JP2022041013A - Exhaust emission control system of internal combustion engine - Google Patents

Exhaust emission control system of internal combustion engine Download PDF

Info

Publication number
JP2022041013A
JP2022041013A JP2020146010A JP2020146010A JP2022041013A JP 2022041013 A JP2022041013 A JP 2022041013A JP 2020146010 A JP2020146010 A JP 2020146010A JP 2020146010 A JP2020146010 A JP 2020146010A JP 2022041013 A JP2022041013 A JP 2022041013A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust
internal combustion
combustion engine
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020146010A
Other languages
Japanese (ja)
Inventor
俊児 鱒渕
Shunji Masubuchi
大祐 森山
Daisuke Moriyama
知浩 長瀬
Tomohiro Nagase
豊 鈴木
Yutaka Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2020146010A priority Critical patent/JP2022041013A/en
Priority to CN202180053679.9A priority patent/CN116057259A/en
Priority to PCT/JP2021/031648 priority patent/WO2022045318A1/en
Publication of JP2022041013A publication Critical patent/JP2022041013A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Supercharger (AREA)

Abstract

To provide an exhaust emission control system of an internal combustion engine which is advantageous for temperature rise of a catalyst and inhibition of increase in back pressure.SOLUTION: An exhaust emission control system includes a turbine 6T provided in an exhaust passage 4 of an internal combustion engine 1, a bypass passage 12 bypassing the turbine, a catalyst 15 provided in the bypass passage, an adjustment valve 17 for adjusting an exhaust flow rate of the turbine and the catalyst, and a control unit 100 for controlling the adjustment valve. The control unit controls the adjustment valve so that the exhaust flow rate of the catalyst is larger when a load of the internal combustion engine is lower than when the load of the internal combustion engine is high.SELECTED DRAWING: Figure 1

Description

本開示は内燃機関の排気浄化システムに関する。 The present disclosure relates to an exhaust purification system for an internal combustion engine.

ターボ過給式内燃機関の排気通路には、ターボチャージャのタービンが設けられる。またその排気通路において、タービンの下流側には、排気中の有害成分を浄化するための触媒が設けられる。 A turbocharged turbine is installed in the exhaust passage of the turbocharged internal combustion engine. Further, in the exhaust passage, a catalyst for purifying harmful components in the exhaust is provided on the downstream side of the turbine.

国際公開第2010/116541号公報International Publication No. 2010/116541

このようにタービンと触媒を直列に設けると、タービンに排気の熱エネルギが奪われるため、触媒の昇温に不利となる。また触媒が排気抵抗となるため、触媒の上流側の排気圧力すなわち背圧が上昇し、内燃機関の効率が低下する。 If the turbine and the catalyst are provided in series in this way, the thermal energy of the exhaust gas is taken away by the turbine, which is disadvantageous for raising the temperature of the catalyst. Further, since the catalyst becomes an exhaust resistance, the exhaust pressure on the upstream side of the catalyst, that is, the back pressure increases, and the efficiency of the internal combustion engine decreases.

そこで本開示は、かかる事情に鑑みて創案され、その目的は、触媒の昇温と背圧の上昇抑制とに有利な内燃機関の排気浄化システムを提供することにある。 Therefore, the present disclosure was devised in view of such circumstances, and an object thereof is to provide an exhaust gas purification system for an internal combustion engine which is advantageous for raising the temperature of a catalyst and suppressing an increase in back pressure.

本開示の一の態様によれば、
内燃機関の排気通路に設けられたタービンと、
前記タービンをバイパスするバイパス通路と、
前記バイパス通路に設けられた触媒と、
前記タービンおよび前記触媒の排気流量を調節するための調節弁と、
前記調節弁を制御するように構成された制御ユニットと、
を備え、
前記制御ユニットは、前記内燃機関の負荷が低い場合には、高い場合に比べ、前記触媒の排気流量が多くなるように前記調節弁を制御する
ことを特徴とする内燃機関の排気浄化システムが提供される。
According to one aspect of the present disclosure.
A turbine installed in the exhaust passage of an internal combustion engine and
A bypass passage that bypasses the turbine and
The catalyst provided in the bypass passage and
A control valve for adjusting the exhaust flow rate of the turbine and the catalyst, and
A control unit configured to control the control valve and
Equipped with
The control unit is provided by an exhaust gas purification system for an internal combustion engine, characterized in that when the load of the internal combustion engine is low, the control valve is controlled so that the exhaust flow rate of the catalyst is larger than when the load is high. Will be done.

好ましくは、前記調節弁は、前記バイパス通路の分岐点に設けられた三方電磁弁により形成される。 Preferably, the control valve is formed by a three-way solenoid valve provided at a branch point of the bypass passage.

好ましくは、前記排気浄化システムは、前記タービンより下流側、かつ前記バイパス通路の合流点より上流側に位置する前記排気通路から分岐し、前記バイパス通路の分岐点より下流側、かつ前記触媒より上流側に位置する前記バイパス通路に合流する分岐通路をさらに備え、
前記調節弁は、前記バイパス通路の分岐点に設けられた三方電磁弁と、前記分岐通路の分岐点に設けられた三方電磁弁とにより形成される。
Preferably, the exhaust purification system branches from the exhaust passage located downstream of the turbine and upstream of the confluence of the bypass passage, downstream of the branch point of the bypass passage and upstream of the catalyst. Further provided with a branch passage that joins the bypass passage located on the side,
The control valve is formed by a three-way solenoid valve provided at a branch point of the bypass passage and a three-way solenoid valve provided at the branch point of the branch passage.

好ましくは、前記触媒が選択還元型NOx触媒であり、
前記排気浄化システムは、前記触媒の上流側に位置する前記バイパス通路に設けられた尿素水噴射弁と、前記触媒の温度を取得する取得ユニットとを備え、
前記制御ユニットは、前記触媒の排気流量が所定値より多く、かつ、前記取得ユニットにより取得された前記触媒の温度が所定の活性開始温度以上であるときに、前記尿素水噴射弁から尿素水を噴射させる。
Preferably, the catalyst is a selective reduction NOx catalyst.
The exhaust purification system includes a urea water injection valve provided in the bypass passage located on the upstream side of the catalyst, and an acquisition unit for acquiring the temperature of the catalyst.
The control unit discharges urea water from the urea water injection valve when the exhaust flow rate of the catalyst is greater than a predetermined value and the temperature of the catalyst acquired by the acquisition unit is equal to or higher than a predetermined activity start temperature. Inject.

好ましくは、前記排気浄化システムは、前記バイパス通路の合流点より下流側に位置する前記排気通路に設けられ、前記触媒と同一種類の下流側触媒をさらに備える。 Preferably, the exhaust purification system is provided in the exhaust passage located downstream from the confluence of the bypass passage, and further includes a downstream catalyst of the same type as the catalyst.

好ましくは、前記触媒および前記下流側触媒が選択還元型NOx触媒である。 Preferably, the catalyst and the downstream catalyst are selective reduction NOx catalysts.

本開示によれば、触媒の昇温と背圧の上昇抑制とに有利な内燃機関の排気浄化システムを提供することができる。 According to the present disclosure, it is possible to provide an exhaust gas purification system for an internal combustion engine, which is advantageous for raising the temperature of a catalyst and suppressing an increase in back pressure.

第1実施形態の排気浄化システムを示す概略図である。It is a schematic diagram which shows the exhaust gas purification system of 1st Embodiment. 弁開度目標値を算出するためのマップを示す。A map for calculating the valve opening target value is shown. エンジン負荷と弁開度目標値の関係を示すグラフである。It is a graph which shows the relationship between an engine load and a valve opening target value. 制御ルーチンのフローチャートである。It is a flowchart of a control routine. 弁開度目標値を算出するための第1変形例のマップを示す。The map of the first modification for calculating the valve opening target value is shown. 弁開度目標値を算出するための第2変形例のマップを示す。The map of the 2nd modification for calculating the valve opening target value is shown. 第2実施形態の排気浄化システムを示す概略図である。It is a schematic diagram which shows the exhaust gas purification system of 2nd Embodiment.

以下、添付図面を参照して本開示の実施形態を説明する。なお本開示は以下の実施形態に限定されない点に留意されたい。 Hereinafter, embodiments of the present disclosure will be described with reference to the accompanying drawings. It should be noted that the present disclosure is not limited to the following embodiments.

[第1実施形態]
図1に、第1実施形態の排気浄化システムを示す。このシステムが適用される内燃機関(エンジン)1は、直列4気筒の車両用ディーゼルエンジンである。車両(図示せず)はトラック等の大型車両である。但し内燃機関の種類、形式、用途等は限定されない。
[First Embodiment]
FIG. 1 shows an exhaust gas purification system of the first embodiment. The internal combustion engine (engine) 1 to which this system is applied is an in-line 4-cylinder vehicle diesel engine. Vehicles (not shown) are large vehicles such as trucks. However, the type, type, application, etc. of the internal combustion engine are not limited.

エンジン1は、エンジン本体2と、エンジン本体2に接続された吸気通路3および排気通路4とを備える。エンジン本体2は、シリンダヘッド、シリンダブロック、クランクケース等の構造部品と、その内部に収容されたピストン、クランクシャフト、バルブ等の可動部品とを含む。吸気と排気の流れをそれぞれ白抜き矢印と黒塗り矢印で示す。 The engine 1 includes an engine main body 2 and an intake passage 3 and an exhaust passage 4 connected to the engine main body 2. The engine body 2 includes structural parts such as a cylinder head, a cylinder block, and a crankcase, and moving parts such as a piston, a crankshaft, and a valve housed therein. The intake and exhaust flows are indicated by white arrows and black arrows, respectively.

各気筒には、シリンダ5内に燃料を直接噴射するインジェクタ(図示せず)が設けられる。吸気通路3には、ターボチャージャ6のコンプレッサ6Cが設けられる。 Each cylinder is provided with an injector (not shown) that directly injects fuel into the cylinder 5. The compressor 6C of the turbocharger 6 is provided in the intake passage 3.

排気通路4には、上流側から順に、ターボチャージャ6のタービン6T、酸化触媒7、フィルタ8、尿素水噴射弁9、選択還元型NOx触媒10およびアンモニア酸化触媒11が設けられる。 The exhaust passage 4 is provided with a turbine 6T of the turbocharger 6, an oxidation catalyst 7, a filter 8, a urea water injection valve 9, a selective reduction NOx catalyst 10, and an ammonia oxidation catalyst 11 in this order from the upstream side.

酸化触媒7は、排気中の未燃成分(炭化水素HCおよび一酸化炭素CO)を酸化して浄化すると共に、このときの反応熱で排気ガスを加熱昇温し、また排気中のNOをNO2に酸化する。フィルタ8は、所謂連続再生式の触媒付きパティキュレートフィルタにより形成され、排気中に含まれる粒子状物質(PM(Particulate Matter))を捕集すると共に、捕集したPMを連続的に燃焼除去する。選択還元型NOx触媒10は、尿素水噴射弁9から噴射された尿素水に由来するアンモニアを還元剤として排気中のNOxを還元する。アンモニア酸化触媒11は、NOx触媒10から排出された余剰アンモニアを酸化して浄化する。 The oxidation catalyst 7 oxidizes and purifies the unburned components (hydrocarbon HC and carbon monoxide CO) in the exhaust, heats and raises the exhaust gas with the reaction heat at this time, and NO in the exhaust. Oxidizes to 2 . The filter 8 is formed by a so-called continuously regenerating catalytic particulate filter, collects particulate matter (PM (Particulate Matter)) contained in the exhaust gas, and continuously burns and removes the collected PM. .. The selective reduction type NOx catalyst 10 reduces NOx in the exhaust by using ammonia derived from urea water injected from the urea water injection valve 9 as a reducing agent. The ammonia oxidation catalyst 11 oxidizes and purifies the excess ammonia discharged from the NOx catalyst 10.

エンジン1には、タービン6Tをバイパスするバイパス通路12が設けられる。バイパス通路12は、タービン6Tより上流側に位置する分岐点13で排気通路4から分岐され、タービン6Tより下流側かつ酸化触媒7より上流側に位置する合流点14で排気通路4に合流される。 The engine 1 is provided with a bypass passage 12 that bypasses the turbine 6T. The bypass passage 12 is branched from the exhaust passage 4 at a branch point 13 located on the upstream side of the turbine 6T, and joins the exhaust passage 4 at a confluence 14 located on the downstream side of the turbine 6T and upstream of the oxidation catalyst 7. ..

バイパス通路12には別の触媒が設けられる。この別の触媒は、具体的には選択還元型NOx触媒15である。このNOx触媒15より上流側に位置するバイパス通路12には別の尿素水噴射弁16が設けられる。以下区別のため、バイパス通路12に設けられたNOx触媒15および尿素水噴射弁16を前段触媒15および前段噴射弁16といい、排気通路4に設けられたNOx触媒10および尿素水噴射弁9を後段触媒10および後段噴射弁9という。 Another catalyst is provided in the bypass passage 12. This other catalyst is specifically a selective reduction NOx catalyst 15. Another urea water injection valve 16 is provided in the bypass passage 12 located on the upstream side of the NOx catalyst 15. For the following distinction, the NOx catalyst 15 and the urea water injection valve 16 provided in the bypass passage 12 are referred to as a pre-stage catalyst 15 and the pre-stage injection valve 16, and the NOx catalyst 10 and the urea water injection valve 9 provided in the exhaust passage 4 are referred to as a pre-stage catalyst 15 and a pre-stage injection valve 16. It is referred to as a post-stage catalyst 10 and a post-stage injection valve 9.

このように、バイパス通路12の合流点14より下流側に位置する排気通路4には、前段触媒15と同一種類の下流側触媒すなわち後段触媒10が設けられる。 As described above, the exhaust passage 4 located on the downstream side of the confluence 14 of the bypass passage 12 is provided with the same type of downstream catalyst as the front catalyst 15, that is, the rear catalyst 10.

因みに、本実施形態における前段触媒15と後段触媒10の関係について例示的に述べると、後段触媒10がメインの触媒であり、前段触媒15は補助的な触媒である。従って前段触媒15よりも後段触媒10の方が容量が大きい。後段触媒10には常時排気が流される。主に後段触媒10のみではNOxを十分除去できないような状況下で、前段触媒15が補助的に使用される。このように前段触媒15を追加することにより、還元可能なNOx量を増やし、排ガス規制の強化に対応可能となる。 Incidentally, exemplifying the relationship between the front-stage catalyst 15 and the rear-stage catalyst 10 in the present embodiment, the rear-stage catalyst 10 is the main catalyst, and the front-stage catalyst 15 is an auxiliary catalyst. Therefore, the capacity of the rear-stage catalyst 10 is larger than that of the front-stage catalyst 15. Exhaust gas is constantly flowed through the subsequent catalyst 10. The pre-stage catalyst 15 is used as an auxiliary in a situation where NOx cannot be sufficiently removed mainly by the post-stage catalyst 10 alone. By adding the pre-stage catalyst 15 in this way, the amount of NOx that can be reduced can be increased, and it becomes possible to respond to the tightening of exhaust gas regulations.

エンジン1には、タービン6Tおよび前段触媒15の排気流量を調節するための調節弁が設けられる。本実施形態の調節弁は、バイパス通路12の分岐点13に設けられた電磁弁17により形成される。電磁弁17は三方電磁弁により形成される。便宜上、この電磁弁17を第1電磁弁17という。 The engine 1 is provided with a control valve for adjusting the exhaust flow rate of the turbine 6T and the pre-stage catalyst 15. The control valve of the present embodiment is formed by a solenoid valve 17 provided at a branch point 13 of the bypass passage 12. The solenoid valve 17 is formed by a three-way solenoid valve. For convenience, this solenoid valve 17 is referred to as a first solenoid valve 17.

第1電磁弁17は、その上流側の排気通路4をバイパス通路12(前段触媒15側)のみに接続する第1位置Aと、その上流側の排気通路4を下流側の排気通路4(タービン6T側)のみに接続する第2位置Bとに切替可能である。そして第1電磁弁17は、第1位置Aと第2位置の間で無段階かつ連続的に切替可能である。第1電磁弁17の開度Sは、第1位置Aにあるとき100%(全開)、第2位置Bにあるとき0%(全閉)であり、0%から100%まで無段階かつ連続的に可変である。 The first solenoid valve 17 has a first position A in which the exhaust passage 4 on the upstream side is connected only to the bypass passage 12 (previous stage catalyst 15 side), and the exhaust passage 4 on the upstream side thereof is connected to the exhaust passage 4 on the downstream side (turbine). It is possible to switch to the second position B connected only to the 6T side). The first solenoid valve 17 can be continuously and steplessly switched between the first position A and the second position. The opening degree S of the first solenoid valve 17 is 100% (fully open) when it is in the first position A and 0% (fully closed) when it is in the second position B, and is stepless and continuous from 0% to 100%. Is variable.

エンジン1に付帯して、制御ユニット、回路要素(circuitry)もしくはコントローラをなす電子制御ユニット(ECU(Electronic Control Unit)という)100が設けられる。ECU100は、インジェクタ、後段噴射弁9、前段噴射弁16および第1電磁弁17を制御するように構成されている。 Attached to the engine 1, a control unit, a circuit element (circuitry), or an electronic control unit (called an ECU (Electronic Control Unit)) 100 forming a controller is provided. The ECU 100 is configured to control an injector, a rear stage injection valve 9, a front stage injection valve 16, and a first solenoid valve 17.

ECU100には、エンジンの回転速度(具体的には毎分当たりの回転数(rpm))を検出するための回転速度センサ40と、運転手のアクセルペダル操作量に相関もしくは比例するアクセル開度を検出するためのアクセル開度センサ41とが電気的に接続される。またECU100には、後段触媒10の入口側の排気温度を検出するための排気温センサ42と、前段触媒15の入口側の排気温度を検出するための排気温センサ43とが電気的に接続される。 The ECU 100 has a rotation speed sensor 40 for detecting the rotation speed of the engine (specifically, the number of revolutions per minute (rpm)) and an accelerator opening degree that is correlated with or proportional to the amount of operation of the accelerator pedal of the driver. An accelerator opening sensor 41 for detection is electrically connected. Further, the ECU 100 is electrically connected with an exhaust temperature sensor 42 for detecting the exhaust temperature on the inlet side of the rear-stage catalyst 10 and an exhaust temperature sensor 43 for detecting the exhaust temperature on the inlet side of the front-stage catalyst 15. To.

ECU100は、回転速度センサ40およびアクセル開度センサ41によりそれぞれ検出されたエンジン回転数Neおよびアクセル開度Acに基づき、所定のマップ(関数でもよい。以下同様)に従って、インジェクタから噴射される燃料噴射量の目標値である目標燃料噴射量Qを算出する。目標燃料噴射量Qは、エンジン負荷を表すパラメータである。このパラメータについては、目標燃料噴射量Qの代わりに、アクセル開度Acまたは要求トルク等の他のパラメータを用いることもできる。 The ECU 100 injects fuel from the injector according to a predetermined map (may be a function; the same applies hereinafter) based on the engine speed Ne and the accelerator opening Ac detected by the rotation speed sensor 40 and the accelerator opening sensor 41, respectively. The target fuel injection amount Q, which is the target value of the amount, is calculated. The target fuel injection amount Q is a parameter representing the engine load. For this parameter, other parameters such as accelerator opening degree Ac or required torque may be used instead of the target fuel injection amount Q.

またECU100は、排気温センサ43により検出された排気温に基づき、前段触媒15の温度を推定する。代替的に、前段触媒15の出口側にも排気温センサを設け、入口側および出口側の排気温センサの検出値に基づき前段触媒15の温度を推定してもよい。推定方法には、公知方法を含め任意の方法を採用できる。ECU100は、前段触媒15自体に設けられた温度センサにより前段触媒15の温度を直接検出してもよい。これら推定と検出を総称して取得という。本実施形態では排気温センサ43とECU100により取得ユニットが構成される。 Further, the ECU 100 estimates the temperature of the pre-stage catalyst 15 based on the exhaust temperature detected by the exhaust temperature sensor 43. Alternatively, an exhaust temperature sensor may be provided on the outlet side of the pre-stage catalyst 15 and the temperature of the pre-stage catalyst 15 may be estimated based on the detection values of the exhaust temperature sensors on the inlet side and the outlet side. Any method including a known method can be adopted as the estimation method. The ECU 100 may directly detect the temperature of the pre-stage catalyst 15 by a temperature sensor provided on the pre-stage catalyst 15 itself. These estimations and detections are collectively called acquisition. In this embodiment, the acquisition unit is configured by the exhaust temperature sensor 43 and the ECU 100.

ECU100は同様に、排気温センサ42により検出された排気温に基づき、後段触媒10の温度を推定する。後段触媒10の出口側の排気温センサの検出値も含めて推定できる点、および、後段触媒10の温度を直接検出できる点も、前記同様である。 Similarly, the ECU 100 estimates the temperature of the post-stage catalyst 10 based on the exhaust temperature detected by the exhaust temperature sensor 42. The same applies to the points that can be estimated including the detection value of the exhaust temperature sensor on the outlet side of the rear-stage catalyst 10 and that the temperature of the rear-stage catalyst 10 can be directly detected.

なお本実施形態では、排気温センサ42,43が後段噴射弁9,16の下流側にそれぞれ設けられているが、上流側に設けられてもよい。 In the present embodiment, the exhaust temperature sensors 42 and 43 are provided on the downstream side of the subsequent injection valves 9 and 16, respectively, but they may be provided on the upstream side.

ここで、本実施形態とは異なる比較例として、バイパス通路12および第1電磁弁17が省略され、尿素水噴射弁16、排気温センサ43および前段触媒15が、タービン6Tより下流側かつ酸化触媒7より上流側に位置する排気通路4に設けられた例を想定する。この場合、タービン6Tと前段触媒15が排気通路4に直列に設けられる。 Here, as a comparative example different from the present embodiment, the bypass passage 12 and the first solenoid valve 17 are omitted, and the urea water injection valve 16, the exhaust temperature sensor 43, and the front-stage catalyst 15 are located downstream of the turbine 6T and as an oxidation catalyst. It is assumed that an example is provided in the exhaust passage 4 located on the upstream side of 7. In this case, the turbine 6T and the pre-stage catalyst 15 are provided in series with the exhaust passage 4.

この場合、タービン6Tに排気の熱エネルギが奪われるため、前段触媒15の昇温および活性化に不利となる。また前段触媒15が排気抵抗となるため、前段触媒15の上流側の排気圧力すなわち背圧が上昇し、内燃機関の効率が低下する。因みに、前段触媒15の上流側の排気圧力が上昇すると、タービン6Tの入口側と出口側の差圧が減少するため、タービン6Tの効率が低下する。 In this case, since the thermal energy of the exhaust gas is taken away by the turbine 6T, it is disadvantageous for raising the temperature and activating the pre-stage catalyst 15. Further, since the front-stage catalyst 15 becomes an exhaust resistance, the exhaust pressure, that is, the back pressure on the upstream side of the front-stage catalyst 15 increases, and the efficiency of the internal combustion engine decreases. Incidentally, when the exhaust pressure on the upstream side of the pre-stage catalyst 15 rises, the differential pressure between the inlet side and the outlet side of the turbine 6T decreases, so that the efficiency of the turbine 6T decreases.

そこで本実施形態では、この問題を解決するため上記構成とし、併せて、以下の制御を実行する。概略を述べると、ECU100は、エンジンの負荷が低い場合には、高い場合に比べ、前段触媒15の排気流量が多くなるように第1電磁弁17を制御する。 Therefore, in the present embodiment, in order to solve this problem, the above configuration is used, and the following control is executed. Briefly, the ECU 100 controls the first solenoid valve 17 so that when the load of the engine is low, the exhaust flow rate of the front-stage catalyst 15 is larger than when the load is high.

詳しくは、ECU100は、図2に示すような所定のマップ(関数でもよい。以下同様)に従い、エンジンの回転数Neおよび負荷Lに対応した弁開度目標値Stを算出すると共に、第1電磁弁17の実際の開度S(%)を、弁開度目標値Stに等しくなるよう制御する。負荷Lは具体的には目標燃料噴射量Qであり、負荷Lが増加するほど目標燃料噴射量Qが増加する。このマップにおいて、エンジン回転数Neがある一定の回転数であるときのエンジン負荷Lと弁開度目標値Stの関係を図3に示す。 Specifically, the ECU 100 calculates the valve opening target value St corresponding to the engine speed Ne and the load L according to a predetermined map (may be a function; the same applies hereinafter) as shown in FIG. 2, and also calculates the first solenoid. The actual opening degree S (%) of the valve 17 is controlled to be equal to the valve opening degree target value St. Specifically, the load L is the target fuel injection amount Q, and the target fuel injection amount Q increases as the load L increases. In this map, FIG. 3 shows the relationship between the engine load L and the valve opening target value St when the engine speed Ne is a constant speed.

図3において、縦軸は第1電磁弁17の開度S(%)であり、0(%)が全閉、100(%)が全開である。全閉時にはバイパス通路12が完全に閉じられ、前段触媒15の排気流量はゼロとなる。従ってエンジン本体2から分岐点13に供給された排気は、その全量がタービン6Tに供給され、タービン6Tの排気流量は最大となる。 In FIG. 3, the vertical axis is the opening degree S (%) of the first solenoid valve 17, 0 (%) is fully closed, and 100 (%) is fully open. When fully closed, the bypass passage 12 is completely closed, and the exhaust flow rate of the front-stage catalyst 15 becomes zero. Therefore, the entire amount of the exhaust gas supplied from the engine body 2 to the branch point 13 is supplied to the turbine 6T, and the exhaust flow rate of the turbine 6T becomes maximum.

開度Sが増加するにつれ、バイパス通路12の開放量および前段触媒15の排気流量は増加し、タービン6Tの排気流量は減少する。開度Sが100(%)に達したとき、バイパス通路12の開放量および前段触媒15の排気流量は最大となり、タービン6Tの排気流量はゼロとなる。 As the opening degree S increases, the opening amount of the bypass passage 12 and the exhaust flow rate of the front-stage catalyst 15 increase, and the exhaust flow rate of the turbine 6T decreases. When the opening degree S reaches 100 (%), the opening amount of the bypass passage 12 and the exhaust flow rate of the front-stage catalyst 15 become maximum, and the exhaust flow rate of the turbine 6T becomes zero.

分岐点13に供給される排気流量をF0、前段触媒15の排気流量をF1、タービン6Tの排気流量をF2とし、R1=F1/F0を前段触媒15における排気流量の分配比すなわち第1分配比、R2=F2/F0をタービン6Tにおける排気流量の分配比すなわち第2分配比とする。この場合、第1電磁弁17の開度Sが増加するほど、第1分配比R1は増加し、第2分配比R2は減少する。 The exhaust gas flow rate supplied to the branch point 13 is F0, the exhaust gas flow rate of the front stage catalyst 15 is F1, the exhaust gas flow rate of the turbine 6T is F2, and R1 = F1 / F0 is the distribution ratio of the exhaust gas flow rate in the front stage catalyst 15, that is, the first distribution ratio. , R2 = F2 / F0 is defined as the distribution ratio of the exhaust gas flow rate in the turbine 6T, that is, the second distribution ratio. In this case, as the opening degree S of the first solenoid valve 17 increases, the first distribution ratio R1 increases and the second distribution ratio R2 decreases.

マップの横軸はエンジン負荷Lである。Lminは最小負荷であり、これは、アクセルペダルが完全に戻されてアクセル開度Acが最小値すなわち0(%)のときのエンジン負荷に相当する。このときの目標燃料噴射量Qはアイドル時の燃料噴射量に等しい。Lmaxは最大負荷であり、これは、アクセルペダルが最大に踏み込まれてアクセル開度Acが最大値すなわち100(%)のときのエンジン負荷に相当する。 The horizontal axis of the map is the engine load L. Lmin is the minimum load, which corresponds to the engine load when the accelerator pedal is completely returned and the accelerator opening Ac is the minimum value, that is, 0 (%). The target fuel injection amount Q at this time is equal to the fuel injection amount at idle. Lmax is the maximum load, which corresponds to the engine load when the accelerator pedal is depressed to the maximum and the accelerator opening degree Ac is the maximum value, that is, 100 (%).

これら最小負荷Lminと最大負荷Lmaxの間の中間負荷において、しきい値Lsが予め設定される。そして太実線で示される弁開度目標値Stは、L≦Lsのとき100(%)、L>Lsのとき0(%)とされる。 The threshold Ls is preset in the intermediate load between the minimum load Lmin and the maximum load Lmax. The valve opening target value St shown by the thick solid line is 100 (%) when L ≦ Ls and 0 (%) when L> Ls.

このマップに従いECU100は、実際のエンジン負荷Lがしきい値Ls以下の低負荷であるとき、第1電磁弁17の開度Sを、弁開度目標値Stに等しい100(%)に制御する。また、実際のエンジン負荷Lがしきい値Lsより大きい高負荷であるとき、第1電磁弁17の開度Sを、弁開度目標値Stに等しい0(%)に制御する。なお実際のエンジン負荷Lは実際の目標燃料噴射量Qに相当し、しきい値Lsは、しきい値Ls相当の目標燃料噴射量Qに相当する。 According to this map, the ECU 100 controls the opening degree S of the first solenoid valve 17 to 100 (%) equal to the valve opening degree target value St when the actual engine load L is a low load equal to or less than the threshold value Ls. .. Further, when the actual engine load L is a high load larger than the threshold value Ls, the opening degree S of the first solenoid valve 17 is controlled to 0 (%) equal to the valve opening degree target value St. The actual engine load L corresponds to the actual target fuel injection amount Q, and the threshold value Ls corresponds to the target fuel injection amount Q corresponding to the threshold value Ls.

低負荷時に第1電磁弁17の開度Sを100(%)とすると、前述したように、前段触媒15の排気流量は最大となり、タービン6Tの排気流量はゼロとなる。よって、エンジン本体2から供給された高温の排気を、前段触媒15に最大限供給できる。また、前段触媒15をバイパス通路12に、タービン6Tと並列させて設けたので、タービン通過により熱エネルギが奪われた後の排気を前段触媒15に供給しなくて済む。これにより、前段触媒15の昇温および活性化に非常に有利となる。特に冷間始動後のアイドル暖機中には、エンジン本体2からの排気を、タービン6Tを介さずに、前段触媒15に直接供給できるため、前段触媒15を早期に活性化させることが可能となる。低負荷時には、ターボチャージャ6による過給の必要性が少ないので、タービン6Tの排気流量がゼロとなっても特段問題はない。 Assuming that the opening degree S of the first solenoid valve 17 is 100 (%) when the load is low, the exhaust flow rate of the front-stage catalyst 15 becomes maximum and the exhaust flow rate of the turbine 6T becomes zero, as described above. Therefore, the high-temperature exhaust gas supplied from the engine body 2 can be supplied to the front-stage catalyst 15 to the maximum. Further, since the pre-stage catalyst 15 is provided in the bypass passage 12 in parallel with the turbine 6T, it is not necessary to supply the exhaust gas after the thermal energy is deprived by passing through the turbine to the pre-stage catalyst 15. This is extremely advantageous for raising the temperature and activating the pre-stage catalyst 15. In particular, during idle warm-up after a cold start, the exhaust gas from the engine body 2 can be directly supplied to the pre-stage catalyst 15 without going through the turbine 6T, so that the pre-stage catalyst 15 can be activated at an early stage. Become. When the load is low, there is little need for supercharging by the turbocharger 6, so there is no particular problem even if the exhaust flow rate of the turbine 6T becomes zero.

一方、高負荷時に第1電磁弁17の開度Sを0(%)とすると、前述したように、タービン6Tの排気流量は最大となり、前段触媒15の排気流量はゼロとなる。よって、タービン6Tに排気の全量を供給して、ターボチャージャ6による必要十分な過給を行うことができる。また、このときに前段触媒15に排気を流さなくて済むので、前段触媒15の存在による背圧の上昇、ひいてはエンジン効率の低下を抑制できる。背圧上昇によるタービン効率低下も抑制できる。タービン通過後の排気は後段触媒10を通過するので、前段触媒15をバイパスさせても、後段触媒10により排気中のNOxを支障なく浄化することができる。 On the other hand, when the opening degree S of the first solenoid valve 17 is set to 0 (%) at the time of high load, the exhaust flow rate of the turbine 6T becomes maximum and the exhaust flow rate of the front-stage catalyst 15 becomes zero as described above. Therefore, it is possible to supply the entire amount of exhaust gas to the turbine 6T and perform necessary and sufficient supercharging by the turbocharger 6. Further, since it is not necessary to flow the exhaust gas to the front-stage catalyst 15 at this time, it is possible to suppress an increase in back pressure due to the presence of the front-stage catalyst 15, and thus a decrease in engine efficiency. It is also possible to suppress a decrease in turbine efficiency due to an increase in back pressure. Since the exhaust gas after passing through the turbine passes through the rear stage catalyst 10, even if the front stage catalyst 15 is bypassed, the NOx in the exhaust can be purified without any trouble by the rear stage catalyst 10.

このように本実施形態によれば、エンジン負荷が低い場合(L≦Ls)には、高い場合(L>Ls)に比べ、前段触媒15の排気流量が多くなるように第1電磁弁17を制御するので、前段触媒15の昇温と背圧の上昇抑制とに有利な排気浄化システムを提供することができる。 As described above, according to the present embodiment, when the engine load is low (L ≦ Ls), the first solenoid valve 17 is provided so that the exhaust flow rate of the pre-stage catalyst 15 is larger than when the engine load is high (L> Ls). Since it is controlled, it is possible to provide an exhaust gas purification system that is advantageous for raising the temperature of the pre-stage catalyst 15 and suppressing the increase in back pressure.

以上の観点に鑑み、エンジン負荷のしきい値Lsは、前段触媒15の活性度向上というエミッション要求と、過給によるエンジン出力要求とを最適にバランスさせる値に設定するのが好ましい。またしきい値Lsは、エンジン回転数Neに応じて変更してもよい。 In view of the above viewpoint, it is preferable to set the threshold value Ls of the engine load to a value that optimally balances the emission requirement for improving the activity of the pre-stage catalyst 15 and the engine output requirement due to supercharging. Further, the threshold value Ls may be changed according to the engine speed Ne.

ところで、後段触媒10は、その温度Tc2が所定の活性開始温度Tc2s以上にならないとNOxを実質的に浄化できない。そのためECU100は、推定した後段触媒10の温度Tc2が活性開始温度Tc2s以上のときに限って後段噴射弁9を作動させ、それ以外のときには後段噴射弁9を停止させる。これにより後段噴射弁9による無駄な尿素水噴射を抑制できる。前段触媒15と前段噴射弁16の組み合わせについても同様である。 By the way, the post-stage catalyst 10 cannot substantially purify NOx unless its temperature Tc2 becomes equal to or higher than a predetermined activity start temperature Tc2s. Therefore, the ECU 100 operates the post-stage injection valve 9 only when the estimated temperature Tc2 of the post-stage catalyst 10 is equal to or higher than the activity start temperature Tc2s, and stops the post-stage injection valve 9 at other times. As a result, wasteful urea water injection by the post-stage injection valve 9 can be suppressed. The same applies to the combination of the pre-stage catalyst 15 and the pre-stage injection valve 16.

しかし、前段触媒15の温度Tc1が所定の活性開始温度Tc1s以上であっても、前段触媒15の排気流量がゼロであるときには、前段噴射弁16により尿素水噴射しても無駄となってしまう。そこで本実施形態において、ECU100は、前段触媒15の排気流量F1が所定値F1s(具体的にはゼロ)より多く、かつ、推定した前段触媒15の温度Tc1が所定の活性開始温度Tc1以上であるときに、前段噴射弁16を作動させ、それ以外のときには前段噴射弁16を停止させるようにしている。これにより前段噴射弁16による無駄な尿素水噴射を抑制できる。 However, even if the temperature Tc1 of the front-stage catalyst 15 is equal to or higher than the predetermined activity start temperature Tc1s, when the exhaust flow rate of the front-stage catalyst 15 is zero, urea water injection by the front-stage injection valve 16 is useless. Therefore, in the present embodiment, in the ECU 100, the exhaust flow rate F1 of the pre-stage catalyst 15 is larger than the predetermined value F1s (specifically, zero), and the estimated temperature Tc1 of the pre-stage catalyst 15 is equal to or higher than the predetermined activity start temperature Tc1. Occasionally, the front-stage injection valve 16 is operated, and at other times, the front-stage injection valve 16 is stopped. As a result, wasteful urea water injection by the front-stage injection valve 16 can be suppressed.

例えば、エンジン負荷Lがしきい値Lsより高く(前段触媒15の排気流量F1がゼロ)、前段触媒15の温度Tc1が活性開始温度Tc1未満という第1状態から、エンジン負荷Lがしきい値Lsより低い(前段触媒15の排気流量F1がゼロより大きい)第2状態に変化したとする。このとき、変化直後の時点では、未だ前段触媒15の温度Tc1が活性開始温度Tc1未満であるため、前段噴射弁16による尿素水噴射は実行されない。しかし、変化後一定時間経過すると、前段触媒15の温度Tc1が活性開始温度Tc1以上に上昇するため、前段噴射弁16による尿素水噴射が実行される。こうして活性開始温度Tc1以上になる前の尿素水噴射を効果的に抑制できる。 For example, from the first state where the engine load L is higher than the threshold value Ls (the exhaust flow rate F1 of the front stage catalyst 15 is zero) and the temperature Tc1 of the front stage catalyst 15 is less than the activity start temperature Tc1, the engine load L is the threshold value Ls. It is assumed that the second state is changed to a lower state (the exhaust flow rate F1 of the front-stage catalyst 15 is larger than zero). At this time, since the temperature Tc1 of the pre-stage catalyst 15 is still lower than the activity start temperature Tc1 immediately after the change, the urea water injection by the pre-stage injection valve 16 is not executed. However, when a certain time elapses after the change, the temperature Tc1 of the pre-stage catalyst 15 rises to the activity start temperature Tc1 or higher, so that urea water injection by the pre-stage injection valve 16 is executed. In this way, the urea water injection before the activity start temperature Tc1 or higher can be effectively suppressed.

なお、排気流量の所定値F1sはゼロに限らず、ゼロより僅かに大きい値であってもよい。排気流量がゼロより僅かに大きいときには、排気に含まれるNOxの量も僅かであるため、尿素水噴射を停止させても実質的に問題は生じないからである。 The predetermined value F1s of the exhaust flow rate is not limited to zero, and may be a value slightly larger than zero. This is because when the exhaust flow rate is slightly larger than zero, the amount of NOx contained in the exhaust gas is also small, so that there is no substantial problem even if the urea water injection is stopped.

次に図4を参照して、本実施形態における制御ルーチンを説明する。図示するルーチンはECU100により所定の演算周期τ(例えば10ms)毎に繰り返し実行される。 Next, the control routine in the present embodiment will be described with reference to FIG. The illustrated routine is repeatedly executed by the ECU 100 every predetermined calculation cycle τ (for example, 10 ms).

まずステップS101において、ECU100は、実際のエンジン回転数Neおよびエンジン負荷Lの値を取得する。 First, in step S101, the ECU 100 acquires the values of the actual engine speed Ne and the engine load L.

次にステップS102において、ECU100は、取得したエンジン回転数Neおよびエンジン負荷Lに基づき、弁開度目標値Stを、図2に示したマップから算出する。 Next, in step S102, the ECU 100 calculates the valve opening target value St from the map shown in FIG. 2 based on the acquired engine speed Ne and engine load L.

次にステップS103において、ECU100は、第1電磁弁17の実際の開度Sを、弁開度目標値Stに等しい開度に制御する。 Next, in step S103, the ECU 100 controls the actual opening degree S of the first solenoid valve 17 to an opening degree equal to the valve opening degree target value St.

その後、ステップS104において、ECU100は、弁開度目標値Stが0(%)より大きいか否か、すなわち、前段触媒15の排気流量F1が所定値F1sすなわちゼロより大きいか否かを判断する。 After that, in step S104, the ECU 100 determines whether or not the valve opening target value St is larger than 0 (%), that is, whether or not the exhaust flow rate F1 of the pre-stage catalyst 15 is larger than the predetermined value F1s, that is, zero.

弁開度目標値Stが0(%)より大きい場合、すなわち前段触媒15の排気流量F1がゼロより大きい場合、ECU100は、ステップS105に進み、前段触媒15の温度Tc1が活性開始温度Tc1s以上か否かを判断する。 When the valve opening target value St is larger than 0 (%), that is, when the exhaust flow rate F1 of the pre-stage catalyst 15 is larger than zero, the ECU 100 proceeds to step S105, and is the temperature Tc1 of the pre-stage catalyst 15 equal to or higher than the activity start temperature Tc1s? Judge whether or not.

活性開始温度Tc1s以上の場合、ECU100はステップS106に進み、前段噴射弁16を作動(ON)させ、ルーチンを終える。 When the activation start temperature is Tc1s or higher, the ECU 100 proceeds to step S106, activates (ON) the pre-stage injection valve 16, and ends the routine.

他方、ステップS104において弁開度目標値Stが0(%)に等しい場合、すなわち前段触媒15の排気流量F1がゼロの場合と、ステップS105において前段触媒15の温度Tc1が活性開始温度Tc1s未満の場合とにおいては、ECU100はステップS107に進み、前段噴射弁16を停止(OFF)させ、ルーチンを終える。 On the other hand, when the valve opening target value St is equal to 0 (%) in step S104, that is, when the exhaust flow rate F1 of the pre-stage catalyst 15 is zero, and when the temperature Tc1 of the pre-stage catalyst 15 is less than the activity start temperature Tc1s in step S105. In some cases, the ECU 100 proceeds to step S107, stops (OFF) the pre-stage injection valve 16, and ends the routine.

なお、ここで述べた基本制御例では、図3に示したように弁開度目標値Stを、エンジン負荷しきい値Lsを境に100%と0%の2段階に切り替えた。しかしながら、必ずしも100%と0%に切り替えなくてもよい。100%の代わりに、100%より小さい値(例えば80%)を用いてもよいし、0%の代わりに、0%より大きい値(例えば20%)を用いてもよい。但し前者は後者より大きくする必要がある。 In the basic control example described here, as shown in FIG. 3, the valve opening target value St is switched to two stages of 100% and 0% with the engine load threshold value Ls as a boundary. However, it is not always necessary to switch between 100% and 0%. A value smaller than 100% (for example, 80%) may be used instead of 100%, and a value larger than 0% (for example, 20%) may be used instead of 0%. However, the former needs to be larger than the latter.

次に、制御の変形例を説明する。 Next, a modification of the control will be described.

(第1変形例)
前述の基本制御例においては、図3に示したように、弁開度目標値Stを単純に2段階に切り替えた。
(First modification)
In the above-mentioned basic control example, as shown in FIG. 3, the valve opening target value St is simply switched to two stages.

一方、ここで述べる第1変形例においては、図5に示すように、弁開度目標値Stの切り替え方法が異なる。すなわち、図5に示すマップでは、エンジン負荷Lがしきい値Lsより大きいときには基本制御例と同様、弁開度目標値Stが一定の0(%)とされるが、エンジン負荷Lがしきい値Ls以下のときには、エンジン負荷Lが減少するにつれ、弁開度目標値Stが0(%)から100(%)まで無段階かつ連続的に増加される。 On the other hand, in the first modification described here, as shown in FIG. 5, the method of switching the valve opening target value St is different. That is, in the map shown in FIG. 5, when the engine load L is larger than the threshold value Ls, the valve opening target value St is set to a constant 0 (%) as in the basic control example, but the engine load L is a threshold. When the value is Ls or less, the valve opening target value St is steplessly and continuously increased from 0 (%) to 100 (%) as the engine load L decreases.

このマップによっても、エンジン負荷Lがしきい値Ls以下のときには、しきい値Lsより大きいときに比べ、前段触媒15の排気流量を多くできるので、基本制御例と同様の作用効果を発揮できる。また、エンジン負荷Lがしきい値Ls以下のときには、エンジン負荷Lが高くなるほど、前段触媒15の排気流量を少なくできるので、基本制御例よりも背圧の上昇抑制に有利である。 Even with this map, when the engine load L is equal to or less than the threshold value Ls, the exhaust flow rate of the pre-stage catalyst 15 can be increased as compared with the case where the engine load L is larger than the threshold value Ls, so that the same effect as in the basic control example can be exhibited. Further, when the engine load L is equal to or less than the threshold value Ls, the higher the engine load L, the smaller the exhaust flow rate of the front-stage catalyst 15, which is more advantageous than the basic control example in suppressing the increase in back pressure.

この第1変形例における制御ルーチンは図4に示したのと同様である。但し第1変形例では、エンジン負荷Lがしきい値Ls以下のとき、エンジン負荷Lが高くなるほど、前段触媒15の排気流量が少なくなるので、これに併せて、前段噴射弁16を作動(ON)させたとき(ステップS106)の尿素水噴射量を、エンジン負荷Lが高くなるほど少なくするのが好ましい。 The control routine in this first modification is the same as that shown in FIG. However, in the first modification, when the engine load L is equal to or less than the threshold value Ls, the higher the engine load L, the smaller the exhaust flow rate of the front-stage catalyst 15, so the front-stage injection valve 16 is operated (ON). ) (Step S106), it is preferable to reduce the urea water injection amount as the engine load L increases.

(第2変形例)
第2変形例においては、図6に示すように、エンジン負荷Lがしきい値Ls以下のときの弁開度目標値Stの変化の仕方が第1変形例と異なる。すなわち、図6に示すマップでは、エンジン負荷Lがしきい値Lsより大きいときには基本制御例および第1変形例と同様、弁開度目標値Stが一定の0(%)とされるが、エンジン負荷Lがしきい値Ls以下のときには、エンジン負荷Lが減少するにつれ、弁開度目標値Stが0(%)から100(%)まで段階的に増加される。このようにしても、第1変形例と同様の作用効果を発揮できる。なお段階数は任意であり、本実施形態では五段階とされている。制御ルーチンについては第1変形例と同様である。
(Second modification)
In the second modification, as shown in FIG. 6, the way in which the valve opening target value St changes when the engine load L is equal to or less than the threshold value Ls is different from that in the first modification. That is, in the map shown in FIG. 6, when the engine load L is larger than the threshold value Ls, the valve opening target value St is set to a constant 0 (%) as in the basic control example and the first modification example, but the engine When the load L is equal to or less than the threshold value Ls, the valve opening target value St is gradually increased from 0 (%) to 100 (%) as the engine load L decreases. Even in this way, the same effect as that of the first modification can be exhibited. The number of stages is arbitrary, and in this embodiment, there are five stages. The control routine is the same as that of the first modification.

[第2実施形態]
次に、本開示の第2実施形態を説明する。なお前記第1実施形態と同様の部分については説明を割愛し、以下、第1実施形態との相違点を主に説明する。
[Second Embodiment]
Next, a second embodiment of the present disclosure will be described. The same parts as those of the first embodiment will be omitted, and the differences from the first embodiment will be mainly described below.

図7に、第2実施形態の排気浄化システムを示す。排気浄化システムは、排気通路4から分岐してバイパス通路12に合流する分岐通路20をさらに備える。 FIG. 7 shows the exhaust gas purification system of the second embodiment. The exhaust purification system further includes a branch passage 20 that branches from the exhaust passage 4 and joins the bypass passage 12.

分岐通路20は、タービン6Tより下流側、かつバイパス通路12の合流点14より上流側に位置する分岐位置21において、排気通路4から分岐する。また分岐通路20は、バイパス通路12の分岐点13より下流側、かつ前段触媒15より上流側に位置する合流位置22において、バイパス通路12に合流する。 The branch passage 20 branches from the exhaust passage 4 at the branch position 21 located on the downstream side of the turbine 6T and on the upstream side of the confluence 14 of the bypass passage 12. Further, the branch passage 20 joins the bypass passage 12 at the merging position 22 located on the downstream side of the branch point 13 of the bypass passage 12 and on the upstream side of the pre-stage catalyst 15.

本実施形態の調節弁は、前述の第1電磁弁17と、別の電磁弁である第2電磁弁18とにより形成される。第2電磁弁18は三方電磁弁により形成され、分岐通路20の分岐点21に設けられる。 The control valve of the present embodiment is formed by the above-mentioned first solenoid valve 17 and a second solenoid valve 18 which is another solenoid valve. The second solenoid valve 18 is formed by a three-way solenoid valve and is provided at a branch point 21 of the branch passage 20.

第2電磁弁18は、その上流側の排気通路4を分岐通路20(前段触媒15側)のみに接続する第1位置Aと、その上流側の排気通路4を下流側の排気通路4(後段触媒10側)のみに接続する第2位置Bとに切替可能である。そして第2電磁弁18は、第1位置Aと第2位置の間で無段階かつ連続的に切替可能である。第2電磁弁18の開度Sは、第1位置Aにあるとき100%(全開)、第2位置Bにあるとき0%(全閉)であり、0%から100%まで無段階かつ連続的に可変である。 The second solenoid valve 18 has a first position A in which the exhaust passage 4 on the upstream side is connected only to the branch passage 20 (front stage catalyst 15 side), and the exhaust passage 4 on the upstream side thereof is connected to the exhaust passage 4 on the downstream side (rear stage). It is possible to switch to the second position B connected only to the catalyst 10 side). The second solenoid valve 18 can be continuously and steplessly switched between the first position A and the second position. The opening degree S of the second solenoid valve 18 is 100% (fully open) when it is in the first position A and 0% (fully closed) when it is in the second position B, and is stepless and continuous from 0% to 100%. Is variable.

本実施形態の制御は、エンジンの負荷Lが低負荷(しきい値Ls以下)のときの制御と、高負荷(しきい値Lsより大)のときの制御とに大別される。そして各制御は、推定された後段触媒10の温度Tに応じて変更される。 The control of the present embodiment is roughly classified into a control when the engine load L is a low load (threshold value Ls or less) and a control when the engine load L is a high load (greater than the threshold value Ls). Then, each control is changed according to the estimated temperature T of the post-stage catalyst 10.

まず、エンジンの負荷Lが低負荷(しきい値Ls以下)のときの制御について説明する。後段触媒10の温度Tc2が低温、すなわち活性開始温度Tc2s未満のとき、第1電磁弁17の開度Sは100%、第2電磁弁18の開度Sは0%に制御される。このように後段触媒10が未活性のときには、前段触媒15の排気流量を最大とし、タービン6Tの排気流量をゼロとするので、前段触媒15を最大限活用してNOxを浄化できる。 First, control when the load L of the engine is low (threshold value Ls or less) will be described. When the temperature Tc2 of the subsequent catalyst 10 is low, that is, less than the activity start temperature Tc2s, the opening degree S of the first solenoid valve 17 is controlled to 100%, and the opening degree S of the second solenoid valve 18 is controlled to 0%. As described above, when the rear stage catalyst 10 is inactive, the exhaust gas flow rate of the front stage catalyst 15 is maximized and the exhaust gas flow rate of the turbine 6T is set to zero. Therefore, NOx can be purified by making maximum use of the front stage catalyst 15.

他方、後段触媒10の温度Tc2が高温、すなわち活性開始温度Tc2s以上のとき、第1電磁弁17と第2電磁弁18の開度Sは、前段触媒15とタービン6Tの排気流量が均等(全体の50%ずつ)になるように制御される。例えば、第1電磁弁17の開度Sは50%、第2電磁弁18の開度Sは0%に制御される。このように後段触媒10が活性化しているときには、後段触媒10でNOxを浄化できるので、前段触媒15の排気流量を減らし、その分タービン6Tの排気流量を増やす。これにより背圧上昇を抑制すると共に、ターボチャージャ6の利用により燃焼効率を向上できる。 On the other hand, when the temperature Tc2 of the rear-stage catalyst 10 is high, that is, the activity start temperature Tc2s or higher, the opening degrees S of the first solenoid valve 17 and the second solenoid valve 18 are such that the exhaust flow rates of the front-stage catalyst 15 and the turbine 6T are equal (overall). It is controlled to be 50% of each). For example, the opening degree S of the first solenoid valve 17 is controlled to 50%, and the opening degree S of the second solenoid valve 18 is controlled to 0%. When the post-stage catalyst 10 is activated in this way, NOx can be purified by the post-stage catalyst 10, so that the exhaust flow rate of the front-stage catalyst 15 is reduced and the exhaust flow rate of the turbine 6T is increased by that amount. As a result, the increase in back pressure can be suppressed, and the combustion efficiency can be improved by using the turbocharger 6.

次に、エンジンの負荷Lが高負荷(しきい値Lsより大)のときの制御について説明する。後段触媒10の温度Tc2が活性開始温度Tc2s未満のとき、第1電磁弁17の開度Sは0%に制御され、第2電磁弁18の開度Sは例えば0~50%の範囲内で可変制御される。 Next, control when the load L of the engine is high (greater than the threshold value Ls) will be described. When the temperature Tc2 of the subsequent catalyst 10 is less than the activity start temperature Tc2s, the opening degree S of the first solenoid valve 17 is controlled to 0%, and the opening degree S of the second solenoid valve 18 is, for example, within the range of 0 to 50%. It is variably controlled.

こうなると、エンジン本体2から供給された排気は、バイパス通路12に分岐することなく、タービン6Tに全量供給される。そしてタービン6T通過後の排気のうち、一部は分岐通路20を通じて前段触媒15に供給され、残部は後段触媒10に供給される。 In this case, the exhaust gas supplied from the engine main body 2 is completely supplied to the turbine 6T without branching to the bypass passage 12. A part of the exhaust gas after passing through the turbine 6T is supplied to the front-stage catalyst 15 through the branch passage 20, and the rest is supplied to the rear-stage catalyst 10.

この場合はエンジン負荷Lが高負荷であり、高い出力トルクが要求されるので、排気をタービン6Tに全量供給し、ターボチャージャ6による過給を最大限実行する。そして排気の一部を前段触媒15に供給し、前段触媒15でNOxを浄化する。このとき多くの排気を前段触媒15に供給すると、背圧が上昇するので、第2電磁弁18の開度を100%未満の値、例えば0~50%の範囲内に制限する。こうすることで背圧上昇を抑制し、エンジン効率を最大限向上できる。 In this case, the engine load L is a high load and a high output torque is required. Therefore, the entire amount of exhaust gas is supplied to the turbine 6T, and supercharging by the turbocharger 6 is executed to the maximum. Then, a part of the exhaust gas is supplied to the pre-stage catalyst 15, and NOx is purified by the pre-stage catalyst 15. At this time, if a large amount of exhaust gas is supplied to the front-stage catalyst 15, the back pressure increases, so that the opening degree of the second solenoid valve 18 is limited to a value less than 100%, for example, in the range of 0 to 50%. By doing so, the increase in back pressure can be suppressed and the engine efficiency can be maximized.

第2電磁弁18の開度Sは、エンジン負荷Lが高くなるほど減少される。これによりエンジン負荷Lが高くなるほど、前段触媒15の排気流量を低減し、背圧上昇を抑制できる。 The opening degree S of the second solenoid valve 18 is reduced as the engine load L increases. As a result, as the engine load L increases, the exhaust flow rate of the front-stage catalyst 15 can be reduced and the increase in back pressure can be suppressed.

他方、後段触媒10の温度Tc2が活性開始温度Tc2s以上のとき、第1電磁弁17の開度Sは0%に制御され、第2電磁弁18の開度Sも0%に制御される。 On the other hand, when the temperature Tc2 of the post-stage catalyst 10 is equal to or higher than the activity start temperature Tc2s, the opening degree S of the first solenoid valve 17 is controlled to 0%, and the opening degree S of the second solenoid valve 18 is also controlled to 0%.

これにより、エンジン本体2から供給された排気は、全量タービン6Tに供給された後、後段触媒10に供給される。前段触媒15の排気流量がゼロになるので、背圧上昇を最大限抑制し、エンジン効率を最大化できる。 As a result, the exhaust gas supplied from the engine body 2 is completely supplied to the turbine 6T and then supplied to the post-stage catalyst 10. Since the exhaust flow rate of the front-stage catalyst 15 becomes zero, the increase in back pressure can be suppressed to the maximum and the engine efficiency can be maximized.

なお、制御ルーチンについては、第1実施形態と同様であり、上述のステップS103において第1電磁弁17および第2電磁弁18の開度Sが本実施形態のように制御される。 The control routine is the same as that of the first embodiment, and in step S103 described above, the opening degrees S of the first solenoid valve 17 and the second solenoid valve 18 are controlled as in the present embodiment.

以上、本開示の実施形態を詳細に述べたが、本開示の実施形態および変形例は他にも様々考えられる。 Although the embodiments of the present disclosure have been described in detail above, various other embodiments and variations of the present disclosure can be considered.

(1)例えば、前段触媒15と後段触媒10は、選択還元型NOx触媒でなくてもよい。例えば、吸蔵還元型NOx触媒であってもよいし、NOx触媒以外の触媒、例えば酸化触媒または三元触媒等であってもよい。なお触媒には、前記フィルタ8のような、触媒が担持されたパティキュレートフィルタが含まれる。前段触媒15と後段触媒10で、触媒の種類が異なっていてもよい。 (1) For example, the front-stage catalyst 15 and the rear-stage catalyst 10 do not have to be selective reduction NOx catalysts. For example, it may be an occlusion-reduced NOx catalyst, or a catalyst other than the NOx catalyst, for example, an oxidation catalyst or a three-way catalyst. The catalyst includes a particulate filter on which a catalyst is supported, such as the filter 8. The type of catalyst may be different between the first-stage catalyst 15 and the second-stage catalyst 10.

(2)必要に応じて、後段触媒10を省略してもよい。 (2) If necessary, the post-stage catalyst 10 may be omitted.

(3)調節弁の構成は種々変更可能である。例えば一つの三方電磁弁の代わりに二つの二方電磁弁を設けて同一機能を実現してもよい。 (3) The configuration of the control valve can be changed in various ways. For example, two two-way solenoid valves may be provided instead of one three-way solenoid valve to realize the same function.

本開示の実施形態は前述の実施形態のみに限らず、特許請求の範囲によって規定される本開示の思想に包含されるあらゆる変形例や応用例、均等物が本開示に含まれる。従って本開示は、限定的に解釈されるべきではなく、本開示の思想の範囲内に帰属する他の任意の技術にも適用することが可能である。 The embodiments of the present disclosure are not limited to the above-described embodiments, and all modifications, applications, and equivalents included in the ideas of the present disclosure defined by the scope of claims are included in the present disclosure. Therefore, this disclosure should not be construed in a limited way and may be applied to any other technique that falls within the scope of the ideas of this disclosure.

4 排気通路
6T タービン
10 NOx触媒(後段触媒)
12 バイパス通路
13 分岐点
14 合流点
15 NOx触媒(前段触媒)
16 尿素水噴射弁(前段噴射弁)
17 第1電磁弁
18 第2電磁弁
20 分岐通路
21 分岐点
43 排気温センサ
100 電子制御ユニット(ECU)
4 Exhaust passage 6T Turbine 10 NOx catalyst (post-stage catalyst)
12 Bypass passage 13 Branch point 14 Confluence point 15 NOx catalyst (pre-stage catalyst)
16 Urea water injection valve (pre-stage injection valve)
17 1st solenoid valve 18 2nd solenoid valve 20 Branch passage 21 Branch point 43 Exhaust temperature sensor 100 Electronic control unit (ECU)

Claims (6)

内燃機関の排気通路に設けられたタービンと、
前記タービンをバイパスするバイパス通路と、
前記バイパス通路に設けられた触媒と、
前記タービンおよび前記触媒の排気流量を調節するための調節弁と、
前記調節弁を制御するように構成された制御ユニットと、
を備え、
前記制御ユニットは、前記内燃機関の負荷が低い場合には、高い場合に比べ、前記触媒の排気流量が多くなるように前記調節弁を制御する
ことを特徴とする内燃機関の排気浄化システム。
A turbine installed in the exhaust passage of an internal combustion engine and
A bypass passage that bypasses the turbine and
The catalyst provided in the bypass passage and
A control valve for adjusting the exhaust flow rate of the turbine and the catalyst, and
A control unit configured to control the control valve and
Equipped with
The control unit is an exhaust gas purification system for an internal combustion engine, characterized in that when the load of the internal combustion engine is low, the control valve is controlled so that the exhaust flow rate of the catalyst is larger than when the load is high.
前記調節弁は、前記バイパス通路の分岐点に設けられた三方電磁弁により形成される
請求項1に記載の内燃機関の排気浄化システム。
The exhaust gas purification system for an internal combustion engine according to claim 1, wherein the control valve is formed by a three-way solenoid valve provided at a branch point of the bypass passage.
前記タービンより下流側、かつ前記バイパス通路の合流点より上流側に位置する前記排気通路から分岐し、前記バイパス通路の分岐点より下流側、かつ前記触媒より上流側に位置する前記バイパス通路に合流する分岐通路をさらに備え、
前記調節弁は、前記バイパス通路の分岐点に設けられた三方電磁弁と、前記分岐通路の分岐点に設けられた三方電磁弁とにより形成される
請求項1に記載の内燃機関の排気浄化システム。
It branches from the exhaust passage located on the downstream side of the turbine and upstream of the confluence of the bypass passage, and joins the bypass passage located on the downstream side of the branch point of the bypass passage and on the upstream side of the catalyst. Further equipped with a branch passage to
The exhaust gas purification system for an internal combustion engine according to claim 1, wherein the control valve is formed by a three-way solenoid valve provided at a branch point of the bypass passage and a three-way solenoid valve provided at the branch point of the branch passage. ..
前記触媒が選択還元型NOx触媒であり、
前記排気浄化システムは、前記触媒の上流側に位置する前記バイパス通路に設けられた尿素水噴射弁と、前記触媒の温度を取得する取得ユニットとを備え、
前記制御ユニットは、前記触媒の排気流量が所定値より多く、かつ、前記取得ユニットにより取得された前記触媒の温度が所定の活性開始温度以上であるときに、前記尿素水噴射弁から尿素水を噴射させる
請求項1~3の何れか一項に記載の内燃機関の排気浄化システム。
The catalyst is a selective reduction NOx catalyst.
The exhaust purification system includes a urea water injection valve provided in the bypass passage located on the upstream side of the catalyst, and an acquisition unit for acquiring the temperature of the catalyst.
The control unit discharges urea water from the urea water injection valve when the exhaust flow rate of the catalyst is greater than a predetermined value and the temperature of the catalyst acquired by the acquisition unit is equal to or higher than a predetermined activity start temperature. The exhaust gas purification system for an internal combustion engine according to any one of claims 1 to 3.
前記バイパス通路の合流点より下流側に位置する前記排気通路に設けられ、前記触媒と同一種類の下流側触媒をさらに備える
請求項1~4の何れか一項に記載の内燃機関の排気浄化システム。
The exhaust purification system for an internal combustion engine according to any one of claims 1 to 4, which is provided in the exhaust passage located on the downstream side of the confluence of the bypass passages and further includes a downstream catalyst of the same type as the catalyst. ..
前記触媒および前記下流側触媒が選択還元型NOx触媒である
請求項5に記載の内燃機関の排気浄化システム。
The exhaust gas purification system for an internal combustion engine according to claim 5, wherein the catalyst and the downstream catalyst are selective reduction NOx catalysts.
JP2020146010A 2020-08-31 2020-08-31 Exhaust emission control system of internal combustion engine Pending JP2022041013A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020146010A JP2022041013A (en) 2020-08-31 2020-08-31 Exhaust emission control system of internal combustion engine
CN202180053679.9A CN116057259A (en) 2020-08-31 2021-08-30 Exhaust gas purification system for internal combustion engine
PCT/JP2021/031648 WO2022045318A1 (en) 2020-08-31 2021-08-30 Exhaust gas purification system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020146010A JP2022041013A (en) 2020-08-31 2020-08-31 Exhaust emission control system of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2022041013A true JP2022041013A (en) 2022-03-11

Family

ID=80355225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020146010A Pending JP2022041013A (en) 2020-08-31 2020-08-31 Exhaust emission control system of internal combustion engine

Country Status (3)

Country Link
JP (1) JP2022041013A (en)
CN (1) CN116057259A (en)
WO (1) WO2022045318A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11141331A (en) * 1997-10-31 1999-05-25 Fuji Heavy Ind Ltd Emission control device of engine with turbo charger
JP3876705B2 (en) * 2001-12-13 2007-02-07 いすゞ自動車株式会社 Diesel engine exhaust gas purification system
JP2016133007A (en) * 2015-01-16 2016-07-25 いすゞ自動車株式会社 Exhaust processing system and exhaust processing method
JP2018080602A (en) * 2016-11-15 2018-05-24 いすゞ自動車株式会社 Exhaust emission control system for internal combustion engine and exhaust emission control method for internal combustion engine

Also Published As

Publication number Publication date
WO2022045318A1 (en) 2022-03-03
CN116057259A (en) 2023-05-02

Similar Documents

Publication Publication Date Title
AU2007344788B2 (en) Control method of exhaust emission purification system and exhaust emission purification system
EP1998015B1 (en) Method of controlling exhaust gas purification system and exhaust gas purification system
JP4367335B2 (en) Engine control device.
JP4713147B2 (en) Engine control device
US8091339B2 (en) Method for operating an internal combustion engine
US8079212B2 (en) Exhaust purifying apparatus and exhaust purifying method for internal combustion engine
US20060016180A1 (en) Apparatus and method for preventing overheating of exhaust purification filter
AU2007344789A1 (en) Exhaust emission purification method and exhaust emission purification system
EP3133258B1 (en) Control system for internal combustion engine and control method
EP2808508B1 (en) Control device for internal combustion engine
JP4857957B2 (en) Engine control device
JP2013113204A (en) Exhaust emission control system for engine
WO2022045318A1 (en) Exhaust gas purification system for internal combustion engine
JP2010185434A (en) Exhaust emission control device for internal combustion engine
JPH11132035A (en) Exhaust emission control device for internal combustion engine
JP2019073980A (en) Exhaust emission control device for internal combustion engine
JP6904167B2 (en) Exhaust gas flow rate measuring device for internal combustion engine
JP2010116895A (en) Control device of internal combustion engine
WO2015075517A1 (en) Exhaust gas control apparatus and exhaust gas control method for internal combustion engine
JP2005320940A (en) Exhaust gas recirculation system of internal combustion engine
JP2023119889A (en) Exhaust gas purifying system
JP4502899B2 (en) Exhaust gas purification device
JP2013234624A (en) Abnormality determination system for exhaust emission control device of internal combustion engine
JP2020076325A (en) Purification system
JP2016173038A (en) Exhaust emission control system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200831