JP2022051014A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2022051014A
JP2022051014A JP2020157254A JP2020157254A JP2022051014A JP 2022051014 A JP2022051014 A JP 2022051014A JP 2020157254 A JP2020157254 A JP 2020157254A JP 2020157254 A JP2020157254 A JP 2020157254A JP 2022051014 A JP2022051014 A JP 2022051014A
Authority
JP
Japan
Prior art keywords
compressor
heat exchanger
refrigerant
way valve
heating operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020157254A
Other languages
Japanese (ja)
Inventor
一生 池田
Kazuo Ikeda
健介 足達
Kensuke Adachi
司 中居
Tsukasa Nakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2020157254A priority Critical patent/JP2022051014A/en
Publication of JP2022051014A publication Critical patent/JP2022051014A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

To provide a highly reliable air conditioner preventing a compressor from being damaged.SOLUTION: An air conditioner is provided with a passage returning refrigerant to a compressor from an outdoor heat exchanger 5 via an auxiliary heat exchanger 18 separately from a passage directly returning the refrigerant to the compressor from the outdoor heat exchanger 5, and a switching device 14 switching between the passage directly returning the refrigerant to the compressor and the passage returning the refrigerant to the compressor via the auxiliary heat exchanger, between a four-way valve 4 and a compressor 3 in a refrigeration cycle. The air conditioner controls the switching device when switching the operation to a normal heating operation from a defrosting/heating operation to gradually switch the passage on an auxiliary heat source side to the passage directly returning the refrigerant. Accordingly, the refrigerant is gradually switched to the passage directly returning it to the compressor from the passage on the auxiliary heat source side having long piping and thereby returning of liquid refrigerant to the compressor at a time is suppressed and damage on the compressor due to liquid compression is prevented, to make the air conditioner have high reliability.SELECTED DRAWING: Figure 2

Description

本開示は、除霜時においても暖房運転が継続可能な空気調和機に関する。 The present disclosure relates to an air conditioner capable of continuing heating operation even during defrosting.

特許文献1は、除霜時においても暖房運転が継続可能な空気調和機を開示する。この空気調和機は、室外機に設けられた圧縮機に蓄熱槽を設け、前記圧縮機で発生した熱を蓄熱層に蓄積しこの蓄積した熱を暖房運転時の除霜に使用する構成となっており、除霜時においても暖房運転が継続可能で、快適な除霜・暖房運転が実現できる。 Patent Document 1 discloses an air conditioner capable of continuing heating operation even during defrosting. This air conditioner has a configuration in which a heat storage tank is provided in a compressor provided in the outdoor unit, heat generated by the compressor is stored in the heat storage layer, and the accumulated heat is used for defrosting during heating operation. Therefore, the heating operation can be continued even during defrosting, and comfortable defrosting / heating operation can be realized.

特開2000-104586号公報Japanese Unexamined Patent Publication No. 2000-104586

本開示は、除霜・暖房運転から通常の暖房運転に復帰する際に生じる圧縮機への液冷媒の戻りを低減して液圧縮による圧縮機の損傷を防止した信頼性の高い空気調和機を提供する。 The present disclosure provides a highly reliable air conditioner that reduces the return of liquid refrigerant to the compressor that occurs when returning from defrosting / heating operation to normal heating operation and prevents damage to the compressor due to liquid compression. offer.

本開示における空気調和機は、圧縮機、四方弁、室外熱交換器、膨張弁、室内熱交換器、前記四方弁へと繋がる冷凍サイクルと、前記冷凍サイクルの運転を制御する制御部とを有する空気調和機であって、前記冷凍サイクルは冷媒加熱用の補助熱交換器を更に備え、かつ、前記冷凍サイクルの前記四方弁と前記圧縮機の吸入側との間に、前記室外熱交換器から前記圧縮機に直接冷媒を戻す経路とは別に前記室外熱交換器から前記補助熱交換器を介して前記圧縮機の吸入側へ冷媒を戻す経路、及び、前記圧縮機に直接冷媒を戻す経路と前記補助熱交換器を介して前記圧縮機の吸入側へ冷媒を戻す経路とを切り替える切り替え装置とを設け、前記制御部は、前記室外熱交換器に付着した霜を溶解する除霜・暖房運転時には補助熱交換器を介して前記圧縮機の吸入側へ冷媒を戻すとともに、除霜・暖房運転時から通常の暖房運転へ切り替え復帰する時には前記切り替え装置を制御して、前記室外熱交換器からの冷媒を段階的に前記補助熱交換器側の経路から前記圧縮機に直接戻す経路へと切り替え制御する構成としている。 The air conditioner in the present disclosure includes a compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, an indoor heat exchanger, a refrigerating cycle connected to the four-way valve, and a control unit for controlling the operation of the refrigerating cycle. An air conditioner, wherein the refrigeration cycle further comprises an auxiliary heat exchanger for heating the refrigerant, and from the outdoor heat exchanger between the four-way valve of the refrigeration cycle and the suction side of the compressor. Apart from the path for returning the refrigerant directly to the compressor, the path for returning the refrigerant from the outdoor heat exchanger to the suction side of the compressor via the auxiliary heat exchanger, and the path for returning the refrigerant directly to the compressor. A switching device for switching the path for returning the refrigerant to the suction side of the compressor via the auxiliary heat exchanger is provided, and the control unit is used for defrosting / heating operation to melt the frost adhering to the outdoor heat exchanger. Occasionally, the refrigerant is returned to the suction side of the compressor via the auxiliary heat exchanger, and when switching back from the defrosting / heating operation to the normal heating operation, the switching device is controlled to control the outdoor heat exchanger. The refrigerant is gradually switched from the path on the auxiliary heat exchanger side to the path directly returned to the compressor.

本開示における空気調和機は、四方弁と圧縮機の吸入側との間に冷媒経路を切り替える切り替え装置を設けていて、暖房運転時における切り替え装置から圧縮機までの配管長が短くなる構成となっていても、除霜・暖房運転から通常の暖房運転に切り替わるとき、冷媒は配管長が長い除霜・暖房運転時の補助熱交換器側の経路から他方の経路、すなわち圧縮機に直接戻す経路へと段階的に切り替わるので、圧縮機への一気の液冷媒戻りを抑制することができる。よって、液圧縮による圧縮機の損傷を防止し、信頼性の高い空気調和機を提供することができる。 The air conditioner in the present disclosure is provided with a switching device for switching the refrigerant path between the four-way valve and the suction side of the compressor, so that the pipe length from the switching device to the compressor during heating operation is shortened. Even if it is, when switching from the defrosting / heating operation to the normal heating operation, the refrigerant has a long pipe length. Since it is gradually switched to, it is possible to suppress the return of the liquid refrigerant to the compressor at once. Therefore, it is possible to prevent damage to the compressor due to liquid compression and provide a highly reliable air conditioner.

実施の形態1における空気調和機の通常暖房運転時の冷媒の流れを示す模式構成図Schematic configuration diagram showing the flow of the refrigerant during the normal heating operation of the air conditioner according to the first embodiment. 同実施の形態1における空気調和機の除霜・暖房運転時の冷媒の流れを示す模式構成図Schematic configuration diagram showing the flow of refrigerant during defrosting / heating operation of the air conditioner according to the first embodiment. 同実施の形態1における空気調和機の最低冷房能力運転時の冷媒の流れを示す模式構成図Schematic configuration diagram showing the flow of refrigerant during operation of the minimum cooling capacity of the air conditioner according to the first embodiment. 同実施の形態1における空気調和機の通常暖房運転から除霜・暖房運転へ切り替える時の冷媒流れを切り替える切り替え装置のA-B通路開度を説明する説明図An explanatory diagram illustrating the AB passage opening of the switching device for switching the refrigerant flow when switching from the normal heating operation of the air conditioner to the defrosting / heating operation in the first embodiment. 同実施の形態1における空気調和機の通常暖房運転から除霜・暖房運転へ切り替える時の冷媒流れを切り替える切り替え装置のA-C通路開度を説明する説明図An explanatory diagram illustrating the AC passage opening of the switching device for switching the refrigerant flow when switching from the normal heating operation of the air conditioner to the defrosting / heating operation in the first embodiment. 同実施の形態1における空気調和機の切り替え装置を示す斜視図A perspective view showing a switching device for an air conditioner according to the first embodiment. 同実施の形態1における空気調和機の切り替え装置を示す図5AのX-X断面図XX sectional view of FIG. 5A showing the switching device of the air conditioner according to the first embodiment.

(本開示の基礎となった知見等)
発明者らが本開示に想到するに至った当時、空気調和機は、特許文献1に示すように、除霜時においても蓄熱槽を利用して暖房運転を継続できるようにした空気調和機が知られていたが、この空気調和機は冷房運転時には前記蓄熱槽を利用できるようにはなっていなかった。そのため、冷房運転は蓄熱層を持たない空気調和機と同じように行われる構成となっており、例えば室温が安定し冷房負荷が小さい低負荷時における冷房能力は圧縮機の能力、すなわち圧縮機が出せる最低回転数に応じて決定される最低冷房能力となっている。
(Knowledge, etc. that became the basis of this disclosure)
At the time when the inventors came up with the present disclosure, the air conditioner was, as shown in Patent Document 1, an air conditioner capable of continuing the heating operation by using the heat storage tank even at the time of defrosting. As was known, this air conditioner did not have the heat storage tank available during the cooling operation. Therefore, the cooling operation is performed in the same manner as an air conditioner without a heat storage layer. For example, the cooling capacity at a low load where the room temperature is stable and the cooling load is small is the capacity of the compressor, that is, the compressor. It is the minimum cooling capacity determined according to the minimum number of rotations that can be output.

そこで、本発明者らは上記蓄熱層を有効利用して、冷房運転時における最低冷房能力を圧縮機の最低回転数によって決定される最低冷房能力運転よりも低い冷房能力で冷房運転を継続できるようにすることを検討した。 Therefore, the present inventors can effectively utilize the heat storage layer to continue the cooling operation with a cooling capacity lower than the minimum cooling capacity operation determined by the minimum rotation speed of the compressor during the cooling operation. I considered making it.

その結果、冷房運転時の最低冷房能力をより低い冷房能力へと切り替えて冷房運転を継続することが可能となった。しかしながら、このような構成とした場合、後に詳述するが、除霜・暖房運転から通常の暖房運転に復帰する際に圧縮機へ液冷媒が多く戻り、液圧縮による圧縮機の損傷が発生しやすくなってしまう、という課題が生じることを発見した。 As a result, it has become possible to switch the minimum cooling capacity during the cooling operation to a lower cooling capacity and continue the cooling operation. However, with such a configuration, as will be described in detail later, when returning from the defrosting / heating operation to the normal heating operation, a large amount of liquid refrigerant returns to the compressor, causing damage to the compressor due to liquid compression. I discovered that the problem of becoming easier arises.

本発明者らはこのような課題を発見し当該課題を解決するため本開示の主題を構成するに至った。 The present inventors have discovered such a problem and have come to construct the subject matter of the present disclosure in order to solve the problem.

そこで本開示は、除霜・暖房運転から通常の暖房運転に復帰する際に生じる圧縮機の液圧縮による損傷の恐れを防止した信頼性の高い空気調和機を提供する。 Therefore, the present disclosure provides a highly reliable air conditioner that prevents damage due to liquid compression of the compressor that occurs when returning from the defrosting / heating operation to the normal heating operation.

以下、図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が必要以上に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings. However, more detailed explanation than necessary may be omitted. For example, detailed explanations of already well-known matters or duplicate explanations for substantially the same configuration may be omitted. This is to prevent the following explanation from becoming unnecessarily redundant and to facilitate the understanding of those skilled in the art.

なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。 It should be noted that the accompanying drawings and the following description are provided for those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims.

(実施の形態1)
以下、図1~図5A、図5Bを用いて、実施の形態1を説明する。
(Embodiment 1)
Hereinafter, the first embodiment will be described with reference to FIGS. 1 to 5A and 5B.

[1-1.構成]
図1~図3において、本実施の形態の空気調和機は、室外機1と室内機2とを互いに冷媒配管で接続して構成されている。
[1-1. Constitution]
In FIGS. 1 to 3, the air conditioner of the present embodiment is configured by connecting the outdoor unit 1 and the indoor unit 2 to each other by a refrigerant pipe.

室外機1の内部には、圧縮機3と四方弁4と室外熱交換器5と膨張弁6とが設けられ、室内機2の内部には、室内熱交換器7が設けられている。これら室外機1と室内機2とは冷媒配管を介して互いに接続されることで冷凍サイクルを構成している。 A compressor 3, a four-way valve 4, an outdoor heat exchanger 5, and an expansion valve 6 are provided inside the outdoor unit 1, and an indoor heat exchanger 7 is provided inside the indoor unit 2. The outdoor unit 1 and the indoor unit 2 are connected to each other via a refrigerant pipe to form a refrigeration cycle.

さらに詳述すると、室外機1の圧縮機3は冷媒配管8、四方弁4、冷媒配管9を介して室外熱交換器5に接続され、室外熱交換器5は冷媒配管10、膨張弁6、冷媒配管11を介して室内熱交換器7に接続されている。 More specifically, the compressor 3 of the outdoor unit 1 is connected to the outdoor heat exchanger 5 via the refrigerant pipe 8, the four-way valve 4, and the refrigerant pipe 9, and the outdoor heat exchanger 5 is connected to the refrigerant pipe 10, the expansion valve 6, and so on. It is connected to the indoor heat exchanger 7 via the refrigerant pipe 11.

また、室内機2の室内熱交換器7は冷媒配管12を介して四方弁4に接続され、冷媒配管13、図5A、図5Bに示すような三方弁等の切り替え装置(以下、三方弁と称す)14、冷媒配管15、圧縮機3の冷媒吸入側へと接続されている。 Further, the indoor heat exchanger 7 of the indoor unit 2 is connected to the four-way valve 4 via the refrigerant pipe 12, and is a switching device such as a refrigerant pipe 13, a three-way valve as shown in FIGS. 5A and 5B (hereinafter referred to as a three-way valve). (Referred to as) 14, the refrigerant pipe 15, and the compressor 3 are connected to the refrigerant suction side.

また、圧縮機3の周囲には蓄熱槽17が設けられ、蓄熱槽17の内部には、蓄熱熱交換器等の補助熱交換器(以下、蓄熱熱交換器と称す)18が設けられるとともに、蓄熱熱交換器18と熱交換するための蓄熱材(例えば、エチレングリコール水溶液)19が充填されており、蓄熱槽17と蓄熱熱交換器18と蓄熱材19とで蓄熱装置を構成している。 Further, a heat storage tank 17 is provided around the compressor 3, and an auxiliary heat exchanger (hereinafter referred to as a heat storage heat exchanger) 18 such as a heat storage heat exchanger is provided inside the heat storage tank 17. A heat storage material (for example, an ethylene glycol aqueous solution) 19 for heat exchange with the heat storage heat exchanger 18 is filled, and the heat storage tank 17, the heat storage heat exchanger 18, and the heat storage material 19 constitute a heat storage device.

更に、前記三方弁14と上記蓄熱装置の蓄熱熱交換器18はキャピラリチューブ20を含む冷媒配管21を介して接続され、蓄熱熱交換器18は冷媒配管22を介して前記三方弁14と圧縮機3の冷媒吸入側とを繋ぐ冷媒配管15に接続されている。 Further, the three-way valve 14 and the heat storage heat exchanger 18 of the heat storage device are connected via a refrigerant pipe 21 including a capillary tube 20, and the heat storage heat exchanger 18 is connected to the three-way valve 14 via a refrigerant pipe 22. It is connected to the refrigerant pipe 15 connecting to the refrigerant suction side of 3.

また、前記室内機2の内部には、室内熱交換器7に加えて、室内ファン7aと上下羽根(図示せず)と左右羽根(図示せず)とが設けられている。室内熱交換器7は、室内ファン7aにより室内機2の内部に吸込まれた室内空気と、室内熱交換器7の内部を流れる冷媒との熱交換を行い、暖房時には熱交換により暖められた空気を室内に吹き出す一方、冷房時には熱交換により冷却された空気を室内に吹き出す。上下羽根は、室内機2から吹き出される空気の方向を必要に応じて上下に変更し、左右羽根は、室内機2から吹き出される空気の方向を必要に応じて左右に変更する。 Further, inside the indoor unit 2, in addition to the indoor heat exchanger 7, an indoor fan 7a, upper and lower blades (not shown), and left and right blades (not shown) are provided. The indoor heat exchanger 7 exchanges heat between the indoor air sucked into the indoor unit 2 by the indoor fan 7a and the refrigerant flowing inside the indoor heat exchanger 7, and the air warmed by the heat exchange during heating. Is blown into the room, while air cooled by heat exchange is blown into the room during cooling. The upper and lower blades change the direction of the air blown from the indoor unit 2 up and down as necessary, and the left and right blades change the direction of the air blown from the indoor unit 2 to the left and right as necessary.

また、室外機1には室外ファン5aとともに外気温度検出手段23及び配管温度検出手段24が設けられ、室内機2には室内温度検出手段25が設けられている。 Further, the outdoor unit 1 is provided with the outdoor air temperature detecting means 23 and the piping temperature detecting means 24 together with the outdoor fan 5a, and the indoor unit 2 is provided with the indoor temperature detecting means 25.

なお、上記圧縮機3、室内ファン7a、上下羽根、左右羽根、四方弁4、膨張弁6、三方弁14、室外ファン5a、外気温度検出手段23、配管温度検出手段24、室内温度検出手段25、等は制御部26(例えば、マイコン)に電気的に接続され、圧縮機3、室外ファン5a、室内ファン7a、上下羽根、左右羽根、四方弁4、膨張弁6、三方弁14の運転あるいは動作は、制御部26からの制御信号に基づいて制御される。 The compressor 3, indoor fan 7a, upper and lower blades, left and right blades, four-way valve 4, expansion valve 6, three-way valve 14, outdoor fan 5a, outside air temperature detecting means 23, piping temperature detecting means 24, and indoor temperature detecting means 25. , Etc. are electrically connected to the control unit 26 (for example, a microcomputer), and the compressor 3, the outdoor fan 5a, the indoor fan 7a, the upper and lower blades, the left and right blades, the four-way valve 4, the expansion valve 6, and the three-way valve 14 are operated or operated. The operation is controlled based on the control signal from the control unit 26.

ここで、上記制御部26は、冷房運転時その冷房運転を最低冷房能力運転とするとき、すなわち前記室内温度検出手段25が検出した室内温度と設定温度との温度差が所定範囲内でなったときには、三方弁14の四方弁4に繋がる入口Aを第一出口Bに加え第二出口Cにも連通するように制御する。これにより、第一出口Bに繋がる冷媒配管15を介して圧縮機3に冷媒が戻るとともに、残りの冷媒部は第二出口Cに繋がる蓄熱装置の蓄熱熱交換器18を経由して圧縮機3に戻り、当該蓄熱熱交換器18による熱交換により室内熱交換器7での熱交換量を低減させて最低冷房能力を下げる。 Here, the control unit 26 has a temperature difference between the indoor temperature detected by the indoor temperature detecting means 25 and the set temperature within a predetermined range when the cooling operation is set to the minimum cooling capacity operation during the cooling operation. Occasionally, the inlet A connected to the four-way valve 4 of the three-way valve 14 is controlled to communicate with the second outlet C in addition to the first outlet B. As a result, the refrigerant returns to the compressor 3 via the refrigerant pipe 15 connected to the first outlet B, and the remaining refrigerant portion passes through the heat storage heat exchanger 18 of the heat storage device connected to the second outlet C to the compressor 3. The heat exchange by the heat storage heat exchanger 18 reduces the amount of heat exchange in the indoor heat exchanger 7 and lowers the minimum cooling capacity.

そのうえで上記制御部26は、通常の暖房運転時には、蓄熱熱交換器18への冷媒の流れを停止し、圧縮機3に直接つながる冷媒配管15側へと冷媒が流れるように制御する。そして、暖房運転を継続しながらの除霜運転(以下、除霜・暖房運転と称する)する時には、蓄熱装置の蓄熱熱交換器18へ冷媒を流すように切り替え制御する。そして更にこの制御部26は、除霜・暖房運転から通常の暖房運転へ戻す時には、一時的に蓄熱熱交換器18及び圧縮機3に直接繋がる冷媒配管15(通常の暖房運転時の冷媒の流れ経路)の両方に冷媒が流れるように切り替え、その後蓄熱熱交換器18側から圧縮機3に直接繋がる冷媒配管15へと冷媒経路を切り替える。つまり、蓄熱熱交換器18側の冷媒経路から圧縮機3に直接つながる冷媒配管15側の冷媒経路への切り替えを段階的に行うように制御する。その詳細は後の動作説明時に行う。 Then, the control unit 26 stops the flow of the refrigerant to the heat storage heat exchanger 18 during normal heating operation, and controls the flow of the refrigerant to the refrigerant pipe 15 side directly connected to the compressor 3. Then, when the defrosting operation (hereinafter referred to as defrosting / heating operation) is performed while continuing the heating operation, the refrigerant is switched and controlled so as to flow the refrigerant to the heat storage heat exchanger 18 of the heat storage device. Further, when returning from the defrosting / heating operation to the normal heating operation, the control unit 26 temporarily connects the heat storage heat exchanger 18 and the compressor 3 directly to the refrigerant pipe 15 (flow of the refrigerant during the normal heating operation). The refrigerant path is switched so that the refrigerant flows through both of the paths), and then the refrigerant path is switched from the heat storage heat exchanger 18 side to the refrigerant pipe 15 directly connected to the compressor 3. That is, it is controlled to gradually switch from the refrigerant path on the heat storage heat exchanger 18 side to the refrigerant path on the refrigerant pipe 15 side directly connected to the compressor 3. The details will be given later when the operation is explained.

[1-2.動作]
以上のように構成された空気調和機について、以下その動作を説明する。なお、図1~図3に示す矢印は冷媒の流れを示している。
[1-2. motion]
The operation of the air conditioner configured as described above will be described below. The arrows shown in FIGS. 1 to 3 indicate the flow of the refrigerant.

まず、本開示に至った空気調和機の最低冷房能力を更に低くする動作について簡単に説明しておく。 First, the operation of further lowering the minimum cooling capacity of the air conditioner that led to the present disclosure will be briefly described.

冷房運転が開始されると、図3の矢印に示すように圧縮機3によって圧縮された冷媒は、四方弁4、室外熱交換器5、膨張弁6を介して室内熱交換器7に送られる。室内熱交換器7で冷媒と室内空気が熱交換し、室内を冷房する。室内冷房後の冷媒は低温のガス冷媒となり、冷媒配管12、四方弁4、三方弁14のA-Bを介して圧縮機3に戻る。 When the cooling operation is started, the refrigerant compressed by the compressor 3 is sent to the indoor heat exchanger 7 via the four-way valve 4, the outdoor heat exchanger 5, and the expansion valve 6 as shown by the arrow in FIG. .. The indoor heat exchanger 7 exchanges heat between the refrigerant and the indoor air to cool the room. The refrigerant after indoor cooling becomes a low-temperature gas refrigerant, and returns to the compressor 3 via the refrigerant pipe 12, the four-way valve 4, and the three-way valve 14 AB.

上記冷房運転を継続して室内の温度が下がり、冷房能力が圧縮機3の最低回転数により決定される最低冷房能力になって冷房負荷が任意に定めた所定の温度差(冷房負荷)と同じかそれ以下になると、三方弁14の経路を第一出口Bとともに第二出口Cも開放し、冷媒の一部が蓄熱熱交換器18経由で圧縮機3に戻るようになる。これにより、冷媒の一部は蓄熱熱交換器18でも放熱して熱交換を行い、前記室内熱交換器7で行われる室内空気との熱交換量が低下する。つまり、室内熱交換器7による冷房能力が圧縮機3の回転数で決められる最低冷房能力よりも低下し、より低い冷房能力で冷房を行うことになる。 The temperature in the room drops while the above cooling operation is continued, the cooling capacity becomes the minimum cooling capacity determined by the minimum rotation speed of the compressor 3, and the cooling load is the same as a predetermined temperature difference (cooling load) arbitrarily determined. When it becomes equal to or less than that, the path of the three-way valve 14 is opened not only at the first outlet B but also at the second outlet C, and a part of the refrigerant returns to the compressor 3 via the heat storage heat exchanger 18. As a result, a part of the refrigerant is radiated by the heat storage heat exchanger 18 to exchange heat, and the amount of heat exchange with the indoor air performed by the indoor heat exchanger 7 is reduced. That is, the cooling capacity of the indoor heat exchanger 7 is lower than the minimum cooling capacity determined by the rotation speed of the compressor 3, and cooling is performed with a lower cooling capacity.

従って、低負荷時の冷え過ぎやサーモオン・オフの頻度を低減して快適な冷房を継続することができる。 Therefore, it is possible to continue comfortable cooling by reducing the frequency of excessive cooling and thermo-on / off when the load is low.

次に本開示の要点である通常の暖房運転と除霜・暖房運転について説明する。 Next, the normal heating operation and the defrosting / heating operation, which are the main points of the present disclosure, will be described.

暖房運転が開始されると、図1の矢印で示すように、圧縮機3から吐出された冷媒は、冷媒配管8を通って四方弁4から冷媒配管12を介して室内熱交換器7に至る。室内熱交換器7で室内空気と熱交換して暖房し、凝縮した冷媒は、室内熱交換器7を出て、冷媒配管11を通り膨張弁6に至り、膨張弁6で減圧した気液二相冷媒は、冷媒配管10を通って室外熱交換器5に至る。室外熱交換器5で室外空気と熱交換して蒸発した冷媒は四方弁4を介して三方弁14に至る。三方弁14は、通常の暖房運転時、四方弁4に繋がる入口Aと圧縮機3に直接繋がる第一出口Bとが連通し、蓄熱装置の蓄熱熱交換器18に繋がる第二出口Cが閉止された状態に制御されており、冷媒は冷媒配管15を介して圧縮機3に戻る。 When the heating operation is started, as shown by the arrow in FIG. 1, the refrigerant discharged from the compressor 3 passes through the refrigerant pipe 8 and reaches the indoor heat exchanger 7 from the four-way valve 4 via the refrigerant pipe 12. .. The indoor heat exchanger 7 heats by exchanging heat with the indoor air, and the condensed refrigerant exits the indoor heat exchanger 7, passes through the refrigerant pipe 11, reaches the expansion valve 6, and is decompressed by the expansion valve 6. The phase refrigerant reaches the outdoor heat exchanger 5 through the refrigerant pipe 10. The refrigerant evaporated by heat exchange with the outdoor air in the outdoor heat exchanger 5 reaches the three-way valve 14 via the four-way valve 4. In the three-way valve 14, during normal heating operation, the inlet A connected to the four-way valve 4 and the first outlet B directly connected to the compressor 3 communicate with each other, and the second outlet C connected to the heat storage heat exchanger 18 of the heat storage device is closed. It is controlled to the state of being controlled, and the refrigerant returns to the compressor 3 via the refrigerant pipe 15.

なお、この時、圧縮機3で発生した熱は、圧縮機3の外壁から蓄熱槽17の内部に収容された蓄熱材19に蓄熱される。 At this time, the heat generated by the compressor 3 is stored in the heat storage material 19 housed inside the heat storage tank 17 from the outer wall of the compressor 3.

上記通常の暖房運転中に室外熱交換器5に着霜し、着霜した霜が成長すると、室外熱交換器5の通風抵抗が増加して風量が減少し、室外熱交換器5内の蒸発温度が低下する。この蒸発温度の低下を室外熱交換器5の配管温度検出手段24が検出し、制御部26より通常の暖房運転から除霜・暖房運転へ切り替える指示が出力される。 When frost is formed on the outdoor heat exchanger 5 during the above normal heating operation and the frosted frost grows, the ventilation resistance of the outdoor heat exchanger 5 increases, the air volume decreases, and evaporation in the outdoor heat exchanger 5 occurs. The temperature drops. The piping temperature detecting means 24 of the outdoor heat exchanger 5 detects this decrease in evaporation temperature, and the control unit 26 outputs an instruction to switch from the normal heating operation to the defrosting / heating operation.

除霜・暖房運転への切り替え指示により通常の暖房運転から除霜・暖房運転に移行するが、この時上述した通常の暖房運転時の冷媒は、図2に示すように、室内熱交換器7を出て、冷媒配管11を通り膨張弁6に至って、膨張弁6で適切な絞り量で減圧された気液二相冷媒となる。この気液二相冷媒は、冷媒配管10を通って室外熱交換器5を加熱し除霜して、凝縮し液相化した後、四方弁4を介して三方弁14へ至る。 The instruction to switch to the defrosting / heating operation shifts from the normal heating operation to the defrosting / heating operation. At this time, the refrigerant during the normal heating operation described above is the indoor heat exchanger 7 as shown in FIG. It reaches the expansion valve 6 through the refrigerant pipe 11 and becomes a gas-liquid two-phase refrigerant decompressed by the expansion valve 6 with an appropriate throttle amount. This gas-liquid two-phase refrigerant heats the outdoor heat exchanger 5 through the refrigerant pipe 10, defrosts it, condenses it into a liquid phase, and then reaches the three-way valve 14 via the four-way valve 4.

三方弁14は、除霜・暖房運転時、制御部26によって四方弁4に繋がる入口Aが蓄熱装置の蓄熱熱交換器18に繋がる第二出口Cに連通するように制御されている。これにより、三方弁14の第二出口Cからの冷媒はキャピラリチューブ20で減圧され低温となり、蓄熱熱交換器18で蓄熱材19の熱を吸熱して蒸発し、冷媒配管22、冷媒配管15を介して圧縮機3へと戻る。 The three-way valve 14 is controlled by the control unit 26 so that the inlet A connected to the four-way valve 4 communicates with the second outlet C connected to the heat storage heat exchanger 18 of the heat storage device during the defrosting / heating operation. As a result, the refrigerant from the second outlet C of the three-way valve 14 is depressurized by the capillary tube 20 to a low temperature, and the heat of the heat storage material 19 is absorbed and evaporated by the heat storage heat exchanger 18, and the refrigerant pipe 22 and the refrigerant pipe 15 are connected. It returns to the compressor 3 through.

このようにして除霜・暖房運転が行われ、室外熱交換器5の除霜が終了すると室外熱交換器5内の蒸発温度が上がり、これを配管温度検出手段24が検出して、制御部26より除霜・暖房運転から通常の暖房運転へと切り替える指示が出力される。 The defrosting / heating operation is performed in this way, and when the defrosting of the outdoor heat exchanger 5 is completed, the evaporation temperature in the outdoor heat exchanger 5 rises, which is detected by the pipe temperature detecting means 24 and controlled by the control unit. From 26, an instruction to switch from the defrosting / heating operation to the normal heating operation is output.

通常暖房運転への切り替え指示がされると、本開示以前の空気調和機では三方弁14の出口Cは第一出口Bに切り替わり、室外熱交換器5で凝縮し液相化した冷媒が一気に圧縮機3に戻るような形で通常暖房運転へと切り替わる。ここで本開示の空気調和機のように三方弁14を四方弁4と圧縮機3との間の配管経路中に設け、前記三方弁14の第一出口Bから圧縮機3まで間の配管長が短くなっていると、配管経路の圧力損失が低いため、液冷媒がほぼそのまま圧縮機3へと流れることで、前記知見の項で述べた通り圧縮機3への液冷媒の戻り量が増加する。そのため、圧縮機3で液圧縮が生じて、圧縮機3が損傷する懸念が生じる。 When an instruction to switch to normal heating operation is given, in the air conditioner before this disclosure, the outlet C of the three-way valve 14 is switched to the first outlet B, and the refrigerant condensed and liquid-phased by the outdoor heat exchanger 5 is compressed at once. It switches to the normal heating operation in the form of returning to the machine 3. Here, as in the air conditioner of the present disclosure, the three-way valve 14 is provided in the piping path between the four-way valve 4 and the compressor 3, and the piping length between the first outlet B of the three-way valve 14 and the compressor 3 is provided. When is shortened, the pressure loss in the piping path is low, so that the liquid refrigerant flows to the compressor 3 almost as it is, and the amount of the liquid refrigerant returned to the compressor 3 increases as described in the above-mentioned knowledge section. do. Therefore, liquid compression occurs in the compressor 3, and there is a concern that the compressor 3 may be damaged.

しかしながら、本開示の空気調和機では前記通常の暖房運転への切り替え時に、制御部26は三方弁14を第二出口Cから第一出口Bに一気に切り換えるのではなく段階的に第一出口Bに切り替えるように制御する。 However, in the air conditioner of the present disclosure, when switching to the normal heating operation, the control unit 26 does not switch the three-way valve 14 from the second outlet C to the first outlet B at once, but gradually shifts to the first outlet B. Control to switch.

以下、これを図4A、図4Bを用いて詳述する。 Hereinafter, this will be described in detail with reference to FIGS. 4A and 4B.

図4Aは通常の暖房運転から除霜・暖房運転へ切り替える時の三方弁A-B開度を示す図、図4Bは同通常の暖房運転から除霜・暖房運転へ切り替える時の三方弁A-C開度を示す図で、縦軸は弁開度、横軸は時間を示す。 FIG. 4A is a diagram showing the opening degree of the three-way valve AB when switching from the normal heating operation to the defrosting / heating operation, and FIG. 4B is a diagram showing the three-way valve A- when switching from the normal heating operation to the defrosting / heating operation. In the figure showing the C opening degree, the vertical axis shows the valve opening degree and the horizontal axis shows time.

まず、通常の暖房運転時、三方弁14は図4Aの時刻アまでの間で示すように三方弁14のA-Bが連通しているが、制御部26が時刻アで除霜・暖房運転指示を出すと、三方弁14のA-Bを閉じ、図4Bに示すように三方弁14のA-Cの連通に切り替える。そして、除霜・暖房運転が終了して時刻イで除霜・暖房運転から通常の暖房運転に切り替える指示を出すと、制御部26は三方弁14のA-Bを連通させて通常の暖房運転に切り替えるのであるが、図4Aに示すように除霜・暖房運転への切り替え時刻イから所定時間後の時刻ウまでの間は三方弁14のA-Bは一部だけ連通させ、三方弁14のA-Cは図4Bに示すように若干絞った状態でそのまま開通状態とする。その後、時刻ウで三方弁14のA-Cを閉じ、図4Aに示すように三方弁14のA-Bを元の開度まで開いて連通させ、通常の暖房運転に切り替わる。すなわち、三方弁14のA-CからA-Bへの切り替え、換言すると補助熱交換器18を介して圧縮機3へ冷媒を戻す除霜・暖房運転時の冷媒経路から圧縮機3に冷媒配管15を介して直接冷媒を戻す通常の暖房運転時の冷媒経路への切り替えは段階的に行う。 First, during normal heating operation, the three-way valve 14 communicates with AB of the three-way valve 14 as shown by time a in FIG. 4A, but the control unit 26 performs defrosting / heating operation at time a. When an instruction is given, AB of the three-way valve 14 is closed and the communication is switched to AC of the three-way valve 14 as shown in FIG. 4B. Then, when the defrosting / heating operation is completed and an instruction is given to switch from the defrosting / heating operation to the normal heating operation at the time a, the control unit 26 communicates the AB of the three-way valve 14 to the normal heating operation. However, as shown in FIG. 4A, only a part of AB of the three-way valve 14 is communicated between the time a when switching to the defrosting / heating operation and the time c after a predetermined time, and the three-way valve 14 As shown in FIG. 4B, A to C are left in the open state as they are in a slightly squeezed state. After that, at time c, the AC of the three-way valve 14 is closed, and as shown in FIG. 4A, the AB of the three-way valve 14 is opened to the original opening and communicated, and the operation is switched to the normal heating operation. That is, switching from AC to AB of the three-way valve 14, in other words, returning the refrigerant to the compressor 3 via the auxiliary heat exchanger 18 from the refrigerant path during defrosting / heating operation to the compressor 3 Switching to the refrigerant path during normal heating operation, in which the refrigerant is directly returned via 15, is performed stepwise.

これにより、除霜・暖房運転から通常の暖房運転への切り替え時(時刻イから時刻ウ)には、室外熱交換器5で液相化して四方弁4、冷媒配管13を介して流れてくる液冷媒はその大部分がそのまま蓄熱熱交換器18側の冷媒経路を介して圧縮機3へと流れ、残りの液冷媒が三方弁14のA-Bを介して圧縮機3へと流れ、冷媒配管15の圧縮機入口側で合流し、圧縮機3へと戻る。 As a result, when switching from the defrosting / heating operation to the normal heating operation (from time a to time c), the outdoor heat exchanger 5 is liquefied and flows through the four-way valve 4 and the refrigerant pipe 13. Most of the liquid refrigerant flows as it is to the compressor 3 through the refrigerant path on the heat storage heat exchanger 18 side, and the remaining liquid refrigerant flows to the compressor 3 through AB of the three-way valve 14, and the refrigerant flows. It merges at the compressor inlet side of the pipe 15 and returns to the compressor 3.

ここで、上記三方弁14のA-Cから蓄熱熱交換器18側を介して圧縮機3へと流れる冷媒経路の冷媒配管長は、三方弁14のA-Bから圧縮機3へと直接流れる冷媒経路の冷媒配管長よりも長いものとなるので、圧力低下が大きく冷媒が蒸発し液冷媒比率が低下する。したがって、三方弁14のA-Bを介して液冷媒比率が高い冷媒が圧縮機3に流れても前記三方弁14のA-Cから蓄熱熱交換器18側を介して圧縮機3へと流れる液冷媒比率の少ない冷媒と合流して圧縮機3に戻る冷媒の液冷媒は低減する。よって、圧縮機3が液圧縮を起こすのを防止することができる。また、三方弁14のA-Bから圧縮機3へと直接流れる冷媒経路の冷媒配管長と三方弁14のA-Bから圧縮機3へと直接流れる冷媒経路の冷媒配管長の長さ次第ではアキュムレータ無しでも圧縮機3の液圧縮を防止することができる。 Here, the length of the refrigerant pipe of the refrigerant path flowing from AC of the three-way valve 14 to the compressor 3 via the heat storage heat exchanger 18 side flows directly from AB of the three-way valve 14 to the compressor 3. Since it is longer than the length of the refrigerant pipe in the refrigerant path, the pressure drop is large and the refrigerant evaporates, and the liquid refrigerant ratio decreases. Therefore, even if a refrigerant having a high liquid-refrigerant ratio flows through the three-way valve 14 AB to the compressor 3, the refrigerant flows from the three-way valve 14 AC to the compressor 3 via the heat storage heat exchanger 18 side. The amount of liquid refrigerant that merges with the refrigerant having a small liquid-refrigerant ratio and returns to the compressor 3 is reduced. Therefore, it is possible to prevent the compressor 3 from causing liquid compression. Further, depending on the length of the refrigerant pipe length of the refrigerant path directly flowing from AB of the three-way valve 14 to the compressor 3 and the length of the refrigerant pipe of the refrigerant path directly flowing from AB of the three-way valve 14 to the compressor 3. Liquid compression of the compressor 3 can be prevented even without an accumulator.

また、本実施の形態では蓄熱熱交換器18側の冷媒経路となる冷媒配管21にキャピラリチューブ20を設け、圧縮機3へと戻る蓄熱熱交換器18側の冷媒経路の液冷媒を減圧して蒸発を促進しているので、圧縮機3への液戻りをより効率よく低減することができる。 Further, in the present embodiment, the capillary tube 20 is provided in the refrigerant pipe 21 which is the refrigerant path on the heat storage heat exchanger 18 side, and the liquid refrigerant in the refrigerant path on the heat storage heat exchanger 18 side returning to the compressor 3 is depressurized. Since the evaporation is promoted, the liquid return to the compressor 3 can be reduced more efficiently.

また、本実施の形態では、圧縮機3の液圧縮防止のための経路切り替えを三方弁14により行っているので、簡素な構成で冷媒経路を段階的に切り替えて圧縮機3の損傷を防止することができる。 Further, in the present embodiment, since the path switching for preventing the liquid compression of the compressor 3 is performed by the three-way valve 14, the refrigerant path is switched stepwise with a simple configuration to prevent the compressor 3 from being damaged. be able to.

[1-3.効果等]
以上のように、本開示の空気調和機は、圧縮機3、四方弁4、室外熱交換器5、膨張弁6、室内熱交換器7、前記四方弁4へと繋がる冷凍サイクルと、前記冷凍サイクルの運転を制御する制御部26とを有する。前記冷凍サイクルは冷媒加熱用の補助熱交換器18を更に備え、かつ、前記冷凍サイクルの前記四方弁4と前記圧縮機3の吸入側との間に、前記室外熱交換器5から前記圧縮機3に直接冷媒を戻す経路とは別に前記室外熱交換器5から前記補助熱交換器18を介して前記圧縮機3の吸入側へ冷媒を戻す経路、及び、前記圧縮機3に直接冷媒を戻す経路と前記補助熱交換器18を介して前記圧縮機3の吸入側へ冷媒を戻す経路とを切り替える切り替え装置14とを設けている。前記制御部26は、前記室外熱交換器5に付着した霜を溶解する除霜・暖房運転時には補助熱交換器18を介して前記圧縮機3の吸入側へ冷媒を戻すとともに、除霜・暖房運転時から通常の暖房運転へ切り替え復帰する時には前記切り替え装置14を制御して、前記室外熱交換器5からの冷媒を段階的に前記補助熱交換器18側の経路から前記圧縮機3に直接戻す経路へと切り替え制御する構成としている。
[1-3. Effect, etc.]
As described above, the air conditioner of the present disclosure includes a compressor 3, a four-way valve 4, an outdoor heat exchanger 5, an expansion valve 6, an indoor heat exchanger 7, a refrigeration cycle connected to the four-way valve 4, and the refrigeration. It has a control unit 26 that controls the operation of the cycle. The refrigeration cycle further includes an auxiliary heat exchanger 18 for heating the refrigerant, and the outdoor heat exchanger 5 to the compressor between the four-way valve 4 of the refrigeration cycle and the suction side of the compressor 3. Apart from the path for returning the refrigerant directly to 3, the path for returning the refrigerant from the outdoor heat exchanger 5 to the suction side of the compressor 3 via the auxiliary heat exchanger 18 and the path for returning the refrigerant directly to the compressor 3. A switching device 14 for switching between a path and a path for returning the refrigerant to the suction side of the compressor 3 via the auxiliary heat exchanger 18 is provided. The control unit 26 returns the refrigerant to the suction side of the compressor 3 via the auxiliary heat exchanger 18 during the defrosting / heating operation to melt the frost adhering to the outdoor heat exchanger 5, and also defrosts / heats. When switching back to the normal heating operation from the operation, the switching device 14 is controlled to gradually transfer the refrigerant from the outdoor heat exchanger 5 directly to the compressor 3 from the path on the auxiliary heat exchanger 18 side. It is configured to switch to the return route and control it.

これにより、四方弁4と圧縮機3の吸入側との間に冷媒経路を切り替える切り替え装置14を設けていて、暖房運転時における切り替え装置14から圧縮機3までの配管長が短くなっていても、除霜・暖房運転から通常の暖房運転に切り替わるとき、冷媒は配管長が長い除霜・暖房運転時の補助熱交換器18側の経路から他方の経路、すなわち圧縮機3に直接戻す経路に段階的に切り替わるので、圧縮機3への一気の液冷媒戻りを抑制することができる。よって、液圧縮による圧縮機3の損傷を防止し、信頼性の高い空気調和機とすることができる。 As a result, a switching device 14 for switching the refrigerant path between the four-way valve 4 and the suction side of the compressor 3 is provided, and even if the pipe length from the switching device 14 to the compressor 3 during the heating operation is shortened. When switching from the defrosting / heating operation to the normal heating operation, the refrigerant changes from the path on the auxiliary heat exchanger 18 side during the defrosting / heating operation with a long pipe length to the other path, that is, the path directly returned to the compressor 3. Since the switching is performed in stages, it is possible to suppress the return of the liquid refrigerant to the compressor 3 at once. Therefore, damage to the compressor 3 due to liquid compression can be prevented, and a highly reliable air conditioner can be obtained.

また、本開示の空気調和機では、補助熱交換器18は、圧縮機3で発生した熱を蓄積して暖房運転時の除霜に使用する蓄熱熱交換器18で構成している。 Further, in the air conditioner of the present disclosure, the auxiliary heat exchanger 18 is composed of a heat storage heat exchanger 18 that stores the heat generated by the compressor 3 and uses it for defrosting during the heating operation.

これにより、暖房運転時の除霜に使用する蓄熱熱交換器18を利用して液圧縮による圧縮機3の損傷を防止することができ、合理的かつ安価に暖房性能が良く信頼性の高い空気調和機を提供することができる。 As a result, it is possible to prevent damage to the compressor 3 due to liquid compression by utilizing the heat storage heat exchanger 18 used for defrosting during heating operation, and the air has good heating performance and high reliability at a reasonable cost. A harmonizer can be provided.

また、本開示の空気調和機では、補助熱交換器18を介して圧縮機3の吸入側に冷媒を戻す経路にキャピラリチューブ20を設けた構成としている。 Further, in the air conditioner of the present disclosure, a capillary tube 20 is provided in a path for returning the refrigerant to the suction side of the compressor 3 via the auxiliary heat exchanger 18.

これにより、圧縮機3へと戻る蓄熱熱交換器18側の液冷媒を減圧して蒸発を促進するので、圧縮機3への液戻りをより効率よく低減することができ。 As a result, the liquid refrigerant on the heat storage heat exchanger 18 side returning to the compressor 3 is depressurized to promote evaporation, so that the liquid return to the compressor 3 can be reduced more efficiently.

また、本開示の空気調和機では、切り替え装置14は三方弁で構成している。 Further, in the air conditioner of the present disclosure, the switching device 14 is composed of a three-way valve.

これにより、三方弁一つで冷媒流れの経路を切り替えることができ、簡単かつ安価な構成で液圧縮による圧縮機3の損傷を防止して信頼性の高い空気調和機を提供することができる。 As a result, the path of the refrigerant flow can be switched with one three-way valve, and a highly reliable air conditioner can be provided by preventing damage to the compressor 3 due to liquid compression with a simple and inexpensive configuration.

また、本開示の空気調和機では、制御部26は、冷房運転時に圧縮機3の最低回転数によって決定される最低冷房能力になって冷房負荷が任意に定めた所定の冷房負荷と同じかそれ以下になると、切り替え装置14を制御して、室内熱交換器7から四方弁4を介して流れる冷媒の一部を、補助熱交換器18を介して圧縮機3へ戻す経路に流すように制御する構成としている。 Further, in the air conditioner of the present disclosure, the control unit 26 has a minimum cooling capacity determined by the minimum rotation speed of the compressor 3 during the cooling operation, and the cooling load is the same as or higher than a predetermined cooling load arbitrarily determined. When the following occurs, the switching device 14 is controlled so that a part of the refrigerant flowing from the indoor heat exchanger 7 via the four-way valve 4 flows to the path returned to the compressor 3 via the auxiliary heat exchanger 18. It is configured to be.

これにより、暖房運転時の除霜に使用する蓄熱熱交換器18を利用して最低冷房能力をより低能力化することができ、除霜を行いながら暖房を継続することができるうえに、最低冷房能力の低能力化によってサーモオフ等の少ない快適な冷房も行うことができる。 As a result, the minimum cooling capacity can be further reduced by using the heat storage heat exchanger 18 used for defrosting during heating operation, and heating can be continued while defrosting, and at least. By lowering the cooling capacity, it is possible to perform comfortable cooling with less thermo-off.

(他の実施の形態)
以上、本出願において開示する技術の例示として、実施の形態1を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。また、上記実施の形態1で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
(Other embodiments)
As described above, the first embodiment has been described as an example of the technique disclosed in this application. However, the technique in the present disclosure is not limited to this, and can be applied to embodiments in which changes, replacements, additions, omissions, etc. have been made. It is also possible to combine the components described in the first embodiment to form a new embodiment.

そこで、以下、他の実施の形態を幾つか例示する。 Therefore, some other embodiments will be exemplified below.

実施の形態1では圧縮機3の液圧縮防止のため冷媒経路を切り替える切り替え装置14として三方弁14を例示したが、これは四方弁4からの冷媒配管13をY字分岐してこれに繋がる蓄熱熱交換器18側と圧縮機3に直接つながる冷媒配管15側のそれぞれの冷媒経路に開閉弁を設けて切り替え装置14としてもよく、それぞれの開閉弁の開度を調節することによって圧縮機3の液圧縮を防止することができる。 In the first embodiment, the three-way valve 14 is exemplified as the switching device 14 for switching the refrigerant path in order to prevent the liquid compression of the compressor 3, but this is a heat storage connected to the refrigerant pipe 13 from the four-way valve 4 by branching in a Y shape. An on-off valve may be provided in each of the refrigerant paths on the heat exchanger 18 side and the refrigerant pipe 15 side directly connected to the compressor 3 to serve as the switching device 14, and the compressor 3 may be provided by adjusting the opening degree of each on-off valve. Liquid compression can be prevented.

また、実施の形態1では切り替え装置14による除霜・暖房運転から通常の暖房運転への切り替えを時刻イから時刻ウの間の一段階で行うようにしたが、複数段階で行うようにしてもよく、或いは比例的に開度を変えて行うようにしてもよく、本発明の「段階的」はこの「比例的に開度を変える」場合も含むものである。 Further, in the first embodiment, the switching from the defrosting / heating operation to the normal heating operation by the switching device 14 is performed in one step from time a to time c, but it may be performed in a plurality of steps. The opening may be changed well or proportionally, and the "stepwise" of the present invention includes the case of "changing the opening proportionally".

又、除霜のための補助熱交換器18は空気調和機の蓄熱槽17内に組み込んだ蓄熱熱交換器18で構成した場合を例示した。しかし蓄熱槽17を持たない空気調和機においても実現できる。例えば、室実施の形態1で示した蓄熱槽17を持たない圧縮機3の外周に単に補助熱交換器18を引き回すだけの構成として圧縮機3の熱を利用する構成としてもよい。このように、本発明において除霜・暖房運転から通常の暖房運転への切り替え時に生じる圧縮機の液圧縮損傷を防止する構成は、必ずしも蓄熱槽17を有する蓄熱式空気調和機である必要はないものである。 Further, the case where the auxiliary heat exchanger 18 for defrosting is composed of the heat storage heat exchanger 18 incorporated in the heat storage tank 17 of the air conditioner is illustrated. However, it can also be realized in an air conditioner that does not have a heat storage tank 17. For example, the heat of the compressor 3 may be used as a configuration in which the auxiliary heat exchanger 18 is simply routed around the outer periphery of the compressor 3 which does not have the heat storage tank 17 shown in the first embodiment of the chamber. As described above, in the present invention, the configuration for preventing the liquid compression damage of the compressor that occurs when switching from the defrosting / heating operation to the normal heating operation does not necessarily have to be a heat storage type air conditioner having a heat storage tank 17. It is a thing.

以上、本発明に係る空気調和機について、上記各実施の形態を用いて説明したが、本発明はこれに限定されるものではなく、特許請求の範囲またはその均等の範囲において更に種々の変更、置き換え、付加、省略などを行うことができる。 Although the air conditioner according to the present invention has been described above by using each of the above embodiments, the present invention is not limited to this, and further various modifications are made within the scope of claims or the equivalent thereof. It can be replaced, added, omitted, etc.

本開示の空気調和機は、液圧縮による圧縮機の損傷を防止して空気調和機の信頼性を高めることができ、家庭用、業務用を問わず幅広く適用することができる。 The air conditioner of the present disclosure can prevent damage to the compressor due to liquid compression and enhance the reliability of the air conditioner, and can be widely applied to both household and commercial use.

1 室外機
2 室内機
3 圧縮機
4 四方弁
5 室外熱交換器
5a 室外ファン
6 膨張弁
7 室内熱交換器
7a 室内ファン
8 冷媒配管
9 冷媒配管
10 冷媒配管
11 冷媒配管
12 冷媒配管
13 冷媒配管
14 三方弁(切り替え装置)
15 冷媒配管
17 蓄熱槽
18 蓄熱熱交換器(補助熱交換器)
20 キャピラリチューブ
21 冷媒配管
22 冷媒配管
23 外気温度検出手段
24 配管温度検出手段
25 室内温度検出手段
26 制御部
1 Outdoor unit 2 Indoor unit 3 Compressor 4 Four-way valve 5 Outdoor heat exchanger 5a Outdoor fan 6 Expansion valve 7 Indoor heat exchanger 7a Indoor fan 8 Refrigerant piping 9 Refrigerant piping 10 Refrigerant piping 11 Refrigerant piping 12 Refrigerant piping 13 Refrigerant piping 14 Three-way valve (switching device)
15 Refrigerant piping 17 Heat storage tank 18 Heat storage heat exchanger (auxiliary heat exchanger)
20 Capillary tube 21 Refrigerant piping 22 Refrigerant piping 23 Outside air temperature detecting means 24 Piping temperature detecting means 25 Indoor temperature detecting means 26 Control unit

Claims (5)

圧縮機、四方弁、室外熱交換器、膨張弁、室内熱交換器、前記四方弁へと繋がる冷凍サイクルと、前記冷凍サイクルの運転を制御する制御部とを有する空気調和機であって、前記冷凍サイクルは冷媒加熱用の補助熱交換器を更に備え、かつ、前記冷凍サイクルの前記四方弁と前記圧縮機の吸入側との間に、前記室外熱交換器から前記圧縮機に直接冷媒を戻す経路とは別に前記室外熱交換器から前記補助熱交換器を介して前記圧縮機の吸入側へ冷媒を戻す経路、及び、前記圧縮機に直接冷媒を戻す経路と前記補助熱交換器を介して前記圧縮機の吸入側へ冷媒を戻す経路とを切り替える切り替え装置とを設け、前記制御部は、前記室外熱交換器に付着した霜を溶解する除霜・暖房運転時には補助熱交換器を介して前記圧縮機の吸入側へ冷媒を戻すとともに、除霜・暖房運転時から通常の暖房運転へ切り替え復帰する時には前記切り替え装置を制御して、前記室外熱交換器からの冷媒を段階的に前記補助熱交換器側の経路から前記圧縮機に直接戻す経路へと切り替え制御する構成とした空気調和機。 An air conditioner having a compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, an indoor heat exchanger, a refrigerating cycle connected to the four-way valve, and a control unit for controlling the operation of the refrigerating cycle. The refrigeration cycle further comprises an auxiliary heat exchanger for heating the refrigerant, and returns the refrigerant directly from the outdoor heat exchanger to the compressor between the four-way valve of the refrigeration cycle and the suction side of the compressor. Separately from the path, a path for returning the refrigerant from the outdoor heat exchanger to the suction side of the compressor via the auxiliary heat exchanger, a path for returning the refrigerant directly to the compressor, and a path via the auxiliary heat exchanger. A switching device for switching the path for returning the refrigerant to the suction side of the compressor is provided, and the control unit uses the auxiliary heat exchanger during the defrosting / heating operation to melt the frost adhering to the outdoor heat exchanger. The refrigerant is returned to the suction side of the compressor, and when switching back from the defrosting / heating operation to the normal heating operation, the switching device is controlled to gradually assist the refrigerant from the outdoor heat exchanger. An air conditioner configured to switch and control the path on the heat exchanger side to the path directly returned to the compressor. 補助熱交換器は、圧縮機で発生した熱を蓄積して暖房運転時の除霜に使用する蓄熱熱交換器で構成した請求項1記載の空気調和機。 The air conditioner according to claim 1, wherein the auxiliary heat exchanger comprises a heat storage heat exchanger that accumulates heat generated by the compressor and uses it for defrosting during heating operation. 補助熱交換器を介して圧縮機の吸入側に冷媒を戻す経路にキャピラリチューブを設けた請求項1または2記載の空気調和機。 The air conditioner according to claim 1 or 2, wherein a capillary tube is provided in a path for returning the refrigerant to the suction side of the compressor via an auxiliary heat exchanger. 切り替え装置は三方弁で構成した請求項1~3のいずれか1項記載の空気調和機。 The air conditioner according to any one of claims 1 to 3, wherein the switching device is composed of a three-way valve. 制御部は、冷房運転時に圧縮機の最低回転数によって決定される最低冷房能力になって冷房負荷が任意に定めた所定の冷房負荷と同じかそれ以下になると、切り替え装置を制御して、室内熱交換器から四方弁を介して流れる冷媒の一部を、補助熱交換器を介して圧縮機へ戻す経路に流すように制御する構成とした請求項1~4のいずれか1項記載の空気調和機。 When the cooling capacity becomes the minimum cooling capacity determined by the minimum rotation speed of the compressor during the cooling operation and the cooling load becomes equal to or less than a predetermined cooling load arbitrarily determined, the control unit controls the switching device to control the room. The air according to any one of claims 1 to 4, wherein a part of the refrigerant flowing from the heat exchanger through the four-way valve is controlled to flow to the path returned to the compressor via the auxiliary heat exchanger. Harmony machine.
JP2020157254A 2020-09-18 2020-09-18 Air conditioner Pending JP2022051014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020157254A JP2022051014A (en) 2020-09-18 2020-09-18 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020157254A JP2022051014A (en) 2020-09-18 2020-09-18 Air conditioner

Publications (1)

Publication Number Publication Date
JP2022051014A true JP2022051014A (en) 2022-03-31

Family

ID=80854645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020157254A Pending JP2022051014A (en) 2020-09-18 2020-09-18 Air conditioner

Country Status (1)

Country Link
JP (1) JP2022051014A (en)

Similar Documents

Publication Publication Date Title
JP4123829B2 (en) Refrigeration cycle equipment
JP6678332B2 (en) Outdoor unit and control method for air conditioner
US20090282849A1 (en) Refrigeration System
JP2006071268A (en) Refrigerating plant
JP6033297B2 (en) Air conditioner
US20060090487A1 (en) Air conditioner
MXPA02006289A (en) Multi-type gas heat pump air conditioner.
JP2002156166A (en) Multi-chamber type air conditioner
JP6045489B2 (en) Air conditioner
US9581359B2 (en) Regenerative air-conditioning apparatus
US20240167735A1 (en) Heat source unit and air conditioner
JP2007255730A (en) Air conditioner
JP2012123786A (en) Automatic vending machine
JP2005042943A (en) Heat storage type air conditioner
JP2004317091A (en) Air conditioner, refrigerant circuit of air conditioner and control method for refrigerant circuit in air conditioner
JP4367579B1 (en) Refrigeration equipment
JP2013108729A (en) Air conditioner
JP6926460B2 (en) Refrigerator
JP6846915B2 (en) Multi-chamber air conditioner
JP2017161159A (en) Outdoor uni of air conditioner
JP2022051014A (en) Air conditioner
CN110207419B (en) Multi-split system
JP2009293887A (en) Refrigerating device
JP2008102941A (en) Vending machine
JPH10176869A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240312