JP2022052419A - Production method of transparent glass - Google Patents

Production method of transparent glass Download PDF

Info

Publication number
JP2022052419A
JP2022052419A JP2020158804A JP2020158804A JP2022052419A JP 2022052419 A JP2022052419 A JP 2022052419A JP 2020158804 A JP2020158804 A JP 2020158804A JP 2020158804 A JP2020158804 A JP 2020158804A JP 2022052419 A JP2022052419 A JP 2022052419A
Authority
JP
Japan
Prior art keywords
particle size
silica powder
powder
less
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020158804A
Other languages
Japanese (ja)
Inventor
貴裕 井上
Takahiro Inoue
浩一 足立
Koichi Adachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2020158804A priority Critical patent/JP2022052419A/en
Publication of JP2022052419A publication Critical patent/JP2022052419A/en
Pending legal-status Critical Current

Links

Abstract

To provide a production method of transparent quartz glass capable of preventing bubbles from remaining, when using granulated silica powder obtained by granulating silica fine powder which may generate bubbles upon melting.SOLUTION: A production method of transparent glass includes a mixing step for mixing silica powder having a mean particle size of 100 μm or more with granulated silica powder having a mean particle size of 100 μm or more obtained by granulating silica fine powder having a mean particle size of 50 μm or less, and a melting step for melting the mixed silica powder at 1,700°C or higher.SELECTED DRAWING: None

Description

本発明は、造粒シリカ粉体を用いた透明ガラスの製造方法に関する。 The present invention relates to a method for producing transparent glass using granulated silica powder.

近年、光ファイバーや半導体産業において使用される各種ガラス製の治具・ルツボ等については、半導体の高集積化に伴い、その構成ガラス材料の純度に関して非常に厳しい管理が行われている。これらの用途に適用される高純度なガラス製品の製造方法としては、従来、アルコキシシランを出発原料とし、これを加水分解し、ゾル-ゲル法と称されるプロセスによりシリカゲル粉末を得、次いでこれを焼成して石英ガラス粉末とした後、溶融ガラス化して、目的とする所望の石英ガラス製品を製造する方法が知られている。 In recent years, with the increasing integration of semiconductors, various glass jigs and crucibles used in the optical fiber and semiconductor industries have been subject to extremely strict control regarding the purity of their constituent glass materials. Conventionally, as a method for producing high-purity glass products applied to these applications, alkoxysilane is used as a starting material, which is hydrolyzed to obtain silica gel powder by a process called a sol-gel method, and then this is performed. There is known a method of producing a desired quartz glass product of interest by firing the silica gel into a quartz glass powder and then melt-vitrifying the silica gel.

しかしながら、透明性が求められる石英ガラス製品で、度々溶融ガラス化の際に石英ガラス内に泡が発生し、石英ガラス製品内部に発生した泡が残る事により、石英ガラスの透明性が失われる、すなわち透明なガラスが得られないという問題が発生していた。ここでいう透明なガラスとは、物体の表面や内部で可視光線が散乱しない、そして可視光線が物体を構成する物質に吸収されないガラスで、ガラスを通した向こう側がくすみなく見えるガラスを言う。 However, in quartz glass products that require transparency, bubbles are often generated in the quartz glass during molten vitrification, and the bubbles generated inside the quartz glass product remain, so that the transparency of the quartz glass is lost. That is, there was a problem that transparent glass could not be obtained. The term "transparent glass" as used herein means glass in which visible light is not scattered on the surface or inside of an object and visible light is not absorbed by the substances constituting the object, and the other side through the glass can be seen without dullness.

そこで、石英ガラスを透明化する方法として特許文献1、2に記載されている、合成シリカ微粉末を鋳込み成形、乾式プレス成形などの手段を用いて一旦成形体とし、それを減圧雰囲気中で1700℃以上の温度に加熱溶融して透明石英ガラスを得る方法や、特許文献3に記載されている、比較的粒度の粗い合成シリカ粉末を成形することなく耐熱性容器に充填し、そのまま減圧雰囲気中で加熱溶融し、透明石英ガラスとする製造方法がある。 Therefore, as a method for making quartz glass transparent, synthetic silica fine powder described in Patent Documents 1 and 2 is once formed into a molded body by means such as casting molding and dry press molding, and 1700 is used in a reduced pressure atmosphere. A method of obtaining transparent quartz glass by heating and melting to a temperature of ° C. or higher, or filling a heat-resistant container with a synthetic silica powder having a relatively coarse particle size, which is described in Patent Document 3, without forming the glass, and in a reduced pressure atmosphere as it is. There is a manufacturing method in which transparent quartz glass is obtained by heating and melting with.

また、特許文献4に記載されている、シリカ微粉末を造粒した球状顆粒を用いて、粉末の充填性を良くし、荷重を印加した状態で減圧下で溶融し、更に熱間静水圧プレス処理する透明石英ガラスの製造方法が、従来から知られている。 Further, the spherical granules obtained by granulating silica fine powder described in Patent Document 4 are used to improve the filling property of the powder, and the powder is melted under reduced pressure with a load applied, and further hot hydrostatic press. A method for producing transparent quartz glass to be treated has been conventionally known.

特開平1-275438号公報Japanese Unexamined Patent Publication No. 1-275438 特開平1-270530号公報Japanese Unexamined Patent Publication No. 1-270530 特開平2-014840号公報Japanese Unexamined Patent Publication No. 2-014840 特開平9-295825号公報Japanese Unexamined Patent Publication No. 9-295825

しかし、シリカ微粉末を成形体とした後に減圧雰囲気中で加熱溶融する製造方法、並びに比較的粒度の粗いシリカ粉末を成形することなく、耐熱性容器に充填し、そのまま減圧雰囲気中で加熱溶融する製造方法では、1mm以上の大きな気泡が残る場合があった。そのため、シリカ微粉末を造粒した球状顆粒に対し荷重を印加した状態で減圧下溶融し、更に熱間静水圧プレス処理するような処理が溶融後に更に必要となり、溶融する前後で一つ以上工程を追加する必要が生じることから、追加の労力とノウハウを要する製造方法となっている。 However, a manufacturing method in which silica fine powder is formed into a molded product and then heated and melted in a reduced pressure atmosphere, and a relatively coarse silica powder is filled in a heat-resistant container without being molded and then heated and melted in a reduced pressure atmosphere as it is. In the manufacturing method, large bubbles of 1 mm or more may remain. Therefore, a process of melting the spherical granules obtained by granulating silica fine powder under reduced pressure under reduced pressure and further performing a hot hydrostatic pressure press treatment is required after the melting, and one or more steps before and after the melting. This is a manufacturing method that requires additional labor and know-how because it is necessary to add.

本発明は、溶融時に気泡が発生し得るシリカ微粉体を造粒した造粒シリカ粉体を用いて石英ガラスを製造した際に、気泡が残らないようにできる、透明石英ガラスの製造方法を提供することを課題とする。 The present invention provides a method for producing transparent quartz glass, which can prevent bubbles from remaining when quartz glass is produced using granulated silica powder obtained by granulating silica fine powder that can generate bubbles when melted. The task is to do.

本発明者らは、これらの課題を解決するために鋭意検討を重ねた結果、シリカ微粒子を造粒して製造した造粒シリカ粉体と、比較的大きな粒径のシリカ粉体とを併存させて、溶融することで、気泡の発生が抑えられた透明ガラスを製造できることを見出した。 As a result of diligent studies to solve these problems, the present inventors have made the granulated silica powder produced by granulating silica fine particles coexist with the silica powder having a relatively large particle size. By melting the glass, it was found that transparent glass in which the generation of air bubbles is suppressed can be produced.

即ち、本発明の要旨は、以下の通りである。
[1]平均粒径100μm以上のシリカ粉体と、平均粒径50μm以下のシリカ微粉体を造粒して製造した平均粒径100μm以上の造粒シリカ粉体と、を混合する混合ステップ、及び前記混合したシリカ粉体を1700℃以上にて溶融する溶融ステップ、を含む、透明ガラスの製造方法。
[2]前記平均粒径50μm以下のシリカ微粉体の鉄含有量が1ppm以下である、[1]に記載の透明ガラスの製造方法。
[3]前記平均粒径100μm以上のシリカ粉体と、前記造粒シリカ粉体との混合割合が、重量比で1:6以上6:1以下である、[1]又は[2]に記載の透明ガラスの製造方法。
[4]前記造粒シリカ粉体が、平均粒径50μm以下のシリカ微粒子と、分散媒と、バインダーと、を混合し、シリカ微粒子分50質量%以下のスラリーを調製し、該調製したスラリーを噴霧乾燥して造粒したものである、[1]乃至[3]のいずれかに記載の透明ガラスの製造方法。
[5]前記噴霧乾燥温度が100℃以上350℃以下である、[4]に記載の透明ガラスの製造方法。
[6]前記分散媒は、鉄の含有量が1ppm以下の水である、[4]又は[5]に記載の透明ガラスの製造方法。
[7]前記バインダーは親水性の有機バインダーである、[4]乃至[6]のいずれかに記載の透明ガラスの製造方法。
That is, the gist of the present invention is as follows.
[1] A mixing step of mixing a silica powder having an average particle size of 100 μm or more and a granulated silica powder having an average particle size of 100 μm or more produced by granulating silica fine powder having an average particle size of 50 μm or less. A method for producing transparent glass, which comprises a melting step of melting the mixed silica powder at 1700 ° C. or higher.
[2] The method for producing transparent glass according to [1], wherein the silica fine powder having an average particle size of 50 μm or less has an iron content of 1 ppm or less.
[3] The method according to [1] or [2], wherein the mixing ratio of the silica powder having an average particle size of 100 μm or more and the granulated silica powder is 1: 6 or more and 6: 1 or less in terms of weight ratio. How to make transparent glass.
[4] The granulated silica powder is prepared by mixing silica fine particles having an average particle size of 50 μm or less, a dispersion medium, and a binder to prepare a slurry having a silica fine particle content of 50% by mass or less, and preparing the prepared slurry. The method for producing transparent glass according to any one of [1] to [3], which is obtained by spray-drying and granulating.
[5] The method for producing transparent glass according to [4], wherein the spray drying temperature is 100 ° C. or higher and 350 ° C. or lower.
[6] The method for producing transparent glass according to [4] or [5], wherein the dispersion medium is water having an iron content of 1 ppm or less.
[7] The method for producing transparent glass according to any one of [4] to [6], wherein the binder is a hydrophilic organic binder.

本発明により、気泡の発生が抑えられた透明ガラスを、気泡を除去する工程を必要とする事なく製造する事ができる。 INDUSTRIAL APPLICABILITY According to the present invention, transparent glass in which the generation of bubbles is suppressed can be manufactured without requiring a step of removing bubbles.

以下に本発明について詳述するが、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変更して実施することができる。尚、本明細書において「~」という表現を用いる場合、その前後の数値又は物性値を含む表現として用いるものとする。 The present invention will be described in detail below, but the present invention is not limited to the following embodiments, and can be variously modified and carried out within the scope of the gist thereof. In addition, when the expression "-" is used in this specification, it shall be used as an expression including numerical values or physical property values before and after the expression.

本発明の一形態は、平均粒径100μm以上のシリカ粉体と、平均粒径50μm以下のシリカ微粉体を造粒して作った平均粒径100μm以上の造粒シリカ粉体と、を混合する混合ステップ、及び前記混合したシリカ粉体を1700℃以上にて溶融する溶融ステップ、を含む、透明ガラスの製造方法である。
従来、シリカ微粉末を原料として用い成形体とした後、加熱溶融する透明ガラスの製造方法や、比較的粒度の粗いシリカ粉末を成形することなくそのまま耐熱性容器に充填し、加熱溶融する透明ガラスの製造方法では、1mm以上の大きな気泡が残る場合があった。そのため、気泡を除去するための処理が必要であった。本実施形態により、そのような処理をしなくても気泡の発生を抑制した透明ガラスを提供することが可能となり、製造効率を向上させることができる。
In one embodiment of the present invention, a silica powder having an average particle size of 100 μm or more and a granulated silica powder having an average particle size of 100 μm or more made by granulating silica fine powder having an average particle size of 50 μm or less are mixed. A method for producing transparent glass, comprising a mixing step and a melting step of melting the mixed silica powder at 1700 ° C. or higher.
Conventionally, a method for manufacturing transparent glass that is heated and melted after using silica fine powder as a raw material, or transparent glass that is filled in a heat-resistant container as it is without molding silica powder having a relatively coarse particle size and then heated and melted. In the above manufacturing method, large bubbles of 1 mm or more may remain. Therefore, a process for removing air bubbles was required. According to the present embodiment, it is possible to provide transparent glass in which the generation of bubbles is suppressed without such treatment, and the production efficiency can be improved.

混合ステップは、平均粒径100μm以上のシリカ粉体と、平均粒径50μm以下のシリカ微粉体を造粒して作った平均粒径100μm以上の造粒シリカ粉体と、を混合するステップである。
平均粒径100μm以上のシリカ粉体と、平均粒径100μm以上の造粒シリカ粉体と、の混合割合は特に限定されず、通常重量比で1:6以上6:1以下であり、好ましくは1:3以上3:1以下である。造粒粉体の割合を増やすと流動性がよくなるため、取り扱い性がよくなり、一方泡の発生を防ぐためには造粒粉体の割合を減らすことにより、泡の少ない透明ガラスが容易に得ることができる。
平均粒径100μm以上のシリカ粉体は特に限定されず、天然シリカ粉体であっても、合成シリカ粉体であってもよい。またその形状も特に限定されず、一般的に破砕形状のものであるがこれに限られず、円形度を向上させた球形状の粒子であってもよい。そして純度を重視する場合には、合成シリカ粉体の方が高純度品が得られやすいため、より好ましい。
The mixing step is a step of mixing a silica powder having an average particle size of 100 μm or more and a granulated silica powder having an average particle size of 100 μm or more produced by granulating silica fine powder having an average particle size of 50 μm or less. ..
The mixing ratio of the silica powder having an average particle size of 100 μm or more and the granulated silica powder having an average particle size of 100 μm or more is not particularly limited, and is usually 1: 6 or more and 6: 1 or less in terms of weight ratio, preferably. It is 1: 3 or more and 3: 1 or less. Increasing the proportion of granulated powder improves the fluidity and makes it easier to handle. On the other hand, by reducing the proportion of granulated powder to prevent the generation of bubbles, transparent glass with less bubbles can be easily obtained. Can be done.
The silica powder having an average particle size of 100 μm or more is not particularly limited, and may be a natural silica powder or a synthetic silica powder. Further, the shape thereof is not particularly limited, and is generally a crushed shape, but the shape is not limited to this, and spherical particles having improved circularity may be used. When purity is important, synthetic silica powder is more preferable because a high-purity product can be easily obtained.

シリカ粉体は、例えばアルコキシシランを原料とする、いわゆるゾル-ゲル法と呼ばれる方法により得ることができる。ゾル-ゲル法によるアルコキシシランの加水分解は、周知の方法に従ってアルコキシシランと水を反応させることによって行われる。アルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン等の、4官能、炭素数1~4の低級アルコキシシラン或いはそのオリゴマーが、加水分解が速やかに行われるため好ましい。 The silica powder can be obtained by, for example, a so-called sol-gel method using alkoxysilane as a raw material. Hydrolysis of alkoxysilane by the sol-gel method is carried out by reacting alkoxysilane with water according to a well-known method. As the alkoxysilane, a tetrafunctional, lower alkoxysilane having 1 to 4 carbon atoms such as tetramethoxysilane and tetraethoxysilane or an oligomer thereof is preferable because hydrolysis is rapidly performed.

シリカ粉体を、篩などを用いて平均粒径100μm以上に分級することで、平均粒径100μm以上のシリカ粉体とすることができる。平均粒径の上限は特に限定されないが、通常200μm以下、好ましくは150μm以下である。
なお、本明細書において造粒前のシリカ粉体の平均粒径とは、レーザー回折式粒度分布測定装置SALD-2300(株式会社島津製作所製)で測定されたメディアン径(D50)を意味する。
By classifying the silica powder into a silica powder having an average particle size of 100 μm or more using a sieve or the like, a silica powder having an average particle size of 100 μm or more can be obtained. The upper limit of the average particle size is not particularly limited, but is usually 200 μm or less, preferably 150 μm or less.
In the present specification, the average particle size of the silica powder before granulation means the median diameter (D50) measured by the laser diffraction type particle size distribution measuring device SALD-2300 (manufactured by Shimadzu Corporation).

造粒シリカ粉体は、平均粒径50μm以下のシリカ微粉体を造粒して製造する。造粒シリカ粉体の原料となる平均粒径50μm以下のシリカ微粉体は、鉄含有量が1ppm以下であることが、ガラスの透明化の観点から好ましい。
鉄などの金属不純物分析はICP-MSや蛍光X線分析などで分析を行うことができる。
The granulated silica powder is produced by granulating silica fine powder having an average particle size of 50 μm or less. The silica fine powder having an average particle size of 50 μm or less, which is a raw material of the granulated silica powder, preferably has an iron content of 1 ppm or less from the viewpoint of making the glass transparent.
The analysis of metal impurities such as iron can be performed by ICP-MS, fluorescent X-ray analysis, or the like.

造粒の方法は特に限定されず、例えば原料シリカ微粉体をスラリー化し、バインダーを加えて噴霧造粒する方法があげられる。スラリー化する際の分散媒は通常水であるが、造粒の際の分散媒として使用できるものであれば、これに限られない。分散媒としては、鉄の含有量が1ppm以下であることが好ましい。
なお、造粒したシリカ粉体の平均粒子径は、造粒状態を壊すことなく測定できる点から粒子画像分析装置を用いて測定するとよい。
The granulation method is not particularly limited, and examples thereof include a method in which raw material silica fine powder is slurried, a binder is added, and spray granulation is performed. The dispersion medium for slurry formation is usually water, but the dispersion medium is not limited to this as long as it can be used as a dispersion medium for granulation. The dispersion medium preferably has an iron content of 1 ppm or less.
The average particle size of the granulated silica powder may be measured using a particle image analyzer because it can be measured without damaging the granulated state.

バインダーは特に限定されず、有機バインダーや無機バインダーなどを用いることができ、親水性の有機バインダーであることが好ましく、例えばアクリルポリマー、ポリビニルピロリドンが挙げられる。バインダーを用いる際には、原料シリカ100質量部に対し通常3質量部以上10質量部の割合で用いる。バインダーを使用することにより、造粒シリカ粉体の強度が高くなりシリカ微粉末の残量が低減することから、造粒シリカ粉末を80質量%以上の収率で回収することができるようになる。 The binder is not particularly limited, and an organic binder, an inorganic binder, or the like can be used, and a hydrophilic organic binder is preferable, and examples thereof include an acrylic polymer and polyvinylpyrrolidone. When the binder is used, it is usually used at a ratio of 3 parts by mass or more to 10 parts by mass with respect to 100 parts by mass of the raw material silica. By using the binder, the strength of the granulated silica powder is increased and the remaining amount of the silica fine powder is reduced, so that the granulated silica powder can be recovered in a yield of 80% by mass or more. ..

噴霧は公知のスプレー(噴霧器)を用いればよく、特に限定されない。造粒した造粒シリカ粉体は、乾燥させてもよく、噴霧乾燥を一度に行うスプレードライヤーのような噴霧乾燥装置を用いてもよい。噴霧乾燥装置を用いる場合、噴霧乾燥温度は100℃以上350℃以下であることが好ましく、150℃以上であることがより好ましく、200℃以下であることがより好ましい。 The spraying may be a known spray (sprayer) and is not particularly limited. The granulated silica powder may be dried, or a spray drying device such as a spray dryer that performs spray drying at one time may be used. When a spray drying device is used, the spray drying temperature is preferably 100 ° C. or higher and 350 ° C. or lower, more preferably 150 ° C. or higher, and even more preferably 200 ° C. or lower.

造粒シリカ粉体の好ましい製造方法は、平均粒径50μm以下のシリカ微粒子と、分散媒と、バインダーと、を混合し、シリカ微粒子分50質量%以下、好ましくは40質量%以下のスラリーを調製し、該調製したスラリーを噴霧乾燥して造粒する方法である。スラリー中のシリカ微粒子は通常10質量%以上であり30質量%以上であることが好ましい。 A preferable method for producing the granulated silica powder is to mix silica fine particles having an average particle size of 50 μm or less, a dispersion medium, and a binder to prepare a slurry having a silica fine particle content of 50% by mass or less, preferably 40% by mass or less. Then, the prepared slurry is spray-dried and granulated. The silica fine particles in the slurry are usually 10% by mass or more, preferably 30% by mass or more.

造粒したシリカ粉体は、通常1000℃以上1300℃以下で焼成する。焼成温度は好ましくは1100℃以上1250℃以下であり、焼成時間は通常30時間以上60時間以下である。焼成の際の雰囲気は特に限定さないが、乾燥空気雰囲気化で行うことが好ましい。乾燥空気としては露点-40℃以下であることが好ましい。 The granulated silica powder is usually calcined at 1000 ° C. or higher and 1300 ° C. or lower. The firing temperature is preferably 1100 ° C. or higher and 1250 ° C. or lower, and the firing time is usually 30 hours or longer and 60 hours or lower. The atmosphere at the time of firing is not particularly limited, but it is preferable to create a dry air atmosphere. The dry air preferably has a dew point of −40 ° C. or lower.

造粒シリカ粉体を、篩などを用いて平均粒径100μm以上に分級することで、平均粒径100μm以上の造粒シリカ粉体とすることができる。平均粒径の上限は特に限定されないが、通常200μm以下、好ましくは150μm以下である。 By classifying the granulated silica powder into a granulated silica powder having an average particle size of 100 μm or more using a sieve or the like, it is possible to obtain a granulated silica powder having an average particle size of 100 μm or more. The upper limit of the average particle size is not particularly limited, but is usually 200 μm or less, preferably 150 μm or less.

混合ステップで混合した混合シリカ粉体は、鉄含有量が10ppm以下であることが好ましく、より好ましくは1ppm以下、更に好ましくは0.01ppm以上、特に好ましくは0.001ppm以下である。シリカ粉体の鉄含有量が上記範囲であることで、シリカ粉体を溶融しガラス化した際に、ガラスが結晶化せずに透明になりやすく、またガラスが割れにくくなる。 The mixed silica powder mixed in the mixing step preferably has an iron content of 10 ppm or less, more preferably 1 ppm or less, still more preferably 0.01 ppm or more, and particularly preferably 0.001 ppm or less. When the iron content of the silica powder is within the above range, when the silica powder is melted and vitrified, the glass tends to become transparent without crystallizing, and the glass is less likely to break.

溶融ステップは、前記混合したシリカ粉体を1700℃以上にて溶融することで、透明ガラスとするステップである。
ガラスの溶融は、通常真空溶融法や酸水素溶融法などで溶融するが特に限定されるものではない。溶融は1700℃以上で行えばよく、例えば真空溶融法であれば、黒鉛ルツボに混合したシリカ粉末を秤取し、タッピングにより表面を平坦にした黒鉛ルツボを真空加熱炉内で1780℃、1時間加熱した後、冷却し、ガラス化する方法を一例として挙げることができる。
The melting step is a step of melting the mixed silica powder at 1700 ° C. or higher to make transparent glass.
The glass is usually melted by a vacuum melting method, an oxyhydrogen melting method, or the like, but is not particularly limited. Melting may be performed at 1700 ° C. or higher. For example, in the case of the vacuum melting method, the silica powder mixed in the graphite crucible is weighed, and the graphite crucible whose surface is flattened by tapping is placed in a vacuum heating furnace at 1780 ° C. for 1 hour. An example is a method of heating, then cooling, and vitrifying.

以下、実施例を用いて本発明を更に具体的に説明するが、本発明は、その要旨を逸脱しない限り、以下の実施例の記載に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the description of the following examples as long as it does not deviate from the gist thereof.

[実施例1]
レーザー回折式粒度分布測定装置SALD-2300(株式会社島津製作所製)で測定した平均粒径5μmのシリカ微粉体と、超純水と、シリカ微粉体に対して5wt%のオリコックスKC-115VP(共栄社化学株式会社製)とを混合し、シリカ微粉体濃度33wt%のスラリーを作成した。そのスラリーを、スプレードライヤー設備を用い、平均粒径150μmのシリカ粉体に造粒した。この粒子径は、粒子画像分析装置「モフォロギG3」(Malvern Panalytical社)を用いて測定した。
[Example 1]
Silica fine powder with an average particle size of 5 μm measured with a laser diffraction type particle size distribution measuring device SALD-2300 (manufactured by Shimadzu Corporation), ultrapure water, and Oricox KC-115VP (5 wt% with respect to the silica fine powder). (Made by Kyoeisha Chemical Co., Ltd.) was mixed to prepare a slurry having a silica fine powder concentration of 33 wt%. The slurry was granulated into silica powder having an average particle size of 150 μm using a spray dryer facility. This particle size was measured using a particle image analyzer "Moforogi G3" (Malvern Panalytical).

この造粒したシリカ粉体と、平均粒径150μmのシリカ粉体とを質量比1:1で混合した混合シリカ粉体45gを容量50ccの黒鉛ルツボに秤取し、タッピングにより表面を平坦にした。そして、この黒鉛ルツボを真空加熱炉内で1780℃、1時間加熱した後、冷却し、円柱状のシリカ溶融ガラスインゴットを得た。得られたインゴット中の気泡を、ルーペを用いて観察し、無気泡状態で透明なガラス層中に形成された直径0.5mm以下の気泡の数をカウントした。直径0.5mmを超える気泡は生じておらず、透明であった。 45 g of the mixed silica powder obtained by mixing the granulated silica powder and the silica powder having an average particle size of 150 μm at a mass ratio of 1: 1 was weighed into a graphite rubbing pot having a capacity of 50 cc, and the surface was flattened by tapping. .. Then, this graphite crucible was heated in a vacuum heating furnace at 1780 ° C. for 1 hour and then cooled to obtain a cylindrical silica molten glass ingot. The bubbles in the obtained ingot were observed using a loupe, and the number of bubbles having a diameter of 0.5 mm or less formed in the transparent glass layer in a bubble-free state was counted. No bubbles with a diameter of more than 0.5 mm were generated, and the cells were transparent.

[実施例2]
実施例1で製造した造粒シリカ粉体と、平均粒径150μmのシリカ粉末とを質量比5:1で混合した混合シリカ粉体を、実施例1と同じ方法で溶融し、円柱状のシリカ溶融ガラスインゴットを得た。実施例1と同様の方法で気泡を確認したところ、直径0.5mmを超える気泡が全く見られず、透明であった。
[Example 2]
A mixed silica powder obtained by mixing the granulated silica powder produced in Example 1 and a silica powder having an average particle size of 150 μm at a mass ratio of 5: 1 is melted by the same method as in Example 1, and columnar silica is formed. A fused glass ingot was obtained. When bubbles were confirmed by the same method as in Example 1, no bubbles having a diameter of more than 0.5 mm were observed and the bubbles were transparent.

[比較例1]
実施例1で製造した造粒シリカ粉体のみを、実施例1と同じ方法で溶融し、円柱状のシリカ溶融ガラスインゴットを得た。実施例1と同様の方法で気泡を確認したところ、0.5mm以上の気泡が数えきれない程ガラスインゴットの中央部に集まっており、中央部は白くてガラスの向こう側が全く見えなかった。
[Comparative Example 1]
Only the granulated silica powder produced in Example 1 was melted by the same method as in Example 1 to obtain a cylindrical silica molten glass ingot. When bubbles were confirmed by the same method as in Example 1, bubbles of 0.5 mm or more were gathered in the central part of the glass ingot innumerably, and the central part was white and the other side of the glass could not be seen at all.

本実施形態の製造方法で得られる透明ガラスは、気泡の発生を抑制できることから、無気泡を求められる用途である半導体治具やシリカガラスルツボなどの各種ガラス製品の材料に利用できる。
Since the transparent glass obtained by the manufacturing method of the present embodiment can suppress the generation of bubbles, it can be used as a material for various glass products such as semiconductor jigs and silica glass crucibles, which are applications for which bubble-free is required.

Claims (7)

平均粒径100μm以上のシリカ粉体と、平均粒径50μm以下のシリカ微粉体を造粒して製造した平均粒径100μm以上の造粒シリカ粉体と、を混合する混合ステップ、及び前記混合したシリカ粉体を1700℃以上にて溶融する溶融ステップ、を含む、透明ガラスの製造方法。 A mixing step of mixing a silica powder having an average particle size of 100 μm or more and a granulated silica powder having an average particle size of 100 μm or more produced by granulating silica fine powder having an average particle size of 50 μm or less, and the above-mentioned mixing. A method for producing transparent glass, which comprises a melting step of melting silica powder at 1700 ° C. or higher. 前記平均粒径50μm以下のシリカ微粉体の鉄含有量が1ppm以下である、請求項1に記載の透明ガラスの製造方法。 The method for producing transparent glass according to claim 1, wherein the silica fine powder having an average particle size of 50 μm or less has an iron content of 1 ppm or less. 前記平均粒径100μm以上のシリカ粉体と、前記造粒シリカ粉体との混合割合が、重量比で1:6以上、6:1以下である、請求項1又は2に記載の透明ガラスの製造方法。 The transparent glass according to claim 1 or 2, wherein the mixing ratio of the silica powder having an average particle size of 100 μm or more and the granulated silica powder is 1: 6 or more and 6: 1 or less in terms of weight ratio. Production method. 前記造粒シリカ粉体が、平均粒径50μm以下のシリカ微粒子と、分散媒と、バインダーと、を混合し、シリカ微粒子分50質量%以下のスラリーを調製し、該調製したスラリーを噴霧乾燥して造粒したものである、請求項1乃至3のいずれか1項に記載の透明ガラスの製造方法。 The granulated silica powder is a mixture of silica fine particles having an average particle size of 50 μm or less, a dispersion medium, and a binder to prepare a slurry having a silica fine particle content of 50% by mass or less, and the prepared slurry is spray-dried. The method for producing transparent glass according to any one of claims 1 to 3, which is obtained by granulation. 前記噴霧乾燥温度が100℃以上350℃以下である、請求項4に記載の透明ガラスの製造方法。 The method for producing transparent glass according to claim 4, wherein the spray drying temperature is 100 ° C. or higher and 350 ° C. or lower. 前記分散媒は、鉄の含有量が1ppm以下の水である、請求項4又は5に記載の透明ガラスの製造方法。 The method for producing transparent glass according to claim 4 or 5, wherein the dispersion medium is water having an iron content of 1 ppm or less. 前記バインダーは親水性の有機バインダーである、請求項4乃至6のいずれか1項に記載の透明ガラスの製造方法。

The method for producing transparent glass according to any one of claims 4 to 6, wherein the binder is a hydrophilic organic binder.

JP2020158804A 2020-09-23 2020-09-23 Production method of transparent glass Pending JP2022052419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020158804A JP2022052419A (en) 2020-09-23 2020-09-23 Production method of transparent glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020158804A JP2022052419A (en) 2020-09-23 2020-09-23 Production method of transparent glass

Publications (1)

Publication Number Publication Date
JP2022052419A true JP2022052419A (en) 2022-04-04

Family

ID=80948679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020158804A Pending JP2022052419A (en) 2020-09-23 2020-09-23 Production method of transparent glass

Country Status (1)

Country Link
JP (1) JP2022052419A (en)

Similar Documents

Publication Publication Date Title
EP0335875B1 (en) Vitreous silica
KR101911566B1 (en) High-purity silicon dioxide granules for quartz glass applications and method for producing said granules
JP2011207719A (en) Synthetic amorphous silica powder and method for producing the same
JPH072513A (en) Production of synthetic quartz glass powder
KR101986062B1 (en) Crystal Silica Particle Material, Method of Manufacturing the Same, Crystal Silica Particle Material-Containing Slurry Composition, Crystal Silica Particle Material-Containing Resin Composition
FR2585013A1 (en) PROCESS FOR MANUFACTURING HIGH-PURITY SYNTHETIC PARTICULATE SILICON DIOXIDE OBJECTS
JP2003252634A (en) Dispersion liquid containing silicon - titanium mixed oxide powder, its manufacturing method, molded form manufactured from it, its manufacturing method, glass molded form, its manufacturing method and its use
JPS62176928A (en) Production of quartz glass powder
JP2022052419A (en) Production method of transparent glass
JP6676826B1 (en) Method for producing opaque quartz glass
JPH02307830A (en) Production of quartz glass powder
KR100722378B1 (en) A method of preparing transparent silica glass
JP2023137459A (en) Granulated silica powder and method for manufacturing the same
JP3318946B2 (en) Powdery dry gel, silica glass powder, and method for producing silica glass melt molded article
JP3121733B2 (en) High purity synthetic cristobalite powder, method for producing the same, and silica glass
JP2000344535A (en) Method for recycling quartz glass molding
KR960010902B1 (en) Process for the preparation of high purity amorphous spherical silica powder
JPH0283224A (en) Production of synthetic quartz glass powder
JPS58176135A (en) Preparation of quartz glass powder
JPH05201718A (en) Production of silica glass powder and silica glass molten molding
JPH0986919A (en) Production of synthetic quartz glass powder
KR20230150346A (en) Metal oxide powder and method for producing the same
JPH10101322A (en) Silica gel, synthetic quartz glass powder, its production, and production of quartz glass formed body
CN116348423A (en) Black quartz glass and method for producing same
JPH038708A (en) Production of silica feedstock

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240326