JP2022037676A - Low-molecular-weight compound, polymer compound, organic semiconductor material and organic semiconductor device - Google Patents

Low-molecular-weight compound, polymer compound, organic semiconductor material and organic semiconductor device Download PDF

Info

Publication number
JP2022037676A
JP2022037676A JP2020141926A JP2020141926A JP2022037676A JP 2022037676 A JP2022037676 A JP 2022037676A JP 2020141926 A JP2020141926 A JP 2020141926A JP 2020141926 A JP2020141926 A JP 2020141926A JP 2022037676 A JP2022037676 A JP 2022037676A
Authority
JP
Japan
Prior art keywords
compound
organic semiconductor
organic
solar cell
formulas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020141926A
Other languages
Japanese (ja)
Inventor
慎彦 斎藤
Masahiko Saito
格 尾坂
Itaru Ozaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2020141926A priority Critical patent/JP2022037676A/en
Publication of JP2022037676A publication Critical patent/JP2022037676A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Photovoltaic Devices (AREA)

Abstract

To provide a low-molecular-weight compound that is available for an application process and shows excellent semiconductor device properties, a polymer compound, an organic semiconductor material and an organic semiconductor device.SOLUTION: A low-molecular-weight compound is represented by following formula(1) or formula (2), where R is an alkyl group, A is a heteroaromatic ring, B is a heterocycle. A polymer compound is represented by the repetition of the structure through a heteroaromatic ring. These compounds are used as starting materials to make an organic semiconductor material and an organic semiconductor device.SELECTED DRAWING: None

Description

本発明は、低分子化合物、高分子化合物、有機半導体材料及び有機半導体デバイスに関する。 The present invention relates to low molecular weight compounds, high molecular weight compounds, organic semiconductor materials and organic semiconductor devices.

近年、有機半導体材料を利用した有機薄膜太陽電池や有機薄膜トランジスタ等が注目されている。有機半導体材料で作製された半導体デバイスの場合、無機半導体材料等で作製された半導体デバイスに比べ、薄く柔軟性に優れるといった利点がある。このため、種々の有機半導体材料の研究開発が行われている。 In recent years, organic thin-film solar cells and organic thin-film transistors using organic semiconductor materials have been attracting attention. A semiconductor device made of an organic semiconductor material has an advantage of being thinner and more flexible than a semiconductor device made of an inorganic semiconductor material or the like. Therefore, research and development of various organic semiconductor materials are being carried out.

一方で、有機半導体材料で作製される半導体デバイスでは、電荷移動度や光電変換効率などの半導体特性向上のため、π共役系を拡張した有機半導体材料が注目されている。例えば、ナフトビスチアジアゾールを基調とするπ共役系を拡張した骨格を有する化合物が知られている(例えば、特許文献1、2、非特許文献1など)。 On the other hand, in semiconductor devices made of organic semiconductor materials, organic semiconductor materials having an extended π-conjugated system are attracting attention in order to improve semiconductor characteristics such as charge mobility and photoelectric conversion efficiency. For example, a compound having an extended skeleton of a π-conjugated system based on naphthobisthiadiazole is known (for example, Patent Documents 1 and 2, Non-Patent Document 1 and the like).

国際公開第2019/039369号International Publication No. 2019/0393969 特開2018-145125号公報Japanese Unexamined Patent Publication No. 2018-145125

I. Osaka et al., J. Am. Chem. Soc. 2012, 134, 3498I. Osaka et al., J. Am. Chem. Soc. 2012, 134, 3498

有機半導体材料に用いられる化合物には高電荷移動度等の特性が求められており、これまで種々の有機半導体材料が開示されているものの、材料開発は未だ発展途上にあり、更なる有機半導体材料が求められている。 Compounds used in organic semiconductor materials are required to have characteristics such as high charge mobility, and although various organic semiconductor materials have been disclosed so far, material development is still under development, and further organic semiconductor materials. Is required.

本発明は、上記事項に鑑みてなされたものであり、その目的とするところは、塗布法に利用可能で、良好な半導体デバイス特性を示す低分子化合物、高分子化合物、有機半導体材料及び有機半導体デバイスを提供することにある。 The present invention has been made in view of the above matters, and an object thereof is a low molecular weight compound, a high molecular weight compound, an organic semiconductor material and an organic semiconductor which can be used in a coating method and exhibit good semiconductor device characteristics. It is to provide the device.

本発明の第1の観点に係る低分子化合物は、
式1又は式2で表される、

Figure 2022037676000001

(式1及び式2中、Rはアルキル基を表し、Aはヘテロ芳香環を表し、式2中、Bはヘテロ環を表す。)
ことを特徴とする。 The small molecule compound according to the first aspect of the present invention is
Represented by Equation 1 or Equation 2,
Figure 2022037676000001

(In Formulas 1 and 2, R represents an alkyl group, A represents a heteroaromatic ring, and B in Formula 2 represents a heterocycle.)
It is characterized by that.

本発明の第2の観点に係る高分子化合物は、
式3又は式4で表される繰り返し単位を含む、

Figure 2022037676000002

(式3及び式4中、Rはアルキル基を表し、Aはヘテロ芳香環を表し、Arはヘテロ芳香環を表し、式4中、Bはヘテロ環を表す。)
ことを特徴とする。 The polymer compound according to the second aspect of the present invention is
Including the repeating unit represented by the formula 3 or the formula 4.
Figure 2022037676000002

(In formulas 3 and 4, R represents an alkyl group, A represents a heteroaromatic ring, Ar represents a heteroaromatic ring, and B in formula 4 represents a heterocycle.)
It is characterized by that.

本発明の第3の観点に係る有機半導体材料は、
本発明の第1の観点に係る低分子化合物、又は、本発明の第2の観点に係る高分子化合物を含む、
ことを特徴とする。
The organic semiconductor material according to the third aspect of the present invention is
A small molecule compound according to a first aspect of the present invention or a high molecular compound according to a second aspect of the present invention.
It is characterized by that.

本発明の第4の観点に係る有機半導体デバイスは、
本発明の第3の観点に係る有機半導体材料を含む活性層を有する、
ことを特徴とする。
The organic semiconductor device according to the fourth aspect of the present invention is
It has an active layer containing an organic semiconductor material according to a third aspect of the present invention.
It is characterized by that.

本発明によれば、塗布法に利用可能で、良好な半導体デバイス特性を示す低分子化合物、高分子化合物、有機半導体材料及び有機半導体デバイスを提供できる。 According to the present invention, it is possible to provide a low molecular weight compound, a high molecular weight compound, an organic semiconductor material and an organic semiconductor device that can be used in a coating method and exhibit good semiconductor device characteristics.

化合物7aを用いた有機薄膜太陽電池素子の電流密度-電圧特性のグラフである。It is a graph of the current density-voltage characteristic of the organic thin-film solar cell element using compound 7a. 化合物7aを用いた有機薄膜太陽電池素子の分光感度特性のグラフである。It is a graph of the spectral sensitivity characteristic of the organic thin film solar cell element using compound 7a. 化合物7bを用いた有機薄膜太陽電池素子の電流密度-電圧特性のグラフである。It is a graph of the current density-voltage characteristic of the organic thin film solar cell element using compound 7b. 化合物7bを用いた有機薄膜太陽電池素子の分光感度特性のグラフである。It is a graph of the spectral sensitivity characteristic of the organic thin film solar cell element using compound 7b. 化合物7cを用いた有機薄膜太陽電池素子の電流密度-電圧特性のグラフである。It is a graph of the current density-voltage characteristic of the organic thin film solar cell element using compound 7c. 化合物7cを用いた有機薄膜太陽電池素子の分光感度特性のグラフである。It is a graph of the spectral sensitivity characteristic of the organic thin film solar cell element using compound 7c. 化合物7dを用いた有機薄膜太陽電池素子の電流密度-電圧特性のグラフである。It is a graph of the current density-voltage characteristic of the organic thin film solar cell element using compound 7d. 化合物7dを用いた有機薄膜太陽電池素子の分光感度特性のグラフである。It is a graph of the spectral sensitivity characteristic of the organic thin film solar cell element using compound 7d. 化合物8を用いた有機薄膜太陽電池素子の電流密度-電圧特性のグラフである。It is a graph of the current density-voltage characteristic of the organic thin-film solar cell element using compound 8. 化合物8を用いた有機薄膜太陽電池素子の分光感度特性のグラフである。It is a graph of the spectral sensitivity characteristic of the organic thin film solar cell element using compound 8.

(低分子化合物)
本実施の形態に係る低分子化合物は、式1又は式2で表される。
(Small molecule compound)
The small molecule compound according to this embodiment is represented by the formula 1 or the formula 2.

Figure 2022037676000003
Figure 2022037676000003

式1及び式2中、Rはアルキル基を表す。アルキル基は、分岐鎖状でも直鎖状でもよいが、溶媒への溶解性の観点から分岐鎖状であることが好ましい。また、アルキル基の炭素数に制限はないが、6~28であることが好ましい。 In formulas 1 and 2, R represents an alkyl group. The alkyl group may be branched or linear, but is preferably branched from the viewpoint of solubility in a solvent. The number of carbon atoms of the alkyl group is not limited, but is preferably 6 to 28.

式1及び式2中、Aはヘテロ芳香環を表す。ヘテロ芳香環は単環でも縮合環でもよいが、縮合環としては、二環式または三環式が好ましい。また、Aを構成するヘテロ芳香環の環員数は5または6であることが好ましい。ヘテロ芳香環として、例えば、式5a~式5fの構造が挙げられる。式1において式5a~式5f中、R~Rは水素、またはアルキル基、エステル基、アルコキシ基、アルキルチオ基等の置換基を表す。Rはアルキル基を表す。R~Rのアルキル部位は、分岐鎖状でも直鎖状でもよい。また、アルキル部位の炭素数に制限はないが、6~28であることが好ましい。また、式2において式5a~式5f中、RはBを表す。R~Rは上記R~Rと同義である。 In formulas 1 and 2, A represents a heteroaromatic ring. The heteroaromatic ring may be a monocyclic ring or a fused ring, but the fused ring is preferably a bicyclic or tricyclic ring. Further, the number of ring members of the heteroaromatic ring constituting A is preferably 5 or 6. Examples of the heteroaromatic ring include structures of formulas 5a to 5f. In formula 1, in formulas 5a to 5f, R 1 to R 3 represent hydrogen or a substituent such as an alkyl group, an ester group, an alkoxy group, or an alkylthio group. R4 represents an alkyl group. The alkyl moiety of R 1 to R 4 may be branched chain or linear. The number of carbon atoms in the alkyl moiety is not limited, but is preferably 6 to 28. Further, in the formula 2, R 1 represents B in the formulas 5a to 5f. R2 to R4 are synonymous with the above R2 to R4 .

Figure 2022037676000004
Figure 2022037676000004

式2中、Bはヘテロ環を表す。ヘテロ環の環員数は、4~6であることが好ましい。ヘテロ環として、例えば、式6a~式6gで表される構造が好ましい。 In Equation 2, B represents a heterocycle. The number of ring members of the heterocycle is preferably 4 to 6. As the heterocycle, for example, the structures represented by the formulas 6a to 6g are preferable.

Figure 2022037676000005
Figure 2022037676000005

また、式6a~式6g中のXは独立に水素、アルキル基、ハロゲンまたは置換されてもよい複素芳香環、Rは式1のRと同義である。 Further, X in the formulas 6a to 6g is an independently hydrogen, an alkyl group, a halogen or a optionally substituted heteroaromatic ring, and R5 is synonymous with R in the formula 1 .

式1及び式2で表される低分子化合物は、ナフトビスチアジアゾールのナフタレンに2つのピロールが縮合し、更に、それぞれのピロールにヘテロ芳香環が縮合した構造であり、π共役系が拡張されている。このため、式1及び式2で表される低分子化合物は、強い分子間相互作用を持ち、高い結晶性を有する。 The low molecular weight compounds represented by the formulas 1 and 2 have a structure in which two pyrroles are condensed with naphthalene of naphthithiadiazole, and a heteroaromatic ring is further condensed with each pyrrole, and the π-conjugated system is expanded. There is. Therefore, the small molecule compounds represented by the formulas 1 and 2 have a strong intramolecular interaction and have high crystallinity.

一方で、塗布法における有機半導体デバイス材料として用いる場合、トルエンやクロロベンゼン、クロロホルム等の有機溶媒への溶解性が問題になり、π共役系が拡張された化合物は溶解性が低下し、有機半導体デバイス材料として利用し難くなり得る。しかしながら、式1及び式2で表される低分子化合物は、それぞれのピロールの窒素にアルキル基が結合しているため、有機溶媒への溶解性に優れる。このため、式1及び式2で表される化合物は有機溶媒に溶解しやすく、塗布法における有機半導体デバイス材料として用いる場合に有用である。 On the other hand, when used as an organic semiconductor device material in the coating method, solubility in organic solvents such as toluene, chlorobenzene, and chloroform becomes a problem, and compounds with an extended π-conjugated system have reduced solubility, resulting in organic semiconductor devices. It can be difficult to use as a material. However, the small molecule compounds represented by the formulas 1 and 2 have excellent solubility in organic solvents because the alkyl group is bonded to the nitrogen of each pyrrole. Therefore, the compounds represented by the formulas 1 and 2 are easily dissolved in an organic solvent and are useful when used as an organic semiconductor device material in a coating method.

なお、上述した式1及び式2で表される低分子化合物は、後述する実施例を参照して合成することができる。 The small molecule compounds represented by the above formulas 1 and 2 can be synthesized with reference to Examples described later.

(高分子化合物)
本実施の形態に係る高分子化合物は、式3又は式4で表される繰り返し単位を含む。
(Polymer compound)
The polymer compound according to this embodiment contains a repeating unit represented by the formula 3 or the formula 4.

Figure 2022037676000006
Figure 2022037676000006

式3及び式4中、Rは、上述した式1及び式2中のRと同義である。式3及び式4中、Aはヘテロ芳香環を表す。ヘテロ芳香環は単環でも縮合環でもよいが、縮合環としては、二環式または三環式が好ましい。また、Aを構成するヘテロ芳香環の環員数は5または6であることが好ましい。ヘテロ芳香環として、例えば、式7a~式7fの構造が挙げられる。R、R、R8は式5a~式5fのR、R、Rとそれぞれ同義である。 In formulas 3 and 4, R has the same meaning as R in formulas 1 and 2 described above. In formulas 3 and 4, A represents a heteroaromatic ring. The heteroaromatic ring may be a monocyclic ring or a fused ring, but the fused ring is preferably a bicyclic or tricyclic ring. Further, the number of ring members of the heteroaromatic ring constituting A is preferably 5 or 6. Examples of the heteroaromatic ring include structures of formulas 7a to 7f. R6 , R7 , and R8 are synonymous with R2 , R3 , and R4 of equations 5a to 5f, respectively .

Figure 2022037676000007
Figure 2022037676000007

また、式4中、Bは、ヘテロ環を表す。ヘテロ環の環員数は、4~6であることが好ましい。ヘテロ環として、例えば、式8a~式8dで表される構造が好ましい。 Further, in the formula 4, B represents a heterocycle. The number of ring members of the heterocycle is preferably 4 to 6. As the heterocycle, for example, the structures represented by the formulas 8a to 8d are preferable.

Figure 2022037676000008
Figure 2022037676000008

式3及び式4中、Arは、ヘテロ芳香環を表し、例えば、チオフェン、ビチオフェン、ビチアゾール、チエノチオフェン、ベンゾジチオフェン等が挙げられる。これらのヘテロ芳香環は置換されていてもよい。 In Formulas 3 and 4, Ar represents a heteroaromatic ring, and examples thereof include thiophene, bitiophene, bithiazole, thienothiophene, and benzodithiophene. These heteroaromatic rings may be substituted.

式3、式4で表される高分子化合物の重量平均分子量は、10,000~1,000,000の範囲であることが好ましい。また、数平均分子量は10,000~200,000の範囲であることが好ましい。 The weight average molecular weight of the polymer compound represented by the formulas 3 and 4 is preferably in the range of 10,000 to 1,000,000. The number average molecular weight is preferably in the range of 10,000 to 200,000.

(有機半導体材料)
式1、式2で表される低分子化合物、式3、式4で表される高分子化合物は、p型有機半導体(電子供与体/ドナー)、またはn型有機半導体(電子受容体/アクセプター)のいずれとしても機能を発揮し、有機半導体材料に用いることができる。この有機半導体材料は、湿式成膜法等の塗布法によって有機半導体デバイスの活性層を形成することができる。
(Organic semiconductor material)
The low molecular weight compounds represented by the formulas 1 and 2 and the high molecular weight compounds represented by the formulas 3 and 4 are p-type organic semiconductors (electron donors / donors) or n-type organic semiconductors (electron acceptors / acceptors). ), It can be used as an organic semiconductor material. This organic semiconductor material can form an active layer of an organic semiconductor device by a coating method such as a wet film forming method.

有機半導体材料は、式1、式2で表される低分子化合物、式3、式4で表される高分子化合物のみを含んでいても、他の有機半導体材料や他の成分を含んでいてもよい。有機薄膜太陽電池用材料として用いる場合、組み合わされる他の有機半導体材料として、式1、式2で表される低分子化合物、式3、式4で表される高分子化合物がドナーであれば、アクセプターとしての機能を発揮する電子受容性化合物を含むことが好ましく、また、式1、式2で表される低分子化合物、式3、式4で表される高分子化合物がアクセプターであれば、ドナーとしての機能を発揮する電子供与性化合物を含むことが好ましい。電子受容性化合物は、所謂n型有機半導体材料として機能する化合物であればよく、PCBM等のフラーレン誘導体およびチオフェン系低分子化合物やチオフェン系化合物のポリマー等、公知の化合物が用いられる。電子供与性化合物は、所謂p型有機半導体材料として機能する化合物であればよく、ポリチオフェンおよびチオフェン系化合物のポリマー等、公知の化合物が用いられる。 The organic semiconductor material contains only the low molecular weight compound represented by the formulas 1 and 2, and the high molecular weight compound represented by the formulas 3 and 4, but also contains other organic semiconductor materials and other components. May be good. When used as a material for an organic thin film solar cell, if the donor is a low molecular weight compound represented by the formulas 1 and 2 and a high molecular weight compound represented by the formulas 3 and 4 as other organic semiconductor materials to be combined. It is preferable to contain an electron-accepting compound that exerts a function as an acceptor, and if the low molecular weight compound represented by the formulas 1 and 2 and the high molecular weight compound represented by the formulas 3 and 4 are acceptors. It preferably contains an electron donating compound that functions as a donor. The electron-accepting compound may be any compound that functions as a so-called n-type organic semiconductor material, and known compounds such as fullerene derivatives such as PCBM and polymers of thiophene-based low molecular weight compounds and thiophene-based compounds are used. The electron donating compound may be any compound that functions as a so-called p-type organic semiconductor material, and known compounds such as polythiophene and polymers of thiophene-based compounds are used.

(有機半導体デバイス)
有機半導体デバイスは、有機薄膜太陽電池や固体撮像素子などの光電変換素子や有機トランジスタ等であり、活性層に上記の有機半導体材料を含んでいる。上記の有機半導体材料は光電変換効率に優れるので、有機薄膜太陽電池に好適に利用できる。有機薄膜太陽電池は、光活性層に上述した有機薄膜太陽電池材料を含んでいる。有機薄膜太陽電池は、上述した有機薄膜太陽電池材料を用い、公知の手法で作製することができる。有機薄膜太陽電池の構造は、一対の電極の間に光活性層を備える構造であれば特に制限されない。有機薄膜太陽電池の構成は、例えば、以下の態様が挙げられる。なお、p層、p材料とは、上述した電子供与性化合物を含有する層、材料であり、n層、n材料とは、上述した有機薄膜太陽電池材料を含有する層、材料を表す。
(A)電極/p材料とn材料の混合層/電極
(B)電極/p層/p材料とn材料の混合層/n層/電極
(C)電極/p層/n層/電極
(Organic semiconductor device)
The organic semiconductor device is a photoelectric conversion element such as an organic thin-film solar cell or a solid-state imaging element, an organic transistor, or the like, and the active layer contains the above-mentioned organic semiconductor material. Since the above-mentioned organic semiconductor material has excellent photoelectric conversion efficiency, it can be suitably used for an organic thin-film solar cell. The organic thin-film solar cell contains the above-mentioned organic thin-film solar cell material in the photoactive layer. The organic thin-film solar cell can be manufactured by a known method using the above-mentioned organic thin-film solar cell material. The structure of the organic thin-film solar cell is not particularly limited as long as it has a structure in which a photoactive layer is provided between a pair of electrodes. The configuration of the organic thin-film solar cell includes, for example, the following aspects. The p-layer and p-material are layers and materials containing the above-mentioned electron donating compound, and the n-layer and n-material are layers and materials containing the above-mentioned organic thin-film solar cell material.
(A) Electrode / p material and n material mixed layer / electrode (B) Electrode / p layer / p material and n material mixed layer / n layer / electrode (C) Electrode / p layer / n layer / electrode

以下、実施例に基づき、化合物、化合物を用いた有機薄膜太陽電池の特性について説明する。本発明はこれらの実施例に限定されるものではない。 Hereinafter, the characteristics of the compound and the organic thin-film solar cell using the compound will be described based on Examples. The present invention is not limited to these examples.

(化合物7a-7dの合成)
下記スキームに基づいて、順次合成を行い、化合物7a-7dを合成した。
(Synthesis of Compounds 7a-7d)
Compounds 7a-7d were synthesized by sequentially synthesizing based on the following scheme.

Figure 2022037676000009
Figure 2022037676000009

Figure 2022037676000010
Figure 2022037676000010

Figure 2022037676000011
Figure 2022037676000011

Figure 2022037676000012
Figure 2022037676000012

原料となる化合物1は、「Chatterjee et al., NPG Asia Materials, 2018, 1016-1028」を参考に合成して使用した。また、化合物2は、「Hyeongjin Hwang et al., J. Mater. Chem. A, 2017, 5, 10269」を参考に合成して使用した。 Compound 1 as a raw material was synthesized and used with reference to "Chatterjee et al., NPG Asia Materials, 2018, 1016-1028". In addition, Compound 2 was synthesized and used with reference to "Hyeongjin Hwang et al., J. Mater. Chem. A, 2017, 5, 10269".

(化合物3の合成)
アルゴン雰囲気下、反応容器に化合物1(500mg,1.14mmol)、化合物2(1.46g,2.51mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(58mg,4.4mol%)、及び、トルエン(30mL)を加え、110℃で12時間反応させた。室温まで冷却後、反応溶液に水を加え、クロロホルムで抽出した。抽出した有機層を飽和食塩水、水で順次洗浄した。有機層を無水硫酸マグネシウムで乾燥、濾過後溶媒を減圧下で留去した。得られた反応混合物を、ヘキサン:クロロホルム(1:1)溶媒を移動層とするシリカゲルカラムクロマトグラフィーで分離精製することで化合物3を赤色固体で得た(980mg,収率99%)。
(Synthesis of Compound 3)
In an argon atmosphere, compound 1 (500 mg, 1.14 mmol), compound 2 (1.46 g, 2.51 mmol), tetrakis (triphenylphosphine) palladium (0) (58 mg, 4.4 mol%), and Toluene (30 mL) was added and reacted at 110 ° C. for 12 hours. After cooling to room temperature, water was added to the reaction solution, and the mixture was extracted with chloroform. The extracted organic layer was washed successively with saturated brine and water. The organic layer was dried over anhydrous magnesium sulfate, filtered, and the solvent was distilled off under reduced pressure. The obtained reaction mixture was separated and purified by silica gel column chromatography using a hexane: chloroform (1: 1) solvent as a moving layer to obtain Compound 3 as a red solid (980 mg, yield 99%).

得られた化合物3の物性データは次の通りである。
HNMR(400MH,CDCl,TMS)δ=7.85(s,2H),7.19(s,2H),2.80(d,J=7.7Hz,4H),1.83-1.77(m,4H),1.66-1.19(m,32H),0.93-0.83(m,6H)
The physical property data of the obtained compound 3 are as follows.
1 HNMR (400MH 2 , CDCl 3 , TMS) δ = 7.85 (s, 2H), 7.19 (s, 2H), 2.80 (d, J = 7.7Hz, 4H), 1.83- 1.77 (m, 4H), 1.66-1.19 (m, 32H), 0.93-0.83 (m, 6H)

(化合物4aの合成)
アルゴン雰囲気下、反応容器に化合物3(980mg,1.13mmol)、アジ化ナトリウム(294mg,4.52mmol)、及び、ジメチルスルホキシド(30mL)を加え、90℃で12時間反応させた。室温まで冷却後、反応溶液に水を加え、酢酸エチルで抽出し、抽出した有機層を水で洗浄した。溶媒を減圧下で留去し、乾燥することで粗生成物を青色固体で得た(490mg)。アルゴン雰囲気下、反応容器に粗生成物(290mg,1.13mmol)、1-ブロモ-2-へキシルデカン(414mg,1.36mmol)、炭酸カリウム(374mg,2.71mmol)、ジメチルホルムアミド(100mL)を加え、180℃で12時間反応させた。室温まで冷却後、反応溶液に水を加え、ヘキサンで抽出し、抽出した有機層を水で洗浄した。有機層を無水硫酸マグネシウムで乾燥、濾過後溶媒を減圧下で留去した。得られた反応混合物を、ヘキサン:クロロホルム(1:1)溶媒を移動層とするシリカゲルカラムクロマトグラフィーで分離精製することで化合物4aを赤色固体で得た(320mg,収率37%)。
(Synthesis of compound 4a)
Compound 3 (980 mg, 1.13 mmol), sodium azide (294 mg, 4.52 mmol), and dimethyl sulfoxide (30 mL) were added to the reaction vessel under an argon atmosphere, and the mixture was reacted at 90 ° C. for 12 hours. After cooling to room temperature, water was added to the reaction solution, the mixture was extracted with ethyl acetate, and the extracted organic layer was washed with water. The solvent was distilled off under reduced pressure and dried to obtain a crude product as a blue solid (490 mg). Under an argon atmosphere, the crude product (290 mg, 1.13 mmol), 1-bromo-2-hexyldecane (414 mg, 1.36 mmol), potassium carbonate (374 mg, 2.71 mmol), and dimethylformamide (100 mL) were added to the reaction vessel. In addition, the reaction was carried out at 180 ° C. for 12 hours. After cooling to room temperature, water was added to the reaction solution, the mixture was extracted with hexane, and the extracted organic layer was washed with water. The organic layer was dried over anhydrous magnesium sulfate, filtered, and the solvent was distilled off under reduced pressure. The obtained reaction mixture was separated and purified by silica gel column chromatography using a hexane: chloroform (1: 1) solvent as a moving layer to obtain compound 4a as a red solid (320 mg, yield 37%).

得られた化合物4aの物性データは次の通りである。
HNMR(400MH,CDCl,TMS)δ=7.01(s,2H),2.78-2.76(m,4H),1.85-1.81(m,4H),0.97-0.64(m,104H)
The physical property data of the obtained compound 4a are as follows.
1 HNMR (400MH 2 , CDCl 3 , TMS) δ = 7.01 (s, 2H), 2.78-2.76 (m, 4H), 1.85-1.81 (m, 4H), 0. 97-0.64 (m, 104H)

(化合物4bの合成)
1-ブロモ-2-へキシルデカンを1-ブロモ-2-ブチルオクタン(234mg,0.936mmol)に代える以外、化合物4aの合成方法と同様にして合成を行い、化合物4bを赤色固体で得た(195mg,収率35%)。
(Synthesis of compound 4b)
The synthesis was carried out in the same manner as in the synthesis method of compound 4a except that 1-bromo-2-hexyldecane was replaced with 1-bromo-2-butyloctane (234 mg, 0.936 mmol), and compound 4b was obtained as a red solid (compound 4b). 195 mg, yield 35%).

得られた化合物4bの物性データは次の通りである。
HNMR(400MH,CDCl,TMS)δ=7.06(s,2H),2.82(d,J=7.6Hz,4H),1.92-1.79(m,4H),1.52-1.22(m,34H),1.05-0.62(m,48H),0.50(t,J=6.6Hz,6H)
The physical property data of the obtained compound 4b are as follows.
1 HNMR (400MH 2 , CDCl 3 , TMS) δ = 7.06 (s, 2H), 2.82 (d, J = 7.6Hz, 4H), 1.92-1.79 (m, 4H), 1.52-1.22 (m, 34H), 1.05-0.62 (m, 48H), 0.50 (t, J = 6.6Hz, 6H)

(化合物5aの合成)
アルゴン雰囲気下、反応容器にジメチルホルムアミド(4.0mL)、及び、塩化ホスホリル(0.5mL,5.37mmol)を加え、0℃で30分撹拌した後、室温まで昇温し2時間撹拌した。その後、反応溶液を、化合物4a(320mg,0.245mmol)、及び、1,2-ジクロロエタン(20mL)を加えた溶液に滴下した。その後、80℃で1時間反応させた。室温まで冷却後、反応溶液に水を加え、クロロホルムで抽出し、抽出した有機層を水で洗浄した。有機層を無水硫酸マグネシウムで乾燥、濾過後溶媒を減圧下で留去した。得られた反応混合物を、ヘキサン:クロロホルム(1:10)溶媒を移動層とするシリカゲルカラムクロマトグラフィーで分離精製することで化合物5aを赤色固体で得た(260mg,収率78%)。
(Synthesis of compound 5a)
Under an argon atmosphere, dimethylformamide (4.0 mL) and phosphoryl chloride (0.5 mL, 5.37 mmol) were added to the reaction vessel, and the mixture was stirred at 0 ° C. for 30 minutes, then heated to room temperature and stirred for 2 hours. Then, the reaction solution was added dropwise to the solution containing compound 4a (320 mg, 0.245 mmol) and 1,2-dichloroethane (20 mL). Then, it reacted at 80 degreeC for 1 hour. After cooling to room temperature, water was added to the reaction solution, the mixture was extracted with chloroform, and the extracted organic layer was washed with water. The organic layer was dried over anhydrous magnesium sulfate, filtered, and the solvent was distilled off under reduced pressure. The obtained reaction mixture was separated and purified by silica gel column chromatography using a hexane: chloroform (1:10) solvent as a moving layer to obtain compound 5a as a red solid (260 mg, yield 78%).

得られた化合物5aの物性データは次の通りである。
HNMR(400MH,CDCl,TMS)δ=10.16(s,2H),3.23-3.18(m,4H),1.95-1.89(m,4H),1.76-1.69(m,2H),1.41-0.62(m,102H)
The physical property data of the obtained compound 5a are as follows.
1 HNMR (400MH 2 , CDCl 3 , TMS) δ = 10.16 (s, 2H), 3.23-3.18 (m, 4H), 1.95-1.89 (m, 4H), 1. 76-1.69 (m, 2H), 1.41-0.62 (m, 102H)

(化合物5bの合成)
化合物4aを化合物4b(195mg,0.164mmol)に代える以外、化合物5aの合成方法と同様にして合成を行い、化合物5bを赤色固体で得た(184mg,収率90%)。
(Synthesis of compound 5b)
Synthesis was carried out in the same manner as in the synthesis method of compound 5a except that compound 4a was replaced with compound 4b (195 mg, 0.164 mmol) to obtain compound 5b as a red solid (184 mg, yield 90%).

得られた化合物5bの物性データは次の通りである。
HNMR(400MH,CDCl,TMS)δ=10.10(s,2H),3.20-3.02(m,4H),2.82(d,J=7.6Hz,4H),1.92-1.85(m,4H),1.70-1.13(m,32H),0.95-0.56(m,46H),0.47-0.41(m,6H)
The physical property data of the obtained compound 5b are as follows.
1 HNMR (400MH 2 , CDCl 3 , TMS) δ = 10.10 (s, 2H), 3.20-3.02 (m, 4H), 2.82 (d, J = 7.6Hz, 4H), 1.92-1.85 (m, 4H), 1.70-1.13 (m, 32H), 0.95-0.56 (m, 46H), 0.47-0.41 (m, 6H) )

(化合物7aの合成)
アルゴン雰囲気下、反応容器に化合物5a(130mg,0.0956mmol)、化合物6a(66mg,0.287mmol)、ピリジン(1.0mL)、及び、クロロホルム(20mL)を加え、60℃で5時間反応させた。室温まで冷却後、反応溶液に水を加え、クロロホルムで抽出し、抽出した有機層を1N塩酸、水で順次洗浄した。有機層を無水硫酸マグネシウムで乾燥、濾過後溶媒を減圧下で留去した。得られた反応混合物を、ヘキサン:クロロホルム(1:10)溶媒を移動層とするシリカゲルカラムクロマトグラフィーで分離精製することで化合物7aを暗緑色固体で得た(110mg,収率64%)。
(Synthesis of compound 7a)
Under an argon atmosphere, compound 5a (130 mg, 0.0956 mmol), compound 6a (66 mg, 0.287 mmol), pyridine (1.0 mL), and chloroform (20 mL) were added to the reaction vessel, and the mixture was reacted at 60 ° C. for 5 hours. rice field. After cooling to room temperature, water was added to the reaction solution, the mixture was extracted with chloroform, and the extracted organic layer was washed successively with 1N hydrochloric acid and water. The organic layer was dried over anhydrous magnesium sulfate, filtered, and the solvent was distilled off under reduced pressure. The obtained reaction mixture was separated and purified by silica gel column chromatography using a hexane: chloroform (1:10) solvent as a moving layer to obtain compound 7a as a dark green solid (110 mg, yield 64%).

得られた化合物7aの物性データは次の通りである。
HNMR(400MH,CDCl,TMS)δ=8.74(s,2H),8.41(dd,J=9.9,6.5Hz,2H),7.55-7.46(m,2H), 3.07(d,J=7.9Hz,4H)1.83-1.77(m,4H),1.42-1.30(m,4H),1.15-1.09(m,6H),0.96-0.65(m,94H)
The physical property data of the obtained compound 7a are as follows.
1 HNMR (400MH 2 , CDCl 3 , TMS) δ = 8.74 (s, 2H), 8.41 (dd, J = 9.9,6.5Hz, 2H), 7.55-7.46 (m) , 2H), 3.07 (d, J = 7.9Hz, 4H) 1.83-1.77 (m, 4H), 1.42-1.30 (m, 4H), 1.15-1. 09 (m, 6H), 0.96-0.65 (m, 94H)

(化合物7bの合成)
化合物6aを化合物6b(70mg,0.265mmol)に代える以外、化合物7aの合成方法と同様にして合成を行い、化合物7bを暗緑色固体で得た(70mg,収率43%)。
(Synthesis of compound 7b)
Synthesis was carried out in the same manner as in the synthesis method of compound 7a except that compound 6a was replaced with compound 6b (70 mg, 0.265 mmol) to obtain compound 7b as a dark green solid (70 mg, yield 43%).

得られた化合物7bの物性データは次の通りである。
HNMR(400MH,CDCl,TMS)δ=8.80(s,2H),8.62(s,2H),7.84(d,J=4.0Hz,2H),3.04(s,4H)1.83-1.67(m,4H),1.51-0.55(m,104H)
The physical property data of the obtained compound 7b are as follows.
1 HNMR (400MH 2 , CDCl 3 , TMS) δ = 8.80 (s, 2H), 8.62 (s, 2H), 7.84 (d, J = 4.0Hz, 2H), 3.04 ( s, 4H) 1.83-1.67 (m, 4H), 1.51-0.55 (m, 104H)

(化合物7cの合成)
化合物5aを化合物5b(100mg,0.08mmol)に代える以外、化合物7aの合成方法と同様にして合成を行い、化合物7cを暗緑色固体で得た(80mg,収率60%)。
(Synthesis of compound 7c)
Synthesis was carried out in the same manner as in the synthesis method of compound 7a except that compound 5a was replaced with compound 5b (100 mg, 0.08 mmol) to obtain compound 7c as a dark green solid (80 mg, yield 60%).

得られた化合物7cの物性データは次の通りである。
HNMR(500MH,CDCl,TMS)δ=8.71(d,J=4.5Hz,2H),8.43-8.35m,2H),7.50(d,J=7.4Hz,2H),3.05(s,4H)1.77(d,J=15.0Hz,4H),1.54-1.12(m,8H),1.02-0.58(m,74H),0.49(s,6H)
The physical property data of the obtained compound 7c are as follows.
1 HNMR (500MH 2 , CDCl 3 , TMS) δ = 8.71 (d, J = 4.5Hz, 2H), 8.43-8.35m, 2H), 7.50 (d, J = 7.4Hz) , 2H), 3.05 (s, 4H) 1.77 (d, J = 15.0Hz, 4H), 1.54-1.12 (m, 8H), 1.02-0.58 (m, 74H), 0.49 (s, 6H)

(化合物7dの合成)
化合物5aを化合物5b(80mg,0.0641mmol)に、化合物6aを化合物6b(51mg,0.192mmol)に代える以外、化合物7aの合成方法と同様にして合成を行い、化合物7dを暗緑色固体で得た(70mg,収率63%)。
(Synthesis of compound 7d)
The compound 5a was synthesized in the same manner as in the synthesis method of the compound 7a except that the compound 5a was replaced with the compound 5b (80 mg, 0.0641 mmol) and the compound 6a was replaced with the compound 6b (51 mg, 0.192 mmol), and the compound 7d was made into a dark green solid. Obtained (70 mg, 63% yield).

得られた化合物7dの物性データは次の通りである。
HNMR(400MH,CDCl,TMS)δ=8.78(s,2H),8.59(d,J=1.4Hz,2H),7.84(d,J=4.1Hz,2H),3.01(s,J=7.9Hz,4H),1.72(s,4H),1.51-1.09(m,12H),1.02-1.58(m,70H),0.47(s,6H)
The physical property data of the obtained compound 7d are as follows.
1 HNMR (400MH 2 , CDCl 3 , TMS) δ = 8.78 (s, 2H), 8.59 (d, J = 1.4Hz, 2H), 7.84 (d, J = 4.1Hz, 2H) ), 3.01 (s, J = 7.9Hz, 4H), 1.72 (s, 4H), 1.51-1.09 (m, 12H), 1.02-1.58 (m, 70H) ), 0.47 (s, 6H)

続いて合成した化合物7a-7dそれぞれを用いて太陽電池素子を作製し、光電変換効率を評価した。 Subsequently, a solar cell element was produced using each of the synthesized compounds 7a-7d, and the photoelectric conversion efficiency was evaluated.

(化合物7aを用いた太陽電池素子の作製、評価)
ITO膜がパターンニングされたガラス基板を十分洗浄後、UVオゾン処理を行った。次に、酢酸亜鉛(II)二水和物0.5g及びエタノールアミン0.142mLを2-メトキシエタノール5mLに溶解した溶液を5000rpmで30秒間スピンコートし、基板を180℃で30分間加熱することで、電子取り出し層を成膜した。
電子取り出し層を成膜した基板をグローブボックス内に持ち込み、化合物7a及び電子受容体である高分子化合物P1を含むクロロベンゼン溶液(化合物7a/高分子化合物P1の重量比=1.2/1)を用いて、スピンコートにより光活性層を形成した(膜厚100nm)。なお、高分子化合物P1は「S. Wen et al., Chem. Mater. 2019, 31, 919.」を参照して合成して用いた。
(Manufacturing and evaluation of solar cell element using compound 7a)
After thoroughly cleaning the glass substrate on which the ITO film was patterned, UV ozone treatment was performed. Next, a solution prepared by dissolving 0.5 g of zinc acetate (II) dihydrate and 0.142 mL of ethanolamine in 5 mL of 2-methoxyethanol is spin-coated at 5000 rpm for 30 seconds, and the substrate is heated at 180 ° C. for 30 minutes. Then, the electron extraction layer was formed into a film.
The substrate on which the electron extraction layer is formed is brought into the glove box, and a chlorobenzene solution containing the compound 7a and the polymer compound P1 which is an electron acceptor (compound 7a / weight ratio of the polymer compound P1 = 1.2 / 1) is applied. The photoactive layer was formed by spin coating (thickness: 100 nm). The polymer compound P1 was synthesized and used with reference to "S. Wen et al., Chem. Mater. 2019, 31, 919.".

Figure 2022037676000013
Figure 2022037676000013

さらに、活性層上に、正孔取り出し層として厚さ7.5nmの三酸化モリブデン(MoO)膜を、次いで電極層として厚さ100nmの銀膜を、抵抗加熱型真空蒸着法により順次成膜し、4mm角の有機薄膜太陽電池素子を作製した。 Further, a 7.5 nm thick molybdenum trioxide (MoO 3 ) film as a hole extraction layer and a silver film with a thickness of 100 nm as an electrode layer are sequentially formed on the active layer by a resistance heating type vacuum vapor deposition method. Then, a 4 mm square organic thin-film solar cell element was manufactured.

得られた有機薄膜太陽電池にソーラシミュレーター(AM1.5Gフィルター、放射照度100mW/cm)を用いて一定の光を照射し、発生する電流と電圧を測定した。図1に電流密度-電圧特性のグラフを、図2に分光感度特性をそれぞれ示す。 The obtained organic thin-film solar cell was irradiated with constant light using a solar simulator (AM1.5G filter, irradiance 100 mW / cm 2 ), and the generated current and voltage were measured. FIG. 1 shows a graph of current density-voltage characteristics, and FIG. 2 shows spectral sensitivity characteristics.

得られた図1から短絡電流密度Jsc(mA/cm)、開放電圧Voc(V)、曲線因子FFを求めたところ、Jsc=15.92mA/cm、Voc=0.94V、FF=0.57であった。また、光電変換効率(η)を、式η=(Jsc×Voc×FF)/100より算出したところ、8.6%であった。 When the short-circuit current density Jsc (mA / cm 2 ), open circuit voltage Voc (V), and curve factor FF were obtained from the obtained FIG. 1, Jsc = 15.92mA / cm 2 , Voc = 0.94V, FF = 0. It was .57. Further, the photoelectric conversion efficiency (η) was calculated from the formula η = (Jsc × Voc × FF) / 100 and found to be 8.6%.

(化合物7bを用いた太陽電池素子の作製、評価)
化合物7b及び高分子化合物P1を含むクロロホルム溶液(化合物7b/高分子化合物P1の重量比=1.2/1)を用いて、スピンコートにより光活性層を形成した以外は上記と同様にして有機薄膜太陽電池を作製し(膜厚100nm)、その特性を評価した。図3に示す電流密度-電圧特性が得られ、Jsc=17.91mA/cm、Voc=0.90V、FF=0.58であった。ηは9.3%であった。また、図4に分光感度特性を示す。
(Manufacturing and evaluation of solar cell element using compound 7b)
Organic in the same manner as above except that a photoactive layer was formed by spin coating using a chloroform solution containing compound 7b and the polymer compound P1 (compound 7b / weight ratio of the polymer compound P1 = 1.2 / 1). A thin-film solar cell was produced (thickness 100 nm) and its characteristics were evaluated. The current density-voltage characteristics shown in FIG. 3 were obtained, and Jsc = 17.91 mA / cm 2 , Voc = 0.90 V, and FF = 0.58. η was 9.3%. Further, FIG. 4 shows the spectral sensitivity characteristics.

(化合物7cを用いた太陽電池素子の評価)
化合物7c及び高分子化合物P1を含むクロロホルム溶液(化合物7c/高分子化合物P1の重量比=1.2/1)を用いて、スピンコートにより光活性層を形成した以外は上記と同様にして有機薄膜太陽電池を作製し(膜厚100nm)、その特性を評価した。図5に示す電流密度-電圧特性が得られ、Jsc=17.63mA/cm、Voc=0.92V、FF=0.61であった。ηは10.0%であった。また、図6に分光感度特性を示す。
(Evaluation of solar cell element using compound 7c)
Organic in the same manner as above except that a photoactive layer was formed by spin coating using a chloroform solution containing compound 7c and the polymer compound P1 (compound 7c / weight ratio of the polymer compound P1 = 1.2 / 1). A thin-film solar cell was produced (thickness 100 nm) and its characteristics were evaluated. The current density-voltage characteristics shown in FIG. 5 were obtained, and Jsc = 17.63 mA / cm 2 , Voc = 0.92 V, and FF = 0.61. η was 10.0%. Further, FIG. 6 shows the spectral sensitivity characteristics.

(化合物7dを用いた太陽電池素子の評価)
化合物7d及び高分子化合物P1を含むクロロホルム溶液(化合物7d/高分子化合物P1の重量比=1.2/1)を用いて、スピンコートにより光活性層を形成した以外は上記と同様にして有機薄膜太陽電池を作製し(膜厚100nm)、その特性を評価した。図7に示す電流密度-電圧特性が得られ、Jsc=19.08mA/cm、Voc=0.88V、FF=0.61であった。ηは10.2%であった。また、図8に分光感度特性を示す。
(Evaluation of solar cell element using compound 7d)
Organic in the same manner as above except that a photoactive layer was formed by spin coating using a chloroform solution containing compound 7d and the polymer compound P1 (compound 7d / weight ratio of the polymer compound P1 = 1.2 / 1). A thin-film solar cell was produced (thickness 100 nm) and its characteristics were evaluated. The current density-voltage characteristics shown in FIG. 7 were obtained, and Jsc = 19.08 mA / cm 2 , Voc = 0.88 V, and FF = 0.61. η was 10.2%. Further, FIG. 8 shows the spectral sensitivity characteristics.

(比較例:化合物8を用いた太陽電池素子の作製、評価)
市販の電子供与体である化合物8を用いて太陽電池素子を作製し、評価した。
(Comparative example: Fabrication and evaluation of a solar cell element using compound 8)
A solar cell element was prepared and evaluated using compound 8 which is a commercially available electron donor.

Figure 2022037676000014
Figure 2022037676000014

化合物8及び高分子化合物P1を含むクロロホルム溶液(化合物8/高分子化合物P1の重量比=1/1.2)を用いて、スピンコートにより光活性層を形成した以外は上記と同様にして有機薄膜太陽電池を作製し(膜厚100nm)、その特性を評価した。図9に示す電流密度-電圧特性が得られ、Jsc=16.9mA/cm、Voc=0.85V、FF=0.57、ηは8.3%であった。また、図10に分光感度特性を示す。 Organic in the same manner as above except that a photoactive layer was formed by spin coating using a chloroform solution containing compound 8 and the polymer compound P1 (compound 8 / weight ratio of the polymer compound P1 = 1 / 1.2). A thin-film solar cell was produced (thickness 100 nm) and its characteristics were evaluated. The current density-voltage characteristics shown in FIG. 9 were obtained, and Jsc = 16.9 mA / cm 2 , Voc = 0.85 V, FF = 0.57, and η were 8.3%. Further, FIG. 10 shows the spectral sensitivity characteristics.

化合物7a-7d、及び、化合物8を用いて得られた有機薄膜太陽電池の特性を表2にまとめた。化合物7a-7dを用いて得られた有機薄膜太陽電池は、化合物8を用いて得られた有機薄膜太陽電池に比べて、光電変換効率が高く、良好な特性を有していることがわかる。 Table 2 summarizes the characteristics of the organic thin-film solar cells obtained by using the compounds 7a-7d and the compound 8. It can be seen that the organic thin-film solar cell obtained by using the compound 7a-7d has higher photoelectric conversion efficiency and has good characteristics as compared with the organic thin-film solar cell obtained by using the compound 8.

Figure 2022037676000015
Figure 2022037676000015

本発明に係る低分子化合物、高分子化合物は、有機薄膜太陽電池や有機薄膜トランジスタ等の有機半導体デバイスの活性層を形成する有機半導体材料として利用可能である。 The low molecular weight compound and the high molecular weight compound according to the present invention can be used as an organic semiconductor material for forming an active layer of an organic semiconductor device such as an organic thin film solar cell or an organic thin film.

Claims (4)

式1又は式2で表される、
Figure 2022037676000016

(式1及び式2中、Rはアルキル基を表し、Aはヘテロ芳香環を表し、式2中、Bはヘテロ環を表す。)
ことを特徴とする低分子化合物。
Represented by Equation 1 or Equation 2,
Figure 2022037676000016

(In Formulas 1 and 2, R represents an alkyl group, A represents a heteroaromatic ring, and B in Formula 2 represents a heterocycle.)
A small molecule compound characterized by that.
式3又は式4で表される繰り返し単位を含む、
Figure 2022037676000017

(式3及び式4中、Rはアルキル基を表し、Aはヘテロ芳香環を表し、Arはヘテロ芳香環を表し、式4中、Bはヘテロ環を表す。)
ことを特徴とする高分子化合物。
Including the repeating unit represented by the formula 3 or the formula 4.
Figure 2022037676000017

(In formulas 3 and 4, R represents an alkyl group, A represents a heteroaromatic ring, Ar represents a heteroaromatic ring, and B in formula 4 represents a heterocycle.)
A polymer compound characterized by this.
請求項1に記載の低分子化合物、又は、請求項2に記載の高分子化合物を含む、
ことを特徴とする有機半導体材料。
The small molecule compound according to claim 1 or the high molecular compound according to claim 2 is included.
An organic semiconductor material characterized by this.
請求項3に記載の有機半導体材料を含む活性層を有する、
ことを特徴とする有機半導体デバイス。
It has an active layer containing the organic semiconductor material according to claim 3.
An organic semiconductor device characterized by this.
JP2020141926A 2020-08-25 2020-08-25 Low-molecular-weight compound, polymer compound, organic semiconductor material and organic semiconductor device Pending JP2022037676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020141926A JP2022037676A (en) 2020-08-25 2020-08-25 Low-molecular-weight compound, polymer compound, organic semiconductor material and organic semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020141926A JP2022037676A (en) 2020-08-25 2020-08-25 Low-molecular-weight compound, polymer compound, organic semiconductor material and organic semiconductor device

Publications (1)

Publication Number Publication Date
JP2022037676A true JP2022037676A (en) 2022-03-09

Family

ID=80494746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020141926A Pending JP2022037676A (en) 2020-08-25 2020-08-25 Low-molecular-weight compound, polymer compound, organic semiconductor material and organic semiconductor device

Country Status (1)

Country Link
JP (1) JP2022037676A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220140254A1 (en) * 2020-11-04 2022-05-05 The Regents Of The University Of Michigan Key materials for organic photovoltaics reliability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220140254A1 (en) * 2020-11-04 2022-05-05 The Regents Of The University Of Michigan Key materials for organic photovoltaics reliability
US11594686B2 (en) * 2020-11-04 2023-02-28 The Regents Of The University Of Michigan Key materials for organic photovoltaics reliability
US11957048B2 (en) 2020-11-04 2024-04-09 The Regents Of The University Of Michigan Key materials for organic photovoltaics reliability

Similar Documents

Publication Publication Date Title
Yi et al. Effect of thermal annealing on active layer morphology and performance for small molecule bulk heterojunction organic solar cells
JP6797019B2 (en) Coupled polymers and devices incorporating them
JP7195546B2 (en) fullerene derivative and n-type semiconductor material
JP6610096B2 (en) Conjugated compound, electron-donating organic material using the same, photovoltaic device material and photovoltaic device
JP2022037676A (en) Low-molecular-weight compound, polymer compound, organic semiconductor material and organic semiconductor device
KR101328526B1 (en) Organic photovoltain polymer and manufacturing method thereof
JPWO2013176156A1 (en) Electron donating organic material, photovoltaic device material using the same, and photovoltaic device
WO2011144537A1 (en) Photoactive composition with a high mobility of the electronic holes
KR101678580B1 (en) Organic semiconducting compounds, manufacturing method thereof, and organic electronic device and organic photovoltaic device containing the same
JP2018145125A (en) Low-molecular-weight compound, polymer compound, method for synthesizing them, and organic semiconductor material
KR101535066B1 (en) Double junction organic photovoltaic device fabricated using organic semiconductor compound, and organic electronic device that contains it
US10344028B2 (en) Organic semiconductor compound, production method thereof, and organic electronic device using the same
JP7029721B2 (en) Compounds, organic semiconductor materials, organic semiconductor devices, organic solar cells and organic transistors
KR101400077B1 (en) new polymer process for producing the polymer and organic optoelectronic devices using the same
KR101833215B1 (en) Organic semiconducting compounds, manufacturing method thereof, and organic electronic device containing the same
JP2017043590A (en) Novel compound, novel polymer and use thereof
JP7214119B2 (en) Polymer compound, method for synthesizing polymer compound, organic thin-film solar cell material, and organic thin-film solar cell
KR101514819B1 (en) organic semiconductor compound, manufacturing method thereof, and organic electronic device that contains it
JP5995230B2 (en) Organic semiconductor material and organic semiconductor device using the same
JP7037137B2 (en) Fullerene derivatives and n-type semiconductor materials
KR101838097B1 (en) Novel compound and organic solar cell containing the same
KR101627494B1 (en) Novel conductive polymer, preparation method thereof and polymer having the same
JP2023027574A (en) Polymer compound, method for producing polymer compound, organic thin film solar cell material and organic thin film solar cell
JP2014028768A (en) Fullerene derivative, organic semiconductor film and organic thin film solar cell using the same, and fullerene derivative production method
KR20180082356A (en) New compounds and organic electronic device containing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200828

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230530