JP2000344535A - Method for recycling quartz glass molding - Google Patents

Method for recycling quartz glass molding

Info

Publication number
JP2000344535A
JP2000344535A JP11155196A JP15519699A JP2000344535A JP 2000344535 A JP2000344535 A JP 2000344535A JP 11155196 A JP11155196 A JP 11155196A JP 15519699 A JP15519699 A JP 15519699A JP 2000344535 A JP2000344535 A JP 2000344535A
Authority
JP
Japan
Prior art keywords
quartz glass
sintering
sintered
molded body
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11155196A
Other languages
Japanese (ja)
Inventor
Koji Tagawa
幸治 田川
Hiromitsu Matsuno
博光 松野
Tetsuya Torikai
哲哉 鳥飼
Kenji Morinaga
健次 森永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP11155196A priority Critical patent/JP2000344535A/en
Publication of JP2000344535A publication Critical patent/JP2000344535A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • C03B19/066Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction for the production of quartz or fused silica articles

Abstract

PROBLEM TO BE SOLVED: To provide a method for recycling a quartz glass molding to manufacture a quartz glass having high light transmissivity molding by reusing a disused quartz glass molding to save energy necessary for molding and utilizing a sintering method industrially suitable for mass production. SOLUTION: A quartz glass powder raw material comprising a main component of quartz glass coarse powder obtained by pulverizing a disused quartz glass molding and quartz glass fine powder which is obtained by a chemical method and mixed with the main component is molded into a shape of a final product as a temporary molding. The temporary molding is sintered under the condition that a moganite phase of polymorphism of silica is formed in a sintering process or under the condition the crystalline quartz never remains after the temporary molding is sintered to obtain a sintered quartz glass molding.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、不要石英ガラス成
形体を再利用して焼結石英ガラス成形体を製造するリサ
イクル方法に関する。なお、本願において不要石英ガラ
ス成形体とは、その製法を問わず石英ガラスで所定の形
状の成形体としたものであって、既に使用済みか、使用
されずに廃棄される石英ガラス成形体をいうものとす
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a recycling method for producing a sintered quartz glass molded article by reusing an unnecessary quartz glass molded article. In the present application, the unnecessary quartz glass molded body is a molded body of a predetermined shape made of quartz glass regardless of the manufacturing method, and is a quartz glass molded body that has already been used or is discarded without being used. Shall be referred to.

【0002】[0002]

【従来の技術】一般に、石英ガラスは低熱膨張性、耐熱
衝撃性、化学的安定性、高光透過性などの特性を有する
ために、半導体結晶引き上げ用坩堝、ランプ形成容器、
光学部品などの成形体として広く用いられている。そし
て該石英ガラス成形体は、溶融石英ガラスあるいは合成
石英ガラスから成形される。溶融石英ガラスであれば、
硝石を粉砕し、0.1〜5μm程度の粒径にしたSiO
2粉末を水素炎や電気炉・電気アークなどで溶融させて
石英ガラスのインゴットとし、また合成石英ガラスであ
れば、四塩化ケイ素を酸水素炎で気相加水分解して生成
するSiO2粉末を溶融させて石英ガラスのインゴット
とし、これらを再度溶融して、目的物に応じた形状の成
形体に成形することによって製造していた。そして、そ
の溶融のためには2273Kから2573Kという高温
加熱が必要であった。
2. Description of the Related Art In general, quartz glass has characteristics such as low thermal expansion, thermal shock resistance, chemical stability, and high light transmission.
Widely used as molded articles such as optical parts. The quartz glass molded body is molded from fused quartz glass or synthetic quartz glass. For fused quartz glass,
SiO 2 crushed from nitrite to a particle size of about 0.1 to 5 μm
2 Melt the powder in a hydrogen flame, electric furnace, electric arc, etc. to form an ingot of quartz glass, or for synthetic quartz glass, SiO 2 powder produced by gas-phase hydrolysis of silicon tetrachloride with an oxyhydrogen flame Was melted to form an ingot of quartz glass, and these were again melted and formed into a molded body having a shape corresponding to the object. And, for the melting, high temperature heating of 2273K to 2573K was required.

【0003】ところで、従来、このような石英ガラス成
形体が、使用済みになるか、使用されずに廃棄される場
合、その石英ガラス成形体は、そのまま廃棄物として廃
棄しているのが実状である。そして、かかる石英ガラス
廃棄物の再利用を考慮した場合においても、再度溶融し
て目的物に応じた形状の成形体とするしか方法がなかっ
た。溶融するためには、前述のように石英ガラスの溶融
温度以上の高温度に加熱する必要があり、加熱炉のエネ
ルギー消費が甚大なものであった。
Conventionally, when such a quartz glass molded article is used or discarded without being used, the quartz glass molded article is actually discarded as waste. is there. Then, even in the case where the reuse of the quartz glass waste is considered, there has been no other method but to melt the quartz glass again to obtain a molded body having a shape corresponding to the target. In order to melt, it was necessary to heat the quartz glass to a temperature higher than the melting temperature of the quartz glass as described above, and the energy consumption of the heating furnace was enormous.

【0004】ところで近年、石英ガラス成形体を製造す
るのに溶融法以外の方法として、溶融法に比べ処理温度
が低くて済む焼結法が提案されている。例えば、SiO
2を主成分とした粉末で一次成形体を形成した後、これ
を10- 3〜10-4Paの真空中で1673K以上の温度
で焼結することにより、透明な焼結石英ガラス成形体が
得られることが、1997年発行のJournal of the Cer
amic Society of Japan 105巻の171ページ〜174
ページに記載されている。
In recent years, as a method other than the melting method for producing a quartz glass molded body, a sintering method which requires a lower processing temperature than the melting method has been proposed. For example, SiO
After the formation of the primary molded body 2 powder whose main component, which 10 - by sintering at 3 to 10 -4 Pa temperatures above 1673K in vacuum, transparent sintered stones silica glass molded body What you can get is the Journal of the Cer, published in 1997
amic Society of Japan Volume 105, pages 171 to 174
It is listed on the page.

【0005】しかるに、この焼結方法で高透光性を有す
る焼結石英ガラスを製造することにおいては、次のよう
な問題点があった。すなわち、10-3〜10-4Paとい
う高真空雰囲気の形成に時間がかかり、一度に焼結でき
る量に限界があり大量生産に向かないという点である。
そこで、本願発明者は、真空度を下げて10-2Pa以上
の低真空度にして焼結を試みたが、焼結中に焼結石英ガ
ラス成形体の表面に、クリストバライトやβ−石英とい
った結晶質石英が生成し、それらの結晶質石英が焼結後
に残留してしまい、上記のような石英ガラス成形体の分
野で要求される、透光性のある結晶質の無い均質なガラ
スという要求を満たした高透光性を有する焼結石英ガラ
ス成形体を得ることができなかった。
However, there are the following problems in producing a sintered quartz glass having high translucency by this sintering method. That is, it takes a long time to form a high vacuum atmosphere of 10 −3 to 10 −4 Pa, and the amount that can be sintered at a time is limited, so that it is not suitable for mass production.
Therefore, the inventor of the present application tried sintering by lowering the degree of vacuum to a low degree of vacuum of 10 −2 Pa or more. However, during sintering, the surface of the sintered quartz glass molded body was cristobalite or β-quartz. Crystalline quartz is generated, and the crystalline quartz remains after sintering, and the requirement for a transparent glass having no crystallinity, which is required in the field of the quartz glass molded body as described above. It was not possible to obtain a sintered quartz glass compact having high translucency which satisfied the above conditions.

【0006】[0006]

【発明が解決しようとする課題】そこで、不要石英ガラ
ス成形体を再利用して、成形に必要なエネルギーを節約
し、工業的にも大量生産に向く焼結方法によって、高透
光性を有する石英ガラス成形体を製造する石英ガラス成
形体のリサイクル方法を提供することにある。
Therefore, the unnecessary quartz glass compact is reused to save energy required for molding and to have high translucency by a sintering method suitable for industrial mass production. An object of the present invention is to provide a method for recycling a quartz glass molded body for producing a quartz glass molded body.

【0007】[0007]

【課題を解決するための手段】不要石英ガラス成形体を
再利用するために焼結をする場合には、一般に数μm程
度の粒径の石英ガラス微粉体を出発原料として焼結する
必要があるが、石英ガラス製品である不要石英ガラス成
形体を、そのような微粉体にまで粉砕するとなると、多
大な労力とエネルギーを要する。しかも微粉体にまで粉
砕する過程で、粉砕用に使用するミル等から石英ガラス
微粉体への不純物の混入があり、それが最終の成形体に
残る恐れがある。そこで、発明者は、不要石英ガラス成
形体の粉砕程度を粗い粒径までに留めて石英ガラス粗粉
体とした。また、ただこれのみでは粒子が粗いので焼結
時に粒子の間が空いてしまい空隙が出来たりして十分な
強度が保てない。そこで、この間を埋めるように、化学
的製法によって得られた石英ガラス微粉体を混合して焼
結することにした。これによって破砕エネルギーの少な
い、不純物の混入の無い、焼結石英ガラスの製造が可能
であることを見出したものである。
In the case of sintering to reuse an unnecessary quartz glass compact, it is generally necessary to sinter using quartz glass fine powder having a particle size of about several μm as a starting material. However, crushing an unnecessary quartz glass molded product, which is a quartz glass product, into such fine powder requires a great deal of labor and energy. In addition, in the process of pulverizing into fine powder, impurities may be mixed into the quartz glass fine powder from a mill or the like used for pulverization, and this may remain in the final compact. Therefore, the inventor made a quartz glass coarse powder by keeping the degree of grinding of the unnecessary quartz glass compact to a coarse particle size. In addition, only with this, the particles are coarse, so that the spaces between the particles are formed at the time of sintering, and voids are formed, so that sufficient strength cannot be maintained. Therefore, in order to fill the gap, fine silica glass powder obtained by a chemical manufacturing method is mixed and sintered. It has been found that this makes it possible to produce sintered quartz glass with low crushing energy and no impurities.

【0008】そして、石英ガラスの焼結条件として、前
述の文献のような高真空雰囲気にするのではなく、焼結
雰囲気における酸素分圧と、焼結温度とを規定したり、
あるいは焼結雰囲気における水素圧力と、焼結温度とを
規定することで、結晶質が無くて均質な透光性のあるガ
ラスが要求されている分野でも利用できる高透光性の焼
結石英ガラス成形体が得られることを見出した。
[0008] As the sintering conditions for quartz glass, the oxygen partial pressure in the sintering atmosphere and the sintering temperature are specified instead of the high vacuum atmosphere as in the above-mentioned literature.
Alternatively, by specifying the hydrogen pressure in the sintering atmosphere and the sintering temperature, a highly transmissive sintered quartz glass that can be used even in a field where a homogeneous translucent glass without crystallinity is required. It has been found that a molded article can be obtained.

【0009】すなわち、酸素分圧と焼結温度を所定の条
件に規定すると、焼結時に石英ガラス成形体の表面にモ
ガナイト相と言われる、熱的に不安定で昇華しやすい性
質のシリカ鉱物の多形の一種の結晶質が生成する。その
モガナイト相は熱的に不安定で昇華しやすいゆえに、最
終形状の石英ガラス成形体としたときには、もはや石英
ガラス成形体の表面にモガナイト相が残留しないで、ガ
ラス質のみが残るようにすることができることが判明し
た。
That is, when the oxygen partial pressure and the sintering temperature are set to predetermined conditions, a silica mineral having a thermally unstable and easily sublimable property, called a moganite phase, is formed on the surface of a quartz glass molded body during sintering. One type of polymorphic crystalline forms. Since the moganite phase is thermally unstable and easily sublimates, when the quartz glass molded article in the final shape is formed, the moganite phase no longer remains on the surface of the quartz glass molded article, and only the vitreous remains. It turns out that you can.

【0010】また、所定の水素圧力の焼結雰囲気下で
は、焼結時に石英ガラス成形体の表面に生成するクリス
トバライト等の結晶質石英が、水素ガスの存在によって
分解昇華していき、焼結後に石英ガラス成形体表面には
結晶質が残留しないことを見出した。
Further, in a sintering atmosphere at a predetermined hydrogen pressure, crystalline quartz such as cristobalite generated on the surface of a quartz glass compact during sintering is decomposed and sublimated by the presence of hydrogen gas, and after sintering, It has been found that no crystalline remains on the surface of the quartz glass molded body.

【0011】これらのことから、上記課題を解決するた
めに、請求項1に記載の発明は、不要石英ガラス成形体
を粉砕して得られる石英ガラス粗粉体を主成分とし、こ
れに化学的製法によって得られた石英ガラス微粉体を混
合してなる石英ガラス粉体素材を最終製品形状に成形し
仮成形体とし、該仮成形体を焼結過程においてシリカの
多形であるモガナイト相が生成される焼結条件で、ある
いは該仮成形体の焼結後に結晶質石英が残留しない焼結
条件で、焼結して焼結石英ガラス成形体とすることを特
徴とする石英ガラス成形体のリサイクル方法とするもの
である。
[0011] From the above, in order to solve the above-mentioned problems, the invention according to claim 1 comprises, as a main component, a coarse quartz glass powder obtained by grinding an unnecessary quartz glass molded body, A quartz glass powder material obtained by mixing the quartz glass fine powder obtained by the production method is formed into a final product shape to form a temporary molded body, and a moganite phase, which is a polymorph of silica, is formed in the sintering process. A sintering process, or a sintering condition in which no crystalline quartz remains after the sintering of the temporary compact, to form a sintered quartz glass compact. Method.

【0012】さらに、請求項2に記載の発明は、上記モ
ガナイト相が生成される条件として、酸素分圧が10-2
Pa以下の雰囲気中で、焼結温度が1530K以上で、
焼結することを特徴とする請求項1に記載の石英ガラス
成形体のリサイクル方法とするものである。
Further, the invention according to claim 2 is characterized in that, as a condition for forming the moganite phase, the oxygen partial pressure is 10 −2.
In an atmosphere of Pa or less, the sintering temperature is 1530K or more,
2. A method for recycling a quartz glass molded body according to claim 1, wherein the method is sintering.

【0013】また、請求項3に記載の発明は、上記結晶
質石英が残留しない条件として、水素圧力10-2Pa以
上の雰囲気で、焼結温度が1773K以上で、焼結する
ことを特徴とする請求項1に記載の石英ガラス成形体の
リサイクル方法とするものである。
[0013] The invention according to claim 3 is characterized in that the sintering is performed at a sintering temperature of 1773 K or more in an atmosphere of hydrogen pressure of 10 -2 Pa or more, as conditions under which the crystalline quartz does not remain. A method for recycling a quartz glass molded article according to claim 1.

【0014】さらに、請求項4に記載の発明は、上記圧
力の水素ガス以外に、不活性ガスを含んだ混合ガス雰囲
気で焼結することを特徴とする、請求項3に記載の石英
ガラス成形体のリサイクル方法とするものである。
Further, the invention according to claim 4 is characterized in that the sintering is performed in a mixed gas atmosphere containing an inert gas in addition to the hydrogen gas at the above-mentioned pressure. It is a method of recycling the body.

【0015】そして、請求項5に記載の発明は、前記石
英ガラス粗粉体と前記石英ガラス微粉体の混合体におい
て、全体積に対する微粉体の体積割合を10%以上50
%以下とする、ことを特徴とする請求項1乃至請求項4
に記載の石英ガラス成形体のリサイクル方法とするもの
である。
According to a fifth aspect of the present invention, in the mixture of the quartz glass coarse powder and the quartz glass fine powder, the volume ratio of the fine powder to the total volume is 10% or more.
% Or less.
The method for recycling a quartz glass molded article according to the above.

【0016】[0016]

【作用】従来は廃棄するしかなかった不要石英ガラス成
形体を、再利用して石英ガラス成形体とすることによ
り、新たに準備する石英ガラス原料の省資源化をはかる
ことが可能となる。また、不要石英ガラス成形体を粉砕
した粗い粒径の石英ガラス粗粉体と化学的製法による石
英ガラス微粉体とを混合して石英ガラス粉体素材とし、
焼結することにより最終製品形状の石英ガラス成形体を
製造するので、微粉体のみを使用しての溶融法による成
形体の製造法と比較して、融点より低い温度での処理が
可能であって省エネルギーとなる。また、不要石英ガラ
ス成形体の粉砕を粗い粒径までで留めるため、粉砕工
数、破砕エネルギーの低減になり、かつ粉砕用ミルから
のSiO2粉体への不純物混入も低減でき最終のガラス
成形体への不純物混入を減らすことができる。
By recycling an unnecessary quartz glass molded body which has conventionally only been discarded into a quartz glass molded body, it is possible to save resources of a newly prepared quartz glass raw material. Also, a quartz glass powder material is obtained by mixing a coarse quartz glass powder having a coarse particle diameter obtained by grinding an unnecessary quartz glass compact and a quartz glass fine powder by a chemical manufacturing method,
Since the sintering produces a quartz glass molded body in the final product shape, it can be processed at a temperature lower than the melting point as compared with a method of producing a molded body by a melting method using only fine powder. Energy saving. In addition, since the grinding of unnecessary quartz glass compacts is stopped to a coarse particle size, the number of grinding steps and crushing energy are reduced, and the contamination of impurities from SiO 2 powder from a grinding mill can be reduced, so that the final glass compacts can be obtained. Impurities can be reduced.

【0017】本発明のリサイクル方法においては、焼結
条件として、酸素の分圧が10-2Pa以下の雰囲気中、
焼結温度が1530K以上で焼結するので、焼結体の表
面にはクリストバライト(Cristobalite),ベータ水晶
(β-Quartz)などの微結晶が生成されず、焼結体の表
面にはシリカ鉱物の多形の一つであるモガナイト相(Mo
ganite)が形成される。そして、1530K以上の温度
では、このモガナイト相(Moganite)は、不安定で昇華
しやすく、焼結体の表面から離脱してしまう。このよう
にして、石英ガラスは結晶の無い緻密な焼結石英ガラス
とすることができ、焼結石英ガラス成形体を得ることが
できる。
In the recycling method of the present invention, the sintering is performed in an atmosphere in which the partial pressure of oxygen is 10 −2 Pa or less.
Since the sintering is performed at a sintering temperature of 1530K or more, microcrystals such as cristobalite and beta quartz (β-Quartz) are not generated on the surface of the sintered body, and silica mineral is formed on the surface of the sintered body. One of the polymorphs, the moganite phase (Mo
ganite) is formed. At a temperature of 1530 K or higher, the moganite phase is unstable and easily sublimates, and detaches from the surface of the sintered body. In this way, the quartz glass can be a dense sintered quartz glass having no crystals, and a sintered quartz glass molded body can be obtained.

【0018】そして、焼結体の表面にクリストバライト
(Cristobalite),ベータ水晶(β-Quartz)などの微
結晶が無く、ガラス質のみとなるので、例えば973K
以上の高温度で長時間使用しても、白濁の発生、クラッ
クが生じない、透明な焼結石英ガラス成形体とすること
ができる。
Since there is no crystallite such as cristobalite and beta crystal (β-Quartz) on the surface of the sintered body and only the vitreous material, for example, 973K
Even when used at the above-mentioned high temperature for a long time, it is possible to obtain a transparent sintered quartz glass molded article that does not cause white turbidity and cracks.

【0019】あるいはまた、焼結雰囲気に水素ガスが含
まれていると、焼結における高温でSiO2(クリスト
バライトやβ−石英等)とH2とが反応しSiOやSiH
4などが生成され、そのSiOやSiH4は揮発性が高い
ので石英ガラスの表面から離散していく。したがって、
石英ガラス表面には焼結時に生成したクリストバライト
やβ−石英等の結晶質石英が残らないので、透明な高透
光性の焼結石英ガラス成形体とすることが可能になる。
Alternatively, if hydrogen gas is contained in the sintering atmosphere, SiO 2 (such as cristobalite or β-quartz) reacts with H 2 at a high temperature during sintering, and SiO or SiH
4 and the like are generated, and since SiO and SiH 4 are highly volatile, they are dispersed from the surface of the quartz glass. Therefore,
Since crystalline quartz such as cristobalite and β-quartz generated during sintering does not remain on the quartz glass surface, it is possible to obtain a transparent and highly transparent sintered quartz glass molded body.

【0020】なお、雰囲気が純粋な水素ガスのみでその
ガス圧力が高いと、このSiO2とH2の反応が過剰に起
こり、SiO2の消耗が激しすぎることがある。このた
め、焼結雰囲気を、水素ガスと不活性ガスとの混合ガス
雰囲気とし、さらに温度制御を行うことによって、Si
2とH2との反応を制御して、SiOやSiH4などの
離散による石英ガラスの消耗を抑え、かつ焼結後に結晶
質石英を残留させないように焼結を進めることができ
る。
If the atmosphere is pure hydrogen gas only and the gas pressure is high, the reaction between SiO 2 and H 2 occurs excessively, and the consumption of SiO 2 may become too severe. Therefore, the sintering atmosphere is a mixed gas atmosphere of a hydrogen gas and an inert gas, and the temperature is further controlled to obtain the Si atmosphere.
By controlling the reaction between O 2 and H 2, it is possible to suppress the consumption of quartz glass due to the separation of SiO, SiH 4 and the like, and to proceed with sintering so that crystalline quartz does not remain after sintering.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。石英ガラス粉末から所定の形状の仮成形体
への成形は、まず、不要石英ガラスの粉砕を行う。、そ
の後、不要石英ガラスの汚れを除去するために粉砕後の
粉末の表面を酸などの溶液で洗浄する。そして、乾燥し
た粒径50〜100μmの石英ガラスの粗い粉末とす
る。次に、この粗い粉末に、化学的製法で生成された粒
径0.1〜5μmの石英ガラス微粉体を、10〜50%
含むように混合し、純水等や必要に応じてバインダを加
えてスラリーを作製する。
Embodiments of the present invention will be described below. In forming a temporary molded body having a predetermined shape from quartz glass powder, first, unnecessary quartz glass is pulverized. Thereafter, the surface of the pulverized powder is washed with a solution such as an acid in order to remove unnecessary dirt on the quartz glass. Then, it is made into a coarse quartz glass powder having a dried particle size of 50 to 100 μm. Next, fine quartz glass powder having a particle size of 0.1 to 5 μm produced by a chemical manufacturing method is added to the coarse powder by 10 to 50%.
The slurry is prepared by adding pure water or the like and a binder if necessary.

【0022】なお、微粉体の混合量が10%以上である
と微粉末が粗粉末の隙間を埋めることができるが、10
%未満であると微粉末が粗粉末の間を埋めることができ
ず成形体の強度を十分に取れなくなる。また、微粉体の
混合量が50%以上であるとリサイクルする不要石英ガ
ラスの使用量が減り新規に混入する微粉末材料の量が増
えて、結果的に石英ガラス成形体の製造コストが高くな
るので、微粉体の混合量を10〜50%とした。
When the mixing amount of the fine powder is 10% or more, the fine powder can fill the gap between the coarse powders.
%, The fine powder cannot fill the gap between the coarse powders and the strength of the molded body cannot be sufficiently obtained. When the mixing amount of the fine powder is 50% or more, the amount of unnecessary quartz glass to be recycled is reduced, the amount of newly mixed fine powder material is increased, and as a result, the manufacturing cost of the quartz glass molded body is increased. Therefore, the mixing amount of the fine powder was set to 10 to 50%.

【0023】また、本願で化学的製法とは、シリコンア
ルコキシドなどを原料にし、加水分解、重縮合、加熱等
を経て、SiO2シリカガラスを形成するゾルゲル法
や、Si単結晶の残材の酸化によりSiO2を得る方法
や、製鉄時に化学反応により発生するSiOガスを原料
としてSiO2を得る方法などを指すものである。
In the present application, the chemical manufacturing method means a sol-gel method in which a silicon alkoxide or the like is used as a raw material to form SiO 2 silica glass through hydrolysis, polycondensation, heating, or the like; a method of obtaining a SiO 2 by, is intended to refer to a method of obtaining a SiO 2 to SiO gas as the raw material generated by the chemical reaction during steelmaking.

【0024】前記スラリーを石膏などの吸水性の型に流
し込んで仮成形体を得るスリップキャスティング法や、
スラリーに増粘剤を加えて粘土状にし、型の形状に合わ
せるように吹き拡ろげるブロー法などにより仮成形体の
成形を行う。型での成形後、十分に水分を蒸発させる。
場合によっては、真空乾燥や加熱による水分の除去を行
う。
A slip casting method in which the slurry is poured into a water-absorbent mold such as gypsum to obtain a temporary molded body,
A thickening agent is added to the slurry to form a clay, and a temporary formed body is formed by a blowing method or the like in which the slurry is blown and spread so as to match the shape of the mold. After molding in the mold, the moisture is sufficiently evaporated.
In some cases, moisture is removed by vacuum drying or heating.

【0025】石英ガラス仮成形体は、少なくとも石英ガ
ラスを80%以上の割合で含有しており、石英ガラス以
外の成分として、例えばアルミナ等を混合されることも
ある。
The quartz glass preform contains at least 80% or more of quartz glass, and as a component other than quartz glass, for example, alumina or the like may be mixed.

【0026】焼結石英ガラス成形体の焼結工程につい
て、ここでは、まず酸素分圧を規定した雰囲気における
焼結について説明する。不要石英ガラスの粉砕を行い、
粉砕後の粉末の表面を酸などの溶液で洗浄後に乾燥した
50〜100μmの粒径の石英ガラスの粗い粉末と、化
学的製法で生成された0.1〜5μmの石英ガラス微粉
体とから得た仮成形体を、水素中で1273Kで約1時
間加熱し、仮焼結体とする。この段階では、シリカ粉末
がゆるく結合した状態であり、直線透過率は著しく低
い。
In the sintering step of the sintered quartz glass compact, first, sintering in an atmosphere in which the oxygen partial pressure is specified will be described. Grind unnecessary quartz glass,
The surface of the pulverized powder is obtained from a coarse powder of quartz glass having a particle diameter of 50 to 100 μm, which is dried after washing with a solution such as an acid, and a fine powder of quartz glass of 0.1 to 5 μm produced by a chemical manufacturing method. The temporary formed body is heated in hydrogen at 1273 K for about 1 hour to obtain a temporarily sintered body. At this stage, the silica powder is in a loosely bound state, and the linear transmittance is extremely low.

【0027】この仮焼結体を、酸素分圧、焼結温度を変
化させて焼結石英ガラスを作製すると、昇華し易い性質
のモガナイト相ができる条件があることが分かった。そ
こで、この性質を積極的に利用し、焼結条件をモガナイ
ト相ができる酸素分圧、温度とすることで、焼結石英ガ
ラスの表面にクリストバライト等の結晶を生成させずに
石英ガラスを焼結することができる。
[0027] It was found that when a sintered quartz glass was prepared by changing the oxygen partial pressure and the sintering temperature of the temporary sintered body, there was a condition under which a moganite phase having a property of easily sublimating was formed. Therefore, by actively utilizing this property, the sintering conditions are set to the oxygen partial pressure and temperature at which the moganite phase can be formed, so that the quartz glass can be sintered without forming crystals such as cristobalite on the surface of the sintered quartz glass. can do.

【0028】そして、できた焼結石英ガラスの表面に微
量残ったモガナイト相が存在しても、熱的に不安定な相
であるために、焼結石英ガラス成形体の熱加工時にモガ
ナイト相は昇華して無くなり、従来の溶融石英ガラスと
同等の透明性を有し、かつ白濁を生じず、クラックも発
生しない、焼結石英ガラス成形体が得られる。
Even if a slight amount of moganite phase remains on the surface of the formed sintered quartz glass, it is a thermally unstable phase. A sintered quartz glass compact is obtained which is sublimated and disappears, has the same transparency as conventional fused quartz glass, does not cause white turbidity, and does not generate cracks.

【0029】次に、水素含有雰囲気中で焼結であるが、
高温でSiO2とH2とが反応してSiOやSiH4など
を生成するので、雰囲気が純粋な水素ガスのみでその水
素ガス圧力が高いと、焼結時に石英ガラスの表面からの
SiO2の消耗が激しい。このため、温度の制御ととも
に、焼結雰囲気を水素ガスと不活性ガスとの混合ガスに
することで、石英ガラスの消耗を抑制しつつ、かつ結晶
質石英を残留させないように、焼結を進めることが可能
である。また、何れの焼結方法においても粉砕した粗い
粉末の石英ガラスと化学的に合成した微粉体の石英ガラ
スの混合割合を変えることで、出来上がる焼結石英ガラ
スの気泡の程度を制御することを必要に応じて行うこと
ができる。気泡の量は例えば赤外線利用ランプのバルブ
に当該焼結石英ガラスを使用する場合に、気泡が効率よ
く赤外線を散乱させる役割をなすことがある。
Next, sintering is performed in a hydrogen-containing atmosphere.
Since SiO 2 and H 2 react at high temperature to generate SiO, SiH 4, etc., if the atmosphere is pure hydrogen gas only and the hydrogen gas pressure is high, SiO 2 from the surface of quartz glass during sintering Exhaustion is severe. For this reason, sintering is promoted by controlling the temperature and making the sintering atmosphere a mixed gas of a hydrogen gas and an inert gas while suppressing the consumption of quartz glass and leaving no crystalline quartz. It is possible. Also, in any sintering method, it is necessary to control the degree of bubbles in the resulting sintered quartz glass by changing the mixing ratio of the crushed coarse powder quartz glass and the chemically synthesized fine powder quartz glass. Can be done according to For example, when the sintered quartz glass is used for a bulb of an infrared lamp, the amount of bubbles sometimes plays a role in efficiently scattering infrared rays.

【0030】次に本発明の具体的な実施例について説明
する。 <実施例1>〜酸素分圧規定雰囲気における焼結による
リサイクル方法 透光性を有する焼結石英ガラス成形体の製作例は、以下
の通りである。原料の石英ガラスの粉体として、使用済
みのハロゲンランプの石英ガラスバルブを粉砕し、水素
中で加熱し表面の汚染領域を除去する熱処理を行い、ふ
っ酸や弗化アンモニウム溶液中で表面を洗浄し、更に純
水で洗浄し、不活性ガス中で約200℃に加熱乾燥を行
った平均粒径100μmの粒子と、化学的製法であるゾ
ルゲル法で製造した石英ガラス微粉体で平均粒径0.3
μmの球状粒子とを使用した。
Next, a specific embodiment of the present invention will be described. <Example 1>-Recycling method by sintering in an oxygen partial pressure regulated atmosphere An example of manufacturing a sintered quartz glass molded article having translucency is as follows. As a raw material of quartz glass, used quartz glass bulbs of used halogen lamps are crushed, heated in hydrogen, heat treated to remove contaminated areas on the surface, and cleaned in hydrofluoric acid or ammonium fluoride solution. The particles were further washed with pure water, dried by heating to about 200 ° C. in an inert gas at a particle size of 100 μm, and fine particles of quartz glass produced by a sol-gel method, which is a chemical production method, having an average particle size of 0 μm. .3
μm spherical particles were used.

【0031】この粒子を混合して石英ガラス粉体素材と
し、純水を加えてスラリー状にして、紙型に流し込み、
外径φ10mm円板状の仮成形体サンプルとした。この
仮成形体サンプルをオーブン中に入れて、473Kで、
1時間放置して、十分に残留水分を除去した。このよう
にしてできた仮成形体サンプルを、ヒーターを配置した
焼結炉中に入れて、各焼結雰囲気の条件下で焼結を行い
焼結石英ガラス成形体を得た。焼結時に生成されたシリ
カの種類を温度と酸素分圧の関係で表したのが図1であ
る。
The particles are mixed to form a quartz glass powder material, pure water is added to form a slurry, and the slurry is poured into a paper mold.
A disk-shaped temporary molded product sample having an outer diameter of 10 mm was used. Put this temporary molded body sample in an oven, and at 473K,
It was left for 1 hour to sufficiently remove residual moisture. The temporary molded body sample thus obtained was placed in a sintering furnace provided with a heater, and sintered under the conditions of each sintering atmosphere to obtain a sintered quartz glass molded body. FIG. 1 shows the type of silica generated during sintering in the relationship between temperature and oxygen partial pressure.

【0032】なお、酸素分圧PO2=2×104Paの条
件はair(空気)で、PO2=10Paはwater
vapor Ar(水蒸気を含有したAr)雰囲気で、
またPO2=10-4Paはdried Ar(乾燥Ar)
雰囲気で、PO2=10-8Paはdried & deo
xidized Ar(乾燥Arと還元して脱酸素化し
たAr)雰囲気で、PO2=10-10Paは10-2Paの
低真空で、PO2=10- 12Paは10-4Paの高真空で
それぞれ実現した。
The condition of oxygen partial pressure P O2 = 2 × 10 4 Pa is air (air), and P O2 = 10 Pa is water.
In a vapor Ar (Ar containing water vapor) atmosphere,
P O2 = 10 -4 Pa is a dried Ar (dry Ar)
Atmosphere, P O2 = 10 -8 Pa is dried & deo
In Xidized Ar (by reducing the dry Ar and deoxygenated Ar) atmosphere at a low vacuum of P O2 = 10 -10 Pa is 10 -2 Pa, P O2 = 10 - 12 Pa higher vacuum of 10 -4 Pa Respectively.

【0033】図1において、記号○は不透明な石英ガラ
スができ、記号□は石英ガラス表面に結晶質であるクリ
ストバライトやβ−水晶ができ、記号△は石英ガラス表
面にモガナイト相ができたことを表している。このモガ
ナイト相はSiO2シリカ多形の一種で1984年に発
見された単斜晶系の結晶構造を有する結晶であり、熱的
に不安定で昇華し易い性質を持つ物質であることが知ら
れている。このように、図1のある領域に、このような
昇華し易い性質のモガナイト相ができることが分かっ
た。そこで、この性質を積極的に利用し、焼結条件をモ
ガナイト相ができる酸素分圧、温度とすることで、焼結
石英ガラスの表面にクリストバライト等の結晶を生成さ
せずに石英ガラスを焼結することができることが分かっ
た。具体的には、酸素分圧が10-2Pa以下の雰囲気中
であって、焼結温度が1530K以上の条件で、焼結時
に焼結体の表面にモガナイト相ができる。
In FIG. 1, symbol ○ indicates that opaque quartz glass was formed, symbol □ indicates that crystalline cristobalite or β-quartz was formed on the quartz glass surface, and symbol △ indicates that the moganite phase was formed on the quartz glass surface. Represents. This moganite phase is a kind of SiO 2 silica polymorph and is a crystal having a monoclinic crystal structure discovered in 1984, and is known to be a substance that is thermally unstable and easily sublimates. ing. Thus, it was found that a moganite phase having such a property of being easily sublimated was formed in a certain region in FIG. Therefore, by actively utilizing this property, the sintering conditions are set to the oxygen partial pressure and temperature at which the moganite phase can be formed, so that the quartz glass can be sintered without forming crystals such as cristobalite on the surface of the sintered quartz glass. I found that I could do it. Specifically, in an atmosphere having an oxygen partial pressure of 10 −2 Pa or less and a sintering temperature of 1530 K or more, a moganite phase is formed on the surface of the sintered body during sintering.

【0034】そして、できた焼結石英ガラスの表面に微
量残ったモガナイト相が存在しても、熱的に不安定な相
であるために、焼結石英ガラス成形体の熱加工時にモガ
ナイト相は昇華してなくなり、従来の溶融石英ガラスと
同等の透明性を有し、かつ白濁を生じず、クラックも発
生しない、高透光性の焼結石英ガラス成形体が得られ
た。
Even if a slight amount of moganite phase remains on the surface of the formed sintered quartz glass, it is a thermally unstable phase. A highly transmissive sintered quartz glass molded article which no longer sublimates, has the same transparency as conventional fused quartz glass, does not cause white turbidity, and has no cracks is obtained.

【0035】<実施例2>〜水素含有雰囲気での焼結に
よるリサイクル方法 透光性を有する焼結石英ガラス成形体の製作例は、以下
の通りである。原料の石英ガラスの粉体として、使用済
みのハロゲンランプの石英ガラスバルブを粉砕し、ふっ
酸または弗化アンモニウム溶液で化学洗浄し、純水で洗
浄し、不活性ガス中で約200℃に加熱して乾燥して得
た平均粒径100μmの粒子と、化学的製法であるゾル
ゲル法で製造した石英ガラス微粉体で平均粒径0.3μ
mの球状粒子とを使用した。
Example 2-Recycling Method by Sintering in a Hydrogen-Containing Atmosphere An example of manufacturing a sintered quartz glass molded article having translucency is as follows. As a raw material of quartz glass, the quartz glass bulb of the used halogen lamp is crushed, chemically washed with hydrofluoric acid or ammonium fluoride solution, washed with pure water, and heated to about 200 ° C in an inert gas. The particles having an average particle diameter of 100 μm obtained by drying and drying, and the silica glass fine powder produced by a sol-gel method, which is a chemical production method, have an average particle diameter of 0.3 μm.
m spherical particles were used.

【0036】この粒子を混合して石英ガラス粉体素材と
し、純水を加えて、スラリー状にして、紙型に流し込
み、実施例1と同様にして、外径φ10mm円板状の仮
成形体サンプルとした。この仮成形体サンプルをオーブ
ン中に入れて、473Kで、1時間放置して、十分に残
留水分を除去した。このようにしてできた仮成形体サン
プルをヒーターを配置した焼結炉中に入れて、各焼結雰
囲気の条件下で焼結を行い焼結石英ガラス成形体を得
た。その結果を図2の表に示す。焼結雰囲気は、水素1
気圧(No1,2,3)、水素と窒素を0.5気圧づつ(No4)、水素
を10-2Paと残りは窒素にして全体で1気圧(No5)、水
素を10-3Paと残りは窒素にして全体で1気圧(No6)、
窒素1気圧(No7)の条件で、焼結温度は1673K、17
73K、1873Kの条件で行った。
The particles are mixed to form a quartz glass powder material, pure water is added to form a slurry, and the slurry is poured into a paper mold. In the same manner as in Example 1, a disk-shaped temporary compact having an outer diameter of 10 mm is formed. Samples were used. This temporary molded body sample was placed in an oven and left at 473 K for 1 hour to sufficiently remove residual moisture. The temporary molded body sample thus obtained was placed in a sintering furnace provided with a heater, and sintered under the conditions of each sintering atmosphere to obtain a sintered quartz glass molded body. The results are shown in the table of FIG. The sintering atmosphere is hydrogen 1
Atmospheric pressure (No1,2,3), 0.5 atm for hydrogen and nitrogen (No4), hydrogen at 10 -2 Pa and the rest as nitrogen, 1 atm (No5) as a whole, hydrogen at 10 -3 Pa and the rest at nitrogen 1 atm (No6) in total,
Under the condition of 1 atmosphere of nitrogen (No7), the sintering temperature is 1673K, 17
The test was performed under the conditions of 73K and 1873K.

【0037】図2に示した結果から明らかなように、直
線透過率が50%以上の高透光性を有する焼結石英ガラ
ス成形体を得るためには、水素含有雰囲気での焼結にお
いては、水素の圧力は10-2Pa以上であることと、焼
結温度は1773K以上であることとが重要であること
がわかる。
As is evident from the results shown in FIG. 2, in order to obtain a sintered quartz glass compact having a high translucency with a linear transmittance of 50% or more, it is necessary to perform sintering in a hydrogen-containing atmosphere. It is understood that it is important that the hydrogen pressure is 10 −2 Pa or more and that the sintering temperature is 1773 K or more.

【0038】[0038]

【発明の効果】本発明によれば、従来は廃棄していた不
要石英ガラス成形体を再利用することにより、省資源と
なる。また、不要石英ガラス成形体の粗い粒子のSiO
2粗粉体と化学的製法によるSiO2微粉体とを混合して
焼結することにより石英ガラス成形体とするので、微粉
体のみを使用しての溶融法による成形体の製造法と比べ
て、低温度の熱処理となり省エネルギーである。粗い粒
子のSiO2粗粉体に粉砕を留めるため、工数低減にな
り、かつ粉砕用ミルからの不純物の混入も低減する。
According to the present invention, resources can be saved by reusing an unnecessary quartz glass molded body that has been conventionally discarded. In addition, the coarse silica SiO
Since the quartz glass molded body by sintering a mixture of a SiO 2 fine powder by 2 coarse powder and chemical manufacturing, as compared with the preparation of moldings by melt method using only fine powder , Low temperature heat treatment and energy saving. Since the pulverization is kept on the coarse particles of the SiO 2 coarse powder, the number of steps is reduced, and the contamination of impurities from the pulverizing mill is also reduced.

【0039】そして、モガナイト相が生成される焼結雰
囲気の酸素分圧及び焼結温度を選定して焼結したので、
従来、焼結体の表面に生じていたクリストバライト(Cr
istobalite),ベータ水晶(β-Quartz)などの微結晶
が生成されず、焼結石英ガラスの表面にシリカ鉱物の多
形の一つであるモガナイト相(Moganite)が形成され
る。そして、1530K以上の温度では、モガナイト相
(Moganite)は、不安定で昇華しやすいので,焼結体の
表面から離脱してする。このようにして、石英ガラスは
結晶の無い緻密な透明焼結石英ガラスとすることができ
る。
Then, the sintering was carried out by selecting the oxygen partial pressure and the sintering temperature of the sintering atmosphere in which the moganite phase was formed.
Conventionally, cristobalite (Cr
Microcrystals such as istobalite) and beta quartz (β-Quartz) are not generated, and a moganite phase (Moganite), which is one of the polymorphs of the silica mineral, is formed on the surface of the sintered quartz glass. At a temperature of 1530 K or more, the moganite phase is unstable and easily sublimates, and is separated from the surface of the sintered body. In this way, the quartz glass can be a dense transparent sintered quartz glass having no crystals.

【0040】そして、焼結体の表面にクリストバライト
(Cristobalite),ベータ水晶(β-Quartz)などの微
結晶が無いので、973K以上の高温度で長時間使用し
ても、白濁の発生、クラックが生じない。
Since there is no microcrystal such as cristobalite and beta crystal (β-Quartz) on the surface of the sintered body, even when used at a high temperature of 973K or more for a long time, generation of white turbidity and cracks may occur. Does not occur.

【0041】また、高真空雰囲気でなくとも、水素圧力
10-2Pa以上の雰囲気とすることで、焼結時に石英ガ
ラス表面に結晶質石英が生じても、焼結後には結晶質石
英が残留しないので、高透光性を有する焼結石英ガラス
を得ることができる。また、水素ガスと不活性ガスとの
混合ガス雰囲気とし、温度制御を行うことによって、石
英ガラス表面からのSiO2の消耗を少なくして、かつ
表面に結晶質石英が生じても焼結後には結晶質石英が残
留しない、高透光性を有する焼結石英ガラスを得ること
ができ、それは工業的に大量生産に向く製造方法とな
る。
Even if the atmosphere is not a high vacuum atmosphere but a hydrogen pressure of 10 −2 Pa or more, even if crystalline quartz is generated on the quartz glass surface during sintering, the crystalline quartz remains after sintering. Therefore, a sintered quartz glass having high translucency can be obtained. In addition, by using a mixed gas atmosphere of hydrogen gas and an inert gas and controlling the temperature, the consumption of SiO 2 from the quartz glass surface is reduced, and even if crystalline quartz is generated on the surface, it is not necessary after sintering. It is possible to obtain a sintered quartz glass having high translucency, in which no crystalline quartz remains, which is a manufacturing method suitable for industrial mass production.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 焼結時に生成されたシリカの種類を温度と酸
素分圧の関係を示す。
FIG. 1 shows the relationship between the type of silica produced during sintering and the temperature and oxygen partial pressure.

【図2】 焼結条件と焼結石英ガラス成形体の特性の表
を示す。
FIG. 2 shows a table of sintering conditions and characteristics of a sintered quartz glass compact.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森永 健次 福岡県筑紫郡那珂川町大字片縄1232−35 Fターム(参考) 4D004 AA18 CA04 CA14 CA15 CA30 CB13 DA02 DA03 DA06 DA07 DA10 4G014 AH00  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kenji Morinaga 1232-35 F-term (reference) 4D004 AA18 CA04 CA14 CA15 CA30 CB13 DA02 DA03 DA06 DA07 DA10 4G014 AH00

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 不要石英ガラス成形体を粉砕して得られ
る石英ガラス粗粉体を主成分とし、これに化学的製法に
よって得られた石英ガラス微粉体を混合してなる石英ガ
ラス粉体素材を最終製品形状に成形し仮成形体とし、 該仮成形体を焼結過程においてシリカの多形であるモガ
ナイト相が生成される焼結条件で、 あるいは該仮成形体の焼結後に結晶質石英が残留しない
焼結条件で、焼結して焼結石英ガラス成形体とすること
を特徴とする石英ガラス成形体のリサイクル方法。
1. A quartz glass powder material obtained by mixing a quartz glass coarse powder obtained by pulverizing an unnecessary quartz glass formed body with a quartz glass fine powder obtained by a chemical manufacturing method. The final shaped product is formed into a temporary compact, and the temporary compact is sintered under a sintering condition in which a moganite phase, which is a polymorph of silica, is formed in the sintering process. A method for recycling a quartz glass molded body, comprising sintering a sintered quartz glass molded body under sintering conditions that do not remain.
【請求項2】 上記モガナイト相が生成される条件とし
て、酸素分圧が10-2Pa以下の雰囲気中で、焼結温度
が1530K以上で、焼結することを特徴とする請求項
1に記載の石英ガラス成形体のリサイクル方法。
2. The sintering at a sintering temperature of 1530 K or more in an atmosphere having an oxygen partial pressure of 10 −2 Pa or less as conditions for forming the moganite phase.
2. The method for recycling a quartz glass molded body according to 1.
【請求項3】 上記結晶質石英が残留しない条件とし
て、水素圧力10-2Pa以上の雰囲気中で、焼結温度が
1773K以上で、焼結することを特徴とする請求項1
に記載の石英ガラス成形体のリサイクル方法。
3. The sintering at a temperature of 1773 K or more in an atmosphere with a hydrogen pressure of 10 −2 Pa or more as conditions under which the crystalline quartz does not remain.
4. The method for recycling a quartz glass molded body according to the above.
【請求項4】 上記圧力の水素ガス以外に、不活性ガス
を含んだ混合ガス雰囲気で焼結することを特徴とする、
請求項3に記載の石英ガラス成形体のリサイクル方法。
4. Sintering in a mixed gas atmosphere containing an inert gas in addition to the hydrogen gas at the above pressure,
The method for recycling a quartz glass molded body according to claim 3.
【請求項5】 前記石英ガラス粗粉体と前記石英ガラス
微粉体の混合体において全体積に対する微粉体の体積割
合を10%以上50%以下とする、ことを特徴とする請
求項1乃至請求項4に記載の石英ガラス成形体のリサイ
クル方法。
5. The volume ratio of the fine powder to the total volume of the mixture of the coarse quartz glass powder and the fine quartz glass powder is set to 10% or more and 50% or less. 5. The method for recycling a quartz glass molded body according to item 4.
JP11155196A 1999-06-02 1999-06-02 Method for recycling quartz glass molding Pending JP2000344535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11155196A JP2000344535A (en) 1999-06-02 1999-06-02 Method for recycling quartz glass molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11155196A JP2000344535A (en) 1999-06-02 1999-06-02 Method for recycling quartz glass molding

Publications (1)

Publication Number Publication Date
JP2000344535A true JP2000344535A (en) 2000-12-12

Family

ID=15600607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11155196A Pending JP2000344535A (en) 1999-06-02 1999-06-02 Method for recycling quartz glass molding

Country Status (1)

Country Link
JP (1) JP2000344535A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2460775A1 (en) 2010-12-01 2012-06-06 Japan Super Quartz Corporation Method of manufacturing vitreous silica crucible, vitreous silica crucible
EP2460772A3 (en) * 2010-12-01 2012-07-11 Japan Super Quartz Corporation Method of manufacturing granulated silica powder, method of manufacturing vitreous silica crucible
KR101469842B1 (en) * 2013-05-03 2014-12-08 화인클린 (주) Recycling of Quartz

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2460775A1 (en) 2010-12-01 2012-06-06 Japan Super Quartz Corporation Method of manufacturing vitreous silica crucible, vitreous silica crucible
EP2460772A3 (en) * 2010-12-01 2012-07-11 Japan Super Quartz Corporation Method of manufacturing granulated silica powder, method of manufacturing vitreous silica crucible
CN102583975A (en) * 2010-12-01 2012-07-18 日本超精石英株式会社 Method of manufacturing granulated silica powder, method of manufacturing vitreous silica crucible
KR101365249B1 (en) * 2010-12-01 2014-02-20 쟈판 스파 쿼츠 가부시키가이샤 Method of manufacturing granulated silica powder and method of manufacturing vitreous silica crucible
CN102583975B (en) * 2010-12-01 2014-10-29 日本超精石英株式会社 Method of manufacturing granulated silica powder, method of manufacturing vitreous silica crucible
US9284207B2 (en) 2010-12-01 2016-03-15 Sumco Corporation Method of manufacturing granulated silica powder, method of manufacturing vitreous silica crucible
US9469560B2 (en) 2010-12-01 2016-10-18 Japan Super Quartz Corporation Method of manufacturing vitreous silica crucible, vitreous silica crucible
KR101469842B1 (en) * 2013-05-03 2014-12-08 화인클린 (주) Recycling of Quartz

Similar Documents

Publication Publication Date Title
JP4746240B2 (en) A method for producing a quartz glass crucible.
JP4907735B2 (en) Silica container and method for producing the same
US9580348B2 (en) Method for producing synthetic quartz glass granules
JP4903288B2 (en) Silica container and method for producing the same
EP0335875B1 (en) Vitreous silica
US9409810B2 (en) Method for producing synthetic quartz glass granules
TWI445675B (en) Silica container and method of manufacturing the same
JP5118007B2 (en) Silica container and method for producing the same
JP5106340B2 (en) Silica container and method for producing the same
JP2008208021A (en) METHOD FOR SINTERING FUSED SILICA TO PRODUCE SHAPED BODY COMPRISING CRYSTALLINE SiO2
TW200304435A (en) Dispersion comprising silicon/titanium mixed oxide powder, and green bodies and shaped glass articles produced therefrom
JP2001089168A (en) Production of synthetic silica glass powder of high purity
JPH0940434A (en) High purity quartz glass and production thereof
JP2000344535A (en) Method for recycling quartz glass molding
JPH11130529A (en) High zirconia refractory
JP2003292337A (en) Plasma corrosion resisting silica glass, manufacturing method therefor and apparatus using the same
JPH0912322A (en) High-purity transparent quartz glass and its production
KR20100118398A (en) Manufacturing method of high-strength glass-ceramics
JPH0517172B2 (en)
JP2675819B2 (en) Manufacturing method of quartz glass
JP5452938B2 (en) Silica container and method for producing the same
JP4587350B2 (en) Method for producing translucent ceramic body
JPH054827A (en) Silica glass powder, its production and formed silica glass using the same
JPH11189427A (en) Production of sintered silica glass
CA2120573C (en) Method of producing glass materials from ash-slag waste

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060307