JP2022050491A - 振動計内の流体の粘性効果について測定された流量を修正するシステム、振動計内の流体の粘性効果について測定された流量を修正する方法、及び、流体の粘性効果について測定された流量を修正する振動計 - Google Patents

振動計内の流体の粘性効果について測定された流量を修正するシステム、振動計内の流体の粘性効果について測定された流量を修正する方法、及び、流体の粘性効果について測定された流量を修正する振動計 Download PDF

Info

Publication number
JP2022050491A
JP2022050491A JP2021212472A JP2021212472A JP2022050491A JP 2022050491 A JP2022050491 A JP 2022050491A JP 2021212472 A JP2021212472 A JP 2021212472A JP 2021212472 A JP2021212472 A JP 2021212472A JP 2022050491 A JP2022050491 A JP 2022050491A
Authority
JP
Japan
Prior art keywords
viscosity
flow rate
fluid
meter
correlation parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021212472A
Other languages
English (en)
Inventor
ディーン エム. スタンディフォード,
M Standiford Dean
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micro Motion Inc
Original Assignee
Micro Motion Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Motion Inc filed Critical Micro Motion Inc
Priority to JP2021212472A priority Critical patent/JP2022050491A/ja
Publication of JP2022050491A publication Critical patent/JP2022050491A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8436Coriolis or gyroscopic mass flowmeters constructional details signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8427Coriolis or gyroscopic mass flowmeters constructional details detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8472Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane
    • G01F1/8477Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane with multiple measuring conduits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/16Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by measuring damping effect upon oscillatory body

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Volume Flow (AREA)

Abstract

【課題】振動計内の流体の粘性効果について、測定された流量を修正するシステムが提供される。【解決手段】システム600は、センサアセンブリ10と、該センサアセンブリに通信可能に連結されたメータ電子機器20を備えている。該メータ電子機器20は、センサアセンブリからセンサ信号を受信し、センサ信号に基づいて非粘度相関パラメータを決定し、非粘度相関パラメータをセンサアセンブリ内の液体の粘度に相互に関係付けるように構成される。【選択図】図6

Description

以下に説明する実施形態は、振動式センサに関し、より詳細には、粘性効果について測定された流量を修正することに関する。
例えば、振動式デンシトメータ及びコリオリ流量計などの振動式センサは、一般的に知られており、質量流量及び振動計の導管を流れる材料に関する他の情報を測定するために使用される。例示的なコリオリ流量計は、米国特許第4,109,524号明細書、米国特許第4,491,025号明細書、及びRe.31,450に開示されている。これらの流量計は、直線形状または湾曲形状の1つ以上の導管を有するセンサアセンブリを有する。例えば、コリオリ質量流量計の各導管構成は、単純な曲げ、ねじれ、または結合タイプのものとすることができる固有振動モードのセットを有する。各導管は、好ましいモードで振動するように駆動することができる。流量計を通る流れがないとき、導管に加えられる駆動力は、導管に沿ったすべての点を同位相で、またはゼロ流量で測定される時間遅延である小さな「ゼロオフセット」で振動させる。
材料が導管を通って流れ始めると、コリオリの力により、導管に沿った各点が異なる位相を有するようになる。例えば、流量計の入口端の位相は、中央のドライバ位置の位相より遅れ、出口の位相は、中央のドライバ位置の位相より先行する。導管上のピックオフは、導管の動きを表す正弦波信号を生成する。ピックオフからの信号出力は、ピックオフ間の時間遅延を決定するために処理される。2つ以上のピックオフ間の時間遅延は、導管を流れる材料の質量流量に比例する。
ドライバに接続されたメータ電子機器は、ドライバを動作させるための、またピックオフから受け取った信号からプロセス材料の質量流量及び/又は他の特性を決定するための駆動信号を生成する。ドライバは、多くの周知の構成のうちの1つを含むことができる。しかしながら、磁石及び対向する駆動コイルは、流量計業界において大きな成功を収めている。所望の導管の振幅及び周波数で導管を振動させるために、交流電流が駆動コイルに送られる。ピックオフを、ドライバの構成に非常に類似した磁石及びコイル構成として提供することも、当該技術分野において知られている。
コリオリの力の量は、チューブを流れる流体の質量流量に直接比例する。コリオリ質量流量計の振動の共振周波数は、チューブの剛性に影響を受ける。コリオリ質量流量計への殆どの修正は、プロセス及び/又は環境条件(例えば、圧力や温度)によってチューブの剛性がどのように変化するかに基づいている。チューブを流れる流体が単一の質量として機能しなくなると(即ち、流れの中心の流体が、管壁の隣の流体と同じ速度で流れていないとき)、更なる二次的な影響が観察される場合がある。これは粘性効果と呼ばれる。レイノルズ数は、この効果が最も一般的なパイプラインの流れプロファイルを定義するために使用され、流体の粘度はレイノルズ数の計算に使用される。従って、粘度の影響を修正する必要がある。課題は、粘度、またはレイノルズ数などの粘度測定に基づく数を使用しない修正方法、又はコリオリ質量流量計に加えて機器を開発することである。
概要
振動計内の流体の粘性効果について、測定された流量を修正するシステムが提供される。一実施形態に従って、システムはセンサアセンブリと、該センサアセンブリに通信可能に連結されたメータ電子機器を備える。メータ電子機器は、センサアセンブリからセンサ信号を受信し、センサ信号に基づいて非粘度相関パラメータを決定し、非粘度相関パラメータをセンサアセンブリ内の液体の粘度に相互に関係付けるように構成される。
振動計内の流体の粘性効果について測定された流量を修正する方法が提供される。一実施形態に従って、方法はセンサアセンブリからセンサ信号を受信する工程と、センサ信号に基づいて非粘性相関パラメータを決定する工程と、非粘度相関パラメータをセンサアセンブリ内の流体の粘度に相互に関係付ける工程を備える。
流体の粘性効果について測定された流量を修正するための振動計が提供される。一実施形態に従って、振動計はセンサアセンブリと、該センサアセンブリに通信可能に連結されたメータ電子機器を備える。メータ電子機器は、振動計のセンサアセンブリからのセンサ信号に基づいて、流体の流量と非粘性相関パラメータを決定し、非粘度相関パラメータに基づいて流体流量を修正するように構成され、前記非粘度相関パラメータは粘度値と相互に関係している。
振動計内の流体の粘性効果について測定流量を修正する方法が提供される。一実施形態に従って、方法は振動計のセンサアセンブリからのセンサ信号に基づいて、流体の流量及び非粘性相関パラメータを決定する工程と、非粘度相関パラメータに基づいて流体の流量を修正する工程を備え、前記非粘度相関パラメータは粘度値と相互に関係している。
態様
一態様によれば、振動計(5)内の流体の粘性効果について、測定された流量を修正するシステム(600、700)は、センサアセンブリ(10)と、該センサアセンブリ(10)に通信可能に連結されたメータ電子機器(20)を備える。メータ電子機器(20)は、センサアセンブリ(10)からセンサ信号を受信し、センサ信号に基づいて非粘度相関パラメータを決定し、非粘度相関パラメータをセンサアセンブリ(10)内の液体の粘度に相互に関係付けるように構成される。
好ましくは、メータ電子機器(20)は更に、非粘度相関パラメータを2つ以上の流体の粘度と相互に関係付けるように構成される。
好ましくは、メータ電子機器(20)は更に、非粘度相関パラメータをセンサアセンブリ(10)内の流体の流体流量の誤差率に相互に関係付けるように構成される。
好ましくは、非粘度相関パラメータは、流体速度対質量流量の比及び振動計(5)の振動周波数の比のうちの1つを含む。
好ましくは、システム(600、700)は、メータ電子機器(20)に通信可能に結合された粘度計(610、710)を更に備え、前記粘度計(610、710)は、流体の粘度を測定し、測定された粘度をメータ電子機器(20)に提供するように構成される。
好ましくは、メータ電子機器(20)は更に、センサ信号に基づいて流体の流量を決定するように構成される。
一態様によれば、振動計内の流体の粘性効果について測定流量を修正する方法は、センサアセンブリからセンサ信号を受信する工程と、センサ信号に基づいて非粘性相関パラメータを決定する工程と、非粘度相関パラメータをセンサアセンブリ内の流体の粘度に相互に関係付ける工程を備える。
好ましくは、方法は更に非粘度相関パラメータを2つ以上の流体の粘度と相互に関係付ける工程を備える。
好ましくは、方法は更に非粘度相関パラメータを測定された流量の誤差率に相互に関係付ける工程と、誤差率をセンサアセンブリ内の流体の粘度に相互に関係付ける工程を備える。
好ましくは、非粘度相関パラメータは、流体速度対質量流量の比及び振動計の振動周波数の比のうちの1つを含む。
一態様によれば、流体の粘性効果について測定された流量を修正する振動計(5)は、センサアセンブリ(10)と、該センサアセンブリ(10)に通信可能に連結されたメータ電子機器(20)を備える。メータ電子機器(20)は、振動計のセンサアセンブリからのセンサ信号に基づいて流体の流量と流体の非粘度相関パラメータを決定し、非粘度相関パラメータに基づいて流体の流量を修正するように構成され、非粘度相関パラメータは粘度値と相互に関係している。
好ましくは、非粘度相関パラメータは2つ以上の流体の粘度と相互に関係付けられる。
好ましくは、粘度値と相関する非粘度相関パラメータは、1つ以上の他の流体の粘度値と相関する非粘度相関パラメータを含む。
好ましくは、非粘度相関パラメータに基づいて流体の流量を修正するように構成されたメータ電子機器(20)は、非粘度相関パラメータに相互に関係する流量の誤差率を得て、該誤差率を用いて流体の流量を修正するように構成されている。
好ましくは、非粘度相関パラメータは、流体速度対質量流量の比及び振動計の振動周波数の比のうちの1つを含む。
一態様に従って、振動計内の流体の粘性効果について測定された流量を修正する方法は、振動計のセンサアセンブリからのセンサ信号に基づいて、流体の流量及び非粘性相関パラメータを決定する工程と、非粘度相関パラメータに基づいて流体の流量を修正する工程を備え、前記非粘度相関パラメータは粘度値と相互に関係している。
好ましくは、非粘度相関パラメータは2つ以上の流体の粘度と相互に関係付けられる。
好ましくは、粘度値と相互に関係付けられる非粘度相関パラメータは、1つ以上の他の流体の粘度値と相互に関係付けられる非粘度相関パラメータを含む。
好ましくは、非粘度相関パラメータに基づいて流体の流量を修正する工程は、非粘度相関パラメータに相互に関係する流量の誤差率を得る工程と、該誤差率を用いて流体の流量を修正する工程を備えている。
好ましくは、非粘度相関パラメータは、流体速度対質量流量の比及び振動計の振動周波数の比のうちの1つを含む。
同じ参照番号は、全ての図面上の同じ要素を表す。図面は必ずしも縮尺通りではないことを理解すべきである。
粘性効果について、測定された流量を修正する振動計5を示す。 一実施形態に従った粘性効果について修正するために使用される質量流量誤差と相関パラメータとの間の関係を示すグラフ200である。 一実施形態に従った粘性効果について修正するために使用される質量流量誤差とパイプレイノルズ数との間の関係を示すグラフ300である。 一実施形態に従った粘性効果について修正するために使用される質量流量誤差と粘度との関係を示すグラフ400である。 一実施形態に従った粘性効果について修正するために使用される相関パラメータと流量修正値との間の関係を示すグラフ500である。 一実施形態に従った、粘性効果について測定された流量を修正するシステム600を示す。 一実施形態に従った、粘性効果について測定された流量を修正するシステム700を示す。 一実施形態に従った、粘性効果について測定された流量を修正する方法800を示す。 一実施形態に従った、粘性効果について測定された流量を修正する方法900を示す。
図1-図9及び以下の説明は、当業者に粘性効果について測定された流量を修正する最良の形態の実施形態を作成及び使用する方法を教示する特定の例を示す。本発明の原理を教示する目的のために、いくつかの従来の態様は簡略化または省略されている。当業者は、本明細書の範囲内に入るこれらの例からの変形を理解するであろう。当業者であれば、以下に説明する構成を多種の方法で組み合わせて、粘性効果について測定された流量を修正する複数の変形例を形成できることを理解するであろう。その結果、以下に説明する実施形態は、後述する特定の例に限定されるものではなく、特許請求の範囲及びその均等物によってのみ限定されるものである。
振動計内の流体の粘性効果について測定された流量を修正するシステム及び方法は、少なくともセンサアセンブリと、該センサアセンブリに通信可能に連結されたメータ電子機器を備える。システムはまた、例えば、センサアセンブリ及びメータ電子機器を含む振動計の較正中に粘度を測定するように構成された粘度計を含み得る。システム又は特にメータ電子機器は、センサアセンブリからのセンサ信号に基づいて、非粘性相関パラメータを決定することができる。メータ電子機器はまた、非粘度相関パラメータを粘度計から供給されメータ電子機器に入力される流体の粘度と相互に関係付けることができる。
方法は、例えば、振動計の動作中に非粘度相関パラメータを使用して、測定された流量を修正することができる。特に、方法はセンサアセンブリからのセンサ信号に基づいて、流体の流量と非粘性相関パラメータを決定することができる。方法は非粘度相関パラメータに基づいて流体の流量を修正することができ、非粘度相関パラメータは粘度値と相互に関係している。粘度値は、以前に非粘度相関パラメータと相互に関係していた較正流体など、他の流体または測定されていない流体に基づく場合がある。
従って、振動計により未知の液体が測定される場合があり、粘度が測定されておらず、測定された流体の粘度値が不明であっても、未知の流体に対して非粘度相関パラメータが決定され、次に流量が粘度の影響に対して修正される。これにより、測定されるべき未知の流体の粘度値や、測定されるべき未知の流体の粘度を測定する粘度計の粘度値を入力する必要がなくなり、それでもなお粘性効果について流量を修正する。
図1は、粘性効果について測定された流量を修正する振動計5を示す。図1に示すように、振動計5は、センサアセンブリ10とメータ電子機器20とを備える。センサアセンブリ10は、プロセス材料の質量流量及び密度に応答する。メータ電子機器20は、リード100を介してセンサアセンブリ10に接続され、経路26を介して密度、質量流量、及び温度情報、ならびに他の情報を提供する。
センサアセンブリ10は、一対のマニホールド150、150’と、フランジ首部110、110’を有するフランジ103、103’と、一対の平行な導管130、130’と、駆動機構180と、抵抗温度検出器(RTD)190と、1対のピックオフセンサ170l及び170rとを備える。導管130及び130’は、導管取り付けブロック120及び120’において互いに向かって収束する2つの本質的に真直ぐな流入脚部131、131’及び流出脚部134、134’を有する。導管130、130’は、それらの長さに沿った2つの対称な位置において曲がり、それらの長さの全体にわたって本質的に平行である。ブレースバー140及び140’が、各々の導管130、130’の振動の軸W及びW’を定めるように機能する。導管130、130’の脚部131、131’及び134、134’は、導管取り付けブロック120及び120’に不動に取り付けられ、次いでこれらのブロックは、マニホールド150及び150’に不動に取り付けられる。これは、センサアセンブリ10を通る連続的な閉じた物質経路をもたらす。
穴102及び102’を有するフランジ103及び103’が、入口端104及び出口端104’を介し、測定対象のプロセス物質を運ぶプロセス配管(図示せず)へと接続されると、物質は、フランジ103のオリフィス101を通って振動計の入口端104に進入し、マニホールド150を通って表面121を有している導管取り付けブロック120へと導かれる。マニホールド150において、物質は分割され、導管130、130’を通って送られる。導管130、130’を出ると、プロセス物質は、表面121’を有するブロック120’及びマニホールド150’において再び合流して単一の流れとなり、その後に穴102’を有するフランジ103’によってプロセス配管(図示せず)へと接続された出口端104’に送られる。
導管130、130’は、それぞれの曲げ軸W-W及びW’-W’の周りの質量分布、慣性モーメント、及びヤング率が実質的に同じであるように選択され、導管取り付けブロック120、120’に適切に取り付けられる。これらの曲げ軸は、ブレースバー140、140’を通過する。導管のヤング率が温度とともに変化し、この変化が流量及び密度の計算に影響を及ぼすため、RTD190が導管130’に取り付けられ、導管130’の温度を連続的に測定する。導管130’の温度、従ってRTD190を通過する所与の電流においてRTD190の両端に現れる電圧は、導管130’を通過する物質の温度によって支配される。RTD190の両端に現れる温度依存性の電圧は、導管の温度の変化に起因する導管130、130’の弾性率の変化を補償するために、メータ電子機器20によって周知の方法で使用される。RTD190は、リード195によってメータ電子機器20へと接続される。
導管130、130’の両方は、駆動機構180によって、夫々の曲げ軸W及びW’を中心にして反対の方向に、いわゆる流量計の第1の位相外れ曲げモードで駆動される。この駆動機構180は、導管130’に取り付けられた磁石、及び導管130に取り付けられ、両方の導管130、130’を振動させるために交流が通される対向するコイルなど、多数の周知の構成のうちの任意の1つを備えることができる。適切な駆動信号が、メータ電子機器20によって、リード185を介して、駆動機構180に印加される。
メータ電子機器20は、リード195上のRTD温度信号と、リード100に夫々現れる左右のセンサ信号165l、165rとを受信する。メータ電子機器20は、リード165に現れる駆動機構180への駆動信号を生成し、導管130、130’を振動させる。メータ電子機器20は、左右のセンサ信号及びRTD信号を処理して、センサアセンブリ10を通過する物質の質量流量及び密度を計算する。これらの情報及び他の情報は、メータ電子機器20によって信号として経路26を経て加えられる。
流量測定への二次的な粘性効果を修正すべく、様々な流体について、粘度と非粘度相関パラメータの相関が決定される。非粘度相関パラメータはセンサ信号に基づく。例えば、左右のセンサ信号165l、165rが非粘度相関パラメータを決定するのに用いられる。以下において、非粘度相関パラメータは流速と流量の比と周波数比が含まれる。幾つかの実施形態において、流量の割合などの流量修正値も決定される。この流量修正値は、粘度及び非粘度相関パラメータとも相互に関係する。流量修正値は振動型流量計の流量を調整するのに使用される。
流体の速度/質量流量の比
図2は、実施形態に従った粘性効果を修正するために使用される質量流量誤差と相関パラメータとの間の関係を示すグラフ200である。グラフ200は相関パラメータ軸210と質量誤差軸220を備えている。相関パラメータ軸210は、流体の速度対流量の比である。質量誤差軸220は、質量流量を修正するために使用できる割合である。図2に示すように、相関パラメータ軸210の範囲は0.18から0.26である。質量誤差軸220の範囲は-0.70から0.20である。グラフ200は異なる流体について、複数のデータ点230、240を示す。異なる流体の各々に対するデータ点230、240は、異なる形のマーカで示され(例えば、三角形、矩形、十字、二重十字等)、データ点230の第1のセット及びデータ点240の第2のセットにグループ分けされる。
示されるように、データ点230の第1のセットは、データ点240の第2のセットと区別可能な相関パラメータ値を有する第5流体と第6流体の2つの流体で構成される。特に、データ点230の第1のセットは、約0.19から約0.20の範囲の相関パラメータ値と、約-0.40から約0.00の範囲の質量誤差を含むデータで構成される。第1の曲線231は、データ点230の第1のセットに適合している。データ点230の第1のセットは水であり得る。
特に、データ点230の第1のセットは、説明文によって第5流体と第6流体で構成されることが示されているが、第5流体と第6流体の両方が、異なる時間に測定された水であるか、水の粘度に大きな影響を与えない異なる汚染物質を含んでいる可能性がある。データ点240の第2のセットは、相関パラメータ値が約0.225から約0.25の範囲であるような類似の粘度特性と、約-0.65から約0.005の範囲の質量誤差値を有する4つの流体で構成される。第2の曲線241は、データ点240の第2のセットに適合している。データ点240の第2のセットは、例えば、オイル、ガスオイル、独自のオイルブレンドなどで構成されてもよい。
理解されるように、第1の曲線231及び第2の曲線241を使用して、流体速度対流量の比などの相関パラメータと質量誤差との関係を確立することができる。流体速度対流量の比は例えば、位相差から流量を計算し、導管130、130’の等価断面積を使用して流体の速度を計算することにより、センサ信号から決定できる。流体速度対流量の比は、これらの2つの値を使用して計算でき、流体の粘度と相関するため、以下に示すように、粘性効果について測定流量を修正するために使用することができる。
図3は、一実施形態に従った粘性効果について修正するために使用される質量流量誤差とパイプレイノルズ数との間の関係を示すグラフ300である。グラフ300は、パイプレイノルズ数軸310及び質量流量のパーセント誤差である質量誤差軸320を含む。パイプのレイノルズ数軸310は、流体の粘度の尺度である。図3に示すように、パイプのレイノルズ数軸310は対数目盛で100から10,000,000の範囲であり、単位はないが、流体の粘度に関連する。質量流量のパーセント誤差である質量誤差軸320の範囲は-0.70から0.20である。グラフ300は、異なる流体の複数の未修正の質量流量誤差330(例えば、未補正の質量流量測定値の誤差)を示している。異なる流体の未修正の質量流量誤差330は、三角形、矩形、十字形、二重十字形などの異なる形状のマーカによって示される。また、図3には修正された質量流量誤差340(例えば、修正された質量流量読取値の誤差)が破線で示されている。理解されるように、修正された質量流量誤差340は、修正されていない質量流量誤差330よりも小さい。
修正された質量流量誤差340は、図2を参照して説明した非粘度相関パラメータを使用して質量流量測定値を修正することにより取得され得る。例えば、メータ電子機器20は、左右のセンサ信号1651、165r及び導管130、130'の等価断面積に基づいて、流体速度対流量の比を決定することができる。流体の粘度は、事前に非粘度相関パラメータに相互に関連付けられて、メータ電子機器20に格納されてもよい。次に、メータ電子機器20は非粘度相関パラメータからレイノルズ数を決定することができる。メータ電子機器20は、レイノルズ数の値と相互に関係する質量誤差値も有することができる。パーセント単位の質量誤差は、レイノルズ数から決定できる。次に、測定された流量は、質量誤差パーセント値を使用して修正され、図3に示される修正された質量流量誤差340をもたらすことができる。
理解されるように、流速と流量の比以外の非粘度相関パラメータを使用して、測定された流量を修正することができる。更に、非粘度相関パラメータを粘度と流量修正値に相互に関係付ける別の方法と手段がある。その例が図4を参照して以下に記載される。
振動周波数の比
図4は、一実施形態に従った粘性効果について修正するために使用される質量流量誤差と粘度との関係を示すグラフ400である。グラフ400は、粘度軸410及び相関パラメータ軸420を含む。図4に示すように、粘度軸410は0.100から1000.000センチポアズ(cP)の範囲である。相関パラメータ軸420は、振動周波数の比であり、-0.70から0.20の範囲である。振動周波数の比は、空気対流体の周波数比であってもよい。即ち、空気で満たされた導管の共振周波数に対する流体で満たされた導管の共振周波数の比である。グラフ400は、異なる流体の複数のデータ点430を示している。
異なる流体の粘度は、非粘度相関パラメータと相互に関係しており、これは図4に示す例では振動周波数の比である。振動周波数の比は例えば図1を参照して以前に記載した振動計5を用いて決定される。特に、導管130、130'は空気で満たされ、共振周波数で振動されてもよい。この共振周波数は、空気共振周波数としてメータ電子機器20に格納されてもよい。導管130、130'はまた、空気とは異なる粘度を有する流体で満たされ、次いで共振周波数まで振動されてもよい。この周波数は、流体共振周波数として保存され得る。流体の粘度を保存し、メータ電子機器20にて対応する振動周波数の比と相互に関係付けることができる。他の流体を使用して、他の振動周波数の比及び粘度値を決定することもでき、これらもメータ電子機器20に格納することができる。図6及び図7を参照して以下により詳細に記載されるように、粘度は、システムを使用して測定することもでき、或いは粘度は、対応する振動周波数の比に関連付けられた所定の値としてメータ電子機器20に単にプログラムすることもできる。
図4になお言及し、グラフ400は、各流体の測定された粘度と振動周波数の比との間の相関関係を示している。示すように、振動周波数の比は約1.186から約1.228の範囲である。約1.228の振動周波数の比は、約1.000の粘度と相互に関係している。粘度が1.000をわずかに超えて増加すると、導管周波数の比は1.186から約1.201に増加する。この増加は放物線状の外観を持ち、値を曲線に適合させることを示し、方程式を使用して振動周波数の比の連続範囲を粘度に相互に関係付けることができる。
図5は、一実施形態に従った、粘性効果について修正するために使用される相関パラメータと流量修正値との間の関係を示すグラフ500である。グラフ500は、相関パラメータ軸510と質量誤差軸520を含む。相関パラメータ軸510は、非粘度相関パラメータであり、図4を参照して上述した振動周波数の比である。図5に示すように、相関パラメータ軸510の範囲は1.185から約1.235である。質量誤差軸520は、質量流量誤差のパーセンテージであり、-0.70から0.20の範囲である。グラフ500は、質量誤差を粘度値に関連付ける異なる流体についての複数のデータ点530を示している。異なる流体の夫々データ点530は、異なる形状のマーカ(例えば、三角形、正方形、十字形、二重十字形など)によって示される。
質量流量誤差の割合は、約1.185から約1.195の振動周波数の比に対して約-0.20から約0.05の範囲である。約1.195から約1.20の振動周波数範囲では、質量流量誤差の割合は約-0.35から-0.60の範囲に低下する。理解されるように、質量流量誤差の変化は、約1.190の振動周波数の比でピークを持つ放物線形状をしている。従って、1.185から約1.205までのデータに曲線を当てはめることができる。さらに図の右側にて、約1.230の振動周波数の比では、質量流量誤差の割合の読み取り値は約0.05から約-0.40の範囲である。この質量流量誤差率の読み取り値のセットは、質量流量誤差率値の平均などの単一の質量流量誤差値で概算でき、これは約-0.20になる場合がある。
流体の粘度は、非粘度相関パラメータと相互に関係するように測定、入力、またはその他の方法で提供される。例えば、流体の粘度は、流体の流量が測定される前にメータ電子機器20に入力されてもよい。メータ電子機器20は、その後、入力粘度を流体の測定された流量と相互に関係付けることができる。或いは、直接または間接的に通信する粘度計を含むシステムでは、メータ電子機器20は図1に示す振動計5のような振動計内の流体を測定するのに用いられる。例示的なシステムは、図6及び図7を参照して以下に記載される。
図6は、一実施形態に従った、粘性効果について測定された流量を修正するシステム600を示す。図6に示すように、システム600は、図1を参照して前述したセンサアセンブリ10及びメータ電子機器20を備えた振動計5を含む。システム600はまた、センサアセンブリ10の入口に結合される粘度計610と、粘度計610及び振動計5に通信可能に結合されるコントローラ620とを含む。特に、コントローラ620は、メータ電子機器20に通信可能に結合されている。
振動計5は、振動計5内の流体の流量を決定するように構成される。特に、メータ電子機器20はセンサアセンブリ10からの信号を受信し、流体の流量を決定するように構成される。メータ電子機器20はまた、センサ信号に基づいて流体の非粘度相関パラメータを決定するように構成される。例えば、メータ電子機器20は、センサ信号に基づいて、流体速度対質量流量の比を決定するように構成されてもよい。メータ電子機器20は、振動周波数の比を決定するように構成されてもよい。
粘度計610は、振動計5に提供される流体の粘度を測定し、測定された粘度をコントローラ620に提供することができる。コントローラ620は、測定された粘度を受信し、測定された粘度を振動計5、特にメータ電子機器20に提供することができる。或いは、振動計5、特にメータ電子機器20は、測定された流量及び決定された非粘度相関パラメータをコントローラ620に提供することができる。或いは、図7を参照して以下に記載されるように、粘度計は振動計5と通信する。
図7は、一実施形態に従った、粘性効果について測定された流量を修正するシステム700を示す。図7に示すように、システム700は、図1を参照して前述したセンサアセンブリ10及びメータ電子機器20を備えた振動計5を含む。システム700はまた、図6に示されるシステム600の一部である粘度計610と同じであっても異なっていてもよい粘度計710を含む。図7に示すように、粘度計710は、コントローラではなく振動計5と直接通信している。従って、粘度計710は、振動計5に提供されている流体の粘度を測定し、測定された粘度を振動計5に提供することができる。
粘度計710をメータ電子機器20に接続する点線で示すように、粘度計710は、流体の粘度を提供するために必ずしもメータ電子機器20と接続されていなくてもよい。例えば、粘度計710は、他のある時間に流体を測定して、流体の粘度を測定することができる。測定された粘度は、後でメータ電子機器20に入力されてもよい。振動計5はまた、測定された粘度を測定された流量と相互に関係付けるように構成されてもよい。
システム600及び700に関連して、実際の質量流量は、粘度に関係なく実際の質量流量を測定できる方法又は装置を使用して決定することもできる。例えば、振動計5を通る流体の総体積流量は、体積測定機能を使用して粘度計610、710により測定され得る。実際の質量流量は、粘度計610、710により測定されるが、代替のシステムは実際の質量流量を決定するための別の方法/装置を含むことができる。実際の質量流量を使用して、流体の粘度の流量修正値を決定することができる。例えば、振動計5によって提供される測定された流体流量を実際の質量流量と比較して、質量流量誤差の割合を決定することができる。この質量流量誤差の割合は、粘度計610、710によって提供された測定粘度と相互に関係付けられ、メータ電子機器20に格納することができる。
従って、メータ電子機器20は、非粘度相関パラメータ及び流量修正値と相互に関係して保存された粘度値を有する。例えば、粘度値は、流体速度対質量流量の比の値及び/又は振動周波数の比値及び質量流量誤差率の値と相互に関係していてもよい。これらの相関関係を使用して、図8を参照して以下の記載に示すように、動作中に測定された流量値などの測定された流量値を修正する。
図8は、一実施形態に従った、粘性効果について測定された流量を修正する方法800を示す。図8に示すように、方法800はステップ810にてセンサアセンブリからセンサ信号を受信することによって開始する。ステップ820にて、流体の非粘度相関パラメータはセンサ信号に基づいて決定される。非粘度相関パラメータと流体の粘性は、ステップ830にて相互に関係付けられる。
例えば、非粘度相関パラメータは、振動計5内のセンサアセンブリ10の振動周波数の比であり得る。流体速度対質量流量の比のようなセンサ信号に基づく他の非粘度相関パラメータが決定される。流体速度対質量流量の比の場合、センサアセンブリ10のパラメータは、センサ信号とともに依存されて、非粘度相関パラメータを決定することができる。例えば、流体速度は、センサアセンブリ10内の導管130、130'の有効断面積に基づいて決定することができる。
振動計内における流体の粘性及び非粘度相関パラメータは、製造工程中、現場での較正などで測定及び相互に関係付けることができる。図6及び図7に示すシステム600、700に関連して、粘度は振動計5に通信可能に結合された粘度計610、710により測定され得る。或いは、流体の粘度は、個別に測定され(例えば、所定のものなど)、その後、経路26などを介して提供されて振動計5に手動で入力され得る。
その結果、動作中、センサアセンブリが、水、空気などの既知の粘度値を持つ基準流体または特性化された流体を測定しているときに、メータ電子機器20は、センサ信号1651、165rを使用して、例えば、センサアセンブリ10の周波数を決定し、この周波数を使用して、決定された周波数とセンサアセンブリ10の周波数との比を決定することができる。この振動周波数の比は、流量修正値とともにメータ電子機器20に保存されてもよい。振動周波数の比及び流量修正値の両方は、流体の粘度と相互に関係付けられる。これらの及び他の相関付けが用いられて、測定された流量を修正する。
図9は、一実施形態に従った、粘性効果について測定された流量を修正する方法900を示す。図9に示すように、方法900は、振動計のセンサアセンブリからのセンサ信号に基づいて、流体の流量及び非粘性相関パラメータを決定する。ステップ920にて、方法900は、粘度値と相関する非粘度相関パラメータに基づいて流体流量を修正する。従って、測定された流体の粘度を知ることも測定することなく、測定された流量は粘度の影響について修正され得る。
ステップ910において、方法900は例えば、振動計5のセンサアセンブリ10によって提供されるセンサ信号に基づいて、流体の流量及び非粘性相関パラメータを決定することができる。この例示的な実施形態において、メータ電子機器20は、センサアセンブリ10によって提供されるセンサ信号を受信し、流体流量及び非粘度相関パラメータを決定することができる。非粘度相関パラメータは例えば、振動計5の流体速度対質量流量の比または振動周波数の比であってもよい。
ステップ920にて、方法900は、例えば、粘度値と相関する流量修正値を使用して、粘度値と相互に関係する非粘度相関パラメータに基づいて流体の流量を修正することができる。例えば、方法900は、粘度値と相互に関係する決定された非粘度相関パラメータを使用して、同じ粘度にも相互に関係する流量修正値を得る。流量修正値は、質量流量率どの流量率であるが、粘度と相互に関係し、粘度効果について測定流量を修正するために使用され得る任意の適切な値であればよい。
粘度値は、ステップ910で測定されている流体の粘度値であってもなくてもよい。例えば、粘度値は、振動計5のセンサアセンブリ10によって測定されていない1つ以上の他の流体の粘度値であってもよい。特に上記の方法800に言及して、方法900の粘度値は、較正中に測定された流体に基づいてもよく、該流体はステップ910で測定されている流体とは異なる。従って、非粘度相関パラメータは、測定される流体の粘度値が不明であっても、測定される流体の粘度効果について質量流量を修正するために使用され得る。
上記の実施形態は、粘性効果について修正する振動計5、システム600、700、方法800、900を提供する。実施形態は必ずしも流体の粘度を知るまたは測定することなく、流体の粘度効果を考慮することにより、流量を測定する技術的プロセスを提供及び改善する。例えば、様々な流体の粘度を測定し、非粘度相関パラメータと相互に関係付けることにより、様々な粘度値と非粘度相関パラメータの間の方程式などの関係を確立することができる。粘性効果について測定された流量を修正すべく、この及び他の関係が用いられる。
測定された流量の修正は、様々な流体を使用して粘度と相互に関係している流量修正値を使用して実行することができる。例えば、粘度値または非粘度相関パラメータと相互に関係する質量流量誤差率を採用することができる。非粘度相関パラメータは振動計からのセンサ信号に基づいており、様々な流体の粘度と相互に関係しているため、流体の粘度を測定して流量測定値を修正する、粘度計などの追加の機器は不要である。非粘度相関パラメータは、粘度計を使用して特徴付けられる2つ以上の流体に基づいて決定され、または他の方法で知られている粘度値と相互に関係付けることができる。流体の粘度は、流量修正値とも相互に関係する。
従って、振動計によって測定される流体の粘性効果を考慮することにより、流量測定の技術が改善される。具体的な改善は、流量修正値を使用して測定された流量を修正することにより、流量の精度が改善されることである。特定の改善は、様々な粘度値を持つ様々な流体の流量測定の一貫した正確さとなる。更に、様々な流体が、非粘性相関パラメータと流量修正値との間に方程式やデータ関係などの関係を提供するように特徴付けられているため、粘度計などの他の機器からのリアルタイム信号に関連する信号処理を回避することにより、メータ電子機器の動作が改善される。測定される流体の粘度が本質的に流量測定に関連付けられるようにすることにより、振動計の動作も改善される。即ち、流体を運ぶ導管に沿った2つの異なるセンサに関連する遅延の問題が回避される。
上記の実施形態の詳細な説明は、本発明の範囲内であると本発明者らが考えているすべての実施形態の網羅的な説明ではない。実際、当業者であれば、上述の実施形態の特定の要素は、さらなる実施形態を作成するために様々に組み合わせるまたは削除されることができ、このようなさらなる実施形態は本明細書の範囲及び教示に含まれることを認識すべきであろう。また、当業者には、上述の実施形態を全体的または部分的に組み合わせて、本明細書の範囲及び教示内の追加の実施形態を作成することができることは明らかであろう。
従って、特定の実施形態が本明細書において例示目的で記載されているが、当業者が認識するように、本明細書の範囲内で様々な均等な変更が可能である。本明細書で提供される教示は、上述され添付の図面に示される実施形態だけでなく、粘性効果について測定された流量を修正する他のシステム及び方法にも適用することができる。したがって、上記の実施形態の範囲は、以下の特許請求の範囲から決定されるべきである。
理解されるように、第1の曲線231及び第2の曲線241を使用して、流体速度対流量の比などの相関パラメータと質量誤差との関係を確立することができる。流体速度対流量の比は例えば、センサ信号の位相差から流量を計算し、導管130、130’の等価断面積を使用して流体の速度を計算することにより、決定できる。流体速度対流量の比は、これらの2つの値を使用して計算でき、流体の粘度と相関するため、以下に示すように、粘性効果について測定流量を修正するために使用することができる。

Claims (20)

  1. 振動計(5)内の流体の粘性効果について、測定された流量を修正するシステム(600、700)であって、
    センサアセンブリ(10)と、
    該センサアセンブリ(10)に通信可能に連結されたメータ電子機器(20)を備え、該メータ電子機器(20)は、
    センサアセンブリ(10)からセンサ信号を受信し、
    センサ信号に基づいて非粘度相関パラメータを決定し、
    非粘度相関パラメータをセンサアセンブリ(10)内の液体の粘度に相互に関係付けるように構成される、システム(600、700)。
  2. 前記メータ電子機器(20)は更に、非粘度相関パラメータを2つ以上の流体の粘度と相互に関係付けるように構成される、請求項1に記載のシステム(600、700)。
  3. 前記メータ電子機器(20)は更に、非粘度相関パラメータをセンサアセンブリ(10)内の流体の流体流量の誤差率に相互に関係付けるように構成される、請求項1又は2に記載のシステム(600、700)。
  4. 非粘度相関パラメータは、流体速度対質量流量の比及び振動計(5)の振動周波数の比のうちの1つを含む、請求項1乃至3の何れかに記載のシステム(600、700)。
  5. メータ電子機器(20)に通信可能に結合された粘度計(610、710)を更に備え、前記粘度計(610、710)は、流体の粘度を測定し、測定された粘度をメータ電子機器(20)に提供するように構成される、請求項1乃至4の何れかに記載のシステム(600、700)。
  6. 前記メータ電子機器(20)は更に、センサ信号に基づいて流体の流量を決定するように構成される、請求項1乃至5の何れかに記載のシステム(600、700)。
  7. 振動計内の流体の粘性効果について測定流量を修正する方法であって、
    センサアセンブリからセンサ信号を受信する工程と、
    センサ信号に基づいて非粘性相関パラメータを決定する工程と、
    非粘度相関パラメータをセンサアセンブリ内の流体の粘度に相互に関係付ける工程を備える、方法。
  8. 更に非粘度相関パラメータを2つ以上の流体の粘度と相互に関係付ける工程を備える、請求項7に記載の方法。
  9. 更に、非粘度相関パラメータを測定された流量の誤差率に相互に関係付ける工程と、
    誤差率をセンサアセンブリ内の流体の粘度に相互に関係付ける工程を備える、請求項7又は8に記載の方法。
  10. 非粘度相関パラメータは、流体速度対質量流量の比及び振動計の振動周波数の比のうちの1つを含む、請求項7乃至9の何れかに記載の方法。
  11. 流体の粘性効果について測定された流量を修正する振動計(5)であって、
    センサアセンブリ(10)と、
    該センサアセンブリ(10)に通信可能に連結されたメータ電子機器(20)を備え、該メータ電子機器(20)は、
    振動計のセンサアセンブリからのセンサ信号に基づいて流体の流量と流体の非粘度相関パラメータを決定し、
    非粘度相関パラメータに基づいて流体の流量を修正するように構成され、
    非粘度相関パラメータは粘度値と相互に関係している、振動計(5)。
  12. 非粘度相関パラメータは2つ以上の流体の粘度と相互に関係付けられる、請求項11に記載の振動計(5)。
  13. 粘度値と相互に関係付けられる非粘度相関パラメータは、1つ以上の他の流体の粘度値と相互に関係付けられる非粘度相関パラメータを含む、請求項11又は12に記載の振動計(5)。
  14. 非粘度相関パラメータに基づいて流体の流量を修正するように構成されたメータ電子機器(20)は、非粘度相関パラメータに相互に関係する流量の誤差率を得て、該誤差率を用いて流体の流量を修正するように構成されている、請求項11乃至13の何れかに記載の振動計(5)。
  15. 非粘度相関パラメータは、流体速度対質量流量の比及び振動計の振動周波数の比のうちの1つを含む、請求項11乃至14の何れかに記載の振動計(5)。
  16. 振動計内の流体の粘性効果について測定された流量を修正する方法であって、
    振動計のセンサアセンブリからのセンサ信号に基づいて、流体の流量及び非粘性相関パラメータを決定する工程と、
    非粘度相関パラメータに基づいて流体の流量を修正する工程を備え、
    前記非粘度相関パラメータは粘度値と相互に関係している、方法。
  17. 非粘度相関パラメータは2つ以上の流体の粘度と相互に関係付けられる、請求項16に記載の方法。
  18. 粘度値と相互に関係付けられる非粘度相関パラメータは、1つ以上の他の流体の粘度値と相互に関係付けられる非粘度相関パラメータを含む、請求項16又は17に記載の方法。
  19. 非粘度相関パラメータに基づいて流体の流量を修正する工程は、非粘度相関パラメータに相互に関係する流量の誤差率を得る工程と、
    該誤差率を用いて流体の流量を修正する工程を備えている、請求項16乃至18の何れかに記載の方法。
  20. 非粘度相関パラメータは、流体速度対質量流量の比及び振動計の振動周波数の比のうちの1つを含む、請求項16乃至19の何れかに記載の方法。
JP2021212472A 2017-05-11 2021-12-27 振動計内の流体の粘性効果について測定された流量を修正するシステム、振動計内の流体の粘性効果について測定された流量を修正する方法、及び、流体の粘性効果について測定された流量を修正する振動計 Pending JP2022050491A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021212472A JP2022050491A (ja) 2017-05-11 2021-12-27 振動計内の流体の粘性効果について測定された流量を修正するシステム、振動計内の流体の粘性効果について測定された流量を修正する方法、及び、流体の粘性効果について測定された流量を修正する振動計

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019561865A JP7336992B2 (ja) 2017-05-11 2017-05-11 振動計内の流体の粘性効果について測定流量を修正するためのシステム及び方法、流体の粘性効果について測定流量を修正する振動計、並びに、振動計内の流体の粘性効果について測定流量を修正する方法
PCT/US2017/032105 WO2018208301A1 (en) 2017-05-11 2017-05-11 Correcting a measured flow rate for viscosity effects
JP2021212472A JP2022050491A (ja) 2017-05-11 2021-12-27 振動計内の流体の粘性効果について測定された流量を修正するシステム、振動計内の流体の粘性効果について測定された流量を修正する方法、及び、流体の粘性効果について測定された流量を修正する振動計

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019561865A Division JP7336992B2 (ja) 2017-05-11 2017-05-11 振動計内の流体の粘性効果について測定流量を修正するためのシステム及び方法、流体の粘性効果について測定流量を修正する振動計、並びに、振動計内の流体の粘性効果について測定流量を修正する方法

Publications (1)

Publication Number Publication Date
JP2022050491A true JP2022050491A (ja) 2022-03-30

Family

ID=58745445

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019561865A Active JP7336992B2 (ja) 2017-05-11 2017-05-11 振動計内の流体の粘性効果について測定流量を修正するためのシステム及び方法、流体の粘性効果について測定流量を修正する振動計、並びに、振動計内の流体の粘性効果について測定流量を修正する方法
JP2021212472A Pending JP2022050491A (ja) 2017-05-11 2021-12-27 振動計内の流体の粘性効果について測定された流量を修正するシステム、振動計内の流体の粘性効果について測定された流量を修正する方法、及び、流体の粘性効果について測定された流量を修正する振動計

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019561865A Active JP7336992B2 (ja) 2017-05-11 2017-05-11 振動計内の流体の粘性効果について測定流量を修正するためのシステム及び方法、流体の粘性効果について測定流量を修正する振動計、並びに、振動計内の流体の粘性効果について測定流量を修正する方法

Country Status (5)

Country Link
US (1) US11499857B2 (ja)
EP (1) EP3622259A1 (ja)
JP (2) JP7336992B2 (ja)
CN (1) CN110582689B (ja)
WO (1) WO2018208301A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200393278A1 (en) * 2019-06-13 2020-12-17 Heinrichs Messtechnik Gmbh Device for Compensating Viscosity-Induced Measurement Errors, for Coriolis Flow Measurement
DE102019116872A1 (de) * 2019-06-24 2020-12-24 Heinrichs Messtechnik Gmbh Verfahren und Vorrichtung zur Ermittlung eines Strömungsparameters mittels eines Coriolis-Durchflussmessgerätes
DE102020131459A1 (de) * 2020-11-27 2022-06-02 Endress+Hauser Flowtec Ag Verfahren und Messgerät zur Bestimmung eines Viskositätsmesswerts sowie Verfahren und Messanordnung zum Bestimmen eines Durchflussmesswerts
DE102021202464B3 (de) 2021-03-15 2022-09-08 Rota Yokogawa Gmbh & Co Kg Verfahren zur kompensation des einflusses der reynolds-zahl auf die messung eines coriolis-massendurchflussmessgeräts und derartiges gerät

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005809A (ja) * 2000-04-27 2002-01-09 Endress & Hauser Frohtec Ag 振動式測定装置および流体の粘度の測定方法
JP2007529728A (ja) * 2004-03-19 2007-10-25 エンドレス ウント ハウザー フローテック アクチエンゲゼルシャフト コリオリ式質量流量測定装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU468099A1 (ru) * 1972-07-11 1975-04-25 Предприятие П/Я А-7828 Способ градуировки ротаметров
US4109524A (en) 1975-06-30 1978-08-29 S & F Associates Method and apparatus for mass flow rate measurement
USRE31450E (en) 1977-07-25 1983-11-29 Micro Motion, Inc. Method and structure for flow measurement
US4491025A (en) 1982-11-03 1985-01-01 Micro Motion, Inc. Parallel path Coriolis mass flow rate meter
DE3638438A1 (de) * 1986-11-11 1988-05-26 Rainer Dr Ing Koehnlechner Einrichtung und verfahren zum kalibrieren von durchfluss-messgeraeten
US5661232A (en) 1996-03-06 1997-08-26 Micro Motion, Inc. Coriolis viscometer using parallel connected Coriolis mass flowmeters
DE59904728D1 (de) 1998-12-11 2003-04-30 Flowtec Ag Coriolis-massedurchfluss-/dichtemesser
EP1281938B1 (de) * 1998-12-11 2012-05-30 Endress + Hauser Flowtec AG Coriolis massedurchfluss-/dichtemesser
US6651513B2 (en) * 2000-04-27 2003-11-25 Endress + Hauser Flowtec Ag Vibration meter and method of measuring a viscosity of a fluid
US6910366B2 (en) * 2001-08-24 2005-06-28 Endress + Hauser Flowtec Ag Viscometer
EP1291639B1 (de) 2001-08-24 2013-11-06 Endress + Hauser Flowtec AG Viskositäts-Messgerät
US6606917B2 (en) * 2001-11-26 2003-08-19 Emerson Electric Co. High purity coriolis mass flow controller
US7043374B2 (en) * 2003-03-26 2006-05-09 Celerity, Inc. Flow sensor signal conversion
US7040180B2 (en) * 2003-12-12 2006-05-09 Endress + Hauser Flowtec Ag Coriolis mass-flow measuring device
EP1724558A1 (en) * 2005-05-18 2006-11-22 Endress + Hauser Flowtec AG Coriolis mass flow/density measuring devices and method for compensating measurement errors in such devices
US7406878B2 (en) 2005-09-27 2008-08-05 Endress + Hauser Flowtec Ag Method for measuring a medium flowing in a pipeline and measurement system therefor
CN101614575B (zh) * 2008-06-26 2012-05-23 北京谊安医疗系统股份有限公司 校正质量流量传感器的电压与气流速度关系的方法
CN102625905B (zh) * 2009-05-04 2013-10-30 琼脂有限公司 多相流体测量装置和方法
DE102009002941A1 (de) * 2009-05-08 2010-11-11 Endress + Hauser Flowtec Ag Verfahren zum Detektieren einer Verstopfung in einem Coriolis-Durchflussmessgerät
CN102762960B (zh) 2009-12-01 2014-07-16 微动公司 振动流量计摩擦补偿
CN101900589B (zh) * 2010-04-29 2012-07-04 中国石油大学(华东) 基于质量流量计的夹气液体流量测量方法
WO2012089431A1 (de) * 2010-12-30 2012-07-05 Endress+Hauser Flowtec Ag Messaufnehmer vom vibrationstyp sowie damit gebildetes messsystem
AU2011370625B2 (en) * 2011-06-08 2015-02-19 Micro Motion, Inc. Method and apparatus for determining and controlling a static fluid pressure through a vibrating meter
MX343522B (es) 2012-09-27 2016-11-09 Micro Motion Inc Circuito electronico y metodo para obtener viscosidad de fluido de flujo a temperatura de referencia.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005809A (ja) * 2000-04-27 2002-01-09 Endress & Hauser Frohtec Ag 振動式測定装置および流体の粘度の測定方法
JP2007529728A (ja) * 2004-03-19 2007-10-25 エンドレス ウント ハウザー フローテック アクチエンゲゼルシャフト コリオリ式質量流量測定装置

Also Published As

Publication number Publication date
JP7336992B2 (ja) 2023-09-01
EP3622259A1 (en) 2020-03-18
CN110582689A (zh) 2019-12-17
JP2020519882A (ja) 2020-07-02
US11499857B2 (en) 2022-11-15
CN110582689B (zh) 2021-12-31
WO2018208301A1 (en) 2018-11-15
US20200249062A1 (en) 2020-08-06

Similar Documents

Publication Publication Date Title
RU2571173C2 (ru) Вибрационный расходомер и способ контроля нуля
JP2022050491A (ja) 振動計内の流体の粘性効果について測定された流量を修正するシステム、振動計内の流体の粘性効果について測定された流量を修正する方法、及び、流体の粘性効果について測定された流量を修正する振動計
JP2014522972A5 (ja)
JP4546927B2 (ja) コリオリ流量計用の診断方法及び装置
AU2012388249B2 (en) Coriolis flowmeter and method with improved meter zero
KR20080063387A (ko) 강성 계수 또는 질량 계수 중 하나 이상을 결정하기 위한방법 및 계측 전자장치
JP4373781B2 (ja) コリオリ流量計における流管と流体との特性の決定
JP2003503691A (ja) コリオリ流量計の駆動制御のための形式識別
JP2005502041A5 (ja)
CN115023592A (zh) 校正流量计变量的方法
JP6967517B2 (ja) 振動式流量計のための圧力補償および関連方法
JP7035274B2 (ja) 流量計の剛性係数をいつ検証するかを決定する方法
JP5149263B2 (ja) コリオリ流量計用の診断方法及び装置
RU2427804C1 (ru) Вибрационный расходомер и способ для введения поправки на увлеченный газ в текущем материале
JP2017083465A (ja) 改良されたメータゼロに関するコリオリ流量計および方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240319