment. The activated carbon filter tube 75 adsorbs and filters the pigment components and suspended matter remaining in the treated water.

本実施例による活性炭濾過筒75は処理水を脱色する。処理水は、土壌処理槽60を経由しながら処理水に含まれている色素成分が土壌ブロック65により吸着されて脱色が行われるが、本実施例においては処理水に残存している色素成分および浮遊物をより除去し、処理水の色度を向上させるよう活性炭濾過筒75を設置した。活性炭濾過筒75は活性炭及びその他の濾材が充填され、処理水に残存する色素成分および浮遊物を活性炭やその他の濾材により吸着と濾過される。 The activated carbon filter tube 75 according to this embodiment decolorizes the treated water. In the treated water, the pigment component contained in the treated water is adsorbed by the soil block 65 and decolorized while passing through the soil treatment tank 60, but in this embodiment, the pigment component remaining in the treated water and the pigment component are performed. An activated carbon filter tube 75 was installed so as to further remove suspended matter and improve the chromaticity of the treated water. The activated carbon filter tube 75 is filled with activated carbon and other filter media, and the pigment components and suspended matter remaining in the treated water are adsorbed and filtered by the activated carbon and other filter media.

活性炭濾過筒75を通過した処理水は、再び集水槽70に送られた後、給水装置Pによりトイレ棟に供給される。活性炭濾過筒75を通過した処理水の水質は、修景用水基準を達成している。 The treated water that has passed through the activated carbon filter tube 75 is sent to the water collecting tank 70 again and then supplied to the toilet building by the water supply device P. The water quality of the treated water that has passed through the activated carbon filter tube 75 has achieved the water quality standard for landscape landscaping.

そして、集水槽70で処理水を貯留するにあたり、集水槽70の貯留容量を超える処理水が供給されると、集水槽70内に設置された水位センサー(図示せず)が余剰水の発生を検出し、余剰水を集水槽70から蒸発槽80に供給する。 Then, when the treated water is stored in the water collecting tank 70, when the treated water exceeding the storage capacity of the water collecting tank 70 is supplied, the water level sensor (not shown) installed in the water collecting tank 70 generates excess water. It is detected and excess water is supplied from the water collecting tank 70 to the evaporation tank 80.

そして、蒸発槽80では、電熱式の蒸発器(図示せず)を利用して集水槽70から供給された余剰水を蒸発させる。 Then, in the evaporation tank 80, the surplus water supplied from the water collecting tank 70 is evaporated by using an electric heating type evaporator (not shown).

一方、沈殿分離槽20で沈殿分離された汚泥は、汚泥処理槽85に供給される。本実施例では、沈殿分離槽20の処理量の約40%程度を定期的に汚泥処理槽85に供給する。汚泥は水分量が95%以上であり、固体分は、ほぼ微生物の死骸で構成されており、5%以下である。汚泥処理槽85内の汚泥は、オゾンの強力な酸化力を利用して分解する。つまり汚泥処理槽85の内部にマイクロサイズのオゾンバブルを供給してオゾンが分解されるときに生成された水酸化イオン(OH-)の強力な酸化力で微生物細胞を破壊して無機物質に変化させる。 On the other hand, the sludge separated by sedimentation in the sedimentation separation tank 20 is supplied to the sludge treatment tank 85. In this embodiment, about 40% of the treatment amount of the sedimentation separation tank 20 is periodically supplied to the sludge treatment tank 85. The sludge has a water content of 95% or more, and the solid content is mostly composed of dead microorganisms and has a water content of 5% or less. The sludge in the sludge treatment tank 85 is decomposed by utilizing the strong oxidizing power of ozone. In other words, a micro-sized ozone bubble is supplied to the inside of the sludge treatment tank 85, and the strong oxidizing power of hydroxide ion (OH-) generated when ozone is decomposed destroys microbial cells and changes to an inorganic substance. Let me.

そして汚泥処理槽85で分解された汚泥は、ポンプ(図示せず)によって沈殿分離槽20に再供給され、好気性微生物の餌となって消化される。 Then, the sludge decomposed in the sludge treatment tank 85 is re-supplied to the settling separation tank 20 by a pump (not shown), and is digested as food for aerobic microorganisms.

このように本発明は、記載された実施例に限定されるのでなく、本発明の思想および権利範囲を超えない程度において、多様な修正及び変更を加えることができる。したがって、このような修正例あるいは変更例などは、本発明の特許請求範囲に属するものである。 As described above, the present invention is not limited to the described examples, and various modifications and modifications can be made to the extent that the idea and the scope of rights of the present invention are not exceeded. Therefore, such amendments or modifications belong to the claims of the present invention.

10 原水槽
20 沈殿分離槽
30 接触曝気槽
40 濾過沈殿槽
45 脱色殺菌槽
50 流量調整槽
60 土壌処理槽
65 土壌ブロック
70 集水槽
75 活性炭濾過筒
80 蒸発槽
85 汚泥処理槽
10 Raw water tank 20 Sedimentation separation tank 30 Contact exposure tank 40 Filtration settling tank 45 Decolorization sterilization tank 50 Flow control tank 60 Soil treatment tank 65 Soil block 70 Water collection tank 75 Activated carbon filter cylinder 80 Evaporation tank 85 Sludge treatment tank

Claims (17)

トイレ棟から供給される汚水を浄化処理する原水槽と、
上記原水槽を経由した処理水が供給され、嫌気条件下にて処理水を浄化し悪臭とスカム及び汚泥の発生を抑制する沈殿分離槽と、
上記沈殿分離槽を経由した処理水が供給され、好機条件下において散気管と微生物担体を利用して処理水を浄化する接触曝気槽と、
上記接触曝気槽を経由した処理水が供給され、浮遊物を濾過し高酸素濃度の処理水を上記原水槽に返送する濾過沈殿槽と、
上記濾過沈殿槽を経由した処理水が供給され、処理水を脱色及び殺菌する脱色殺菌槽と、脱色殺菌槽を経由した処理水が供給される流量調整槽と、
上記流量調整槽を経由した処理水が供給され、処理水に含まれる有機物と化学物質及び浮遊物質を分解し、色素成分を吸着する土壌処理槽と、
上記土壌処理槽を経由した処理水を貯蔵する集水槽と、
給水装置を通じて集水槽内の処理水をトイレ棟に供給する装置とを含んだ
ことを特徴とする土壌式汚水処理システム。
A raw water tank that purifies the sewage supplied from the toilet building,
A sedimentation separation tank in which treated water is supplied via the raw water tank, purifies the treated water under anaerobic conditions, and suppresses the generation of stinks, scum, and sludge.
A contact aeration tank in which treated water is supplied via the precipitation separation tank and the treated water is purified using an air diffuser and a microbial carrier under favorable conditions.
A filtration settling tank in which treated water is supplied via the contact aeration tank, filters floating matter, and returns the treated water having a high oxygen concentration to the raw water tank.
A decolorization sterilization tank in which treated water is supplied via the filtration settling tank to decolorize and sterilize the treated water, and a flow rate adjusting tank in which the treated water is supplied via the decolorizing sterilization tank.
A soil treatment tank in which treated water is supplied via the above flow control tank, decomposes organic substances, chemical substances and suspended solids contained in the treated water, and adsorbs pigment components.
A water collection tank that stores treated water that has passed through the above soil treatment tank,
A soil-type sewage treatment system characterized by including a device that supplies the treated water in the water collection tank to the toilet building through a water supply device.
上記沈殿分離槽は、
下部が汚水に浸っているグレイチングと、
上記グレイチングの上部に汚水に接触するよう設置され、汚水の悪臭を吸収するスカム及び汚泥の発生を抑制する被覆土壌層と、
上記グレイチングの上部に上記被覆土壌層を包み、汚水が透過される不織布を含む
ことを特徴とする請求項1に記載の土壌式汚水処理システム。
The above sedimentation separation tank
Graching whose lower part is submerged in sewage,
A covered soil layer that is installed on the upper part of the above grading so as to come into contact with sewage and suppresses the generation of scum and sludge that absorbs the malodor of sewage.
The soil-type sewage treatment system according to claim 1, wherein the coated soil layer is wrapped in the upper part of the glazing and includes a non-woven fabric through which sewage is permeated.
上記被覆土壌層は、上記沈殿分離槽内の処理水に5~8cm浸っていることを特徴とする請求項2に記載の土壌式汚水処理システム。 The soil-type sewage treatment system according to claim 2, wherein the covered soil layer is immersed in the treated water in the sedimentation separation tank by 5 to 8 cm. 上記被覆土壌層は、全体容積対比が、真砂土75~80%、腐葉土10~15%、木炭5~10%及び軽石5~10%の比率で混合して形成されることを特徴とする請求項2に記載の土壌式汚水処理システム。 The claimed soil layer is characterized in that the total volume is mixed with decomposed granite soil of 75 to 80%, humus soil of 10 to 15%, charcoal of 5 to 10%, and pumice of 5 to 10%. Item 2. The soil-type sewage treatment system according to Item 2. 上記被覆土壌層を構成する真砂土の有効径は、0.075~0.250mmであり、当該真砂土の含水率は11~14%であることを特徴とする請求項4に記載の土壌式汚水処理システム。 The soil formula according to claim 4, wherein the decomposed granite soil constituting the covered soil layer has an effective diameter of 0.075 to 0.250 mm, and the water content of the decomposed granite soil is 11 to 14%. Sewage treatment system. 上記被覆土壌層の硬度は、山中式土壌硬度計基準で11.0~15.0mmであることを特徴とする請求項4に記載の土壌式汚水処理システム。 The soil-type sewage treatment system according to claim 4, wherein the hardness of the covered soil layer is 11.0 to 15.0 mm based on the Yamanaka-type soil hardness tester. 上記濾過沈殿槽は、処理水のpH調整のため貝殻を濾材として使用することを特徴とする請求項1に記載の土壌式汚水処理システム。 The soil-type sewage treatment system according to claim 1, wherein the filtration settling tank uses a shell as a filter medium for adjusting the pH of the treated water. 上記土壌処理槽は、
上記流量調整槽から供給された処理水を均等に散水する散水管と、
上記散水管の下部に配置され、処理水が浸透し水平方向に並んで複数配置されるとともに、高さ方向に多段に積層され、処理水に含まれている有機物と化学物質および浮遊物質を分解し、色素成分を吸着する土壌ブロック類と、
上記土壌ブロック類の間に配置され、処理水が通過する通水層とを含む
ことを特徴とする請求項1に記載の土壌式汚水処理システム。
The above soil treatment tank
A sprinkler pipe that evenly sprinkles the treated water supplied from the flow rate adjustment tank,
It is placed at the bottom of the sprinkler pipe, and the treated water permeates and is arranged side by side in the horizontal direction. At the same time, it is stacked in multiple stages in the height direction to decompose organic substances, chemical substances, and suspended solids contained in the treated water. And soil blocks that adsorb pigment components,
The soil-type sewage treatment system according to claim 1, wherein the soil-type sewage treatment system is arranged between the soil blocks and includes a water passage layer through which treated water passes.
上記土壌ブロックは、
土壌ブロック枠と、
上記土壌ブロック枠の内部に処理水に接触して設置され、処理水に含まれる有機物と化学物質および浮遊物を分解し、色素成分を吸着する混合土壌と、
上記土壌ブロック枠の内部に、上記混合土壌を包んで処理水が透過される不織布とを含むことを特徴とする請求項8に記載の土壌式汚水処理システム。
The above soil block
Soil block frame and
A mixed soil that is installed inside the soil block frame in contact with the treated water, decomposes organic substances, chemical substances and suspended matter contained in the treated water, and adsorbs pigment components.
The soil-type sewage treatment system according to claim 8, wherein the inside of the soil block frame includes a non-woven fabric that wraps the mixed soil and allows the treated water to permeate.
上記混合土壌は、全体容積対比が、真砂土75~80%、腐葉土10~15%、木炭5~10%及び軽石5~10%の比率で混合して形成されることを特徴とする請求項9に記載の土壌式汚水処理システム。 The above-mentioned mixed soil is characterized in that it is formed by mixing the total volume ratio of decomposed granite soil 75 to 80%, humus soil 10 to 15%, charcoal 5 to 10% and pumice stone 5 to 10%. The soil type sewage treatment system according to 9. 上記混合土壌を構成する真砂土の有効径は、0.075~0.250mmであり、当該真砂土の含水率は11~14%であることを特徴とする請求項10に記載の土壌式汚水処理システム。 The soil-type sewage according to claim 10, wherein the decomposed granite soil constituting the mixed soil has an effective diameter of 0.075 to 0.250 mm and a water content of the decomposed granite soil is 11 to 14%. Processing system. 上記混合土壌の硬度は、山中式土壌硬度式基準で11.0~15.0mmであることを特徴とする土壌式汚水処理システム。 A soil-type sewage treatment system characterized in that the hardness of the mixed soil is 11.0 to 15.0 mm based on the Yamanaka-type soil hardness-type standard. 上記土壌処理槽は、上記土壌ブロック類の間に配置され上記土壌ブロック類の間に空気を供給する散気管を含むことを特徴とする請求項8に記載の土壌式汚水処理システム。 The soil-type sewage treatment system according to claim 8, wherein the soil treatment tank is arranged between the soil blocks and includes an air diffuser for supplying air between the soil blocks. 上記土壌処理槽は、交互に使用できるよう上記コンテナの内部に複数系列に設置されていることを特徴とする請求項1に記載の土壌式汚水処理システム。 The soil-type sewage treatment system according to claim 1, wherein the soil treatment tanks are installed in a plurality of series inside the container so that they can be used alternately. 上記原水槽は、上記集水槽に貯蔵された処理水が供給され、処理水に残存する色素成分を吸着し、再度上記集水槽に処理水を共有する活性炭濾過筒を含むことを特徴とする請求項1に記載の土壌式汚水処理システム。 The raw water tank is characterized in that the treated water stored in the water collecting tank is supplied, the dye component remaining in the treated water is adsorbed, and the water collecting tank again includes an activated carbon filter tube that shares the treated water. Item 1. The soil-type sewage treatment system according to Item 1. 上記沈殿分離槽は、沈殿分離された汚泥が収容され、オゾンを供給し汚泥を分解する汚泥処理槽を含むことを特徴とする請求項1に記載の土壌式汚水処理システム。 The soil-type sewage treatment system according to claim 1, wherein the settling separation tank includes a sludge treatment tank in which the settled and separated sludge is stored and ozone is supplied to decompose the sludge. 上記集水槽に貯蔵された処理水が供給され、処理水に残存する色相成分を吸着し、再び集水槽に処理水を供給する活性炭濾過筒と、
上記集水槽から余剰水が供給され、余剰水を蒸発させる蒸発槽とを含む
ことを特徴とする請求項1に記載の土壌式汚水処理システム。
An activated carbon filter tube to which the treated water stored in the water collecting tank is supplied, adsorbs the hue component remaining in the treated water, and supplies the treated water to the water collecting tank again.
The soil-type sewage treatment system according to claim 1, further comprising an evaporation tank in which surplus water is supplied from the water collection tank and the surplus water is evaporated.
JP2020161636A 2020-09-28 2020-09-28 Soil type waste water treatment system Pending JP2022054535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020161636A JP2022054535A (en) 2020-09-28 2020-09-28 Soil type waste water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020161636A JP2022054535A (en) 2020-09-28 2020-09-28 Soil type waste water treatment system

Publications (1)

Publication Number Publication Date
JP2022054535A true JP2022054535A (en) 2022-04-07

Family

ID=80997670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020161636A Pending JP2022054535A (en) 2020-09-28 2020-09-28 Soil type waste water treatment system

Country Status (1)

Country Link
JP (1) JP2022054535A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115321676A (en) * 2022-07-27 2022-11-11 农业农村部规划设计研究院 Soil infiltration system for black water and black water treatment system
JP7274702B1 (en) * 2023-01-20 2023-05-17 松本工業株式会社 Float trapping tank, flotage trapping system, toilet system and pretreatment method for treated water containing flotation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102112723B1 (en) * 2019-09-27 2020-05-19 박효양 Movable soil type advanced purification circulation reuse apparatus
KR102112732B1 (en) * 2019-09-26 2020-05-19 박효양 Soil type Advanced Purification Circulation Reuse System

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102112732B1 (en) * 2019-09-26 2020-05-19 박효양 Soil type Advanced Purification Circulation Reuse System
KR102112723B1 (en) * 2019-09-27 2020-05-19 박효양 Movable soil type advanced purification circulation reuse apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115321676A (en) * 2022-07-27 2022-11-11 农业农村部规划设计研究院 Soil infiltration system for black water and black water treatment system
JP7274702B1 (en) * 2023-01-20 2023-05-17 松本工業株式会社 Float trapping tank, flotage trapping system, toilet system and pretreatment method for treated water containing flotation

Similar Documents

Publication Publication Date Title
An et al. Multi-soil-layering systems for wastewater treatment in small and remote communities
Vymazal et al. Constructed wetlands for wastewater treatment
WO2019114746A1 (en) Control method and device for drainage basin water irrigation of farmland pollutants in extremely water-deficient region
CA2381392A1 (en) Aerobic treatment of liquids to remove nutrients and control odors
KR101110710B1 (en) Water purification of polluted water methods, and the device
Rivas et al. Pollutant removal in a multi-stage municipal wastewater treatment system comprised of constructed wetlands and a maturation pond, in a temperate climate
JP2022054535A (en) Soil type waste water treatment system
Visvanathan et al. Hydrogenotrophic denitrification of synthetic aquaculture wastewater using membrane bioreactor
RU2570546C2 (en) Method of wasteless biological purification of sewage waters with recycling of separated sediments
Torrens et al. Design and performance of an innovative hybrid constructed wetland for sustainable pig slurry treatment in small farms
KR102112732B1 (en) Soil type Advanced Purification Circulation Reuse System
US7846328B2 (en) Treatment system for enhanced water and wastewater nutrient removal
KR102112723B1 (en) Movable soil type advanced purification circulation reuse apparatus
JP2005074407A (en) Water cleaning facility
JP2024026729A (en) Water treatment device
KR100453806B1 (en) High concentrated organic wastewater treatment apparatus and method thereof
CN106517677B (en) Quality of reclaimed water landscape water body keeps structure
JP7067746B2 (en) Sewage treatment equipment
CN215250258U (en) Non-point source pollution collecting and processing system for livestock farm
KR100762376B1 (en) Eco-friendly sewage treatment system
Srivastava et al. Constructed wetlands and its coupling with other technologies from lab to field scale for enhanced wastewater treatment and resource recovery
KR101340353B1 (en) Sewage treatment facility using biofilter with purification waterweed
JP2022054534A (en) Movable soil type waste water treatment unit
JP4562935B2 (en) Apparatus and method for treating nitrate nitrogen in sea water
JPH07115022B2 (en) Sewage purification method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210614

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220308