EP0089890A1 - Procédé et dispositif pour protéger une paroi au contact d'une masse liquide contre les variations de pression dynamique - Google Patents

Procédé et dispositif pour protéger une paroi au contact d'une masse liquide contre les variations de pression dynamique Download PDF

Info

Publication number
EP0089890A1
EP0089890A1 EP83400563A EP83400563A EP0089890A1 EP 0089890 A1 EP0089890 A1 EP 0089890A1 EP 83400563 A EP83400563 A EP 83400563A EP 83400563 A EP83400563 A EP 83400563A EP 0089890 A1 EP0089890 A1 EP 0089890A1
Authority
EP
European Patent Office
Prior art keywords
wall
interface
liquid
chamber
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP83400563A
Other languages
German (de)
English (en)
Inventor
Francis Marcel Emile Biesel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0089890A1 publication Critical patent/EP0089890A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B8/00Details of barrages or weirs ; Energy dissipating devices carried by lock or dry-dock gates
    • E02B8/06Spillways; Devices for dissipation of energy, e.g. for reducing eddies also for lock or dry-dock gates

Definitions

  • the present invention relates to the protection of a wall, such as a dam or a reservoir wall, a wall which is in contact with a liquid mass, against variations in dynamic pressure which the liquid can exert on it.
  • a wall which retains a liquid mass is subjected to a so-called static or medium pressure which varies only slowly, for example under the effect of filling or emptying of the reservoir.
  • static or medium pressure which varies only slowly
  • dynamic or fluctuating pressure component which varies rapidly around the static or average pressure.
  • the origin of this dynamic pressure component can result from a explosion occurring in the liquid mass, an earthquake or rapid movements of the reservoir containing the liquid mass.
  • the dynamic pressure component is added to the static component and must be taken into account in the calculation of the resistance of these walls. The reliability of computational cases is reduced when the dynamic pressures have a random demand.
  • the object of the present invention is to reduce the dynamic pressure component acting on the wall due to any generating phenomenon of given intensity, which makes it possible to reduce the cost of the structures and / or increase their reliability.
  • the present invention is based on the hydrodynamic laws of the distribution of dynamic pressures in a liquid mass in the vicinity of a free surface (surface of water). As illustrated diagrammatically by the curve 1 in FIG. 1, the dynamic pressure component capable of being exerted on a wall 2 maintaining a liquid mass 3 with a free surface 4, has a low amplitude in the vicinity of the free surface.
  • the present invention therefore relates to a method for locally protecting a wall in contact with a liquid mass against rapid variations in the dynamic pressure component, in which one creates in the vicinity of the wall zone to be protected, in the liquid mass near the wall or between the liquid mass and at least part of the wall, an interface capable of transmitting the pressures between the liquid and a volume of gas.
  • the interface transmits pressures
  • the volume of gas naturally has a static pressure in equilibrium with the static pressure component of the liquid at the interface.
  • the interface is created between the liquid and a volume of gas trapped in a chamber or pocket.
  • Another solution for providing protection over an entire level of the wall is to provide an interface extending continuously along a level line of the wall.
  • the movements of such a large interface will not necessarily be the same at all points. They can, for example, reduce the volume of gas in one place and increase it elsewhere.
  • the gas having a very low inertia moves easily from one point to another, it is therefore possible that significant movements of the interface occur without appreciable variation in the pressure of the gas. This increases the efficiency of the process as long as these movements are not too large, but the absence of pressurization of the gas will allow these movements to become such that the gas is completely expelled from a part of the chamber.
  • the contact. brutal interface with the walls of this part of the chamber can cause harmful overpressures.
  • the interface is subdivided, when it is raised from its normal level, into partial interfaces by subdividing the main chamber into partial chambers by vertical walls. In each partial chamber, the volume of air trapped above the interface will act independently, according to its compressibility law, without the interface being able to reach the entire surface of the wall delimiting the partial chamber.
  • means are interposed in the volume of gas or in the liquid in the vicinity of the interface which ensure partial dissipation of the mechanical energy linked to the movements of the interface.
  • the preferred embodiment consists in interposing a perforated wall between the main mass of the liquid retained by the wall and the interface.
  • This perforated wall reduces the efficiency of the process by slowing down the movements of the interface, but avoids excessive movements for pressure fluctuations whose frequency corresponds to the resonant frequency of the volumes of gas.
  • the device for implementing the method according to the invention and intended to locally protect a wall in contact with a liquid mass against rapid variations in the dynamic pressure component which the liquid can exert on the wall comprises a chamber filled with gas, in communication, by an interface capable of transmitting pressures and located in the vicinity of the wall area to be protected, with the liquid which is in contact with said wall.
  • the interface can be constituted by a flexible wall or by a rigid movable wall perpendicular to its plane delimiting at least partially a chamber in which the gas is enclosed under a pressure substantially equal to the hydrostatic pressure.
  • the interface is produced by the free surface naturally establishing itself in the chamber.
  • the chamber is subdivided into partial chambers by walls substantially perpendicular to the interface and ending at rest at a certain distance from the interface.
  • the partial chambers are at rest in intercommunication through the space between the lower edge of the walls and the interface but, in the event of lifting of the interface, the section decreases and the partial rooms are isolated as soon as the interface reaches the edge of the walls. This prevents all of the gases from being expelled from the partial chambers and the liquid directly exerting its dynamic pressure which is not absorbed on the rigid walls of the chamber.
  • the chamber is in communication with the volume of liquid retained by the wall, via the orifices of a perforated wall.
  • the chamber is made in the thickness of the wall and communicates with the volume of liquid through at least one orifice in this wall situated at the bottom level of the chamber.
  • the chamber is produced by a wall attached to the wall to be protected and forming therewith a chamber open at its lower part.
  • the chamber is independent of the wall and constituted by a submerged bell, the internal chamber of which has a mobile interface with the liquid, a bell which is kept close to the wall.
  • the reference 9 designates the body of the dam and 10 the mass of water retained by this dam.
  • slabs inclined downwards 11 are produced on the upstream face of the dam by forming awnings.
  • air pockets 12 are formed which are at equilibrium pressure with hydrostatic pressure.
  • the volume of these pockets can be determined by orifices 13 passing through the slabs, the air escaping from a pocket being captured in the upper pocket.
  • This arrangement makes it possible to restore full air pockets by injecting pressurized air into the lowest pocket.
  • Thin slabs 15 are provided on the ends of the slabs 11 provided with perforations 16. When a dynamic overpressure P appears, it is transmitted attenuated in the volume of water 17 between the interface and said wall. Because the hydrostatic pressure prevails on the two faces of the walls 15, these can be thin because they only have to withstand the single component of dynamic pressure.
  • the chambers formed under the awnings are, in particular when they are of great length, subdivided by transverse walls as will be explained below for other embodiments.
  • the air chambers are produced by bells 18 immersed at various depths. These bells are of cylindro-conical shape flattened enough so that the perforated underside 19 offers a large section for passage through the water. An air pocket 20 in hydrostatic equilibrium with the ambient medium is formed at the top of the bell and it has, with the volume of water which has passed through the perforated wall 19, an interface 21.
  • the bell is ballasted with a weight 22.
  • the whole bell. normal fill volume and this ballast must maintain a floating tab i l i t y oositive.
  • a cable 23 connects the ballast 22 to a second ballast 24 resting on the bottom. The weight of the latter ballast is such that the entire bell and the two ballast regains positive buoyancy only if the bell is almost entirely full of air.
  • a flexible or articulated pipe 25 blows compressed air into the bell to "replenish” the level, it leads to a float 26 itself connected by a cable 27 to the bell.
  • the ballast 22 drives the bell downwards until the bottom is reached or until the cable 27 tightens and pushes the float 26, which gives the alert.
  • This float is calculated not to sink completely even if the bell has lost all its gas.
  • the upper end of the pipe 25 thus always remains accessible and allows the inflation of the air pocket with a mobile compressor for example.
  • bells may, for example, consist of enclosures made of a flexible material, such as rubber, and be anchored by a cable to a sufficient ballast or to any other suitable attachment point.
  • the advantage of this embodiment is that the interaction surface of water and gas is as large as possible.
  • the disadvantage, for certain applications, is that it is difficult to introduce a high energy absorption. A certain absorption can result from the choice of the material of the enclosure, which can have a high coefficient of internal friction. It can also be obtained by placing finely divided materials, glass fibers for example, in the gas pocket.
  • these flexible bells can also be placed inside rigid cages with perforated walls.
  • FIG. 6 shows a very simple embodiment which can be applied, for example, to the protection of the vertical walls of a metal tank containing a liquid.
  • Figure 7 shows in vertical section perpendicular to the wall and that Figure 6 shows in elevation seen from the inside of the tank.
  • the gas pocket 32 is formed under this hood during filling.
  • FIG. 8 represents, in schematic vertical section, a metal tank, of vertical axis, containing a liquid reaching level 34.
  • the bottom wall, or floor, of this tank is protected by gas pockets produced under O-rings 35 or under a central bell 36. This protection will be useful in particular to reduce pressure fluctuations due to vertical earthquakes.
  • the upper face, or ceiling is provided with cells 37 open downwards, which create gas pockets according to the invention as soon as they are reached by the liquid. These gas pockets in particular reduce the pressure fluctuations due to vertical earthquakes, when the tank is filled to the said cells, or reduce the pressure fluctuations due to temporary and local increases in level which could cause a brutal shock between the free surface and ceiling of the tank.
  • toroidal bells 38 On the side walls are arranged toroidal bells 38 retaining gas pockets 39 according to the invention. These bags will be useful in particular for reducing pressure fluctuations due to horizontal earthquakes. For these earthquakes, the pressure fluctuations will have opposite signs at diametrically opposite points of the toroidal bells.
  • transverse walls 40 subdivide the chamber into an O-ring 39 by creating chambers in sectors which are isolated when the interface is raised.
  • the inner wall of the bells 38 is extended in the form of a continuous wall provided with perforations.
  • the wall 33 is lined with internal walls 42 forming the toric bells whose lower edge 43 is located below the edge of the top of the lower toroidal bell.
  • the gas pockets 45 occupy the entire surface of the outer wall, which improves the thermal insulation between the liquid 10 and the wall 33.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pipe Accessories (AREA)
  • Revetment (AREA)

Abstract

La présente invention concerne un procédé pour protéger localement une paroi au contact d'une masse liquide contre les variations rapides de la composante de pression dynamique.
Conformément à l'invention on crée au voisinage de la zone de paroi 9 à protéger, dans la masse liquide 10 à proximité de la paroi ou entre la masse liquide et au moins une partie de la paroi 9, une interface 14 susceptible de transmettre les pressions entre le liquide 10 et un volume de gaz 12, ladite interface étant réalisée par example par la surface libre séparant la masse de liquide du gaz remplissant la chambre 12.
L'invention est applicable à la protection contre une explosion se produisant dans la masse liquide, un seisme ou des mouvements rapides du réservoir contenant la masse liquide, d'un barrage ou paroi de réservoir.

Description

  • La présente invention concerne la protection d'une paroi, telle qu'un barrage ou une paroi de réservoir, paroi qui est au contact d'une masse liquide, contre les variations de pression dynamique que peut exercer sur.elle le liquide.
  • Une paroi qui retient une masse liquide est soumise à une pression dite statique ou moyenne qui ne varie que lentement, par exemple sous l'effet du remplissage ou du vidage du réservoir. Mais elle peut être soumise, d'autre part, à une composante de pression dite dynamique ou fluctuante qui varie rapidement autour de la pression statique ou moyenne. L'origine de cette composante de pression dynamique peut résulter d'une explosion se produisant dans la masse liquide, d'un séisme ou de mouvements rapides du réservoir contenant la masse liquide. La composante de pression dynamique s'ajoute à la composante statique et doit être prise en compte dans le calcul de la résistance de ces parois. La fiabilité de cas calculs est réduite lorsque les pressions dynamiques ont une cfrande-ar aléatoire.
  • La présente invention a pour but de réduite la composante de pression dynamique agissant sur la paroi du fait d'un phénomène générateur quelconque d'intensité donnée, ce qui permet de réduire le coût des ouvrages et/ou d'accroître leur fiabilité.
  • La présente invention est basée sur les lois hydrodynamiques de la répartition des pressions dynamiques dans une masse liquide au voisinage d'une surface libre (surface de l'eau). Comme illustré schématiquement par la courbe 1 dans la figure 1, la composante de pression dynamique susceptible de s'exercer sur une paroi 2 maintenant une masse liquide 3 avec une surface libre 4, a une amplitude faible au voisinage de la surface libre.
  • Ceci est dû à ce que la pression dans l'atmosphère, au dessus de la surface libre, ne fluctue pratiquement pas autour de sa valeur statique et à ce qu'il ne peut y avoir de discontinuité de pression entre deux fluides, ici l'atmosphère et le liquide, en contact direct par une interface, telle que la surface libre, qui n'a aucune rigidité ou inertie. Une interface constituée par une paroi suffisamment mobile ou souple et légère a sensiblement le même effet.
  • Pratiquement, les seules fluctuations de pression dynamique qui peuvent substituer en un point fixe, situé immédiatement au dessous de la surface libre, sont les fluctuations de pression hydrostatique dues aux fluctuations de niveau de la surface libre. Ces fluctuations de niveau et de pression sont négligeables pour les perturbations dynamiques de fréquences élevées, rarement inférieures à 1 hertz, auxquelles s'applique la présente invention. Ainsi que le montre la courbe 1 de la figure 1, cet effet d'atténuation des pressions dynamiques décroît lorsqu'on s'éloigne de la surface libre.
  • La présente invention a en conséquence pour objet un procédé pour protéger localement une paroi au contact d'une masse liquide contre les variations rapides de la composante de pressi.on dynamique, dans lequel on crée au voisinage de la zone de paroi à protéger, dans la masse liquide à proximité de la paroi ou entre la masse liquide et au moins une partie de la paroi, une interface susceptible de transmettre les pressions entre le liquide et un volume de gaz.
  • L'effet de cet interface sur les pressions dynamiques est analogue à l'effet de réduction d'une surface libre exposée à l'atmosphère. Il est cependant,en général, un peu moins efficace car le volume nécessairement limité du gaz fait que la pression peut y varier en fonction des déplacements de l'interface.
  • Du fait que l'interface transmet les pressions, le volume de gaz a naturellement une pression statique en équilibre avec la composante de pression statique du liquide au niveau de l'interface. Dans la pratique l'interface est créée entre le liquide et un volume de gaz emprisonné dans une chambre ou poche.
  • Dans FR-A-2.407.295, on a décrit des brise-lames à murs multiples, les murs dirigés vers la lame présentant des orifices pour absorber l'énergie des vagues par les remous créés au passage des orifices. Ces dispositifs fonctionnent par la différence de pression hydrostatique sur les deux faces du mur et ne sont applicables que pour une variation lente de cette différence de pression pour qu'un volume d'eau appréciable puisse transiter à travers le mur perforé, c'est-à-dire pour l'amortissement des vagues de grande longueur, non pour l'absorption des variations rapides d'une composante de pression dynamique. Il est envisagé, dans l'un des modes de réalisation, d'avoir une chambre emprisonnant un volume d'air, chambre qui est en communication par des orifices à la base du mur qui la délimite avec une chambre antérieure elle-même séparée de la mer par une paroi perforée. Il est toutefois dit que cette chambre qui présente une interface avec un volume d'air n'intervient que dans l'amortissement des vagues les plus longues donc de fréquences les plus basses. Ce document n'enseigne rien sur l'amortissement de variations rapides de pression telles que les variations de la composante de pression dynamique.
  • Dans l'exemple de la figure 1, en créant une interface à un niveau moyen entre la surface du liquide et la base de la paroi, on réduit à ce niveau la composante de pression dynamique à une valeur faible comparable à celle qu'elle a au niveau de la surface libre. On obtient donc la courbe 5 de la figure 1 et, en multipliant les interfaces, sur la hauteur de la paroi on obtient la courbe 6.
  • Si on considère la répartition de la composante de pression dynamique selon un plan horizontal, et comme illustré à la figure 2, la répartition dans un canal à parois latérales planes et parallèles pour une onde de pression dynamique ayant son origine en un point éloigné de la paroi sera représentée au niveau N (figure 1) par une droite 7. Si on crée une interface localisée au centre de la paroi, au niveau N, on va avoir une composante de pression dynamique très réduite en ce point mais cette composante de pression dynamique va croître dans le plan à partir de ce point selon une courbe analogue à la courbe partant de la surface libre dans le plan vertical (courbe 8, figure 2). On peut ainsi répartir, également selon le plan horizontal, les interfaces pour que la composante de pression dynamique soit ramenée à une valeur admissible sur toute la largeur de la paroi exposée à de telles surpressions .
  • Une autre solution pour assurer la protection sur tout un niveau de la paroi est de réaliser une interface s'étendant de façon continue tout le long d'une ligne de niveau de la paroi.
  • Les mouvements d'une interface aussi étendue ne seront pas nécessairement les mêmes en tous les points. Ils pourront, par exemple, réduire le volume de gaz en un endroit et l'augmenter ailleurs. Le gaz ayant une très faible inertie se déplace facilement d'un point à l'autre, il se pourra donc que des mouvements importants de l'interface se produisent sans variation sensible de la pression du gaz. Ceci augmente l'efficacité du procédé tant que ces mouvements ne sont pas trop grands mais l'absence de mise en pression du gaz permettra à ces mouvements de devenir tels que le gaz soit complètement chassé d'une partie de la chambre. Le contact. brutal de l'interface avec les parois de cette partie de la chambre peut provoquer des surpressions nuisibles. Pour remédier à ce phénomène, on subdivise l'interface, lorsquelle est soulevée par rapport à son niveau normal, en interfaces partielles en subdivisant la chambre principale en chambres partielles par des parois verticales. Dans chaque chambre partielle le volume d'air emprisonné au-dessus de l'interface va agir indépendemment, selon sa loi de compressibilité,sans que l'interface puisse atteindre la totalité de la surface de la paroi délimitant la chambre partielle.
  • Selon une autre caractéristique de l'invention, on interpose dans le volume de gaz ou dans le liquide au voisinage de l'interface des moyens qui assurent une dissipation partielle de l'énergie mécanique liée aux mouvements de l'interface.
  • Le mode de réalisation préférentiel consiste à interposer une paroi perforée entre la masse principale du liquide retenue par la paroi et l'interface.
  • Cette paroi perforée réduit l'efficacité du procédé en freinant les mouvements de l'interface, mais évite des mouvements excessifs pour des fluctuations de pression dont la fréquence correspond à la fréquence de résonance des volumes de gaz.
  • Le dispositif pour la misé en oeuvre du procédé conforme à l'invention et destiné à protéger localement une paroi au contact d'une masse liquide contre les variations rapides de la composante de pression dynamique que peut exercer le liquide sur la paroi , comporte une chambre remplie de gaz, en communication, par une interface susceptible de transmettre les pressions et située au voisinage de la zone de paroi à protéger, avec le liquide qui se trouve au contact de ladite paroi. L'interface peut être constituée par une paroi souple ou par une paroi rigide mobile perpendiculairement à son plan délimitant au moins partiellement une chambre dans laquelle le gaz est enfermé sous une pression sensiblement égale à la pression hydrostatique.
  • De préférence l'interface est réalisée par la surface libre s'établissant naturellement dans la chambre.
  • Selon une autre caractéristique et dans le cas d'une chambre présentant une interface de grande étendue avec le liquide,la chambre est subdivisée en chambres partielles par des parois sensiblement perpendiculaires à l'interface et se terminant au repos à une certaine distance de l'interface. Avec ce mode de réalisation, les chambres partielles sont au repos en intercommunication par l'espace entre le bord inférieur des parois et l'interface mais, en cas de soulèvement de l'interface, la section diminue et les ehambres partielles sont isolées dès que l'interface atteint le bord des parois. On évite ainsi que la totalité des gaz soit chassée des chambres partielles et que le liquide exerce directement sa pression dynamique non absorbée sur les parois rigides de la chambre.
  • Selon une autre caractéristique, la chambre est en communication avec le volume de liquide retenu par la paroi, par l'intermédiaire des orifices d'une paroi perforée.
  • Selon un mode de réalisation applicable aux parois massives la chambre est réalisée dans l'épaisseur de la paroi et communique avec le volume de liquide par au moins un orifice dans cette paroi situé au niveau bas de la chambre.
  • Selon un autre mode de réalisation la chambre est réalisée par une paroi rapportée sur la paroi à protéger et formant avec celle-ci une chambre ouverte à sa partie inférieure.
  • Selon un autre mode de réalisation la chambre est indépendante de la paroi et constituée par une cloche immergée dont la chambre interne a une.interface mobile avec le liquide, cloche qui est maintenue à proximité de la paroi.
  • D'autres caractéristiques de la présente invention apparaîtront à la lecture de la description de divers modes de réalisation faite ci-après avec référence aux dessins ci-annexés dans lesquels :
    • La figure 1 est une vue.en coupe verticale schématique illustrant les courbes de répartition dans le plan vertical des surpressions dynamiques; la figure 2 est une vue en coupe horizontale correspondant au niveau N de la figure 1; la figure 3 est une vue en coupe verticale schématique d'une paroi de barrage munie du dispositif de protection conforme à l'invention; la figure 4 est une vue en élévation et coupe partielle d'une cloche immergée constituant un dispositif conforme à l'invention; la figure 5 illustre la disposition des cloches de figure 4 en amont d'un barrage; la figure 6 est une vue en élévation d'un mode de réalisation du dispositif sur une paroi mince et la figure 7 en est une vue en coupe par VII-VII de figure 6; la figure 8 est une vue en coupe verticale schématique dans un grand réservoir muni de dispositifs de protection conformes à l'invention et la figure 9 est une vue en coupe verticale d'une variante de réalisation.
  • Dans les figures 3 à 5, la référence 9 désigne le corps du barrage et 10 la masse d'eau retenue par ce barrage.
  • Dans le mode de réalisation de la figure 3, des dalles inclinées vers le bas 11 sont réalisées sur la face amont du barrage en formant des auvents. Lors du remplissage du bassin ou par suite d'une injection d'air sous pression sous la dalle il se forme des poches d'air 12 qui sont à la pression d'équilibre avec la pression hydrostatique. Le volume de ces poches peut être déterminé par des orifices 13 traversant les dalles, l'air s'échappant d'une poche étant capté dans la poche supérieure. Cette disposition permet de rétablir le plein des poches d'air en injectant de l'air sous pression dans la poche la plus basse. Sur les extrémités des dalles 11 sont fixées des dalles minces 15 munies de perforations 16. Lors de l'apparition d'une surpression dynamique P, celle-ci est transmise atténuée dans le volume d'eau 17 entre l'interface et ladite paroi. Du fait que la pression hydrostatique régne sur les deux faces des parois 15, celles-ci peuvent être minces car elles n'ont à résister qu'à la seule composante de pression dynamique.
  • Les chambres formées sous les auvents sont, notamment lorsqu'elles sont d'une grande longueur, subdivisées par des parois transversales comme cela sera exposé ci-après pour d'autres modes de réalisation.
  • Dans le mode de réalisation des figures 4 et 5 qui s'applique notamment à un barrage déjà construit, les chambres d'air sont réalisées par des cloches 18 immergées à diverses profondeurs. Ces cloches sont de forme cylindro-conique assez aplatie pour que la face inférieure perforée 19 offre une grande section de passage à l'eau. Une poche d'air 20 en équilibre hydrostatique avec le milieu ambiant est formée au sommet de la cloche et elle présente avec le volume d'eau qui a traversé la paroi perforée 19 une interface 21.
  • La cloche est lestée par une masse 22. L'ensemble de la cloche à son. volume de remplissage normal et de ce lest doit conserver une flot- tabilité oositive. Un câble 23 relie le lest 22 à un deuxième lest 24 reposant sur le fond. Le poids de ce dernier lest est tel que l'ensemble de la cloche et des deux lests ne reprend une flottabilité positive que si la cloche est presque entièrement pleine d'air.
  • Un tuyau souple ou articulé 25 permet d'insuffler de l'air comprimé dans la cloche pour "refaire" le niveau, il aboutit à un flotteur 26 lui-même relié par un câble 27 à la cloche.
  • Lorsque, pour une raison quelconque, le volume d'air dans la cloche a diminué de plus d'un certain pourcentage (30% par exemple), le lest 22 entraîne la cloche vers le bas jusqu'à ce que le fond soit atteint ou jusqu'à ce que le câble 27 se tende et enfonce le flotteur 26, ce qui donne l'alerte. Ce flotteur est calculé pour ne pas s'enfoncer entièrement même si la cloche a perdu tout son gaz. L'extrémité supérieure du tuyau 25 reste ainsi toujours accessible et permet le regonflement de la poche d'air avec un compresseur mobile par exemple.
  • Pour remonter la cloche et ses deux lests, il suffit d'insuffler de l'air comprimé plus vite qu'il ne peut s'échapper par un orifice 28 qui, comme les orifices 13, limite le volume de la poche d'air 20.
  • Il existe d'autres moyens de réaliser ces cloches. Elles peuvent, par exemple, consister en des enceintes faites d'un matériau souple, comme le caoutchouc, et être ancrées par un câble sur un lest suffisant ou sur tout autre point d'attache adéquat. L'avantage de cette forme de réalisation est que la surface d'interaction de l'eau et du gaz est la plus grande possible. L'inconvénient, pour certaines applications, est qu'il est difficile d'introduire une forte absorption d'énergie. Une certaine absorption peut résulter du choix du matériau de l'enceinte, qui peut avoir un fort coefficient de frottement interne. On peut aussi l'obtenir en plaçant des matériaux finement divisés, des fibres de verre par exemple, dans la poche de gaz. Enfin, on peut aussi placer ces cloches souples à l'intérieur de cages rigides à parois perforées.
  • La figure 6 montre un mode de réalisation très simple qui peut s'appliquer, par exemple, à la protection des parois verticales d'une cuve métallique contenant un liquide.
  • On soude de place en place sur la paroi 29 des tôles triangulaires 30, soudées entre elles sur leur arête commune 31. On forme ainsi une sorte de hotte de forme pyramidale que
  • la figure 7 montre en coupe verticale perpendiculaire à la paroi et que la figure 6 montre en élévation vue de l'intérieur de la cuve.
  • La poche de gaz 32 est formée sous cette hotte au cours du remplissage.
  • La figure 8 représente, en coupe verticale schématique, un réservoir métallique, d'axe vertical, contenant un liquide atteignant le niveau 34. La paroi inférieure, ou plancher, de ce réservoir est protégée par des poches de gaz réalisées sous des anneaux toriques 35 ou sous une cloche centrale 36. Cette protection sera utile notamment pour réduire les fluctuations de pression dues à des séismes verticaux. La face supérieure, ou plafond, est garnie d'alvéoles 37 ouvertes vers le bas, qui créent des poches de gaz suivant l'invention dès qu'elles sont atteintes par le liquide. Ces poches de gaz réduisent notamment les fluctuations de pression dues à des séismes verticaux, lorsque le réservoir est rempli jusqu'aux dites alvéoles, ou réduisent les fluctuations de pression dues à des montées temporaires et locales du niveau qui pourraient provoquer un choc brutal entre la surface libre et le plafond du réservoir.
  • Sur les parois latérales sont disposées des cloches toriques 38 retenant des poches de gaz 39 suivant l'invention. Ces poches seront utiles notamment pour réduire les fluctuations de pression dues à des séismes horizontaux. Pour ces séismes, les fluctuations de pression auront des signes opposés en des points diamètralement opposés des cloches toriques. Pour éviter que l'interface atteigne le toit d'une cloche torique, des parois transversales 40 subdivisent la chambre en anneau torique 39 en créant des chambres en secteurs qui se trouvent isolées lorsque l'interface se soulève. Dans la partie inférieure la paroi intérieure des cloches 38 se prolonge sous forme d'une paroi continue munie de perforations Dans le mode de réalisation de la figure 9, la paroi 33 est garnie de parois internes 42 formant les cloches toriques dont le bord inférieur 43 est situé en dessous de l'arête du sommet de la cloche torique inférieure. Les poches de gaz 45 occupent toute la surface de la paroi extérieure, ce qui améliore l'isolement thermique entre le liquide 10 et la paroi 33.

Claims (13)

1. Un procédé pour protéger localement une paroi au contact d'une masse liquide contre les variations rapides de la composante de pression dynamique,
caractérisé que ce que l'on crée au voisinage de la zone de paroi à protéger dans la masse liquide à proximité de la paroi ou entre la masse liquide et au moins une partie de la paroi, une interface susceptible de transmettre les pressions entre le liquide et un volume de gaz.
2. Un procédé selon la revendication 1,
caractérisé en ce qu'on réalise une interface s'étendant de façon continue tout le long d'une ligne de niveau et subdivise cette interface lorsqu'elle est soulevée par rapport à son niveau normal, en interfaces partielles en subdivisant la chambre principale en chambres partielles par des parois verticales.
3. Un procédé selon l'une quelconque des revendications 1 et 2,
caractérisé en ce qu'on interpose dans le volume de gaz ou dans le liquide au voisinage de l'interface,des moyens qui assurent une dissipation partielle de l'énergie mécanique liée au mouvement de l'interface.
4. Un procédé selon la revendication 3,
caractérisé en ce que le moyen assurant une dissipation partielle de l'énergie mécanique est constitué par une paroi perforée interposée entre la masse principale du liquide retenue par la paroi et l'interface.
5. Un dispositif pour la mise en oeuvre du procédé selon l'une quelconque des revendications 1 à 4 pour protéger localement une paroi au contact d'une masse liquide contre les variations rapides de la composante de pression dynamique que peut exercer le liquide sur la paroi,
caractérisé en ce qu'il comporte une enceinte remplie de gaz 12, en communication, par une interface 14 susceptible de transmettre les.pressions et située au voisinage de la zone de la paroi 9 à protéger, avec le liquide 10 qui se trouve au contact de ladite paroi.
6. Un dispositif selon la revendication 5,
caractérisé en ce que l'interface est constituée par une paroi souple ou par une paroi rigide mobile perpendiculairement à son plan délimitant au moins partiellement une chambre dans laquelle le gaz est enfermé sous une pression sensiblement égale à la pression hydrostatique.
7. Un dispositif selon la revendication 5,
caractérisé en ce que l'interface est réalisée par la surface libre (14,21) séparant le liquide du gaz 12 remplissant la chambre.
8. Un dispositif selon la revendication 5,
caractérisé en ce que dans le cas d'une chambre -39 présentant une interface de grande étendue avec le liquide, la chambre est subdivisée par des parois 40 sensiblement perpendiculaires à l'interface et se terminant au repos à une certaine distance de l'interface.
9. Un dispositif selon l'une quelconque des revendications 5, 7 et 8,
caractérisé en ce que la chambre est en communication avec le volume de liquide retenu par la paroi, par l'intermédiaire des orifices 16 d'une paroi perforée 15.
10. Un dispositif selon l'une quelconque des revendications 5 et 7 à 9,
caractérisé en ce que la chambre est réalisée dans l'épaisseur de la paroi 9 et communique avec le volume de liquide par au moins un orifice dans cette paroi situé au niveau bas de la chambre.
11. Un dispositif selon l'une quelconque des revendications 5, 7 et 8,
caractérisé en ce que la chambre est réalisée par une paroi 7 rapportée sur la paroi 29,33 à protéger et formant avec celle-ci une chambre ouverte à sa partie inférieure.
. 12. Un dispositif selon la revendication 5,
caractérisé en ce que la chambre est indépendante de la paroi et constituée par une cloche 18 immergée dont la chambre interne communique à sa partie inférieure avec le liquide, cloche qui est maintenue par un lest 24 reposant au fond, à proximité de la paroi 9.
13. Un dispositif selon l'une quelconque des revendications 5 à 12,
caractérisé en ce que des moyens 25 sont prévus pour réalimen- ter en gaz sous pression le volume de gaz au contact de l'interface.
EP83400563A 1982-03-23 1983-03-17 Procédé et dispositif pour protéger une paroi au contact d'une masse liquide contre les variations de pression dynamique Withdrawn EP0089890A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8204904A FR2524029A1 (fr) 1982-03-23 1982-03-23 Protection de parois en contact avec des liquides contre des fluctuations de pression rapides
FR8204904 1982-03-23

Publications (1)

Publication Number Publication Date
EP0089890A1 true EP0089890A1 (fr) 1983-09-28

Family

ID=9272281

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83400563A Withdrawn EP0089890A1 (fr) 1982-03-23 1983-03-17 Procédé et dispositif pour protéger une paroi au contact d'une masse liquide contre les variations de pression dynamique

Country Status (3)

Country Link
EP (1) EP0089890A1 (fr)
JP (1) JPS58173209A (fr)
FR (1) FR2524029A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7735643B2 (en) 2005-01-29 2010-06-15 David Sanches Inflatable shipping device and method of forming and using same
CN101538840B (zh) * 2009-03-20 2011-02-09 四川大学 消力池内的挑流消能工
WO2011160820A1 (fr) * 2010-06-22 2011-12-29 Ekkehard Fehling Barrage de retenue de fluide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1432607A (fr) * 1965-01-14 1966-03-25 Zodiac Anciens Etablissements Perfectionnements apportés aux défenses d'accostage élastiques
GB1198808A (en) * 1967-02-01 1970-07-15 Nat Res Dev Fender or Like Impact-Absorbing Device
FR2407295A1 (fr) * 1977-10-28 1979-05-25 Iida Kensetsu Co Ltd Brise-lame a murs multiples
FR2436292A1 (fr) * 1978-09-18 1980-04-11 Kraftwerk Union Ag Dispositif de protection contre les ondes de pression des ouvrages soumis a un ecoulement d'eau
US4264233A (en) * 1979-09-06 1981-04-28 Mccambridge Joseph Fluid dynamic repeller for protecting coast from erosion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1432607A (fr) * 1965-01-14 1966-03-25 Zodiac Anciens Etablissements Perfectionnements apportés aux défenses d'accostage élastiques
GB1198808A (en) * 1967-02-01 1970-07-15 Nat Res Dev Fender or Like Impact-Absorbing Device
FR2407295A1 (fr) * 1977-10-28 1979-05-25 Iida Kensetsu Co Ltd Brise-lame a murs multiples
FR2436292A1 (fr) * 1978-09-18 1980-04-11 Kraftwerk Union Ag Dispositif de protection contre les ondes de pression des ouvrages soumis a un ecoulement d'eau
US4264233A (en) * 1979-09-06 1981-04-28 Mccambridge Joseph Fluid dynamic repeller for protecting coast from erosion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7735643B2 (en) 2005-01-29 2010-06-15 David Sanches Inflatable shipping device and method of forming and using same
CN101538840B (zh) * 2009-03-20 2011-02-09 四川大学 消力池内的挑流消能工
WO2011160820A1 (fr) * 2010-06-22 2011-12-29 Ekkehard Fehling Barrage de retenue de fluide

Also Published As

Publication number Publication date
FR2524029A1 (fr) 1983-09-30
FR2524029B1 (fr) 1984-04-27
JPS58173209A (ja) 1983-10-12

Similar Documents

Publication Publication Date Title
OA11541A (fr) Procédé et dispositif de liaison fond-surface par conduite sous-marine installée à grande profondeur.
FR2669052A1 (fr) Dispositif de lutte contre l'erosion marine.
FR2536456A1 (fr) Systeme de forage a partir d'un plan d'eau, insensible a la houle
FR2552461A1 (fr) Plate-forme marine flexible
EP0089890A1 (fr) Procédé et dispositif pour protéger une paroi au contact d'une masse liquide contre les variations de pression dynamique
FR2850425A1 (fr) Dispositif de collecte de produit et/ou tranquilisation d'une colonne en milieu sous-marin et son utilisation
EP0282479B1 (fr) Procede et dispositif pour l'attenuation de la houle
EP2087231A1 (fr) Dispositif de recuperation de l'energie de la houle
EP3164595B1 (fr) Installation pour la recuperation de l'energie d'une houle et/ou pour l'attenuation active de ladite houle
EP2066843B1 (fr) Installation et procede pour l'amortissement et/ou la recuperation de l'energie de la houle
FR2951694A1 (fr) Systeme d'ancrage sous-marin, notamment pour une conduite sous-marine appliquee a l'exploitation de l'energie thermique des mers
EP0007822A1 (fr) Dispositif de transfert de matériaux immergés dans un liquide et application du dispositif au transfert de déchets radioactifs
EP0292877A1 (fr) Revêtement de paroi absorbant les ondes acoustiques en milieu liquide
EP0346554B1 (fr) Structure atténuatrice de la houle
FR2514451A1 (fr) Dispositif de defense d'une structure, notamment off shore contre les impacts d'objets de grandes dimensions, notamment de bateaux
FR2764160A1 (fr) Transducteur electrodynamique pour acoustique sous-marine
FR2753682A1 (fr) Ensemble de flottaison a pilonnement controle
JP2022053810A (ja) 水中騒音反射吸収構造物、水中騒音抑制構造体および水中騒音抑制方法
FR2664868A1 (fr) Revetement anechouide, en particulier pour coques de navires et de sous-marins.
EP0897176B1 (fr) Absorbeur acoustique sous-marin
EP0094853A1 (fr) Procédé et dispositif d'amortissement de houle ou clapot par formation d'un écoulement turbulent au sein du fluide
FR2579681A1 (fr) Perfectionnements aux dispositifs du type cloche, destines a capter l'energie de la houle
EP0022399B1 (fr) Barrage vertical à mise à l'eau instantanée et à développement immédiat permettant de faire écran ou d'encercler une nappe d'huile ou d'hydrocarbure répandue à la surface de l'eau
FR2498867A1 (fr) Transducteur electroacoustique de puissance concu pour les immersions a grande profondeur
FR2656718A1 (fr) Absorbeur acoustique pour milieu fluide, notamment pour milieu marin.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19840222

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19850604