JP2022053810A - Underwater noise reflection absorption structure, underwater noise reducing structure, and underwater noise reducing method - Google Patents

Underwater noise reflection absorption structure, underwater noise reducing structure, and underwater noise reducing method Download PDF

Info

Publication number
JP2022053810A
JP2022053810A JP2020160642A JP2020160642A JP2022053810A JP 2022053810 A JP2022053810 A JP 2022053810A JP 2020160642 A JP2020160642 A JP 2020160642A JP 2020160642 A JP2020160642 A JP 2020160642A JP 2022053810 A JP2022053810 A JP 2022053810A
Authority
JP
Japan
Prior art keywords
underwater noise
underwater
reflection
water
noise suppression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020160642A
Other languages
Japanese (ja)
Other versions
JP7410833B2 (en
Inventor
裕一 田中
Yuichi Tanaka
勇一朗 田村
Yuichiro Tamura
侑理恵 板垣
Yurie Itagaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2020160642A priority Critical patent/JP7410833B2/en
Publication of JP2022053810A publication Critical patent/JP2022053810A/en
Application granted granted Critical
Publication of JP7410833B2 publication Critical patent/JP7410833B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

To provide an underwater noise reflection absorption structure that can efficiently reduce underwater noise generated by a construction such as pile installation, and an underwater noise reducing structure and an underwater noise reducing method through use of the same.SOLUTION: An underwater noise reflection absorption structure 1 is configured to, in order to reduce underwater noise, reflect underwater noise by a sound entering surface 1c, and absorb or reflect underwater noise or resonate with underwater noise within the underwater noise reflection absorption structure 1.SELECTED DRAWING: Figure 1

Description

本発明は、水中騒音を抑制する水中騒音反射吸収構造物、それを用いた水中騒音抑制構造体および水中騒音抑制方法に関する。 The present invention relates to an underwater noise reflection absorption structure that suppresses underwater noise, an underwater noise suppression structure using the structure, and an underwater noise suppression method.

水中での杭打設等の騒音は、周辺に伝搬し、海洋生物等に対して影響を与えることが懸念されている。一般に音は、建物や構造物等の障害物によって減衰するが、周辺に遮蔽物が無い水中では、発生音は広域に拡散しやすい。水中騒音について、イルカやクジラ、魚類等に対して影響のある周波数等が報告されている(非特許文献1)。また、魚類については、損傷を受けるレベル(220dB以上)・忌諱行動を示す威嚇レベル(140~160dB)等があること、水中騒音が距離とともに減衰すること等が明らかとなっている(非特許文献2)。 There is concern that noise from pile driving in water will propagate to the surrounding area and affect marine life. Generally, sound is attenuated by obstacles such as buildings and structures, but in water where there are no obstacles in the vicinity, the generated sound tends to spread over a wide area. Regarding underwater noise, frequencies and the like that affect dolphins, whales, fish, etc. have been reported (Non-Patent Document 1). In addition, it has been clarified that fish have a level of damage (220 dB or more), a threatening level indicating abusive behavior (140 to 160 dB), etc., and that underwater noise is attenuated with distance (non-patent documents). 2).

魚類をはじめ海生哺乳類等に対する影響の緩和方法として、「水中ノイズ低減装置および展開システム」(特許文献1)や「エアバブルカーテン」(たとえば特許文献2)」、「パイルスリーブ」(非特許文献3)等がある。 As a method for mitigating the effects on fish and marine mammals, "underwater noise reduction device and deployment system" (Patent Document 1), "air bubble curtain" (for example, Patent Document 2), and "pile sleeve" (non-patent document). 3) etc.

特開2017-504844号公報Japanese Unexamined Patent Publication No. 2017-504844 実開平1-119431号公報Jitsukaihei 1-119431 Gazette

赤松友成・木村里子・市川光太郎「水中生物音響学―声で探る行動と生態」コロナ社(2019)Tomonari Akamatsu, Riko Kimura, Kotaro Ichikawa "Underwater Bioacoustics-Voice-Exploring Behavior and Ecology" Corona Publishing Co., Ltd. (2019) 「港湾工事環境保全技術マニュアルDoctor of the Sea(改訂第3版)」日本埋立浚渫協会(2015)"Port Construction Environmental Conservation Technology Manual Doctor of the Sea (Revised 3rd Edition)" Japan Dredging and Reclamation Association (2015) 「着床式洋上風力発電導入ガイドブック(最終版)」国立研究開発法人新エネルギー・産業技術総合開発機構(2018年3月)https://www.nedo.go.jp/news/press/AA5_101085.html"Implantation type offshore wind power generation introduction guidebook (final version)" New Energy and Industrial Technology Development Organization (March 2018) https://www.nedo.go.jp/news/press/AA5_101085 .html

特許文献2のエアバブルカーテンは、杭打設時等の水中騒音の緩和手法として有効であるが、エア供給管の敷設や供気のための専用の船舶や設備が必要である。なお、エアバブルカーテンは、イルカクジラ等の海生哺乳類への影響緩和のために欧州等で広く使用されている。 The air bubble curtain of Patent Document 2 is effective as a method for alleviating underwater noise at the time of pile driving, but requires a dedicated ship or equipment for laying an air supply pipe and providing air. Air bubble curtains are widely used in Europe and the like to mitigate the effects on marine mammals such as dolphin whales.

また、日本の洋上風力発電施設が水深20~30mに設置することが想定されるが(欧州では水深10m程度に設置されることが多い)、水深が大きくなると、エアバブルカーテンの効率は低下すると考えられる。ボイルの法則 pV=一定 (一定の温度下では体積Vと圧力pの積が一定となる)から水深10mで2気圧、20mで3気圧、30mで4気圧と圧力が増加すると、体積は1/2、1/3、1/4に減少し、水深が大きくなると、吸音に効果がある気体の体積が減少するためである。 In addition, it is assumed that Japanese offshore wind power generation facilities will be installed at a depth of 20 to 30 m (in Europe, they are often installed at a depth of about 10 m), but as the water depth increases, the efficiency of air bubble curtains will decrease. Conceivable. Boyle's law pV = constant (the product of volume V and pressure p is constant at a constant temperature), and when the pressure increases to 2 atm at a depth of 10 m, 3 atm at 20 m, and 4 atm at 30 m, the volume becomes 1 /. This is because the volume of gas, which is effective for sound absorption, decreases as the water depth increases to 2, 1/3, and 1/4.

本発明は、上述のような従来技術の問題に鑑み、杭打設等の工事により発生する水中騒音を効率的に抑制可能な水中騒音反射吸収構造物、それを用いた水中騒音抑制構造体および水中騒音抑制方法を提供することを目的とする。 In view of the above-mentioned problems of the prior art, the present invention relates to an underwater noise reflection absorption structure capable of efficiently suppressing underwater noise generated by construction such as pile driving, an underwater noise suppression structure using the same, and an underwater noise suppression structure. It is an object of the present invention to provide a method for suppressing underwater noise.

上記目的を達成するための水中騒音反射吸収構造物は、水中騒音を抑制するための水中騒音反射吸収構造物であって、水中騒音を音入射面で反射し、前記水中騒音反射吸収構造物の内部で騒音を吸収もしくは反射しまたは騒音と共振するように構成されたものである。 The underwater noise reflection / absorption structure for achieving the above object is an underwater noise reflection / absorption structure for suppressing underwater noise, which reflects underwater noise on a sound incident surface and is the underwater noise reflection / absorption structure. It is configured to absorb or reflect noise internally or resonate with noise.

この水中騒音反射吸収構造物によれば、水中に設置されることにより、水中騒音を音入射面で反射するとともに、水中騒音反射吸収構造物の内部で吸収・反射・共振することで、杭打設等の工事により発生する水中騒音を効率的に抑制することができる。 According to this underwater noise reflection absorption structure, when installed underwater, underwater noise is reflected on the sound incident surface, and at the same time, it is absorbed, reflected, and resonated inside the underwater noise reflection absorption structure, thereby driving a pile. Underwater noise generated by construction work such as installation can be efficiently suppressed.

上記水中騒音反射吸収構造物において、前記音入射面の形状が曲面状または傾斜面状であることが好ましい。これにより、音入射面に入射した水中騒音を効率的に反射させることができる。なお、曲面状とは、円形状や長円状等の形状を含む。傾斜面状とは、水平方向に対し傾斜した面で、傾斜方向の異なる複数の面を含んでもよい。 In the underwater noise reflection absorption structure, it is preferable that the shape of the sound incident surface is a curved surface or an inclined surface. As a result, underwater noise incident on the sound incident surface can be efficiently reflected. The curved surface includes a circular shape, an oval shape, and the like. The inclined surface shape is a surface inclined with respect to the horizontal direction, and may include a plurality of surfaces having different inclination directions.

前記内部に気体、水よりも比重の大きい液体、吸音材、反射材および共振材のうちの少なくとも1つからなる充填材料を含むことで、内部で水中騒音を低減させることができる。なお、充填材料は、気体、気体と吸音材、気体と反射材、気体と共振材、または、共振材からなるものが好ましい。 Underwater noise can be reduced internally by including a filling material composed of at least one of a gas, a liquid having a specific gravity higher than that of water, a sound absorbing material, a reflective material, and a resonant material. The filling material is preferably a gas, a gas and a sound absorbing material, a gas and a reflective material, a gas and a resonant material, or a resonant material.

前記音入射面を構成し内部空洞を有する外殻体を備え、前記内部空洞内に前記充填材料が充填されているように構成できる。 An outer shell body that constitutes the sound incident surface and has an internal cavity can be provided, and the filling material can be filled in the internal cavity.

前記外殻体が分割されていてもよく、分割された各外殻体の内部空洞に充填材料を充填するようにしてもよく、また、分割された各外殻体は一体化されるようにしてよい。 The outer shell body may be divided, the inner cavity of each divided outer shell body may be filled with a filling material, and the divided outer shell bodies may be integrated. It's okay.

上記水中騒音反射吸収構造物は全体が柱状に構成されるようにでき、たとえば、三角柱、四角柱、円柱、かまぼこ型の柱等であってよい。 The underwater noise reflection absorption structure can be configured to have a columnar shape as a whole, and may be, for example, a triangular prism, a square column, a column, a semi-cylindrical column, or the like.

また、水中騒音反射吸収構造物は、全体が板状に構成されてもよく、この場合、音入射面が波形状の凹凸に形成されたり、三角形状や鋸歯状の凹凸に形成されることが好ましく、かかる凹凸面で水中騒音を効率的に反射できる。 Further, the underwater noise reflection absorption structure may be entirely formed in a plate shape, and in this case, the sound incident surface may be formed in a wavy shape or a triangular shape or a sawtooth shape. Preferably, underwater noise can be efficiently reflected on such an uneven surface.

上記目的を達成するための水中騒音抑制構造体は、上述の水中騒音反射吸収構造物を含む水中騒音抑制構造体である。 The underwater noise suppression structure for achieving the above object is an underwater noise suppression structure including the above-mentioned underwater noise reflection absorption structure.

この水中騒音抑制構造体によれば、水中騒音を効率的に抑制可能な水中騒音反射吸収構造物を含み、水中騒音を効率的に抑制し、水中騒音の拡散を抑制できる。 According to this underwater noise suppression structure, an underwater noise reflection absorption structure capable of efficiently suppressing underwater noise is included, and underwater noise can be efficiently suppressed and diffusion of underwater noise can be suppressed.

上記目的を達成するためのもう1つの水中騒音抑制構造体は、前記柱状に構成された水中騒音反射吸収構造物を含む水中騒音抑制構造体であって、前記柱状に構成された複数の水中騒音反射吸収構造物が鉛直方向に配置され、水中に吊り下げられたものである。 Another underwater noise suppression structure for achieving the above object is an underwater noise suppression structure including the underwater noise reflection absorption structure configured in the columnar shape, and a plurality of underwater noise configured in the columnar column. The reflection-absorbing structure is arranged in the vertical direction and suspended in water.

この水中騒音抑制構造体によれば、水中騒音を効率的に抑制可能な柱状に構成された複数の水中騒音反射吸収構造物を鉛直方向に水中に吊り下げるように設置し、杭打設等の工事による水中騒音の発生地点の周囲や水中騒音の拡散抑制方向に設置されることで、水中騒音を効率的に抑制し、水中騒音の拡散を抑制できる。 According to this underwater noise suppression structure, a plurality of underwater noise reflection absorption structures configured in columns capable of efficiently suppressing underwater noise are installed so as to be suspended vertically in the water, and pile driving, etc. By installing it around the point where underwater noise is generated due to construction work or in the direction of suppressing the diffusion of underwater noise, it is possible to efficiently suppress underwater noise and suppress the diffusion of underwater noise.

上記目的を達成するためのもう1つの水中騒音抑制構造体は、前記柱状に構成された水中騒音反射吸収構造物を含む水中騒音抑制構造体であって、前記柱状に構成された複数の水中騒音反射吸収構造物が水平方向に配置され、水中に垂下されたものである。 Another underwater noise suppression structure for achieving the above object is an underwater noise suppression structure including the underwater noise reflection absorption structure configured in the columnar shape, and a plurality of underwater noise configured in the columnar column. The reflection-absorbing structure is arranged horizontally and hung in water.

この水中騒音抑制構造体によれば、水中騒音を効率的に抑制可能な柱状に構成された複数の水中騒音反射吸収構造物を水平方向に水中に垂下するように設置し、杭打設等の工事による水中騒音の発生地点の周囲や水中騒音の拡散抑制方向に設置されることで、水中騒音を効率的に抑制し、水中騒音の拡散を抑制できる。 According to this underwater noise suppression structure, a plurality of underwater noise reflection absorption structures configured in columns capable of efficiently suppressing underwater noise are installed so as to hang down in the water in the horizontal direction, and pile driving, etc. By installing it around the point where underwater noise is generated due to construction work or in the direction of suppressing the diffusion of underwater noise, it is possible to efficiently suppress underwater noise and suppress the diffusion of underwater noise.

前記水平方向に配置された複数の柱状の水中騒音反射吸収構造物のうちの下方の水中騒音反射吸収構造物の内部にベントナイト泥水や粘性土による泥水等の泥水を充填し、水面近傍の水中騒音反射吸収構造物の内部に気体を充填するようにしてもよい。下方の水中騒音反射吸収構造物の内部に水よりも比重の大きい泥水を充填することにより水中で安定し、上方の水中騒音反射吸収構造物の内部に気体を充填することで浮力効果を得ることができる。 Among the plurality of columnar underwater noise reflection and absorption structures arranged in the horizontal direction, the lower underwater noise reflection and absorption structure is filled with muddy water such as bentonite muddy water and muddy water due to cohesive soil, and underwater noise near the water surface is filled. The inside of the reflection absorption structure may be filled with gas. It is stable in water by filling the inside of the lower underwater noise reflection absorption structure with muddy water having a higher specific density than water, and the buoyancy effect is obtained by filling the inside of the upper underwater noise reflection absorption structure with gas. Can be done.

前記水中騒音反射吸収構造物の音入射面の背面側の音出射面に鉄板を配置することが好ましい。特に内部に気体を含む水中騒音反射吸収構造物と、その音入射面の背面側に配置した鉄板との組み合わせにより、全体として小さな音透過率を実現でき、水中騒音を透過させ難くし、水中騒音を効率的に抑制できる。 It is preferable to arrange an iron plate on the sound emitting surface on the back surface side of the sound incident surface of the underwater noise reflection absorbing structure. In particular, by combining an underwater noise reflection absorption structure containing gas inside and an iron plate placed on the back side of the sound incident surface, a small sound transmittance can be realized as a whole, making it difficult for underwater noise to pass through, and underwater noise. Can be efficiently suppressed.

前記水中騒音抑制構造体は、船により水中を移動可能に構成されることが好ましい。これにより、たとえば、水中騒音抑制構造体を杭打設の終了に応じて次の杭打設の位置に移動させて繰り返し使用ができる。 It is preferable that the underwater noise suppression structure is configured to be movable in water by a ship. Thereby, for example, the underwater noise suppression structure can be moved to the next pile driving position according to the end of the pile driving and used repeatedly.

前記水中騒音反射吸収構造物を複数水中に垂下させ、上面から見て水中騒音の発生地点を包囲してまたは前記発生地点に接近させ一部を開放して配置するようにできる。この場合、水底に着底するように配置してよいが、水深中間まで配置するようにしてもよい。なお、水中騒音の発生地点に対し、その一部を開放するように配置することで、たとえば、開放された一部を通して水中騒音抑制構造体の船による移動や杭打設船の出入りが可能となる。 A plurality of the underwater noise reflection absorption structures can be hung in water so as to surround the underwater noise generation point when viewed from above or approach the generation point and partially open the arrangement. In this case, it may be arranged so as to land on the bottom of the water, but it may be arranged up to the middle of the water depth. By arranging a part of the underwater noise generation point so that it is open, for example, it is possible for the underwater noise suppression structure to be moved by the ship and the pile driving ship to enter and exit through the opened part. Become.

上記目的を達成するための水中騒音抑制方法は、上述の水中騒音反射吸収構造物または上述の水中騒音抑制構造体を、水中騒音の発生地点の周囲および/または前記水中騒音の拡散を抑制する方向に設置することで水中騒音を抑制するものである。 The underwater noise suppression method for achieving the above object is a direction in which the above-mentioned underwater noise reflection absorption structure or the above-mentioned underwater noise suppression structure is used to suppress the diffusion of the above-mentioned underwater noise around the generation point of the underwater noise and / or the above-mentioned underwater noise. By installing it in, it suppresses underwater noise.

この水中騒音抑制方法によれば、水中騒音を効率的に抑制可能な水中騒音反射吸収構造物または水中騒音抑制構造体を、杭打設等の工事による水中騒音の発生地点の周囲や水中騒音の拡散抑制方向に設置することで、水中騒音を効率的に抑制し、水中騒音の拡散を抑制できる。 According to this underwater noise suppression method, an underwater noise reflection absorption structure or an underwater noise suppression structure capable of efficiently suppressing underwater noise is provided around a point where underwater noise is generated due to construction such as pile driving and underwater noise. By installing in the diffusion suppression direction, underwater noise can be efficiently suppressed and the diffusion of underwater noise can be suppressed.

上記水中騒音抑制方法において、前記水中騒音反射吸収構造物または前記水中騒音抑制構造体を水中騒音の入射方向に重なるように設置することが好ましい。これにより、水中騒音抑制効果がいっそう向上する。 In the underwater noise suppression method, it is preferable to install the underwater noise reflection absorption structure or the underwater noise suppression structure so as to overlap with each other in the incident direction of the underwater noise. As a result, the underwater noise suppression effect is further improved.

本発明によれば、杭打設等の工事により発生する水中騒音を表面での反射と内部での吸収・反射・共振とを組合せることにより効率的な水中騒音の抑制が可能な水中騒音反射吸収構造物、それを用いた水中騒音抑制構造体および水中騒音抑制方法を提供することができる。 According to the present invention, underwater noise reflection capable of efficiently suppressing underwater noise by combining surface reflection and internal absorption / reflection / resonance of underwater noise generated by construction such as pile driving is possible. It is possible to provide an absorption structure, an underwater noise suppression structure using the absorption structure, and an underwater noise suppression method.

本実施形態による水中騒音反射吸収構造物および水中騒音抑制構造体を概略的に示す側面図(a)~(f)である。2 are side views (a) to (f) schematically showing an underwater noise reflection absorbing structure and an underwater noise suppressing structure according to the present embodiment. 本実施形態による水中騒音反射吸収構造物における水中騒音の反射・透過を説明するための模式図である。It is a schematic diagram for demonstrating the reflection / transmission of the underwater noise in the underwater noise reflection absorption structure by this embodiment. 本実施形態による別の水中騒音反射吸収構造物および水中騒音抑制構造体を概略的に示す側面図(a)~(k)である。2 are side views (a) to (k) schematically showing another underwater noise reflection absorption structure and an underwater noise suppression structure according to the present embodiment. 本実施形態による水中騒音抑制構造体の配置例を概略的に示す上面図(a)~(g)である。Top views (a) to (g) schematically show an arrangement example of an underwater noise suppression structure according to the present embodiment. 図1(e)または図4(g)の水中騒音抑制構造体を枠構造にした構成例を概略的に示す要部斜視図である。FIG. 3 is a perspective view of a main part schematically showing a configuration example in which the underwater noise suppression structure of FIG. 1 (e) or FIG. 4 (g) has a frame structure. 本実施形態による水中騒音抑制構造体の複数列の配置例を概略的に示す側面図(a)~(f)である。It is side view (a)-(f) which shows the arrangement example of the plurality of rows of the underwater noise suppression structure by this embodiment schematicly. 本実施形態による水中騒音抑制構造体が水中騒音発生地点を包囲するように配置された例を示す縦断面図(a)(b)である。It is a vertical sectional view (a) (b) which shows the example which the underwater noise suppression structure by this embodiment is arranged so as to surround the underwater noise generation point. 本実施形態による水中騒音抑制構造体と潜堤型の水中騒音抑制構造体との組み合わせ例を概略的に示す縦断面図(a)(b)である。It is a vertical cross-sectional view (a) (b) which shows typically the combination example of the underwater noise suppression structure and the submarine type underwater noise suppression structure by this embodiment. 本実施形態による水中騒音抑制構造体が水中騒音発生地点に接近し一方が開放して配置された例を示す縦断面図(a)(b)である。It is a vertical cross-sectional view (a) (b) which shows the example which the underwater noise suppression structure by this embodiment approaches an underwater noise generation point, and one is open. 図1(a)(c)(e)の水中騒音反射吸収構造物の変形例を示す側面図(a)~(e)である。1 (a) to 1 (e) are side views showing a modification of the underwater noise reflection absorption structure of FIGS. 1 (a), 1 (c) and 1 (e). 本実施形態による板状の水中騒音反射吸収構造物を示す側面図(a)(b)である。It is a side view (a) (b) which shows the plate-shaped underwater noise reflection absorption structure by this embodiment. 本実施形態による水中騒音抑制構造体の変形例を概略的に示す要部斜視図である。It is a main part perspective view which shows the modification of the underwater noise suppression structure by this embodiment schematicly. 本実験例における実験ケースの各条件を示す図である。It is a figure which shows each condition of the experimental case in this experimental example. 本実験例に用いた実験装置の概略図である。It is a schematic diagram of the experimental apparatus used for this experimental example. 本実験例における鉄板の有無、外殻形状の違いに関する実験結果を示すグラフである。It is a graph which shows the experimental result about the presence or absence of an iron plate, and the difference in the outer shell shape in this experimental example. 図12の実験ケース1~4,11で得られた周波数特性を示すグラフである。It is a graph which shows the frequency characteristic obtained in the experimental cases 1 to 4, 11 of FIG. 本実験例における充填材料の違いに関する実験結果を示すグラフである。It is a graph which shows the experimental result about the difference of the filling material in this experimental example. 図12の実験ケース1,4,7~10で得られた周波数特性を示すグラフである。It is a graph which shows the frequency characteristic obtained in the experimental case 1, 4, 7-10 of FIG.

以下、本発明を実施するための形態について図面を用いて説明する。図1は本実施形態による水中騒音反射吸収構造物および水中騒音抑制構造体を概略的に示す側面図(a)~(f)である。図2は本実施形態による水中騒音反射吸収構造物における水中騒音の反射・透過を説明するための模式図である。なお、図1,図2,後述の図3,図6,図11において水中騒音は、水中騒音反射吸収構造物および水中騒音抑制構造体に対し図の左側から入射するものとする。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is side views (a) to (f) schematically showing an underwater noise reflection absorbing structure and an underwater noise suppressing structure according to the present embodiment. FIG. 2 is a schematic diagram for explaining the reflection / transmission of underwater noise in the underwater noise reflection / absorption structure according to the present embodiment. In FIGS. 1, FIG. 2, and FIGS. 3, 6, and 11 described later, the underwater noise is assumed to be incident on the underwater noise reflection absorption structure and the underwater noise suppression structure from the left side of the figure.

図1(a)の水中騒音抑制構造体11は、複数の円柱状の水中騒音反射吸収構造物1を水平方向に配置し上下に並べて壁状に構成し、水面近傍から吊り下げるようにして水中に設置したものである。 In the underwater noise suppression structure 11 of FIG. 1A, a plurality of columnar underwater noise reflection / absorption structures 1 are arranged horizontally and arranged vertically to form a wall, and the underwater noise suppression structure 11 is suspended from the vicinity of the water surface. It was installed in.

水中騒音反射吸収構造物1は、円柱状の外殻体1aと内部空洞1bとを備え、内部空洞1bには各種の充填材料を充填可能である。外殻体1aは、鉄鋼やステンレス鋼等の金属材料、塩ビ、ポリエチレン・ポリプロピレン等の樹脂材料、FRP等から内部空洞1bを有するように構成される。 The underwater noise reflection absorption structure 1 includes a columnar outer shell body 1a and an internal cavity 1b, and the internal cavity 1b can be filled with various filling materials. The outer shell body 1a is configured to have an internal cavity 1b from a metal material such as steel or stainless steel, a resin material such as vinyl chloride, polyethylene / polypropylene, FRP or the like.

内部空洞1bに充填される充填材料としては、水中騒音を吸収する吸音材、もしくは、反射する反射材、または水中騒音と共振する共振材がある。水中騒音反射吸収構造物1の内部空洞1b内は気体のため、一般的な遮音材・吸音材を内部空洞1b内に充填して利用でき、遮音材・吸音材として、気体、気体+多孔質型吸音材、気体+ダンボールなどがあり、多孔質型吸音材としては、ウレタン、グラスウール、ロックウール、軟質繊維版などがある。反射材としては、気体+ゴム、気体+ウレタン等がある。共振材としては、粘土泥水、ベントナイト泥水、エチレングリコール、ゲル状物質、共振体などがあり、これらと気体との組みあわせも可能である。 Examples of the filling material filled in the internal cavity 1b include a sound absorbing material that absorbs underwater noise, a reflective material that reflects water, and a resonance material that resonates with underwater noise. Since the inside of the internal cavity 1b of the underwater noise reflection absorption structure 1 is a gas, a general sound insulating material / sound absorbing material can be filled in the internal cavity 1b and used. There are type sound absorbing materials, gas + cardboard, etc., and porous type sound absorbing materials include urethane, glass wool, rock wool, soft fiber slab, and the like. Reflective materials include gas + rubber, gas + urethane, and the like. Resonant materials include clay muddy water, bentonite muddy water, ethylene glycol, gel-like substances, resonators, and the like, and a combination of these with a gas is also possible.

図1(a)の水中騒音抑制構造体11の各水中騒音反射吸収構造物1の内部空洞1bには気体31が充填されている。気体31は、空気であってよいが、酸素、二酸化炭素、窒素、ヘリウム、水素、アンモニアなどの他の気体や空気と他の気体との混合でもよい。 The gas 31 is filled in the internal cavity 1b of each underwater noise reflection absorption structure 1 of the underwater noise suppression structure 11 of FIG. 1A. The gas 31 may be air, but may be another gas such as oxygen, carbon dioxide, nitrogen, helium, hydrogen, or ammonia, or a mixture of air and another gas.

図2を参照して図1(a)の水中騒音反射吸収構造物1による水中騒音抑制効果を説明する。水中騒音による水中騒音反射吸収構造物1への入射波aは、外殻体1aの円周表面の音入射面1cで反射する反射波bと音入射面1cを透過する透過波cとなる。反射波bが反射する音入射面1cは曲面状であるため音入射面1cでの反射効果が高く、反射波bは、水中騒音反射吸収構造物1の手前側(左側)において水面~水底面の方向に幅広く分散し、この分散過程で水中騒音の減衰や水底面での吸収や水面から気中への放出が生じることで水中騒音が抑制される。一方、透過波cは、内部空洞1b内で反射し反射波dとなることで、また、内部空洞1b内の気体31を透過し背面側の音出射面1dから出射し水中を伝播する透過波eとなることで低減する。このように、透過波cは、水中騒音反射吸収構造物1から水中へと伝搬する過程で反射波dと透過波eとなって、音圧の低下が生じる。以上のようにして、水中騒音は水中騒音反射吸収構造物1により低下し抑制される。なお、水中騒音反射吸収構造物の材質を無視して海水と空気の音響インピーダンスから音の強さの透過率を計算すると、透過率0.1%が得られ、海水から空気へと伝搬する過程でかなり音圧が低下することがわかる。 The underwater noise suppression effect of the underwater noise reflection absorption structure 1 of FIG. 1A will be described with reference to FIG. The incident wave a on the underwater noise reflection absorbing structure 1 due to underwater noise is a reflected wave b reflected by the sound incident surface 1c on the circumferential surface of the outer shell 1a and a transmitted wave c transmitted through the sound incident surface 1c. Since the sound incident surface 1c reflected by the reflected wave b is curved, the reflection effect on the sound incident surface 1c is high, and the reflected wave b is from the water surface to the water bottom on the front side (left side) of the underwater noise reflection absorption structure 1. Underwater noise is suppressed by being widely dispersed in the direction of water, and in this dispersion process, the underwater noise is attenuated, absorbed at the bottom of the water, and released from the water surface into the air. On the other hand, the transmitted wave c is a transmitted wave that is reflected in the internal cavity 1b and becomes a reflected wave d, and is also transmitted through the gas 31 in the internal cavity 1b, emitted from the sound emitting surface 1d on the back surface side, and propagates in water. It is reduced by becoming e. As described above, the transmitted wave c becomes the reflected wave d and the transmitted wave e in the process of propagating from the underwater noise reflection absorbing structure 1 into the water, and the sound pressure is lowered. As described above, the underwater noise is reduced and suppressed by the underwater noise reflection absorbing structure 1. If the sound intensity transmittance is calculated from the acoustic impedance of seawater and air, ignoring the material of the underwater noise reflection absorption structure, a transmittance of 0.1% is obtained, which is considerable in the process of propagating from seawater to air. It can be seen that the sound pressure decreases.

図1(b)の水中騒音抑制構造体12は、図1(a)と同様の構成であるが、水中騒音反射吸収構造物1の外殻体1aの内部空洞1bに気体と吸音材とによる充填材32が充填されている。吸音材は、ウレタンやグラスウール等の多孔質型吸音材、ダンボール等であってよい。充填材32として空気等の気体に加えて吸音材が含まれているので、図2の内部空洞1b内の透過波cは吸音材によって音圧レベルがより低下し、音出射面1dから水中へと伝搬する過程で透過波eが低減する。このように、内部空洞1b内を気体と吸音材とすることで、水中では抑制効果が小さい吸音材を活用した水中騒音の抑制が可能である。なお、充填材32は、気体と反射材、気体と共振材であってもよい。 The underwater noise suppression structure 12 of FIG. 1B has the same configuration as that of FIG. 1A, but is composed of gas and a sound absorbing material in the internal cavity 1b of the outer shell 1a of the underwater noise reflection absorption structure 1. The filler 32 is filled. The sound absorbing material may be a porous sound absorbing material such as urethane or glass wool, cardboard or the like. Since the filler 32 contains a sound absorbing material in addition to a gas such as air, the sound pressure level of the transmitted wave c in the internal cavity 1b of FIG. 2 is further lowered by the sound absorbing material, and the sound is discharged from the sound emitting surface 1d into the water. The transmitted wave e is reduced in the process of propagating. As described above, by using the gas and the sound absorbing material in the internal cavity 1b, it is possible to suppress the underwater noise by utilizing the sound absorbing material having a small suppressing effect in water. The filler 32 may be a gas and a reflective material, or a gas and a resonance material.

図1(c)の水中騒音抑制構造体13は、図1(a)と同様の構成であるが、水中騒音反射吸収構造物1の外殻体1aの内部空洞1b内に気体31を充填するとともにウレタン等の多孔質型吸音材35を配置したものである。多孔質型吸音材35は、比較的小さなピラミット状の突起35aを多数有し、多数の突起35aの反対側に平坦部35bを有する。多孔質型吸音材35を内部空洞1b内に押し込むようにして中心部に配置し上部・下部等で固定する。 The underwater noise suppression structure 13 of FIG. 1 (c) has the same configuration as that of FIG. 1 (a), but the gas 31 is filled in the internal cavity 1b of the outer shell 1a of the underwater noise reflection absorption structure 1. In addition, a porous type sound absorbing material 35 such as urethane is arranged. The porous sound absorbing material 35 has a large number of relatively small pyramid-shaped protrusions 35a, and has a flat portion 35b on the opposite side of the large number of protrusions 35a. The porous type sound absorbing material 35 is arranged in the central portion so as to be pushed into the internal cavity 1b, and is fixed at the upper part, the lower part, or the like.

図1(c)の水中騒音抑制構造体13によれば、水中騒音反射吸収構造物1の内部空洞1b内に配置した多孔質型吸音材35のピラミット状の多数の突起35aにより吸音面積が増え、図2の透過波cと反射波dを効率的に吸音し減少させることで、水中騒音の抑制効果が増す。 According to the underwater noise suppression structure 13 of FIG. 1 (c), the sound absorption area is increased by a large number of pyramid-shaped protrusions 35a of the porous sound absorbing material 35 arranged in the internal cavity 1b of the underwater noise reflection absorption structure 1. By efficiently absorbing and reducing the transmitted wave c and the reflected wave d in FIG. 2, the effect of suppressing underwater noise is increased.

図1(d)の水中騒音抑制構造体14は、図1(a)と同様の構成であるが、複数の水中騒音反射吸収構造物1のうち、上部の外殻体1aの内部空洞1bに気体31が充填され、中間の外殻体1aの内部空洞1bに気体31と泥水32からなる充填材33が充填され、下部の外殻体1aの内部空洞1bに泥水34だけが充填されている。泥水32,34は、たとえば粘性土やベントナイトと水とを混合したもので、水よりも比重が大きい。なお、泥水32と泥水34は、同じ材料のものであっても、異なる材料のものであってもよい。 The underwater noise suppression structure 14 of FIG. 1D has the same configuration as that of FIG. 1A, but in the inner cavity 1b of the upper outer shell body 1a among the plurality of underwater noise reflection absorption structures 1. The gas 31 is filled, the inner cavity 1b of the intermediate outer shell 1a is filled with the filler 33 composed of the gas 31 and the muddy water 32, and the inner cavity 1b of the lower outer shell 1a is filled with only the muddy water 34. .. The muddy waters 32 and 34 are, for example, a mixture of cohesive soil or bentonite and water, and have a higher specific density than water. The muddy water 32 and the muddy water 34 may be made of the same material or different materials.

泥水32と気体31との充填材33が充填された水中騒音反射吸収構造物1は水中騒音と共振し、図2の透過波eが減少し、水中騒音の抑制効果が増し、また、泥水34だけが充填された水中騒音反射吸収構造物1は、水中騒音と共振し、図2の透過波eが減少し、水中騒音の抑制効果がいっそう増す。また、気体31が充填された水中騒音反射吸収構造物1は、水中騒音抑制構造体14の浮力効果を得ることができ、泥水を含む充填材33や泥水34が充填されることで水中安定効果を得ることができる。 The underwater noise reflection absorption structure 1 filled with the filler 33 of the muddy water 32 and the gas 31 resonates with the underwater noise, the transmitted wave e in FIG. 2 is reduced, the effect of suppressing the underwater noise is increased, and the muddy water 34 The underwater noise reflection absorption structure 1 filled with only the underwater noise resonates with the underwater noise, the transmitted wave e in FIG. 2 is reduced, and the effect of suppressing the underwater noise is further increased. Further, the underwater noise reflection absorbing structure 1 filled with the gas 31 can obtain the buoyancy effect of the underwater noise suppressing structure 14, and the underwater stabilizing effect is obtained by filling the filler 33 containing muddy water and the muddy water 34. Can be obtained.

図1(e)の水中騒音抑制構造体15は、図1(a)と同様の構成であるが、複数の水中騒音反射吸収構造物1の外殻体1aの背面側の音出射面1dに接するように鉄板40を配置したものである。各音出射面1dから出射する図2の透過波eが鉄板40により低減し、水中騒音の抑制効果がいっそう増す。なお、内部空洞1bに気体と泥水からなる充填材を充填することで、水中騒音の抑制効果がさらに増す。 The underwater noise suppression structure 15 of FIG. 1 (e) has the same configuration as that of FIG. 1 (a), but is formed on the sound emitting surface 1d on the back surface side of the outer shell 1a of the plurality of underwater noise reflection absorption structures 1. The iron plate 40 is arranged so as to be in contact with each other. The transmitted wave e of FIG. 2 emitted from each sound emitting surface 1d is reduced by the iron plate 40, and the effect of suppressing underwater noise is further increased. By filling the internal cavity 1b with a filler composed of gas and muddy water, the effect of suppressing underwater noise is further increased.

図1(f)の水中騒音抑制構造体16は、半円柱状の複数の水中騒音反射吸収構造物2の外殻体2aの内部空洞2b内に図1(c)と同様に気体31を充填するとともに多孔質型吸音材35を配置し、半円状の外殻体2aの音入射面2cの反対側の平坦面2dに接して鉄板40を配置したものである。多孔質型吸音材35のピラミット状の多数の突起35aにより吸音面積が増え、図2の透過波cを効率的に吸音し減少させるとともに、図2の透過波eが鉄板40により減少し、水中騒音の抑制効果がいっそう増す。 In the underwater noise suppression structure 16 of FIG. 1 (f), the gas 31 is filled in the internal cavity 2b of the outer shell body 2a of the plurality of semi-cylindrical underwater noise reflection absorption structures 2 in the same manner as in FIG. 1 (c). At the same time, the porous sound absorbing material 35 is arranged, and the iron plate 40 is arranged in contact with the flat surface 2d on the opposite side of the sound incident surface 2c of the semicircular outer shell body 2a. The sound absorbing area is increased by the large number of pyramid-shaped protrusions 35a of the porous sound absorbing material 35, and the transmitted wave c in FIG. 2 is efficiently absorbed and reduced, and the transmitted wave e in FIG. 2 is reduced by the iron plate 40 in water. The noise suppression effect is further increased.

図3は本実施形態による別の水中騒音反射吸収構造物および水中騒音抑制構造体を概略的に示す側面図(a)~(k)である。 FIG. 3 is a side view (a) to (k) schematically showing another underwater noise reflection absorbing structure and an underwater noise suppressing structure according to the present embodiment.

図3(a)の水中騒音抑制構造体17は、複数の三角柱状の水中騒音反射吸収構造物4を図1(a)と同様にして水中に設置したものである。水中騒音反射吸収構造物4は、三角柱状の外殻体4aと内部空洞4bとを備え、外殻体4aの一頂点が鉛直下方向を向き、内部空洞4bには空気等の気体31が充填されている。 The underwater noise suppression structure 17 of FIG. 3A is a structure in which a plurality of triangular columnar underwater noise reflection / absorption structures 4 are installed in water in the same manner as in FIG. 1A. The underwater noise reflection absorption structure 4 includes a triangular columnar outer shell body 4a and an inner cavity 4b, one apex of the outer shell body 4a faces vertically downward, and the inner cavity 4b is filled with a gas 31 such as air. Has been done.

図3(a)の水中騒音反射吸収構造物4によれば、図2の水中騒音による入射波aが外殻体4aの傾斜した音入射面4cに入射すると、この音入射面4cが傾斜面であるため音入射面4cでの反射効果が高く、その反射波は水底面方向に進み水底面での吸音が生じる一方、音入射面4cを透過した透過波cは、内部空洞4b内で反射波dとなって反射し、また、内部空洞4b内の気体31を透過することで減少し、これらにより、音入射面4cの反対の音出射面4dから出射する透過波eが低減することから、水中騒音は水中騒音反射吸収構造物4により低下し抑制される。 According to the underwater noise reflection absorption structure 4 of FIG. 3A, when the incident wave a due to the underwater noise of FIG. 2 is incident on the inclined sound incident surface 4c of the outer shell 4a, the sound incident surface 4c becomes the inclined surface. Therefore, the reflection effect on the sound incident surface 4c is high, and the reflected wave travels toward the water bottom surface to generate sound absorption on the water bottom surface, while the transmitted wave c transmitted through the sound incident surface 4c is reflected in the internal cavity 4b. It is reflected as a wave d, and is reduced by passing through the gas 31 in the internal cavity 4b, which reduces the transmitted wave e emitted from the sound emitting surface 4d opposite to the sound incident surface 4c. Underwater noise is reduced and suppressed by the underwater noise reflection absorption structure 4.

また、図3(a)の水中騒音抑制構造体17によれば、複数の三角柱状の水中騒音反射吸収構造物4を壁状に構成し水中に設置することで、各水中騒音反射吸収構造物4による水中騒音の抑制効果により図の左方から入射した水中騒音を低下させ図の右方への拡散を抑制することができる。 Further, according to the underwater noise suppression structure 17 of FIG. 3A, each underwater noise reflection absorption structure is formed by forming a plurality of triangular columnar underwater noise reflection absorption structures 4 in a wall shape and installing them in water. Due to the effect of suppressing underwater noise by 4, it is possible to reduce the underwater noise incident from the left side of the figure and suppress the diffusion to the right side of the figure.

図3(b)の水中騒音抑制構造体18は、図3(a)と同様の構成であるが、水中騒音反射吸収構造物4の外殻体4aの内部空洞4bに気体と吸音材とによる充填材32が充填されている。吸音材は、ウレタン等の多孔質型吸音材、ダンボール、グラスウール等であってよい。充填材32として空気等の気体に加えて吸音材が含まれているので、内部空洞4b内の図2の透過波cが吸音材によりいっそう減少し、反対側の音出射面4dから出射する透過波eがより低減し、水中騒音の抑制効果が増す。 The underwater noise suppression structure 18 of FIG. 3B has the same configuration as that of FIG. 3A, but is composed of gas and a sound absorbing material in the internal cavity 4b of the outer shell 4a of the underwater noise reflection absorption structure 4. The filler 32 is filled. The sound absorbing material may be a porous sound absorbing material such as urethane, cardboard, glass wool or the like. Since the filler 32 contains a sound absorbing material in addition to a gas such as air, the transmitted wave c in FIG. 2 in the internal cavity 4b is further reduced by the sound absorbing material, and is transmitted from the sound emitting surface 4d on the opposite side. The wave e is further reduced, and the effect of suppressing underwater noise is increased.

図3(c)の水中騒音抑制構造体19は、図3(a)と同様の構成であるが、水中騒音反射吸収構造物4の外殻体4aの内部空洞4b内に気体31を充填するとともに図1(c)と同様の多孔質型吸音材35を配置したものである。水中騒音抑制構造体19によれば、水中騒音反射吸収構造物4の内部空洞4b内に配置した多孔質型吸音材35のピラミット状の多数の突起35aにより吸音面積が増え、図2の透過波cおよび反射波dを効率的に吸音し減少させることで、水中騒音の抑制効果が増す。 The underwater noise suppression structure 19 of FIG. 3C has the same configuration as that of FIG. 3A, but the gas 31 is filled in the internal cavity 4b of the outer shell 4a of the underwater noise reflection absorption structure 4. In addition, the same porous type sound absorbing material 35 as in FIG. 1 (c) is arranged. According to the underwater noise suppression structure 19, the sound absorption area is increased by the large number of pyramid-shaped protrusions 35a of the porous sound absorbing material 35 arranged in the internal cavity 4b of the underwater noise reflection absorption structure 4, and the transmitted wave of FIG. 2 is transmitted. By efficiently absorbing and reducing c and the reflected wave d, the effect of suppressing underwater noise is increased.

図3(d)の水中騒音抑制構造体20は、図3(a)と同様の構成であるが、複数の水中騒音反射吸収構造物4のうち、上部の外殻体4aの内部空洞4bに気体31が充填され、中間の外殻体4aの内部空洞4bに気体31と泥水32からなる充填材33が充填され、下部の外殻体4aの内部空洞4bに泥水34だけが充填されている。図1(d)と同様に、水中騒音の抑制効果がいっそう増し、浮力効果および水中安定効果を得ることができる。 The underwater noise suppression structure 20 of FIG. 3D has the same configuration as that of FIG. 3A, but in the inner cavity 4b of the upper outer shell body 4a among the plurality of underwater noise reflection absorption structures 4. The gas 31 is filled, the inner cavity 4b of the intermediate outer shell 4a is filled with the filler 33 composed of the gas 31 and the muddy water 32, and the inner cavity 4b of the lower outer shell 4a is filled with only the muddy water 34. .. Similar to FIG. 1D, the effect of suppressing underwater noise is further increased, and the buoyancy effect and the underwater stabilizing effect can be obtained.

図3(e)の水中騒音抑制構造体21は、図3(a)と同様の構成であるが、複数の水中騒音反射吸収構造物4の外殻体4a背面側の傾斜した音出射面4d側に鉄板40を配置したものである。各音出射面4dから出射する図2の透過波eが鉄板40により減少し、水中騒音の抑制効果がいっそう増す。なお、内部空洞4bに気体と泥水からなる充填材を充填することで、水中騒音の抑制効果がさらに増す。 The underwater noise suppression structure 21 of FIG. 3 (e) has the same configuration as that of FIG. 3 (a), but has an inclined sound emitting surface 4d on the back surface side of the outer shell body 4a of the plurality of underwater noise reflection absorption structures 4. The iron plate 40 is arranged on the side. The transmitted wave e of FIG. 2 emitted from each sound emitting surface 4d is reduced by the iron plate 40, and the effect of suppressing underwater noise is further increased. By filling the internal cavity 4b with a filler composed of gas and muddy water, the effect of suppressing underwater noise is further increased.

図3(f)の水中騒音抑制構造体22は、半三角柱状の複数の水中騒音反射吸収構造物5の外殻体5aの内部空洞5b内に図1(c)と同様に気体31を充填するとともに多孔質型吸音材35を配置し、半三角形状の外殻体5aの音入射面5cの反対側の平坦面5dに接して鉄板40を配置したものである。多孔質型吸音材35のピラミット状の多数の突起35aにより吸音面積が増え、図2の透過波cを効率的に吸音し減少させるとともに、図2の透過波eが鉄板40により減少し、水中騒音の抑制効果がいっそう増す。 In the underwater noise suppression structure 22 of FIG. 3 (f), the gas 31 is filled in the inner cavity 5b of the outer shell body 5a of the plurality of semi-triangular columnar underwater noise reflection absorption structures 5 in the same manner as in FIG. 1 (c). At the same time, the porous sound absorbing material 35 is arranged, and the iron plate 40 is arranged in contact with the flat surface 5d on the opposite side of the sound incident surface 5c of the semi-triangular outer shell body 5a. The sound absorbing area is increased by the large number of pyramid-shaped protrusions 35a of the porous sound absorbing material 35, and the transmitted wave c in FIG. 2 is efficiently absorbed and reduced, and the transmitted wave e in FIG. 2 is reduced by the iron plate 40 in water. The noise suppression effect is further increased.

図3(g)の水中騒音抑制構造体23は、複数の三角柱状の水中騒音反射吸収構造物7を図3(a)と同様にして水中に設置したもので、各複数の水中騒音反射吸収構造物7は、三角柱状の外殻体7aの一頂点が水平方向を向き、かつ、外殻体4aの三辺のうち同一位置の一辺が同一垂直線上に並ぶように配置され、内部空洞7bに気体31が充填されている。図2の水中騒音による入射波aが外殻体7aの傾斜した音入射面7c,7dに入射すると、音入射面7c,7dが傾斜方向の異なる傾斜面であるため音入射面7c,7dでの反射効果が高く、その反射波は水面や水底面方向に進み水面からの放出および水底面での吸音が生じる一方、音入射面7c,7dを透過した透過波cは、内部空洞7b内で反射波dとなって反射し、また、内部空洞7b内の気体31を透過することで減少し、これらにより、音入射面7c,7dの反対の音出射面7eから出射する透過波eが低減し、水中騒音が抑制される。水中騒音抑制構造体23によれば、水中騒音反射吸収構造物7による水中騒音の抑制効果により図の左方から入射した水中騒音を低下させ図の右方への拡散を抑制することができる。 The underwater noise suppression structure 23 of FIG. 3 (g) is a structure in which a plurality of triangular columnar underwater noise reflection / absorption structures 7 are installed underwater in the same manner as in FIG. 3 (a), and each of the plurality of underwater noise reflection / absorption structures is absorbed. The structure 7 is arranged such that one apex of the triangular columnar outer shell 7a faces in the horizontal direction, and one side of the three sides of the outer shell 4a at the same position is arranged on the same vertical line, and the internal cavity 7b is arranged. Is filled with gas 31. When the incident wave a due to the underwater noise in FIG. 2 is incident on the inclined sound incident surfaces 7c and 7d of the outer shell body 7a, the sound incident surfaces 7c and 7d are inclined surfaces having different inclination directions, so that the sound incident surfaces 7c and 7d The reflected wave has a high reflection effect, and the reflected wave travels toward the water surface and the water bottom surface to be emitted from the water surface and sound is absorbed at the water bottom surface. It is reflected as a reflected wave d, and is reduced by passing through the gas 31 in the internal cavity 7b, whereby the transmitted wave e emitted from the opposite sound emitting surface 7e of the sound incident surfaces 7c and 7d is reduced. However, underwater noise is suppressed. According to the underwater noise suppression structure 23, the underwater noise suppression effect of the underwater noise reflection absorption structure 7 can reduce the underwater noise incident from the left side of the figure and suppress the diffusion to the right side of the figure.

図3(h)の水中騒音抑制構造体24は、図3(g)と同様の構成であるが、水中騒音反射吸収構造物7の内部空洞7bに気体と吸音材とによる充填材32が充填されている。充填材32として空気等の気体に加えてウレタン等の多孔質型吸音材、ダンボール、グラスウール等の吸音材が含まれているので、内部空洞7b内の図2の透過波cが吸音材によりいっそう減少し、反対側の音出射面7eから出射する透過波eがより低減し、水中騒音の抑制効果が増す。 The underwater noise suppression structure 24 of FIG. 3 (h) has the same configuration as that of FIG. 3 (g), but the internal cavity 7b of the underwater noise reflection absorption structure 7 is filled with a filler 32 made of gas and a sound absorbing material. Has been done. Since the filler 32 contains a porous sound absorbing material such as urethane and a sound absorbing material such as cardboard and glass wool in addition to a gas such as air, the transmitted wave c in FIG. 2 in the internal cavity 7b is further increased by the sound absorbing material. It is reduced, the transmitted wave e emitted from the sound emitting surface 7e on the opposite side is further reduced, and the effect of suppressing underwater noise is increased.

図3(i)の水中騒音抑制構造体25は、図3(g)と同様の三角柱状の複数の水中騒音反射吸収構造物7の外殻体7aの内部空洞7b内に図1(c)と同様に気体31を充填するとともに多孔質型吸音材35を配置し、外殻体5aの音出射面である平坦面7eに接して鉄板40を配置したものである。多孔質型吸音材35のピラミット状の多数の突起35aにより吸音面積が増え、図2の透過波cを効率的に吸音し減少させるとともに、図2の透過波eが鉄板40により減少し、水中騒音の抑制効果がいっそう増す。なお、図3(i)では鉄板40を省略した構成としてもよい。 The underwater noise suppression structure 25 of FIG. 3 (i) is formed in the inner cavity 7b of the outer shell 7a of the plurality of triangular columnar underwater noise reflection absorption structures 7 similar to those of FIG. 3 (g). Similarly, the gas 31 is filled and the porous sound absorbing material 35 is arranged, and the iron plate 40 is arranged in contact with the flat surface 7e which is the sound emitting surface of the outer shell body 5a. The sound absorbing area is increased by the large number of pyramid-shaped protrusions 35a of the porous sound absorbing material 35, and the transmitted wave c in FIG. 2 is efficiently absorbed and reduced, and the transmitted wave e in FIG. 2 is reduced by the iron plate 40 in water. The noise suppression effect is further increased. In addition, in FIG. 3 (i), the iron plate 40 may be omitted.

図3(j)の水中騒音抑制構造体26は、図3(g)と同様の構成であるが、複数の水中騒音反射吸収構造物7のうち、上部の外殻体7aの内部空洞7bに気体31が充填され、中間の外殻体7aの内部空洞7bに気体31と泥水32からなる充填材33が充填され、下部の外殻体7aの内部空洞7bに泥水34だけが充填されている。図1(d)と同様に、水中騒音の抑制効果がいっそう増し、浮力効果および水中安定効果を得ることができる。 The underwater noise suppression structure 26 of FIG. 3 (j) has the same configuration as that of FIG. 3 (g), but in the inner cavity 7b of the upper outer shell 7a among the plurality of underwater noise reflection absorption structures 7. The gas 31 is filled, the inner cavity 7b of the intermediate outer shell 7a is filled with the filler 33 composed of the gas 31 and the muddy water 32, and the inner cavity 7b of the lower outer shell 7a is filled with only the muddy water 34. .. Similar to FIG. 1D, the effect of suppressing underwater noise is further increased, and the buoyancy effect and the underwater stabilizing effect can be obtained.

図3(k)の水中騒音抑制構造体27は、図3(g)と同様の構成であるが、複数の水中騒音反射吸収構造物7の外殻体7aの背面の直立した音出射面7e側に鉄板40を配置したものである。各音出射面7eから出射する図2の透過波eが鉄板40により減少し、水中騒音の抑制効果がいっそう増す。なお、内部空洞7bに気体と泥水からなる充填材を充填することで、水中騒音の抑制効果がさらに増す。 The underwater noise suppression structure 27 of FIG. 3 (k) has the same configuration as that of FIG. 3 (g), but has an upright sound emitting surface 7e on the back surface of the outer shell 7a of the plurality of underwater noise reflection absorption structures 7. The iron plate 40 is arranged on the side. The transmitted wave e of FIG. 2 emitted from each sound emitting surface 7e is reduced by the iron plate 40, and the effect of suppressing underwater noise is further increased. By filling the internal cavity 7b with a filler composed of gas and muddy water, the effect of suppressing underwater noise is further increased.

以上のように、図1(a)~(f)、図3(a)~(k)の水中騒音抑制構造体11~27によれば、複数の柱状の水中騒音反射吸収構造物1~5,7を水平方向に配置し壁状に構成し水中に設置することで、各水中騒音反射吸収構造物1~5,7における反射波の水底面での吸収や水面から気中への放出による低下および透過波の気体から水中への伝播過程での音圧低下による水中騒音の抑制効果により図の左方から入射した水中騒音を低下させ図の右方への拡散を抑制することができる。これにより、杭打設等の施工工事で生じる水中騒音による魚類等の水中生物への悪影響を防止できる。 As described above, according to the underwater noise suppression structures 11 to 27 of FIGS. 1 (a) to 1 (f) and FIGS. 3 (a) to 3 (k), a plurality of columnar underwater noise reflection absorption structures 1 to 5 By arranging, 7 in the horizontal direction and constructing them in a wall shape and installing them in water, the reflected waves in each of the underwater noise reflection absorption structures 1 to 5 and 7 are absorbed at the bottom of the water and released from the water surface into the air. It is possible to reduce the underwater noise incident from the left side of the figure and suppress the diffusion to the right side of the figure due to the effect of suppressing the underwater noise due to the decrease and the sound pressure decrease in the process of propagating the transmitted wave from the gas to the water. This makes it possible to prevent adverse effects on aquatic organisms such as fish due to underwater noise generated during construction work such as pile driving.

また、水中騒音反射吸収構造物1~5,7の音透過方向の幅Z(図1(f))は50mm以上が望ましい。また、水中騒音抑制構造体11~27では、同一形状の水中騒音反射吸収構造物を配置したが、上下で異なる形状や大きさの水中騒音反射吸収構造物を配置してもよく、また、内部空洞への充填材料も水中騒音反射吸収構造物毎に変えてもよく、たとえば、充填材料は、水面付近の水中騒音抑制構造体には空気等の気体を充填し浮力を確保し、下方には泥水等を充填するようにしてもよい(図1(d)、図3(d)(j)参照)。 Further, it is desirable that the width Z (FIG. 1 (f)) of the underwater noise reflection absorbing structures 1 to 5 and 7 in the sound transmission direction is 50 mm or more. Further, in the underwater noise suppression structures 11 to 27, the underwater noise reflection / absorption structures having the same shape are arranged, but the underwater noise reflection / absorption structures having different shapes and sizes may be arranged at the top and bottom, and the inside. The filling material for the cavity may also be changed for each underwater noise reflection absorption structure. For example, the filling material is such that the underwater noise suppression structure near the water surface is filled with a gas such as air to secure buoyancy, and the filling material is below. It may be filled with muddy water or the like (see FIGS. 1 (d) and 3 (d) (j)).

また、水中騒音反射吸収構造物1~5,7内の内部空洞1b~5b,7bに空気等の気体を充填する場合、エアバブルカーテンのような連続的な空気供給を行うことなく、空気等による遮音効果を期待できる。また、図1(a)のように円柱状(円筒形状)として水圧に耐える形状や構造にしたり、水中騒音反射吸収構造物1内に気体を水圧に対応した圧力で充填することにより、水圧に耐えることができ、エアバブルカーテンでの水深による気体の体積減少の問題がなく、かかる水圧条件下でも水中騒音対策に必要な所定の体積の気体層を保持することができる。なお、適切な水深でエアバルブカーテンを併用することができ、これによりさらに遮音効果を高めることができる。 Further, when filling the internal cavities 1b to 5b and 7b in the underwater noise reflection absorbing structures 1 to 5 and 7 with a gas such as air, air or the like is not supplied continuously as in the air bubble curtain. Can be expected to have a sound insulation effect. Further, as shown in FIG. 1A, a columnar shape (cylindrical shape) having a shape and structure that can withstand water pressure can be obtained, or a gas can be filled in the underwater noise reflection absorption structure 1 at a pressure corresponding to the water pressure to reduce the water pressure. It can withstand, there is no problem of gas volume reduction due to water depth in the air bubble curtain, and it is possible to hold a gas layer of a predetermined volume necessary for measures against underwater noise even under such water pressure conditions. An air valve curtain can be used in combination at an appropriate water depth, whereby the sound insulation effect can be further enhanced.

次に、本実施形態による水中騒音抑制構造体の配置例について図4を参照して説明する。図4は、本実施形態による水中騒音抑制構造体の配置例を概略的に示す上面図(a)~(g)である。 Next, an arrangement example of the underwater noise suppression structure according to the present embodiment will be described with reference to FIG. FIG. 4 is a top view (a) to (g) schematically showing an arrangement example of the underwater noise suppression structure according to the present embodiment.

図4(a)の水中騒音抑制構造体41は、図1(a)~(f)、図3(a)~(k)の複数の柱状の水中騒音反射吸収構造物1~5,7を水平方向にして全体が水面から垂下するように鉛直方向に配置するとともに、上面から見て、杭打設地点等の水中騒音発生地点50を包囲するように円形状に配置したものである。また、図4(g)の水中騒音抑制構造体47のように、水中騒音発生地点50を包囲するように水中騒音反射吸収構造物1~5,7を四角形状に配置してもよい。 The underwater noise suppression structure 41 of FIG. 4A includes the plurality of columnar underwater noise reflection absorption structures 1 to 5, 7 of FIGS. 1 (a) to 1 (f) and FIGS. 3 (a) to 3 (k). It is arranged in the vertical direction so that the whole body hangs down from the water surface in the horizontal direction, and is arranged in a circular shape so as to surround the underwater noise generation point 50 such as the pile driving point when viewed from the upper surface. Further, the underwater noise reflection absorption structures 1 to 5 and 7 may be arranged in a square shape so as to surround the underwater noise generation point 50 as in the underwater noise suppression structure 47 of FIG. 4 (g).

図4(b)の水中騒音抑制構造体42は、同じく複数の柱状の水中騒音反射吸収構造物1~5,7を、水中騒音発生地点50を包囲しかつ開放部42aのある半円形状に配置したものであり、破線で示す弧状部42bがさらに延びたC型状にしてもよい。図4(c)の水中騒音抑制構造体43は、同じく複数の柱状の水中騒音反射吸収構造物1~5,7を、水中騒音発生地点50を包囲しかつ開放部43aのある半八角形状に配置したもので、破線で示す一辺43bがある形状にしてもよく、さらにもう一辺43cがある形状にしてもよい。図4(d)の水中騒音抑制構造体44は、同じく複数の柱状の水中騒音反射吸収構造物1~5,7を、水中騒音発生地点50を包囲しかつ一辺が開放した開放部44aのある四角形状に配置したものである。図4(e)の水中騒音抑制構造体45は、同じく複数の柱状の水中騒音反射吸収構造物1~5,7を、水中騒音発生地点50を包囲しかつ一辺が開放した開放部45aのある三角形状に配置したものである。図4(f)の水中騒音抑制構造体46は、同じく複数の柱状の水中騒音反射吸収構造物1~5,7を、水中騒音発生地点50に対向するように直線状に配置したものである。 The underwater noise suppression structure 42 of FIG. 4B has a plurality of columnar underwater noise reflection and absorption structures 1 to 5 and 7 in a semicircular shape surrounding the underwater noise generation point 50 and having an open portion 42a. It is arranged and may have a C-shape in which the arc-shaped portion 42b shown by the broken line is further extended. The underwater noise suppression structure 43 of FIG. 4C has a plurality of columnar underwater noise reflection and absorption structures 1 to 5 and 7 in a semi-octagonal shape surrounding the underwater noise generation point 50 and having an open portion 43a. It may be arranged and may have a shape having one side 43b shown by a broken line, or may have a shape having another side 43c. The underwater noise suppression structure 44 of FIG. 4D has an open portion 44a that surrounds the underwater noise generation points 50 and has an open side of the plurality of columnar underwater noise reflection and absorption structures 1 to 5,7. It is arranged in a square shape. The underwater noise suppression structure 45 of FIG. 4 (e) has an open portion 45a that surrounds the underwater noise generation points 50 and has an open side of the plurality of columnar underwater noise reflection and absorption structures 1 to 5,7. It is arranged in a triangular shape. In the underwater noise suppression structure 46 of FIG. 4 (f), a plurality of columnar underwater noise reflection absorption structures 1 to 5 and 7 are arranged in a straight line so as to face the underwater noise generation point 50. ..

図4(a)(g)の水中騒音抑制構造体41、47は水域において水中騒音を全方向に渡って抑制できる。また、図4(b)~(f)の水中騒音抑制構造体42~46は、水中騒音発生地点50の周囲であって水域において水中騒音を抑制したい方向に設置され、その方向への水中騒音の拡散を抑制できる。 The underwater noise suppression structures 41 and 47 of FIGS. 4 (a) and 4 (g) can suppress underwater noise in all directions in the water area. Further, the underwater noise suppression structures 42 to 46 of FIGS. 4 (b) to 4 (f) are installed around the underwater noise generation point 50 in a direction in which the underwater noise is desired to be suppressed in the water area, and the underwater noise in that direction is desired. Can suppress the diffusion of.

なお、図4(a)~(g)において水中騒音反射吸収構造物1~5,7を、各上面形状になるように水平方向に並べるが、図4(a)(b)では略円弧状に構成し、図4(c)~(g)では直線状に構成する。 In FIGS. 4 (a) to 4 (g), the underwater noise reflection and absorption structures 1 to 5 and 7 are arranged horizontally so as to have the shape of each upper surface, but in FIGS. 4 (a) and 4 (b), they are substantially arcuate. In FIGS. 4 (c) to 4 (g), the structure is linear.

また、浚渫時の周辺水域汚染防止用の汚濁防止枠と同様に水中騒音抑制構造体41~47を枠構造に構成できる。たとえば、図5のように、枠構造の側面の破線で示す鉄板60の位置に、図1(a)の水中騒音抑制構造体11から構成した図4(g)の水中騒音抑制構造体47を垂下するように配置し、または、水中騒音抑制構造体47の各水中騒音反射吸収構造物1を鉄板60に固定することで、枠構造の水中騒音抑制構造体47を構成する。同様にして、枠構造の水中騒音抑制構造体41~46を構成できる。なお、複数の水中騒音反射吸収構造物1を鉄板60に固定する図5の枠構造によれば、図1(e)と同様の水中騒音低減効果を得ることができる。 Further, the underwater noise suppression structures 41 to 47 can be configured as a frame structure in the same manner as the pollution prevention frame for preventing contamination of the surrounding water area at the time of dredging. For example, as shown in FIG. 5, at the position of the iron plate 60 shown by the broken line on the side surface of the frame structure, the underwater noise suppression structure 47 of FIG. 4 (g) composed of the underwater noise suppression structure 11 of FIG. 1 (a) is provided. The underwater noise suppression structure 47 having a frame structure is configured by arranging the underwater noise suppression structure 47 so as to hang down or by fixing each underwater noise reflection absorption structure 1 of the underwater noise suppression structure 47 to the iron plate 60. Similarly, underwater noise suppression structures 41 to 46 having a frame structure can be configured. According to the frame structure of FIG. 5 in which the plurality of underwater noise reflection absorption structures 1 are fixed to the iron plate 60, the same underwater noise reduction effect as in FIG. 1 (e) can be obtained.

上述のような枠構造とした水中騒音抑制構造体41~47を押船や引船で移動し所定位置に固定することができる。この場合、図4(a)(g)の水中騒音抑制構造体41,47の円形状や四角形状の一部に破線で示す開放部41a,47aを設けることで、水中騒音発生地点50に打設された杭等が存在しても移動可能である。また、事前に進入する船舶の大きさに応じて開放部41a,47aの寸法を定めておくことで、先に水中騒音抑制構造体41、47を所定の位置に設置しておいても水中杭打設地点50に杭打ち船等が進入できる。また、水中騒音抑制構造体42~45は、開放部42a~45aを有するため押船や引船による移動および杭打ち船等の進入が可能である。このように枠構造の水中騒音抑制構造体41~47を移動可能に構成することで、たとえば、水中騒音抑制構造体41~47を杭打設の終了に応じて次の杭打設位置に移動させて繰り返し使用ができる。なお、水中騒音抑制構造体41~47を水面より下方に設置して、その上部を船舶が通過可能な構造とすることも可能である。 The underwater noise suppression structures 41 to 47 having the frame structure as described above can be moved by a tugboat or a tugboat and fixed at a predetermined position. In this case, by providing the open portions 41a and 47a shown by the broken lines in a part of the circular shape or the square shape of the underwater noise suppression structures 41 and 47 of FIGS. 4 (a) and 4 (g), the underwater noise generation point 50 is hit. It can be moved even if there are piles installed. Further, by determining the dimensions of the open portions 41a and 47a according to the size of the ship entering in advance, even if the underwater noise suppression structures 41 and 47 are installed at predetermined positions in advance, the underwater piles are used. A pile driving ship or the like can enter the driving point 50. Further, since the underwater noise suppression structures 42 to 45 have open portions 42a to 45a, they can be moved by a push ship or a tugboat, and can be entered by a pile driving ship or the like. By configuring the underwater noise suppression structures 41 to 47 of the frame structure so as to be movable in this way, for example, the underwater noise suppression structures 41 to 47 are moved to the next pile driving position according to the end of the pile driving. Can be used repeatedly. It is also possible to install the underwater noise suppression structures 41 to 47 below the water surface so that the upper part thereof can be passed by a ship.

次に、本実施形態による水中騒音抑制構造体の複数列の配置例について図6を参照して説明する。図6は、本実施形態による水中騒音抑制構造体の複数列の配置例を概略的に示す側面図(a)~(f)である。 Next, an example of arranging a plurality of rows of the underwater noise suppression structure according to the present embodiment will be described with reference to FIG. FIG. 6 is side views (a) to (f) schematically showing an arrangement example of a plurality of rows of the underwater noise suppression structure according to the present embodiment.

図6(a)の例は、図1(a)の水中騒音抑制構造体11,11を、各水中騒音反射吸収構造物1が接近するように二列に配置し、図6(b)の例は、二列の水中騒音抑制構造体11,11が離れるように二列に配置したものである。図6(c)の例は、水中騒音抑制構造体11に、水中騒音反射吸収構造物1と同様の構成であるが径の小さい水中騒音反射吸収構造物1Aを各水中騒音反射吸収構造物1の間の隙間に位置するように配置し、図6(d)の例は、水中騒音反射吸収構造物1を水中騒音抑制構造体11の各水中騒音反射吸収構造物1の間の隙間に位置するように配置し、図6(e)の例は、図6(d)と同様の配置であるが各水中騒音反射吸収構造物1を垂直方向および水平方向に若干離して間隔wができるように配置したものである。図6(f)の例は、水中騒音抑制構造体11に、複数の径の小さい水中騒音反射吸収構造物1Aを一列にした水中騒音抑制構造体11Aを若干離して配置したものである。 In the example of FIG. 6A, the underwater noise suppression structures 11 and 11 of FIG. 1A are arranged in two rows so that the underwater noise reflection absorption structures 1 approach each other, and FIG. 6B is shown. In the example, the two rows of underwater noise suppression structures 11 and 11 are arranged in two rows so as to be separated from each other. In the example of FIG. 6 (c), the underwater noise suppression structure 11 is provided with the underwater noise reflection absorption structure 1A having the same configuration as the underwater noise reflection absorption structure 1 but having a smaller diameter. In the example of FIG. 6D, the underwater noise reflection absorbing structure 1 is arranged in the gap between the underwater noise reflection absorbing structures 1 of the underwater noise suppressing structure 11. In the example of FIG. 6 (e), the arrangement is the same as that of FIG. 6 (d), but the underwater noise reflection absorption structure 1 is slightly separated in the vertical direction and the horizontal direction so that the interval w can be formed. It is placed in. In the example of FIG. 6 (f), the underwater noise suppression structure 11A in which a plurality of small diameter underwater noise reflection absorption structures 1A are arranged in a row is arranged slightly apart from the underwater noise suppression structure 11.

図6(a)~(f)の水中騒音抑制構造体は、水中騒音の入射方向に重なるように複数列配置したものであり、複数列配置するものは、必ずしも密接している必要はなく、図6(b)(e)(f)のように離れてもよく、いずれの場合も水中騒音の抑制効果が増す。また、抑制したい水中騒音の周波数に応じて水中騒音抑制構造体間の離間距離を設定するようにしてもよい。なお、図6(a)~(f)では、図1(a)の水中騒音抑制構造体11を複数列配置する例を説明したが、図1(b)~(f)、図3(a)~(k)の水中騒音抑制構造体12~27を同様に複数列配置してもよく、また、水中騒音抑制構造体11~27から異なる形状や充填材の水中騒音抑制構造体を組み合わせて複数列配置してもよい。また、複数列の各水中騒音抑制構造体の鉛直方向長さ(深さ)を異なるようにしてもよい。 The underwater noise suppression structures of FIGS. 6A to 6F are arranged in a plurality of rows so as to overlap in the incident direction of the underwater noise, and the structures arranged in a plurality of rows do not necessarily have to be in close contact with each other. As shown in FIGS. 6 (b), 6 (e) and 6 (f), they may be separated from each other, and in either case, the effect of suppressing underwater noise is increased. Further, the separation distance between the underwater noise suppression structures may be set according to the frequency of the underwater noise to be suppressed. 6 (a) to 6 (f) have described an example in which a plurality of rows of the underwater noise suppression structures 11 of FIG. 1 (a) are arranged, but FIGS. 1 (b) to 1 (f) and FIGS. 3 (a) have been described. )-(K) may be arranged in a plurality of rows in the same manner, or the underwater noise suppression structures having different shapes and fillers from the underwater noise suppression structures 11 to 27 may be combined. Multiple columns may be arranged. Further, the length (depth) in the vertical direction of each of the plurality of rows of underwater noise suppression structures may be different.

また、複数列配置する場合、図6(e)のように、各水中騒音反射吸収構造物1の間に間隔wがあっても、水中騒音が狭い間隔wを通過し拡散する過程において抑制され、水中騒音の漏れを抑制できる。 Further, when a plurality of rows are arranged, as shown in FIG. 6E, even if there is an interval w between the underwater noise reflection absorption structures 1, the underwater noise is suppressed in the process of passing through the narrow interval w and diffusing. , Underwater noise leakage can be suppressed.

図7は、本実施形態による水中騒音抑制構造体が水中騒音発生地点を包囲するように配置された例を示す縦断面図(a)(b)である。図7(a)の例は、杭打設等による水中騒音発生地点50を包囲しかつ水底に着底する着底型を構成するように図4(a)の水中騒音抑制構造体41と同様の構成の水中騒音抑制構造体41Aを設置することで、水面から水底までの範囲において水中騒音を抑制するものである。図7(b)の例は、水面から水深中間位置まで配置する中間配置型を構成するように図4(a)の水中騒音抑制構造体41と同様の構成の水中騒音抑制構造体41Bを設置することで、水面から水深中間までの範囲において水中騒音を抑制するものである。 FIG. 7 is a vertical cross-sectional view (a) and (b) showing an example in which the underwater noise suppression structure according to the present embodiment is arranged so as to surround the underwater noise generation point. The example of FIG. 7 (a) is the same as the underwater noise suppression structure 41 of FIG. 4 (a) so as to form a bottoming type that surrounds the underwater noise generation point 50 due to pile driving or the like and bottoms on the water bottom. By installing the underwater noise suppression structure 41A having the above configuration, underwater noise is suppressed in the range from the water surface to the water bottom. In the example of FIG. 7 (b), the underwater noise suppression structure 41B having the same configuration as the underwater noise suppression structure 41 of FIG. 4 (a) is installed so as to form an intermediate arrangement type that is arranged from the water surface to the water depth intermediate position. By doing so, underwater noise is suppressed in the range from the water surface to the middle of the water depth.

図8は、本実施形態による水中騒音抑制構造体と潜堤型の水中騒音抑制構造体との組み合わせ例を示す図(a)(b)である。図8(a)の例は、水底面に水中騒音抑制効果の高い潜堤型の水中騒音抑制構造体51を設置して水底から水深中間までの範囲で水中騒音を抑制し、図7(b)の水中騒音抑制構造体41Bを中間配置型に設置することで、水面から水深中間までの範囲で水中騒音を抑制し、全体として水面から水底までの範囲で水中騒音を抑制するものである。 FIG. 8 is a diagram (a) and (b) showing an example of a combination of the underwater noise suppression structure according to the present embodiment and the submarine type underwater noise suppression structure. In the example of FIG. 8A, an underwater noise suppression structure 51 having a high underwater noise suppression effect is installed on the bottom surface of the water to suppress underwater noise in the range from the bottom of the water to the middle of the water depth, and FIG. 7B ), The underwater noise suppression structure 41B is installed in the intermediate arrangement type to suppress the underwater noise in the range from the water surface to the middle of the water depth, and to suppress the underwater noise in the range from the water surface to the water bottom as a whole.

図7(a)(b)、図8(a)の水中騒音抑制構造体41A,41Bは、図4(g)の水中騒音抑制構造体47と同様の構成としてもよい。また、たとえば、図9(a)のように、水中騒音発生地点50に対し一方が開放部42a(図4(b))で開放しかつ接近するように図4(b)の水中騒音抑制構造体42と同様の構成の水中騒音抑制構造体42Aを着底型に設置することで、水中騒音発生地点50からの水中騒音の拡散を抑制する片側方向において水面から水底までの範囲で水中騒音を抑制することができる。また、図9(b)のように、図4(b)の水中騒音抑制構造体42と同様の構成の水中騒音抑制構造体42Bを中間配置型に設置することで、水中騒音発生地点50からの水中騒音の拡散を抑制する片側方向において水面から水深中間までの範囲で水中騒音を抑制することができる。なお、図9(a)(b)の水中騒音抑制構造体42A,42Bは、図4(c)~(f)の水中騒音抑制構造体43~46においても同様の構成としてもよい。 The underwater noise suppression structures 41A and 41B of FIGS. 7 (a) and 7 (b) and 8 (a) may have the same configuration as the underwater noise suppression structure 47 of FIG. 4 (g). Further, for example, as shown in FIG. 9A, the underwater noise suppression structure of FIG. 4B is such that one side opens and approaches the underwater noise generation point 50 at the opening portion 42a (FIG. 4B). By installing the underwater noise suppression structure 42A having the same configuration as the body 42 in a landing type, underwater noise is suppressed in the range from the water surface to the bottom in one side to suppress the diffusion of underwater noise from the underwater noise generation point 50. It can be suppressed. Further, as shown in FIG. 9B, by installing the underwater noise suppression structure 42B having the same configuration as the underwater noise suppression structure 42 of FIG. 4B in the intermediate arrangement type, the underwater noise generation point 50 can be used. Suppressing the diffusion of underwater noise It is possible to suppress underwater noise in the range from the water surface to the middle of the water depth in one side. The underwater noise suppression structures 42A and 42B of FIGS. 9A and 9B may have the same configuration as the underwater noise suppression structures 43 to 46 of FIGS. 4C to 4f.

図8(b)の例は、潜堤型の水中騒音抑制構造体51を水底面に設置して下方における水中騒音を抑制し、水中騒音抑制構造体51の上面から上方に図4(f)のような直線状の水中騒音抑制構造体46を設置することで水中騒音抑制構造体51の上面から水面において水中騒音を抑制し、全体として水面から水底までの範囲で水中騒音を抑制するものである。なお、図8(a)(b)の水中騒音抑制構造体51は、たとえば、本発明者等が先に特願2020-014408で提案した構造体を用いることができる。 In the example of FIG. 8B, a submarine type underwater noise suppression structure 51 is installed on the bottom surface of the water to suppress underwater noise below, and FIG. 4 (f) is above the upper surface of the underwater noise suppression structure 51. By installing a linear underwater noise suppression structure 46 such as, the underwater noise is suppressed from the upper surface of the underwater noise suppression structure 51 to the water surface, and the underwater noise is suppressed in the range from the water surface to the bottom as a whole. be. As the underwater noise suppression structure 51 of FIGS. 8A and 8B, for example, the structure previously proposed by the present inventors in Japanese Patent Application No. 2020-014408 can be used.

次に、図1(a)(c)(e)の水中騒音反射吸収構造物1の変形例について図10(a)~(e)を参照して説明する。図10(a)の水中騒音反射吸収構造物9Aは、図1(c)において比較的小さなピラミット状の突起36aを多数有しかつ多数の突起36aの反対側に平坦部36bを有するウレタン等の多孔質型吸音材36をさらに配置し、多孔質型吸音材35の平坦部35bと多孔質型吸音材36の平坦部36bとを貼り合わせたものである。内部空洞1b内において透過波cの入射側でピラミット状の多数の突起35aにより吸音面積が増え、反射波dの入射側でピラミット状の多数の突起36aにより吸音面積が増え、図2の透過波cと反射波dを効率的に吸音し減少させることで、水中騒音の抑制効果がさらに増す。 Next, a modification of the underwater noise reflection absorption structure 1 of FIGS. 1 (a), 1 (c), and 1 (e) will be described with reference to FIGS. 10 (a) to 10 (e). The underwater noise reflection / absorption structure 9A of FIG. 10A has a large number of relatively small pyramid-shaped protrusions 36a in FIG. 1C and has a flat portion 36b on the opposite side of the large number of protrusions 36a. The porous type sound absorbing material 36 is further arranged, and the flat portion 35b of the porous type sound absorbing material 35 and the flat portion 36b of the porous type sound absorbing material 36 are bonded together. In the internal cavity 1b, the sound absorbing area is increased by a large number of pyramid-shaped protrusions 35a on the incident side of the transmitted wave c, and the sound absorbing area is increased by a large number of pyramid-shaped protrusions 36a on the incident side of the reflected wave d. By efficiently absorbing and reducing c and the reflected wave d, the effect of suppressing underwater noise is further increased.

図10(b)の水中騒音反射吸収構造物9Bは、半円状に分割された水中騒音反射吸収構造物2,3から構成され、図1(a)と同様に全体として円柱状になっている。半円柱状の水中騒音反射吸収構造物2が水中騒音の入射側に位置し、半円柱状の水中騒音反射吸収構造物3がその反対側に位置し、水中騒音反射吸収構造物2の内部空洞2b内に図1(f)と同様に多孔質型吸音材35が配置されている。 The underwater noise reflection / absorption structure 9B of FIG. 10B is composed of the underwater noise reflection / absorption structures 2 and 3 divided into semicircles, and has a columnar shape as a whole as in FIG. 1A. There is. The semi-cylindrical underwater noise reflection / absorption structure 2 is located on the incident side of the underwater noise, the semi-cylindrical underwater noise reflection / absorption structure 3 is located on the opposite side, and the internal cavity of the underwater noise reflection / absorption structure 2 is located. A porous sound absorbing material 35 is arranged in 2b as in FIG. 1 (f).

水中騒音反射吸収構造物2の外殻体2aは、半円状の内部空洞2bと、円周表面の音入射面2cと、音入射面2cの反対側に形成された平坦面2dと、を有し、水中騒音反射吸収構造物3の外殻体3aは、半円状の内部空洞3bと、音入射面となる平坦面3dと、円周表面の音出射面3cとを有する。水中騒音反射吸収構造物2,3は平坦面2dと平坦面3dとを接着剤等により貼り合わせて一体化されている。内部空洞2b、3bには空気等の気体31が充填されている。なお、気体31に代えて、吸音材、反射材、共振材、気体と吸音材、気体と反射材、気体と共振材、気体と泥水、または、泥水を充填してもよく、さらに内部空洞2bと内部空洞3bとに異なる充填材を充填するようにしてもよい。 The outer shell 2a of the underwater noise reflection absorption structure 2 has a semi-circular internal cavity 2b, a sound incident surface 2c on the circumferential surface, and a flat surface 2d formed on the opposite side of the sound incident surface 2c. The outer shell 3a of the underwater noise reflection absorption structure 3 has a semi-circular internal cavity 3b, a flat surface 3d serving as a sound incident surface, and a sound emitting surface 3c on the circumferential surface. The underwater noise reflection absorption structures 2 and 3 are integrated by laminating the flat surface 2d and the flat surface 3d with an adhesive or the like. The internal cavities 2b and 3b are filled with a gas 31 such as air. Instead of the gas 31, a sound absorbing material, a reflective material, a resonant material, a gas and a sound absorbing material, a gas and a reflective material, a gas and a resonant material, a gas and muddy water, or muddy water may be filled, and further, the internal cavity 2b may be filled. And the internal cavity 3b may be filled with different fillers.

図10(b)の水中騒音反射吸収構造物9Bによれば、内部空洞2b内においてピラミット状の多数の突起35aにより吸音面積が増え、図2の透過波cを効率的に吸音し減少させるとともに、最終的に水中騒音反射吸収構造物3の円周表面の音出射面3cから出射する透過波eがより低減し、水中騒音の抑制効果が増す。 According to the underwater noise reflection absorption structure 9B of FIG. 10B, the sound absorption area is increased by a large number of pyramid-shaped protrusions 35a in the internal cavity 2b, and the transmitted wave c of FIG. 2 is efficiently absorbed and reduced. Finally, the transmitted wave e emitted from the sound emitting surface 3c on the circumferential surface of the underwater noise reflection absorbing structure 3 is further reduced, and the effect of suppressing the underwater noise is increased.

図10(c)の水中騒音反射吸収構造物9Cは、図10(b)と同様に半円状に分割された水中騒音反射吸収構造物2,3を平坦面2d,3dが対向するように接着剤等により貼り合わせ一体化したもので、水中騒音を吸音し低減させる。 In the underwater noise reflection / absorption structure 9C of FIG. 10C, the underwater noise reflection / absorption structures 2 and 3 divided into semicircles are opposed to the flat surfaces 2d and 3d as in FIG. 10B. It is integrated by laminating with an adhesive or the like, and absorbs and reduces underwater noise.

図10(d)の水中騒音反射吸収構造物9Dは、図10(b)において半円状の水中騒音反射吸収構造物3の内部空洞3b内にも比較的小さなピラミット状の突起36aを多数有しかつ多数の突起36aの反対側に平坦部36bを有するウレタン等の多孔質型吸音材36を配置したものである。水中騒音反射吸収構造物2の内部空洞2bにおいて透過波cの入射側でピラミット状の多数の突起35aにより吸音面積が増え、水中騒音反射吸収構造物3の内部空洞3bにおいて反射波dの入射側でピラミット状の多数の突起36aにより吸音面積が増え、図2の透過波cと反射波dを効率的に吸音し減少させることで、水中騒音の抑制効果がさらに増す。 The underwater noise reflection / absorption structure 9D of FIG. 10D has a large number of relatively small pyramid-shaped protrusions 36a in the internal cavity 3b of the semicircular underwater noise reflection / absorption structure 3 in FIG. 10B. In addition, a porous sound absorbing material 36 such as urethane having a flat portion 36b is arranged on the opposite side of a large number of protrusions 36a. In the internal cavity 2b of the underwater noise reflection absorption structure 2, the sound absorption area is increased by a large number of pyramid-shaped protrusions 35a on the incident side of the transmitted wave c, and the incident side of the reflected wave d in the internal cavity 3b of the underwater noise reflection absorption structure 3. The sound absorbing area is increased by the large number of pyramid-shaped protrusions 36a, and the transmitted wave c and the reflected wave d in FIG. 2 are efficiently absorbed and reduced, so that the effect of suppressing underwater noise is further increased.

図10(e)の水中騒音反射吸収構造物9Eは、図10(b)において水中騒音反射吸収構造物3の音出射面3cの半円状内面に比較的小さなピラミット状の突起37aを有するウレタン等の多孔質型吸音材37を平坦面37bが半円状内面に倣うように曲げて配置し、ピラミット状の突起37aにより吸音面積と反射面積が増え効率的に水中騒音を吸音し低減させる。 The underwater noise reflection absorbing structure 9E of FIG. 10E is a urethane having a relatively small pyramid-shaped protrusion 37a on the semicircular inner surface of the sound emitting surface 3c of the underwater noise reflection absorbing structure 3 in FIG. 10B. The porous sound absorbing material 37 such as the above is bent and arranged so that the flat surface 37b follows the semicircular inner surface, and the sound absorbing area and the reflecting area are increased by the pyramid-shaped protrusions 37a to efficiently absorb and reduce underwater noise.

なお、図10(a)~(e)の水中騒音反射吸収構造物9A~9Eを複数、図1(a)(c)(e)と同様に配置して水中騒音抑制構造体とすることができる。この内の図10(c)の水中騒音反射吸収構造物9Cから構成される水中騒音抑制構造体は、半円状の水中騒音反射吸収構造物2,3からなる二列の水中騒音抑制構造体と考えることができ、図6(a)の変形例でもある。また、図3(a)(c)の水中騒音反射吸収構造物4を半三角形状にして図10(b)~(e)と同様の分割構造としてもよい。 It should be noted that a plurality of underwater noise reflection absorption structures 9A to 9E of FIGS. 10A to 10E may be arranged in the same manner as in FIGS. 1A, 1C and 1E to form an underwater noise suppression structure. can. The underwater noise suppression structure composed of the underwater noise reflection / absorption structure 9C of FIG. 10C is a two-row underwater noise suppression structure composed of semicircular underwater noise reflection / absorption structures 2 and 3. It can be considered as a modification of FIG. 6A. Further, the underwater noise reflection / absorption structure 4 of FIGS. 3 (a) and 3 (c) may be formed into a semi-triangular shape to form a divided structure similar to that of FIGS. 10 (b) to 10 (e).

次に、本実施形態による水中騒音反射吸収構造物の変形例について図11(a)(b)を参照して説明する。図11(a)の水中騒音反射吸収構造物10Aは、外殻体10aが全体として板状に構成され、音入射面が波状の凹凸10cに形成され、波状の凹凸10cで入射した水中騒音を効率的に反射し、水中騒音を低減させる。図11(b)の水中騒音反射吸収構造物10Bは、音入射面が小さな三角形状や鋸歯状の凹凸10dに形成され、凹凸10dで入射した水中騒音を効率的に反射し、水中騒音を低減させる。なお、図11(a)(b)の水中騒音反射吸収構造物10A,10Bは、内部空洞10bは気体31であってよいが、吸音材や共振材を充填してもよい。また、水中騒音反射吸収構造物10A,10Bからなる水中騒音抑制構造体は、水平方向(紙面垂直方向)に延びて全体が板状に構成され、1枚の板状部材から構成されてよいが、縦および/または横に分割した分割板状部材の組み合わせから構成されてもよく、いずれの場合も、水中に垂下するようにして設置される。 Next, a modification of the underwater noise reflection absorption structure according to the present embodiment will be described with reference to FIGS. 11 (a) and 11 (b). In the underwater noise reflection absorption structure 10A of FIG. 11A, the outer shell body 10a is formed in a plate shape as a whole, the sound incident surface is formed into wavy unevenness 10c, and the underwater noise incidented by the wavy unevenness 10c is generated. Efficiently reflects and reduces underwater noise. In the underwater noise reflection absorption structure 10B of FIG. 11B, the sound incident surface is formed into small triangular or serrated unevenness 10d, and the underwater noise incident on the unevenness 10d is efficiently reflected to reduce the underwater noise. Let me. In the underwater noise reflection and absorption structures 10A and 10B of FIGS. 11A and 11B, the internal cavity 10b may be a gas 31, but a sound absorbing material or a resonance material may be filled. Further, the underwater noise suppression structure composed of the underwater noise reflection absorption structures 10A and 10B extends in the horizontal direction (vertical direction on the paper surface) and is entirely formed in a plate shape, and may be composed of one plate-shaped member. It may be composed of a combination of vertically and / or horizontally divided divided plate-shaped members, and in any case, it is installed so as to hang down in water.

図1(a)~(f)、図3(a)~(k)では柱状の水中騒音反射吸収構造物を水平方向に複数配置したが、本発明はこれに限定されず、柱状の水中騒音反射吸収構造物を鉛直方向に複数配置して水中騒音抑制構造体を構成してもよい。たとえば、図12のように、複数の円柱状の水中騒音反射吸収構造物1を鉛直方向に配置して構成した水中騒音抑制構造体70を水中に吊り下げるように設置するようにしてもよい。なお、水中騒音抑制構造体70の内部空洞に充填する充填材料は、浮力効果と水中安定効果を勘案して決定することが好ましい。 In FIGS. 1 (a) to 1 (f) and FIGS. 3 (a) to 3 (k), a plurality of columnar underwater noise reflection absorption structures are arranged in the horizontal direction, but the present invention is not limited to this, and the columnar underwater noise is not limited to this. A plurality of reflection-absorbing structures may be arranged in the vertical direction to form an underwater noise suppression structure. For example, as shown in FIG. 12, the underwater noise suppression structure 70 configured by arranging a plurality of columnar underwater noise reflection absorption structures 1 in the vertical direction may be installed so as to be suspended in water. The filling material to be filled in the internal cavity of the underwater noise suppression structure 70 is preferably determined in consideration of the buoyancy effect and the underwater stabilization effect.

〈実験例〉
図13に示す実験ケース1~14のように各条件を変えて水中騒音抑制構造体を作製した。外殻形状が円形である図1(a)(b)(d)(e)に対応する実験ケース3~10は外殻体として径100mmの塩ビ管を使用し、外殻形状が三角形(▽)である図3(a)(g)に対応する実験ケース11~14は外殻体として一辺120mm程度の細長いプラスチック製容器を使用した。この水中騒音抑制構造体を図14に示す500Lのプラスチック水槽に設置し、鋼管を打撃した際の水中騒音を音圧計により測定した。なお、実験ケース1は何も設置しない場合、実験ケース2は鉄板(厚さ2mm)のみを設置した場合である。
<Experimental example>
Underwater noise suppression structures were produced under different conditions as shown in Experimental Cases 1 to 14 shown in FIG. Experimental cases 3 to 10 corresponding to FIGS. 1 (a), (b), (d), and (e) having a circular outer shell shape use a PVC pipe having a diameter of 100 mm as the outer shell body, and the outer shell shape is triangular (▽). ), The experimental cases 11 to 14 corresponding to FIGS. 3 (a) and 3 (g) used an elongated plastic container having a side of about 120 mm as an outer shell. This underwater noise suppression structure was installed in a 500 L plastic water tank shown in FIG. 14, and the underwater noise when the steel pipe was hit was measured by a sound pressure gauge. It should be noted that the experimental case 1 is the case where nothing is installed, and the experimental case 2 is the case where only the iron plate (thickness 2 mm) is installed.

図15は、実験ケース1~11に応じて鉄板の有無、外殻形状の違いに関する実験結果を示すグラフであり、図16は、実験ケース1~4,11で得られた周波数特性を示すグラフである。図15から明らかなように、実験ケース2の鉄板のみ、実験ケース6,14の充填材料が水道水の場合は、音圧レベル低減効果がほとんど無いかまたはかなり小さいのに対し、本実施形態による実験ケース3,4,5,11,12,13では、音圧レベル低減効果が大きいことが確認され、図16から幅広い周波数帯で音圧レベル低減効果があることが確認された。今回の実験結果では、特に、外殻形状が三角形(▽)・充填材料が空気・背面鉄板配置の実験ケース11が最も音圧レベル低減効果が高く、18dBの低減効果が確認された。 FIG. 15 is a graph showing the experimental results regarding the presence / absence of the iron plate and the difference in the outer shell shape according to the experimental cases 1 to 11, and FIG. 16 is a graph showing the frequency characteristics obtained in the experimental cases 1 to 4 and 11. Is. As is clear from FIG. 15, when only the iron plate of the experimental case 2 and the filling material of the experimental cases 6 and 14 are tap water, the sound pressure level reducing effect is almost nonexistent or considerably small, whereas the present embodiment is used. In Experimental Cases 3, 4, 5, 11, 12, and 13, it was confirmed that the sound pressure level reducing effect was large, and from FIG. 16, it was confirmed that the sound pressure level reducing effect was obtained in a wide frequency band. In the results of this experiment, in particular, the experimental case 11 in which the outer shell shape is triangular (▽), the filling material is air, and the back iron plate is arranged has the highest sound pressure level reduction effect, and the reduction effect of 18 dB was confirmed.

図17は、充填材料の違いに関する実験結果を示すグラフであり、図18は、実験ケース1,4,7~10で得られた周波数特性を示すグラフである。図17から明らかなように、充填材料がベントナイト10%の泥水である実験ケース9,10で遮音効果が大きく、特に半分をベントナイト10%・残り半分を空気で満たす実験ケース10で遮音効果が最も大きいことが確認された。図18から周波数特性に着目すると、空気の実験ケース4、ベントナイト10%の泥水の実験ケース9,10が全周波数帯で音圧レベルが低減した。 FIG. 17 is a graph showing the experimental results regarding the difference in the filling material, and FIG. 18 is a graph showing the frequency characteristics obtained in the experimental cases 1, 4, 7 to 10. As is clear from FIG. 17, the sound insulation effect is large in the experimental cases 9 and 10 in which the filling material is muddy water with 10% bentonite, and the sound insulation effect is the highest in the experimental case 10 in which half is filled with 10% bentonite and the other half is filled with air. It was confirmed to be large. Focusing on the frequency characteristics from FIG. 18, the sound pressure level was reduced in all frequency bands in the experimental cases 4 of air and the experimental cases 9 and 10 of muddy water with 10% bentonite.

以上のように本発明を実施するための形態について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。たとえば、図1(a)~(f)、図3(a)~(k)における鉛直方向の水中騒音反射吸収構造物の数は、必要に応じて増減できることはもちろんである。 Although the embodiment for carrying out the present invention has been described above, the present invention is not limited to these, and various modifications can be made within the scope of the technical idea of the present invention. For example, it goes without saying that the number of vertical underwater noise reflection absorbing structures in FIGS. 1 (a) to 1 (f) and FIGS. 3 (a) to 3 (k) can be increased or decreased as needed.

また、本発明は、洋上風力発電施設の建設時の杭打設に限らず、その他の水中音に対しても適用できることはもちろんである。また、騒音発生地点の周辺に人が生活する場所等において水中から気中への騒音の放出を避けたい場合にも本発明は適用でき、特に、図3(a)~(f)の水中騒音抑制構造体17~22によれば、水中騒音反射吸収構造物の音入射面での水中騒音の反射波が水底面方向に向かい水底面で吸収され、水中から気中への騒音の放出を効果的に低減できる。 Further, it goes without saying that the present invention can be applied not only to pile driving at the time of construction of an offshore wind power generation facility but also to other underwater sounds. Further, the present invention can be applied to the case where it is desired to avoid the emission of noise from the water into the air in a place where a person lives around the noise generation point, and in particular, the underwater noise shown in FIGS. 3 (a) to 3 (f). According to the suppression structures 17 to 22, the reflected wave of the underwater noise on the sound incident surface of the underwater noise reflection absorption structure is directed toward the bottom of the water and absorbed at the bottom of the water, effectively releasing the noise from the water to the air. Can be reduced.

また、本実施形態による水中騒音抑制構造体を構築する際に、各水中騒音反射吸収構造物を必要に応じてフロートや錘の設置により固定したり、フレームへ固定することが好ましい。 Further, when constructing the underwater noise suppression structure according to the present embodiment, it is preferable to fix each underwater noise reflection absorption structure by installing a float or a weight as necessary, or to fix it to the frame.

また、水中騒音反射吸収構造物が四角柱に構成される場合、その四角形状の外殻体は、たとえば、1辺が鉛直方向に延びるように配置されたり、また、1つの角部と、その対角側のもう1つの角部とが水平方向を向くように配置される。 Further, when the underwater noise reflection absorption structure is composed of a quadrangular prism, the quadrangular outer shell is arranged so that one side extends in the vertical direction, for example, or one corner and its corner. The other diagonal corner is arranged so as to face the horizontal direction.

本発明によれば、水中騒音を効率的に抑制可能な水中騒音反射吸収構造物から構成された水中騒音抑制構造体を、杭打設等の工事による水中騒音の発生地点の周囲や水中騒音の拡散抑制方向に設置することで、水中騒音を効率的に抑制し、水中騒音の拡散を抑制でき、水中騒音による水中生物への悪影響を防止できる。 According to the present invention, an underwater noise suppression structure composed of an underwater noise reflection absorption structure capable of efficiently suppressing underwater noise can be used around a point where underwater noise is generated due to construction such as pile driving and underwater noise. By installing in the direction of suppressing diffusion, underwater noise can be efficiently suppressed, diffusion of underwater noise can be suppressed, and adverse effects of underwater noise on aquatic organisms can be prevented.

1~5,7,1A 水中騒音反射吸収構造物
9A~9E 水中騒音反射吸収構造物
10A,10B 水中騒音反射吸収構造物
1a~5a,7a 外殻体
1b~5b,7b 内部空洞
1c,2c,4c,7c,7d 音入射面
11~27,11A 水中騒音抑制構造体
31 気体
32,33 充填材
34 泥水
35~37 多孔質型吸音材
35a~37a ピラミット状の突起
40 鉄板
41~47,70 水中騒音抑制構造体
41a,47a 開放部
42a~45a 開放部
41A,41B,42A,42B 水中騒音抑制構造体
50 水中騒音発生地点
51 潜堤型の水中騒音抑制構造体
a 入射波
b,d 反射波
c,e 透過波
Z 水中騒音反射吸収構造物の幅
1-5,7,1A Underwater noise reflection absorption structure 9A-9E Underwater noise reflection absorption structure 10A, 10B Underwater noise reflection absorption structure 1a-5a, 7a Outer shell 1b-5b, 7b Internal cavity 1c, 2c, 4c, 7c, 7d Sound incident surface 11-27, 11A Underwater noise suppression structure 31 Gas 32,33 Filling material 34 Muddy water 35-37 Porous sound absorbing material 35a-37a Pyramid-shaped protrusion 40 Iron plate 41-47,70 Underwater Noise suppression structures 41a, 47a Open portions 42a to 45a Open portions 41A, 41B, 42A, 42B Underwater noise suppression structure 50 Underwater noise generation point 51 Submarine type underwater noise suppression structure a Incident wave b, d Reflected wave c , E Transmitted wave Z Width of underwater noise reflection absorption structure

Claims (16)

水中騒音を抑制するための水中騒音反射吸収構造物であって、
水中騒音を音入射面で反射し、
前記水中騒音反射吸収構造物の内部で騒音を吸収もしくは反射しまたは騒音と共振するように構成された水中騒音反射吸収構造物。
An underwater noise reflection absorption structure for suppressing underwater noise.
Underwater noise is reflected on the sound incident surface,
An underwater noise reflection / absorption structure configured to absorb or reflect noise or resonate with noise inside the underwater noise reflection / absorption structure.
前記音入射面の形状が曲面状または傾斜面状である請求項1に記載の水中騒音反射吸収構造物。 The underwater noise reflection absorbing structure according to claim 1, wherein the sound incident surface has a curved surface or an inclined surface. 前記内部に気体、水よりも比重の大きい液体、吸音材、反射材および共振材のうちの少なくとも1つからなる充填材料を含む請求項1または2に記載の水中騒音反射吸収構造物。 The underwater noise reflection absorption structure according to claim 1 or 2, wherein the inside thereof includes a filling material composed of at least one of a gas, a liquid having a specific gravity higher than that of water, a sound absorbing material, a reflecting material and a resonance material. 前記音入射面を構成し内部空洞を有する外殻体を備え、
前記内部空洞内に前記充填材料が充填されている請求項3に記載の水中騒音反射吸収構造物。
An outer shell body constituting the sound incident surface and having an internal cavity is provided.
The underwater noise reflection absorption structure according to claim 3, wherein the filling material is filled in the internal cavity.
前記外殻体が分割されている請求項4に記載の水中騒音反射吸収構造物。 The underwater noise reflection absorption structure according to claim 4, wherein the outer shell is divided. 全体が柱状に構成された請求項1乃至5のいずれかに記載の水中騒音反射吸収構造物。 The underwater noise reflection absorption structure according to any one of claims 1 to 5, which is entirely formed in a columnar shape. 全体が板状に構成された請求項1乃至5のいずれかに記載の水中騒音反射吸収構造物。 The underwater noise reflection absorption structure according to any one of claims 1 to 5, which is entirely formed in a plate shape. 請求項1乃至7のいずれかに記載の水中騒音反射吸収構造物を含む水中騒音抑制構造体。 An underwater noise suppression structure including the underwater noise reflection absorption structure according to any one of claims 1 to 7. 請求項6に記載の柱状に構成された水中騒音反射吸収構造物を含む水中騒音抑制構造体であって、前記柱状に構成された複数の水中騒音反射吸収構造物が鉛直方向に配置され水中に吊り下げられた水中騒音抑制構造体。 The underwater noise suppression structure including the underwater noise reflection / absorption structure configured in the columnar according to claim 6, wherein a plurality of underwater noise reflection / absorption structures configured in the columnar column are arranged in the vertical direction and submerged in water. Suspended underwater noise suppression structure. 請求項6に記載の柱状に構成された水中騒音反射吸収構造物を含む水中騒音抑制構造体であって、前記柱状に構成された複数の水中騒音反射吸収構造物が水平方向に配置され水中に垂下された水中騒音抑制構造体。 The underwater noise suppression structure including the underwater noise reflection / absorption structure configured in the columnar according to claim 6, wherein a plurality of underwater noise reflection / absorption structures configured in the columnar column are arranged in the horizontal direction and submerged in water. Hanging underwater noise suppression structure. 前記水平方向に配置された複数の水中騒音反射吸収構造物のうちの下方の水中騒音反射吸収構造物の内部に泥水を充填し、水面近傍の水中騒音反射吸収構造物の内部に気体を充填した請求項10に記載の水中騒音抑制構造体。 Of the plurality of underwater noise reflection and absorption structures arranged in the horizontal direction, the lower underwater noise reflection and absorption structure was filled with muddy water, and the inside of the underwater noise reflection and absorption structure near the water surface was filled with gas. The underwater noise suppression structure according to claim 10. 前記水中騒音反射吸収構造物の音入射面の背面側の音出射面に鉄板を配置した請求項8乃至11のいずれかに記載の水中騒音抑制構造体。 The underwater noise suppression structure according to any one of claims 8 to 11, wherein an iron plate is arranged on a sound emitting surface on the back surface side of the sound incident surface of the underwater noise reflection absorbing structure. 船により水中を移動可能に構成された請求項8乃至12のいずれかに記載の水中騒音抑制構造体。 The underwater noise suppression structure according to any one of claims 8 to 12, which is configured to be movable in water by a ship. 前記水中騒音反射吸収構造物を複数水中に垂下させ、上面から見て水中騒音の発生地点を包囲してまたは前記発生地点に接近させ一部を開放して配置した請求項8乃至13のいずれかに記載の水中騒音抑制構造体。 One of claims 8 to 13 in which a plurality of the underwater noise reflection absorption structures are suspended in water, surrounding the underwater noise generation point when viewed from above, or approaching the generation point and partially opening the structure. The underwater noise suppression structure described in. 請求項1乃至7のいずれかに記載の水中騒音反射吸収構造物、または、請求項8乃至14のいずれかに記載の水中騒音抑制構造体を、水中騒音の発生地点の周囲および/または前記水中騒音の拡散を抑制する方向に設置することで水中騒音を抑制する水中騒音抑制方法。 The underwater noise reflection absorption structure according to any one of claims 1 to 7 or the underwater noise suppression structure according to any one of claims 8 to 14 is placed around a point where underwater noise is generated and / or in the water. An underwater noise suppression method that suppresses underwater noise by installing it in a direction that suppresses the diffusion of noise. 前記水中騒音反射吸収構造物または前記水中騒音抑制構造体を水中騒音の入射方向に重なるように設置する請求項15に記載の水中騒音抑制方法。 The underwater noise suppression method according to claim 15, wherein the underwater noise reflection absorption structure or the underwater noise suppression structure is installed so as to overlap in the incident direction of the underwater noise.
JP2020160642A 2020-09-25 2020-09-25 Underwater noise reflection/absorption structure, underwater noise suppression structure, and underwater noise suppression method Active JP7410833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020160642A JP7410833B2 (en) 2020-09-25 2020-09-25 Underwater noise reflection/absorption structure, underwater noise suppression structure, and underwater noise suppression method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020160642A JP7410833B2 (en) 2020-09-25 2020-09-25 Underwater noise reflection/absorption structure, underwater noise suppression structure, and underwater noise suppression method

Publications (2)

Publication Number Publication Date
JP2022053810A true JP2022053810A (en) 2022-04-06
JP7410833B2 JP7410833B2 (en) 2024-01-10

Family

ID=80994377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020160642A Active JP7410833B2 (en) 2020-09-25 2020-09-25 Underwater noise reflection/absorption structure, underwater noise suppression structure, and underwater noise suppression method

Country Status (1)

Country Link
JP (1) JP7410833B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519774A (en) * 1991-07-17 1993-01-29 Oki Electric Ind Co Ltd High-water pressure resistant sound insulating material and production thereof
JPH05119785A (en) * 1991-10-28 1993-05-18 Ishikawajima Syst Technol Kk Sound shield structure for underwater sound
JPH1024531A (en) * 1996-07-09 1998-01-27 Yokohama Rubber Co Ltd:The Resin type sound-absorbing material and its manufacture
JP2017504844A (en) * 2014-01-06 2017-02-09 ウォクナー、マーク、エス. Underwater noise reduction device and deployment system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519774A (en) * 1991-07-17 1993-01-29 Oki Electric Ind Co Ltd High-water pressure resistant sound insulating material and production thereof
JPH05119785A (en) * 1991-10-28 1993-05-18 Ishikawajima Syst Technol Kk Sound shield structure for underwater sound
JPH1024531A (en) * 1996-07-09 1998-01-27 Yokohama Rubber Co Ltd:The Resin type sound-absorbing material and its manufacture
JP2017504844A (en) * 2014-01-06 2017-02-09 ウォクナー、マーク、エス. Underwater noise reduction device and deployment system

Also Published As

Publication number Publication date
JP7410833B2 (en) 2024-01-10

Similar Documents

Publication Publication Date Title
US11993907B2 (en) Device for damping and scattering hydrosound in a liquid
JP6081673B2 (en) Underwater noise reduction panel and resonator structure
CN110029965B (en) Underwater noise reduction system and deployment device using open-ended resonator assembly
JPS60237491A (en) Sound wave absorption wall cover
CN216388742U (en) Acoustic insulation panel and assembly comprising an acoustic insulation panel
Leighton et al. Trapped within a wall of sound
JPH01142424A (en) Non-echo coating for sound wave
JP2022053810A (en) Underwater noise reflection absorption structure, underwater noise reducing structure, and underwater noise reducing method
JP6720223B2 (en) Injection molded noise reduction assembly and deployment system
EP0089890A1 (en) Process and device for the protection of a shield in touch with a mass of liquid against the variation of dynamic pressure
JP4895651B2 (en) Floating roof and sloshing damping method using the floating roof
Wilson et al. Injection molded noise abatement assembly and deployment system
NZ737558B2 (en) Injection molded noise abatement assembly and deployment system
JPS63233121A (en) Underground vibration-proof wall
JPH0819651B2 (en) Flexible mound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231222

R150 Certificate of patent or registration of utility model

Ref document number: 7410833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150