EP0089890A1 - Process and device for the protection of a shield in touch with a mass of liquid against the variation of dynamic pressure - Google Patents
Process and device for the protection of a shield in touch with a mass of liquid against the variation of dynamic pressure Download PDFInfo
- Publication number
- EP0089890A1 EP0089890A1 EP83400563A EP83400563A EP0089890A1 EP 0089890 A1 EP0089890 A1 EP 0089890A1 EP 83400563 A EP83400563 A EP 83400563A EP 83400563 A EP83400563 A EP 83400563A EP 0089890 A1 EP0089890 A1 EP 0089890A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- wall
- interface
- liquid
- chamber
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B8/00—Details of barrages or weirs ; Energy dissipating devices carried by lock or dry-dock gates
- E02B8/06—Spillways; Devices for dissipation of energy, e.g. for reducing eddies also for lock or dry-dock gates
Definitions
- the present invention relates to the protection of a wall, such as a dam or a reservoir wall, a wall which is in contact with a liquid mass, against variations in dynamic pressure which the liquid can exert on it.
- a wall which retains a liquid mass is subjected to a so-called static or medium pressure which varies only slowly, for example under the effect of filling or emptying of the reservoir.
- static or medium pressure which varies only slowly
- dynamic or fluctuating pressure component which varies rapidly around the static or average pressure.
- the origin of this dynamic pressure component can result from a explosion occurring in the liquid mass, an earthquake or rapid movements of the reservoir containing the liquid mass.
- the dynamic pressure component is added to the static component and must be taken into account in the calculation of the resistance of these walls. The reliability of computational cases is reduced when the dynamic pressures have a random demand.
- the object of the present invention is to reduce the dynamic pressure component acting on the wall due to any generating phenomenon of given intensity, which makes it possible to reduce the cost of the structures and / or increase their reliability.
- the present invention is based on the hydrodynamic laws of the distribution of dynamic pressures in a liquid mass in the vicinity of a free surface (surface of water). As illustrated diagrammatically by the curve 1 in FIG. 1, the dynamic pressure component capable of being exerted on a wall 2 maintaining a liquid mass 3 with a free surface 4, has a low amplitude in the vicinity of the free surface.
- the present invention therefore relates to a method for locally protecting a wall in contact with a liquid mass against rapid variations in the dynamic pressure component, in which one creates in the vicinity of the wall zone to be protected, in the liquid mass near the wall or between the liquid mass and at least part of the wall, an interface capable of transmitting the pressures between the liquid and a volume of gas.
- the interface transmits pressures
- the volume of gas naturally has a static pressure in equilibrium with the static pressure component of the liquid at the interface.
- the interface is created between the liquid and a volume of gas trapped in a chamber or pocket.
- Another solution for providing protection over an entire level of the wall is to provide an interface extending continuously along a level line of the wall.
- the movements of such a large interface will not necessarily be the same at all points. They can, for example, reduce the volume of gas in one place and increase it elsewhere.
- the gas having a very low inertia moves easily from one point to another, it is therefore possible that significant movements of the interface occur without appreciable variation in the pressure of the gas. This increases the efficiency of the process as long as these movements are not too large, but the absence of pressurization of the gas will allow these movements to become such that the gas is completely expelled from a part of the chamber.
- the contact. brutal interface with the walls of this part of the chamber can cause harmful overpressures.
- the interface is subdivided, when it is raised from its normal level, into partial interfaces by subdividing the main chamber into partial chambers by vertical walls. In each partial chamber, the volume of air trapped above the interface will act independently, according to its compressibility law, without the interface being able to reach the entire surface of the wall delimiting the partial chamber.
- means are interposed in the volume of gas or in the liquid in the vicinity of the interface which ensure partial dissipation of the mechanical energy linked to the movements of the interface.
- the preferred embodiment consists in interposing a perforated wall between the main mass of the liquid retained by the wall and the interface.
- This perforated wall reduces the efficiency of the process by slowing down the movements of the interface, but avoids excessive movements for pressure fluctuations whose frequency corresponds to the resonant frequency of the volumes of gas.
- the device for implementing the method according to the invention and intended to locally protect a wall in contact with a liquid mass against rapid variations in the dynamic pressure component which the liquid can exert on the wall comprises a chamber filled with gas, in communication, by an interface capable of transmitting pressures and located in the vicinity of the wall area to be protected, with the liquid which is in contact with said wall.
- the interface can be constituted by a flexible wall or by a rigid movable wall perpendicular to its plane delimiting at least partially a chamber in which the gas is enclosed under a pressure substantially equal to the hydrostatic pressure.
- the interface is produced by the free surface naturally establishing itself in the chamber.
- the chamber is subdivided into partial chambers by walls substantially perpendicular to the interface and ending at rest at a certain distance from the interface.
- the partial chambers are at rest in intercommunication through the space between the lower edge of the walls and the interface but, in the event of lifting of the interface, the section decreases and the partial rooms are isolated as soon as the interface reaches the edge of the walls. This prevents all of the gases from being expelled from the partial chambers and the liquid directly exerting its dynamic pressure which is not absorbed on the rigid walls of the chamber.
- the chamber is in communication with the volume of liquid retained by the wall, via the orifices of a perforated wall.
- the chamber is made in the thickness of the wall and communicates with the volume of liquid through at least one orifice in this wall situated at the bottom level of the chamber.
- the chamber is produced by a wall attached to the wall to be protected and forming therewith a chamber open at its lower part.
- the chamber is independent of the wall and constituted by a submerged bell, the internal chamber of which has a mobile interface with the liquid, a bell which is kept close to the wall.
- the reference 9 designates the body of the dam and 10 the mass of water retained by this dam.
- slabs inclined downwards 11 are produced on the upstream face of the dam by forming awnings.
- air pockets 12 are formed which are at equilibrium pressure with hydrostatic pressure.
- the volume of these pockets can be determined by orifices 13 passing through the slabs, the air escaping from a pocket being captured in the upper pocket.
- This arrangement makes it possible to restore full air pockets by injecting pressurized air into the lowest pocket.
- Thin slabs 15 are provided on the ends of the slabs 11 provided with perforations 16. When a dynamic overpressure P appears, it is transmitted attenuated in the volume of water 17 between the interface and said wall. Because the hydrostatic pressure prevails on the two faces of the walls 15, these can be thin because they only have to withstand the single component of dynamic pressure.
- the chambers formed under the awnings are, in particular when they are of great length, subdivided by transverse walls as will be explained below for other embodiments.
- the air chambers are produced by bells 18 immersed at various depths. These bells are of cylindro-conical shape flattened enough so that the perforated underside 19 offers a large section for passage through the water. An air pocket 20 in hydrostatic equilibrium with the ambient medium is formed at the top of the bell and it has, with the volume of water which has passed through the perforated wall 19, an interface 21.
- the bell is ballasted with a weight 22.
- the whole bell. normal fill volume and this ballast must maintain a floating tab i l i t y oositive.
- a cable 23 connects the ballast 22 to a second ballast 24 resting on the bottom. The weight of the latter ballast is such that the entire bell and the two ballast regains positive buoyancy only if the bell is almost entirely full of air.
- a flexible or articulated pipe 25 blows compressed air into the bell to "replenish” the level, it leads to a float 26 itself connected by a cable 27 to the bell.
- the ballast 22 drives the bell downwards until the bottom is reached or until the cable 27 tightens and pushes the float 26, which gives the alert.
- This float is calculated not to sink completely even if the bell has lost all its gas.
- the upper end of the pipe 25 thus always remains accessible and allows the inflation of the air pocket with a mobile compressor for example.
- bells may, for example, consist of enclosures made of a flexible material, such as rubber, and be anchored by a cable to a sufficient ballast or to any other suitable attachment point.
- the advantage of this embodiment is that the interaction surface of water and gas is as large as possible.
- the disadvantage, for certain applications, is that it is difficult to introduce a high energy absorption. A certain absorption can result from the choice of the material of the enclosure, which can have a high coefficient of internal friction. It can also be obtained by placing finely divided materials, glass fibers for example, in the gas pocket.
- these flexible bells can also be placed inside rigid cages with perforated walls.
- FIG. 6 shows a very simple embodiment which can be applied, for example, to the protection of the vertical walls of a metal tank containing a liquid.
- Figure 7 shows in vertical section perpendicular to the wall and that Figure 6 shows in elevation seen from the inside of the tank.
- the gas pocket 32 is formed under this hood during filling.
- FIG. 8 represents, in schematic vertical section, a metal tank, of vertical axis, containing a liquid reaching level 34.
- the bottom wall, or floor, of this tank is protected by gas pockets produced under O-rings 35 or under a central bell 36. This protection will be useful in particular to reduce pressure fluctuations due to vertical earthquakes.
- the upper face, or ceiling is provided with cells 37 open downwards, which create gas pockets according to the invention as soon as they are reached by the liquid. These gas pockets in particular reduce the pressure fluctuations due to vertical earthquakes, when the tank is filled to the said cells, or reduce the pressure fluctuations due to temporary and local increases in level which could cause a brutal shock between the free surface and ceiling of the tank.
- toroidal bells 38 On the side walls are arranged toroidal bells 38 retaining gas pockets 39 according to the invention. These bags will be useful in particular for reducing pressure fluctuations due to horizontal earthquakes. For these earthquakes, the pressure fluctuations will have opposite signs at diametrically opposite points of the toroidal bells.
- transverse walls 40 subdivide the chamber into an O-ring 39 by creating chambers in sectors which are isolated when the interface is raised.
- the inner wall of the bells 38 is extended in the form of a continuous wall provided with perforations.
- the wall 33 is lined with internal walls 42 forming the toric bells whose lower edge 43 is located below the edge of the top of the lower toroidal bell.
- the gas pockets 45 occupy the entire surface of the outer wall, which improves the thermal insulation between the liquid 10 and the wall 33.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Revetment (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Pipe Accessories (AREA)
Abstract
Description
La présente invention concerne la protection d'une paroi, telle qu'un barrage ou une paroi de réservoir, paroi qui est au contact d'une masse liquide, contre les variations de pression dynamique que peut exercer sur.elle le liquide.The present invention relates to the protection of a wall, such as a dam or a reservoir wall, a wall which is in contact with a liquid mass, against variations in dynamic pressure which the liquid can exert on it.
Une paroi qui retient une masse liquide est soumise à une pression dite statique ou moyenne qui ne varie que lentement, par exemple sous l'effet du remplissage ou du vidage du réservoir. Mais elle peut être soumise, d'autre part, à une composante de pression dite dynamique ou fluctuante qui varie rapidement autour de la pression statique ou moyenne. L'origine de cette composante de pression dynamique peut résulter d'une explosion se produisant dans la masse liquide, d'un séisme ou de mouvements rapides du réservoir contenant la masse liquide. La composante de pression dynamique s'ajoute à la composante statique et doit être prise en compte dans le calcul de la résistance de ces parois. La fiabilité de cas calculs est réduite lorsque les pressions dynamiques ont une cfrande-ar aléatoire.A wall which retains a liquid mass is subjected to a so-called static or medium pressure which varies only slowly, for example under the effect of filling or emptying of the reservoir. However, it can be subjected, on the other hand, to a so-called dynamic or fluctuating pressure component which varies rapidly around the static or average pressure. The origin of this dynamic pressure component can result from a explosion occurring in the liquid mass, an earthquake or rapid movements of the reservoir containing the liquid mass. The dynamic pressure component is added to the static component and must be taken into account in the calculation of the resistance of these walls. The reliability of computational cases is reduced when the dynamic pressures have a random demand.
La présente invention a pour but de réduite la composante de pression dynamique agissant sur la paroi du fait d'un phénomène générateur quelconque d'intensité donnée, ce qui permet de réduire le coût des ouvrages et/ou d'accroître leur fiabilité.The object of the present invention is to reduce the dynamic pressure component acting on the wall due to any generating phenomenon of given intensity, which makes it possible to reduce the cost of the structures and / or increase their reliability.
La présente invention est basée sur les lois hydrodynamiques de la répartition des pressions dynamiques dans une masse liquide au voisinage d'une surface libre (surface de l'eau). Comme illustré schématiquement par la courbe 1 dans la figure 1, la composante de pression dynamique susceptible de s'exercer sur une paroi 2 maintenant une masse liquide 3 avec une surface libre 4, a une amplitude faible au voisinage de la surface libre.The present invention is based on the hydrodynamic laws of the distribution of dynamic pressures in a liquid mass in the vicinity of a free surface (surface of water). As illustrated diagrammatically by the curve 1 in FIG. 1, the dynamic pressure component capable of being exerted on a
Ceci est dû à ce que la pression dans l'atmosphère, au dessus de la surface libre, ne fluctue pratiquement pas autour de sa valeur statique et à ce qu'il ne peut y avoir de discontinuité de pression entre deux fluides, ici l'atmosphère et le liquide, en contact direct par une interface, telle que la surface libre, qui n'a aucune rigidité ou inertie. Une interface constituée par une paroi suffisamment mobile ou souple et légère a sensiblement le même effet.This is due to the fact that the pressure in the atmosphere, above the free surface, practically does not fluctuate around its static value and that there can be no pressure discontinuity between two fluids, here the atmosphere and the liquid, in direct contact through an interface, such as the free surface, which has no rigidity or inertia. An interface constituted by a sufficiently mobile or flexible and light wall has substantially the same effect.
Pratiquement, les seules fluctuations de pression dynamique qui peuvent substituer en un point fixe, situé immédiatement au dessous de la surface libre, sont les fluctuations de pression hydrostatique dues aux fluctuations de niveau de la surface libre. Ces fluctuations de niveau et de pression sont négligeables pour les perturbations dynamiques de fréquences élevées, rarement inférieures à 1 hertz, auxquelles s'applique la présente invention. Ainsi que le montre la courbe 1 de la figure 1, cet effet d'atténuation des pressions dynamiques décroît lorsqu'on s'éloigne de la surface libre.Practically, the only dynamic pressure fluctuations that can substitute at a fixed point, located immediately below the free surface, are the hydrostatic pressure fluctuations due to fluctuations in the level of the free surface. These fluctuations in level and pressure are negligible for dynamic disturbances of high frequencies, rarely less than 1 hertz, to which the present invention applies. As shown by curve 1 in FIG. 1, this effect of attenuation of the dynamic pressures decreases as one moves away from the free surface.
La présente invention a en conséquence pour objet un procédé pour protéger localement une paroi au contact d'une masse liquide contre les variations rapides de la composante de pressi.on dynamique, dans lequel on crée au voisinage de la zone de paroi à protéger, dans la masse liquide à proximité de la paroi ou entre la masse liquide et au moins une partie de la paroi, une interface susceptible de transmettre les pressions entre le liquide et un volume de gaz.The present invention therefore relates to a method for locally protecting a wall in contact with a liquid mass against rapid variations in the dynamic pressure component, in which one creates in the vicinity of the wall zone to be protected, in the liquid mass near the wall or between the liquid mass and at least part of the wall, an interface capable of transmitting the pressures between the liquid and a volume of gas.
L'effet de cet interface sur les pressions dynamiques est analogue à l'effet de réduction d'une surface libre exposée à l'atmosphère. Il est cependant,en général, un peu moins efficace car le volume nécessairement limité du gaz fait que la pression peut y varier en fonction des déplacements de l'interface.The effect of this interface on dynamic pressures is analogous to the effect of reducing a free surface exposed to the atmosphere. It is however, in general, a little less efficient because the necessarily limited volume of the gas means that the pressure can vary there as a function of the displacements of the interface.
Du fait que l'interface transmet les pressions, le volume de gaz a naturellement une pression statique en équilibre avec la composante de pression statique du liquide au niveau de l'interface. Dans la pratique l'interface est créée entre le liquide et un volume de gaz emprisonné dans une chambre ou poche.Because the interface transmits pressures, the volume of gas naturally has a static pressure in equilibrium with the static pressure component of the liquid at the interface. In practice, the interface is created between the liquid and a volume of gas trapped in a chamber or pocket.
Dans FR-A-2.407.295, on a décrit des brise-lames à murs multiples, les murs dirigés vers la lame présentant des orifices pour absorber l'énergie des vagues par les remous créés au passage des orifices. Ces dispositifs fonctionnent par la différence de pression hydrostatique sur les deux faces du mur et ne sont applicables que pour une variation lente de cette différence de pression pour qu'un volume d'eau appréciable puisse transiter à travers le mur perforé, c'est-à-dire pour l'amortissement des vagues de grande longueur, non pour l'absorption des variations rapides d'une composante de pression dynamique. Il est envisagé, dans l'un des modes de réalisation, d'avoir une chambre emprisonnant un volume d'air, chambre qui est en communication par des orifices à la base du mur qui la délimite avec une chambre antérieure elle-même séparée de la mer par une paroi perforée. Il est toutefois dit que cette chambre qui présente une interface avec un volume d'air n'intervient que dans l'amortissement des vagues les plus longues donc de fréquences les plus basses. Ce document n'enseigne rien sur l'amortissement de variations rapides de pression telles que les variations de la composante de pression dynamique.In FR-A-2,407,295, multi-wall breakwaters have been described, the walls directed towards the blade having orifices to absorb the energy of the waves by the eddies created in the passage of the orifices. These devices operate by the hydrostatic pressure difference on both sides of the wall and are only applicable for a slow variation of this pressure difference so that an appreciable volume of water can pass through the perforated wall, that is to say for the damping of long waves, not for the absorption of rapid variations of a component dynamic pressure. It is envisaged, in one of the embodiments, to have a chamber trapping a volume of air, a chamber which is in communication by orifices at the base of the wall which delimits it with an anterior chamber itself separated from the sea by a perforated wall. It is however said that this chamber which presents an interface with a volume of air only intervenes in the damping of the longest waves therefore of the lowest frequencies. This document teaches nothing about damping rapid pressure variations such as variations in the dynamic pressure component.
Dans l'exemple de la figure 1, en créant une interface à un niveau moyen entre la surface du liquide et la base de la paroi, on réduit à ce niveau la composante de pression dynamique à une valeur faible comparable à celle qu'elle a au niveau de la surface libre. On obtient donc la courbe 5 de la figure 1 et, en multipliant les interfaces, sur la hauteur de la paroi on obtient la courbe 6.In the example of Figure 1, by creating an interface at a medium level between the surface of the liquid and the base of the wall, we reduce at this level the dynamic pressure component to a low value comparable to that which it has at the free surface.
Si on considère la répartition de la composante de pression dynamique selon un plan horizontal, et comme illustré à la figure 2, la répartition dans un canal à parois latérales planes et parallèles pour une onde de pression dynamique ayant son origine en un point éloigné de la paroi sera représentée au niveau N (figure 1) par une droite 7. Si on crée une interface localisée au centre de la paroi, au niveau N, on va avoir une composante de pression dynamique très réduite en ce point mais cette composante de pression dynamique va croître dans le plan à partir de ce point selon une courbe analogue à la courbe partant de la surface libre dans le plan vertical (courbe 8, figure 2). On peut ainsi répartir, également selon le plan horizontal, les interfaces pour que la composante de pression dynamique soit ramenée à une valeur admissible sur toute la largeur de la paroi exposée à de telles surpressions .If we consider the distribution of the dynamic pressure component along a horizontal plane, and as illustrated in Figure 2, the distribution in a channel with plane and parallel side walls for a dynamic pressure wave having its origin at a point distant from the wall will be represented at level N (figure 1) by a straight line 7. If we create an interface located in the center of the wall, at level N, we will have a very reduced dynamic pressure component at this point but this dynamic pressure component will grow in the plane from this point on a curve similar to the curve starting from the free surface in the vertical plane (curve 8, Figure 2). We can thus distribute, also along the horizontal plane, the interfaces so that the dynamic pressure component is reduced to an admissible value over the entire width of the wall exposed to such overpressures.
Une autre solution pour assurer la protection sur tout un niveau de la paroi est de réaliser une interface s'étendant de façon continue tout le long d'une ligne de niveau de la paroi.Another solution for providing protection over an entire level of the wall is to provide an interface extending continuously along a level line of the wall.
Les mouvements d'une interface aussi étendue ne seront pas nécessairement les mêmes en tous les points. Ils pourront, par exemple, réduire le volume de gaz en un endroit et l'augmenter ailleurs. Le gaz ayant une très faible inertie se déplace facilement d'un point à l'autre, il se pourra donc que des mouvements importants de l'interface se produisent sans variation sensible de la pression du gaz. Ceci augmente l'efficacité du procédé tant que ces mouvements ne sont pas trop grands mais l'absence de mise en pression du gaz permettra à ces mouvements de devenir tels que le gaz soit complètement chassé d'une partie de la chambre. Le contact. brutal de l'interface avec les parois de cette partie de la chambre peut provoquer des surpressions nuisibles. Pour remédier à ce phénomène, on subdivise l'interface, lorsquelle est soulevée par rapport à son niveau normal, en interfaces partielles en subdivisant la chambre principale en chambres partielles par des parois verticales. Dans chaque chambre partielle le volume d'air emprisonné au-dessus de l'interface va agir indépendemment, selon sa loi de compressibilité,sans que l'interface puisse atteindre la totalité de la surface de la paroi délimitant la chambre partielle.The movements of such a large interface will not necessarily be the same at all points. They can, for example, reduce the volume of gas in one place and increase it elsewhere. The gas having a very low inertia moves easily from one point to another, it is therefore possible that significant movements of the interface occur without appreciable variation in the pressure of the gas. This increases the efficiency of the process as long as these movements are not too large, but the absence of pressurization of the gas will allow these movements to become such that the gas is completely expelled from a part of the chamber. The contact. brutal interface with the walls of this part of the chamber can cause harmful overpressures. To remedy this phenomenon, the interface is subdivided, when it is raised from its normal level, into partial interfaces by subdividing the main chamber into partial chambers by vertical walls. In each partial chamber, the volume of air trapped above the interface will act independently, according to its compressibility law, without the interface being able to reach the entire surface of the wall delimiting the partial chamber.
Selon une autre caractéristique de l'invention, on interpose dans le volume de gaz ou dans le liquide au voisinage de l'interface des moyens qui assurent une dissipation partielle de l'énergie mécanique liée aux mouvements de l'interface.According to another characteristic of the invention, means are interposed in the volume of gas or in the liquid in the vicinity of the interface which ensure partial dissipation of the mechanical energy linked to the movements of the interface.
Le mode de réalisation préférentiel consiste à interposer une paroi perforée entre la masse principale du liquide retenue par la paroi et l'interface.The preferred embodiment consists in interposing a perforated wall between the main mass of the liquid retained by the wall and the interface.
Cette paroi perforée réduit l'efficacité du procédé en freinant les mouvements de l'interface, mais évite des mouvements excessifs pour des fluctuations de pression dont la fréquence correspond à la fréquence de résonance des volumes de gaz.This perforated wall reduces the efficiency of the process by slowing down the movements of the interface, but avoids excessive movements for pressure fluctuations whose frequency corresponds to the resonant frequency of the volumes of gas.
Le dispositif pour la misé en oeuvre du procédé conforme à l'invention et destiné à protéger localement une paroi au contact d'une masse liquide contre les variations rapides de la composante de pression dynamique que peut exercer le liquide sur la paroi , comporte une chambre remplie de gaz, en communication, par une interface susceptible de transmettre les pressions et située au voisinage de la zone de paroi à protéger, avec le liquide qui se trouve au contact de ladite paroi. L'interface peut être constituée par une paroi souple ou par une paroi rigide mobile perpendiculairement à son plan délimitant au moins partiellement une chambre dans laquelle le gaz est enfermé sous une pression sensiblement égale à la pression hydrostatique.The device for implementing the method according to the invention and intended to locally protect a wall in contact with a liquid mass against rapid variations in the dynamic pressure component which the liquid can exert on the wall, comprises a chamber filled with gas, in communication, by an interface capable of transmitting pressures and located in the vicinity of the wall area to be protected, with the liquid which is in contact with said wall. The interface can be constituted by a flexible wall or by a rigid movable wall perpendicular to its plane delimiting at least partially a chamber in which the gas is enclosed under a pressure substantially equal to the hydrostatic pressure.
De préférence l'interface est réalisée par la surface libre s'établissant naturellement dans la chambre.Preferably the interface is produced by the free surface naturally establishing itself in the chamber.
Selon une autre caractéristique et dans le cas d'une chambre présentant une interface de grande étendue avec le liquide,la chambre est subdivisée en chambres partielles par des parois sensiblement perpendiculaires à l'interface et se terminant au repos à une certaine distance de l'interface. Avec ce mode de réalisation, les chambres partielles sont au repos en intercommunication par l'espace entre le bord inférieur des parois et l'interface mais, en cas de soulèvement de l'interface, la section diminue et les ehambres partielles sont isolées dès que l'interface atteint le bord des parois. On évite ainsi que la totalité des gaz soit chassée des chambres partielles et que le liquide exerce directement sa pression dynamique non absorbée sur les parois rigides de la chambre.According to another characteristic and in the case of a chamber having a large interface with the liquid, the chamber is subdivided into partial chambers by walls substantially perpendicular to the interface and ending at rest at a certain distance from the interface. With this embodiment, the partial chambers are at rest in intercommunication through the space between the lower edge of the walls and the interface but, in the event of lifting of the interface, the section decreases and the partial rooms are isolated as soon as the interface reaches the edge of the walls. This prevents all of the gases from being expelled from the partial chambers and the liquid directly exerting its dynamic pressure which is not absorbed on the rigid walls of the chamber.
Selon une autre caractéristique, la chambre est en communication avec le volume de liquide retenu par la paroi, par l'intermédiaire des orifices d'une paroi perforée.According to another characteristic, the chamber is in communication with the volume of liquid retained by the wall, via the orifices of a perforated wall.
Selon un mode de réalisation applicable aux parois massives la chambre est réalisée dans l'épaisseur de la paroi et communique avec le volume de liquide par au moins un orifice dans cette paroi situé au niveau bas de la chambre.According to an embodiment applicable to solid walls, the chamber is made in the thickness of the wall and communicates with the volume of liquid through at least one orifice in this wall situated at the bottom level of the chamber.
Selon un autre mode de réalisation la chambre est réalisée par une paroi rapportée sur la paroi à protéger et formant avec celle-ci une chambre ouverte à sa partie inférieure.According to another embodiment, the chamber is produced by a wall attached to the wall to be protected and forming therewith a chamber open at its lower part.
Selon un autre mode de réalisation la chambre est indépendante de la paroi et constituée par une cloche immergée dont la chambre interne a une.interface mobile avec le liquide, cloche qui est maintenue à proximité de la paroi.According to another embodiment, the chamber is independent of the wall and constituted by a submerged bell, the internal chamber of which has a mobile interface with the liquid, a bell which is kept close to the wall.
D'autres caractéristiques de la présente invention apparaîtront à la lecture de la description de divers modes de réalisation faite ci-après avec référence aux dessins ci-annexés dans lesquels :
- La figure 1 est une vue.en coupe verticale schématique illustrant les courbes de répartition dans le plan vertical des surpressions dynamiques; la figure 2 est une vue en coupe horizontale correspondant au niveau N de la figure 1; la figure 3 est une vue en coupe verticale schématique d'une paroi de barrage munie du dispositif de protection conforme à l'invention; la figure 4 est une vue en élévation et coupe partielle d'une cloche immergée constituant un dispositif conforme à l'invention; la figure 5 illustre la disposition des cloches de figure 4 en amont d'un barrage; la figure 6 est une vue en élévation d'un mode de réalisation du dispositif sur une paroi mince et la figure 7 en est une vue en coupe par VII-VII de figure 6; la figure 8 est une vue en coupe verticale schématique dans un grand réservoir muni de dispositifs de protection conformes à l'invention et la figure 9 est une vue en coupe verticale d'une variante de réalisation.
- Figure 1 is a schematic vertical sectional view illustrating the distribution curves in the vertical plane dynamic overpressures; Figure 2 is a horizontal sectional view corresponding to level N of Figure 1; Figure 3 is a schematic vertical sectional view of a barrier wall provided with the protective device according to the invention; Figure 4 is an elevational view in partial section of a submerged bell constituting a device according to the invention; Figure 5 illustrates the arrangement of the bells of Figure 4 upstream of a dam; Figure 6 is an elevational view of an embodiment of the device on a thin wall and Figure 7 is a sectional view through VII-VII of Figure 6; Figure 8 is a schematic vertical sectional view in a large tank provided with protective devices according to the invention and Figure 9 is a vertical sectional view of an alternative embodiment.
Dans les figures 3 à 5, la référence 9 désigne le corps du barrage et 10 la masse d'eau retenue par ce barrage.In FIGS. 3 to 5, the
Dans le mode de réalisation de la figure 3, des dalles inclinées vers le bas 11 sont réalisées sur la face amont du barrage en formant des auvents. Lors du remplissage du bassin ou par suite d'une injection d'air sous pression sous la dalle il se forme des poches d'air 12 qui sont à la pression d'équilibre avec la pression hydrostatique. Le volume de ces poches peut être déterminé par des orifices 13 traversant les dalles, l'air s'échappant d'une poche étant capté dans la poche supérieure. Cette disposition permet de rétablir le plein des poches d'air en injectant de l'air sous pression dans la poche la plus basse. Sur les extrémités des dalles 11 sont fixées des dalles minces 15 munies de perforations 16. Lors de l'apparition d'une surpression dynamique P, celle-ci est transmise atténuée dans le volume d'eau 17 entre l'interface et ladite paroi. Du fait que la pression hydrostatique régne sur les deux faces des parois 15, celles-ci peuvent être minces car elles n'ont à résister qu'à la seule composante de pression dynamique.In the embodiment of FIG. 3, slabs inclined downwards 11 are produced on the upstream face of the dam by forming awnings. When filling the basin or following an injection of pressurized air under the slab,
Les chambres formées sous les auvents sont, notamment lorsqu'elles sont d'une grande longueur, subdivisées par des parois transversales comme cela sera exposé ci-après pour d'autres modes de réalisation.The chambers formed under the awnings are, in particular when they are of great length, subdivided by transverse walls as will be explained below for other embodiments.
Dans le mode de réalisation des figures 4 et 5 qui s'applique notamment à un barrage déjà construit, les chambres d'air sont réalisées par des cloches 18 immergées à diverses profondeurs. Ces cloches sont de forme cylindro-conique assez aplatie pour que la face inférieure perforée 19 offre une grande section de passage à l'eau. Une poche d'air 20 en équilibre hydrostatique avec le milieu ambiant est formée au sommet de la cloche et elle présente avec le volume d'eau qui a traversé la paroi perforée 19 une interface 21.In the embodiment of Figures 4 and 5 which applies in particular to an already constructed dam, the air chambers are produced by
La cloche est lestée par une masse 22. L'ensemble de la cloche à son. volume de remplissage normal et de ce lest doit conserver une flot- tabilité oositive. Un câble 23 relie le lest 22 à un deuxième lest 24 reposant sur le fond. Le poids de ce dernier lest est tel que l'ensemble de la cloche et des deux lests ne reprend une flottabilité positive que si la cloche est presque entièrement pleine d'air.The bell is ballasted with a
Un tuyau souple ou articulé 25 permet d'insuffler de l'air comprimé dans la cloche pour "refaire" le niveau, il aboutit à un flotteur 26 lui-même relié par un câble 27 à la cloche.A flexible or articulated
Lorsque, pour une raison quelconque, le volume d'air dans la cloche a diminué de plus d'un certain pourcentage (30% par exemple), le lest 22 entraîne la cloche vers le bas jusqu'à ce que le fond soit atteint ou jusqu'à ce que le câble 27 se tende et enfonce le flotteur 26, ce qui donne l'alerte. Ce flotteur est calculé pour ne pas s'enfoncer entièrement même si la cloche a perdu tout son gaz. L'extrémité supérieure du tuyau 25 reste ainsi toujours accessible et permet le regonflement de la poche d'air avec un compresseur mobile par exemple.When, for whatever reason, the air volume in the bell has decreased by more than a certain percentage (30% for example), the
Pour remonter la cloche et ses deux lests, il suffit d'insuffler de l'air comprimé plus vite qu'il ne peut s'échapper par un orifice 28 qui, comme les orifices 13, limite le volume de la poche d'air 20.To reassemble the bell and its two weights, it suffices to inject compressed air faster than it can escape through an orifice 28 which, like the
Il existe d'autres moyens de réaliser ces cloches. Elles peuvent, par exemple, consister en des enceintes faites d'un matériau souple, comme le caoutchouc, et être ancrées par un câble sur un lest suffisant ou sur tout autre point d'attache adéquat. L'avantage de cette forme de réalisation est que la surface d'interaction de l'eau et du gaz est la plus grande possible. L'inconvénient, pour certaines applications, est qu'il est difficile d'introduire une forte absorption d'énergie. Une certaine absorption peut résulter du choix du matériau de l'enceinte, qui peut avoir un fort coefficient de frottement interne. On peut aussi l'obtenir en plaçant des matériaux finement divisés, des fibres de verre par exemple, dans la poche de gaz. Enfin, on peut aussi placer ces cloches souples à l'intérieur de cages rigides à parois perforées.There are other ways to make these bells. They may, for example, consist of enclosures made of a flexible material, such as rubber, and be anchored by a cable to a sufficient ballast or to any other suitable attachment point. The advantage of this embodiment is that the interaction surface of water and gas is as large as possible. The disadvantage, for certain applications, is that it is difficult to introduce a high energy absorption. A certain absorption can result from the choice of the material of the enclosure, which can have a high coefficient of internal friction. It can also be obtained by placing finely divided materials, glass fibers for example, in the gas pocket. Finally, these flexible bells can also be placed inside rigid cages with perforated walls.
La figure 6 montre un mode de réalisation très simple qui peut s'appliquer, par exemple, à la protection des parois verticales d'une cuve métallique contenant un liquide.FIG. 6 shows a very simple embodiment which can be applied, for example, to the protection of the vertical walls of a metal tank containing a liquid.
On soude de place en place sur la paroi 29 des tôles triangulaires 30, soudées entre elles sur leur arête commune 31. On forme ainsi une sorte de hotte de forme pyramidale queWeld from place to place on the
la figure 7 montre en coupe verticale perpendiculaire à la paroi et que la figure 6 montre en élévation vue de l'intérieur de la cuve.Figure 7 shows in vertical section perpendicular to the wall and that Figure 6 shows in elevation seen from the inside of the tank.
La poche de gaz 32 est formée sous cette hotte au cours du remplissage.The gas pocket 32 is formed under this hood during filling.
La figure 8 représente, en coupe verticale schématique, un réservoir métallique, d'axe vertical, contenant un liquide atteignant le niveau 34. La paroi inférieure, ou plancher, de ce réservoir est protégée par des poches de gaz réalisées sous des anneaux toriques 35 ou sous une cloche centrale 36. Cette protection sera utile notamment pour réduire les fluctuations de pression dues à des séismes verticaux. La face supérieure, ou plafond, est garnie d'alvéoles 37 ouvertes vers le bas, qui créent des poches de gaz suivant l'invention dès qu'elles sont atteintes par le liquide. Ces poches de gaz réduisent notamment les fluctuations de pression dues à des séismes verticaux, lorsque le réservoir est rempli jusqu'aux dites alvéoles, ou réduisent les fluctuations de pression dues à des montées temporaires et locales du niveau qui pourraient provoquer un choc brutal entre la surface libre et le plafond du réservoir.FIG. 8 represents, in schematic vertical section, a metal tank, of vertical axis, containing a
Sur les parois latérales sont disposées des cloches toriques 38 retenant des poches de gaz 39 suivant l'invention. Ces poches seront utiles notamment pour réduire les fluctuations de pression dues à des séismes horizontaux. Pour ces séismes, les fluctuations de pression auront des signes opposés en des points diamètralement opposés des cloches toriques. Pour éviter que l'interface atteigne le toit d'une cloche torique, des parois transversales 40 subdivisent la chambre en anneau torique 39 en créant des chambres en secteurs qui se trouvent isolées lorsque l'interface se soulève. Dans la partie inférieure la paroi intérieure des cloches 38 se prolonge sous forme d'une paroi continue munie de perforations Dans le mode de réalisation de la figure 9, la paroi 33 est garnie de parois internes 42 formant les cloches toriques dont le bord inférieur 43 est situé en dessous de l'arête du sommet de la cloche torique inférieure. Les poches de gaz 45 occupent toute la surface de la paroi extérieure, ce qui améliore l'isolement thermique entre le liquide 10 et la paroi 33.On the side walls are arranged
Claims (13)
caractérisé que ce que l'on crée au voisinage de la zone de paroi à protéger dans la masse liquide à proximité de la paroi ou entre la masse liquide et au moins une partie de la paroi, une interface susceptible de transmettre les pressions entre le liquide et un volume de gaz.1. A method for locally protecting a wall in contact with a liquid mass against rapid variations in the dynamic pressure component,
characterized that what is created in the vicinity of the wall zone to be protected in the liquid mass near the wall or between the liquid mass and at least part of the wall, an interface capable of transmitting the pressures between the liquid and a volume of gas.
caractérisé en ce qu'on réalise une interface s'étendant de façon continue tout le long d'une ligne de niveau et subdivise cette interface lorsqu'elle est soulevée par rapport à son niveau normal, en interfaces partielles en subdivisant la chambre principale en chambres partielles par des parois verticales.2. A method according to claim 1,
characterized in that an interface extending continuously along a level line is produced and this interface is subdivided when raised from its normal level, into partial interfaces by subdividing the main bedroom into bedrooms partial by vertical walls.
caractérisé en ce qu'on interpose dans le volume de gaz ou dans le liquide au voisinage de l'interface,des moyens qui assurent une dissipation partielle de l'énergie mécanique liée au mouvement de l'interface.3. A method according to any one of claims 1 and 2,
characterized in that interposed in the gas volume or in the liquid in the vicinity of the interface, means which ensure a partial dissipation of the mechanical energy linked to the movement of the interface.
caractérisé en ce que le moyen assurant une dissipation partielle de l'énergie mécanique est constitué par une paroi perforée interposée entre la masse principale du liquide retenue par la paroi et l'interface.4. A method according to claim 3,
characterized in that the means ensuring a partial dissipation of mechanical energy consists of a perforated wall interposed between the main mass of the liquid retained by the wall and the interface.
caractérisé en ce qu'il comporte une enceinte remplie de gaz 12, en communication, par une interface 14 susceptible de transmettre les.pressions et située au voisinage de la zone de la paroi 9 à protéger, avec le liquide 10 qui se trouve au contact de ladite paroi.5. A device for implementing the method according to any one of claims 1 to 4 for locally protecting a wall in contact with a liquid mass against rapid variations in the dynamic pressure component that the liquid can exert on the wall,
characterized in that it comprises an enclosure filled with gas 12, in communication, by an interface 14 capable of transmitting the pressures and situated in the vicinity of the zone of the wall 9 to be protected, with the liquid 10 which is in contact of said wall.
caractérisé en ce que l'interface est constituée par une paroi souple ou par une paroi rigide mobile perpendiculairement à son plan délimitant au moins partiellement une chambre dans laquelle le gaz est enfermé sous une pression sensiblement égale à la pression hydrostatique.6. A device according to claim 5,
characterized in that the interface is constituted by a flexible wall or by a rigid movable wall perpendicular to its plane delimiting at least partially a chamber in which the gas is enclosed under a pressure substantially equal to the hydrostatic pressure.
caractérisé en ce que l'interface est réalisée par la surface libre (14,21) séparant le liquide du gaz 12 remplissant la chambre.7. A device according to claim 5,
characterized in that the interface is produced by the free surface (14,21) separating the liquid from the gas 12 filling the chamber.
caractérisé en ce que dans le cas d'une chambre -39 présentant une interface de grande étendue avec le liquide, la chambre est subdivisée par des parois 40 sensiblement perpendiculaires à l'interface et se terminant au repos à une certaine distance de l'interface.8. A device according to claim 5,
characterized in that in the case of a chamber -39 having a large interface with the liquid, the chamber is subdivided by walls 40 substantially perpendicular to the interface and ending at rest at a certain distance from the interface .
caractérisé en ce que la chambre est en communication avec le volume de liquide retenu par la paroi, par l'intermédiaire des orifices 16 d'une paroi perforée 15.9. A device according to any one of claims 5, 7 and 8,
characterized in that the chamber is in communication with the volume of liquid retained by the wall, via the orifices 16 of a perforated wall 15.
caractérisé en ce que la chambre est réalisée dans l'épaisseur de la paroi 9 et communique avec le volume de liquide par au moins un orifice dans cette paroi situé au niveau bas de la chambre.10. A device according to any one of claims 5 and 7 to 9,
characterized in that the chamber is made in thickness of the wall 9 and communicates with the volume of liquid through at least one orifice in this wall located at the bottom level of the chamber.
caractérisé en ce que la chambre est réalisée par une paroi 7 rapportée sur la paroi 29,33 à protéger et formant avec celle-ci une chambre ouverte à sa partie inférieure.11. A device according to any one of claims 5, 7 and 8,
characterized in that the chamber is produced by a wall 7 attached to the wall 29,33 to be protected and forming therewith a chamber open at its lower part.
caractérisé en ce que la chambre est indépendante de la paroi et constituée par une cloche 18 immergée dont la chambre interne communique à sa partie inférieure avec le liquide, cloche qui est maintenue par un lest 24 reposant au fond, à proximité de la paroi 9.. 12. A device according to claim 5,
characterized in that the chamber is independent of the wall and constituted by a submerged bell 18 whose internal chamber communicates at its lower part with the liquid, bell which is held by a ballast 24 resting at the bottom, near the wall 9.
caractérisé en ce que des moyens 25 sont prévus pour réalimen- ter en gaz sous pression le volume de gaz au contact de l'interface.13. A device according to any one of claims 5 to 12,
characterized in that means 25 are provided for supplying pressurized gas with the volume of gas in contact with the interface.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8204904 | 1982-03-23 | ||
FR8204904A FR2524029A1 (en) | 1982-03-23 | 1982-03-23 | PROTECTION OF WALLS IN CONTACT WITH LIQUIDS AGAINST QUICK PRESSURE FLUCTUATIONS |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0089890A1 true EP0089890A1 (en) | 1983-09-28 |
Family
ID=9272281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP83400563A Withdrawn EP0089890A1 (en) | 1982-03-23 | 1983-03-17 | Process and device for the protection of a shield in touch with a mass of liquid against the variation of dynamic pressure |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0089890A1 (en) |
JP (1) | JPS58173209A (en) |
FR (1) | FR2524029A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7735643B2 (en) | 2005-01-29 | 2010-06-15 | David Sanches | Inflatable shipping device and method of forming and using same |
CN101538840B (en) * | 2009-03-20 | 2011-02-09 | 四川大学 | Trajectory jet type energy dissipater in absorption basin |
WO2011160820A1 (en) * | 2010-06-22 | 2011-12-29 | Ekkehard Fehling | Fluid barrage |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1432607A (en) * | 1965-01-14 | 1966-03-25 | Zodiac Anciens Etablissements | Improvements to elastic docking fenders |
GB1198808A (en) * | 1967-02-01 | 1970-07-15 | Nat Res Dev | Fender or Like Impact-Absorbing Device |
FR2407295A1 (en) * | 1977-10-28 | 1979-05-25 | Iida Kensetsu Co Ltd | Multiwalled breakwater for varying wave lengths - has holes in head walls diminishing in size from outermost to innermost wall |
FR2436292A1 (en) * | 1978-09-18 | 1980-04-11 | Kraftwerk Union Ag | PROTECTION DEVICE AGAINST PRESSURE WAVES OF WORKS SUBJECT TO WATER FLOW |
US4264233A (en) * | 1979-09-06 | 1981-04-28 | Mccambridge Joseph | Fluid dynamic repeller for protecting coast from erosion |
-
1982
- 1982-03-23 FR FR8204904A patent/FR2524029A1/en active Granted
-
1983
- 1983-03-17 EP EP83400563A patent/EP0089890A1/en not_active Withdrawn
- 1983-03-23 JP JP4861083A patent/JPS58173209A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1432607A (en) * | 1965-01-14 | 1966-03-25 | Zodiac Anciens Etablissements | Improvements to elastic docking fenders |
GB1198808A (en) * | 1967-02-01 | 1970-07-15 | Nat Res Dev | Fender or Like Impact-Absorbing Device |
FR2407295A1 (en) * | 1977-10-28 | 1979-05-25 | Iida Kensetsu Co Ltd | Multiwalled breakwater for varying wave lengths - has holes in head walls diminishing in size from outermost to innermost wall |
FR2436292A1 (en) * | 1978-09-18 | 1980-04-11 | Kraftwerk Union Ag | PROTECTION DEVICE AGAINST PRESSURE WAVES OF WORKS SUBJECT TO WATER FLOW |
US4264233A (en) * | 1979-09-06 | 1981-04-28 | Mccambridge Joseph | Fluid dynamic repeller for protecting coast from erosion |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7735643B2 (en) | 2005-01-29 | 2010-06-15 | David Sanches | Inflatable shipping device and method of forming and using same |
CN101538840B (en) * | 2009-03-20 | 2011-02-09 | 四川大学 | Trajectory jet type energy dissipater in absorption basin |
WO2011160820A1 (en) * | 2010-06-22 | 2011-12-29 | Ekkehard Fehling | Fluid barrage |
Also Published As
Publication number | Publication date |
---|---|
JPS58173209A (en) | 1983-10-12 |
FR2524029A1 (en) | 1983-09-30 |
FR2524029B1 (en) | 1984-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2669052A1 (en) | DEVICE FOR COMBATING MARINE EROSION. | |
FR2536456A1 (en) | DRILLING SYSTEM FROM A WATER PLAN, INSENSITIVE TO THE COOL | |
FR2552461A1 (en) | FLEXIBLE MARINE PLATFORM | |
EP3329068B1 (en) | Dynamic artificial wave installations for surfing | |
EP0089890A1 (en) | Process and device for the protection of a shield in touch with a mass of liquid against the variation of dynamic pressure | |
FR2850425A1 (en) | Sub-sea collector for e.g. oil released from wreck, comprises modular textile column with upward and downward funneled terminations located by anchoring weights and flotation rings | |
EP0282479B1 (en) | Method and device for attenuating the sea swell | |
WO2008068390A1 (en) | Wave energy recovery device | |
EP2066843B1 (en) | Plant and method for damping and/or recovering the energy of the swell | |
FR2951694A1 (en) | UNDERWATER ANCHORING SYSTEM, IN PARTICULAR FOR AN UNDERWATER DRIFT APPLIED TO THE OPERATION OF THERMAL ENERGY OF THE SEAS | |
EP0007822A1 (en) | Transfer device for materials immersed in a liquid and use of this device for transferring radioactive wastes | |
EP0292877A1 (en) | Wall covering absorbing acoustic waves in a liquid medium | |
FR3022954A1 (en) | INSTALLATION FOR RECOVERING THE ENERGY OF A WAVE AND / OR FOR ACTIVE ATTENUATION OF SAID HOULE | |
EP0346554B1 (en) | Structure for the attenuation of waves | |
FR2514451A1 (en) | Fender for cylindrical columns in tidal waters - uses projecting structures to support sliding support points for fender cable | |
FR2764160A1 (en) | ELECTRODYNAMIC TRANSDUCER FOR UNDERWATER ACOUSTICS | |
FR2709343A1 (en) | Self-adjustable and acoustically insulating ventilation outlet | |
FR2753682A1 (en) | Controlled floating support leg for oil platform | |
JP2022053810A (en) | Underwater noise reflection absorption structure, underwater noise reducing structure, and underwater noise reducing method | |
FR2664868A1 (en) | ANECHOUID COATING, PARTICULARLY FOR SHIPS OF SHIPS AND SUBMARINES. | |
EP0897176B1 (en) | Underwater acoustic absorber | |
EP0094853A1 (en) | Method and device for breaking waves by creating a turbulent flow within a fluid | |
FR2579681A1 (en) | Improvements to devices of the bell type, intended for collecting wave energy | |
EP0022399B1 (en) | Vertical barrier for instantaneous placement in the water and immediately unfoldable, permitting the screening-off or enclosing of a layer of oil or hydrocarbon spread on the surface of the water | |
FR2498867A1 (en) | Electroacoustic transducer for great depth - has piezoelectric discs and counterweight in container with double walls separated by gas under pressure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19840222 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19850604 |