JP7029721B2 - Compounds, organic semiconductor materials, organic semiconductor devices, organic solar cells and organic transistors - Google Patents

Compounds, organic semiconductor materials, organic semiconductor devices, organic solar cells and organic transistors Download PDF

Info

Publication number
JP7029721B2
JP7029721B2 JP2017199989A JP2017199989A JP7029721B2 JP 7029721 B2 JP7029721 B2 JP 7029721B2 JP 2017199989 A JP2017199989 A JP 2017199989A JP 2017199989 A JP2017199989 A JP 2017199989A JP 7029721 B2 JP7029721 B2 JP 7029721B2
Authority
JP
Japan
Prior art keywords
compound
organic
organic semiconductor
reaction
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017199989A
Other languages
Japanese (ja)
Other versions
JP2019073468A (en
Inventor
芳雄 安蘇
裕隆 家
シュレーヤム チャタジー
太一 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Osaka University NUC
Original Assignee
Ishihara Sangyo Kaisha Ltd
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd, Osaka University NUC filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2017199989A priority Critical patent/JP7029721B2/en
Publication of JP2019073468A publication Critical patent/JP2019073468A/en
Application granted granted Critical
Publication of JP7029721B2 publication Critical patent/JP7029721B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Description

本発明は、低分子化合物、及びそれを含む有機半導体材料、有機半導体素子並びにそれを用いた有機太陽電池、有機トランジスタに関する。 The present invention relates to a low molecular weight compound, an organic semiconductor material containing the same, an organic semiconductor device, an organic solar cell using the same, and an organic transistor.

近年、有機半導体材料を利用した有機トランジスタや有機太陽電池等に関する研究開発が盛んに行われている。有機半導体材料を用いた場合、印刷法、スピンコート法等のウエットプロセスによる簡便な方法で薄膜状の有機半導体層を作製できる。このため、無機半導体材料に比べて製造コストが安いとともに、薄く柔軟性に優れる有機半導体素子が得られる等の利点がある。
例えば、n型有機半導体材料としてフェニルC61酪酸メチルエステルやフェニルC71酪酸メチルエステル等のフラーレン誘導体をバルクヘテロ型有機太陽電池に用いると、高い光電変換効率を示すことが知られているが、製造コストが高いことが欠点として挙げられる。そのため、このような背景からフラーレン代替となり得るπ拡張系n型有機半導体材料の研究開発が行われている。例えば、非特許文献1には、ナフトビスチアジアゾールと縮環イミドから構成される化合物をn型有機半導体材料として用いて太陽電池の動作を確認したことが記載されている。
In recent years, research and development on organic transistors and organic solar cells using organic semiconductor materials have been actively carried out. When an organic semiconductor material is used, a thin-film organic semiconductor layer can be produced by a simple method such as a printing method or a spin coating method by a wet process. Therefore, there are advantages that the manufacturing cost is lower than that of the inorganic semiconductor material, and that an organic semiconductor element which is thin and has excellent flexibility can be obtained.
For example, when a fullerene derivative such as phenyl C 61 butyrate methyl ester or phenyl C 71 butyrate methyl ester is used as an n-type organic semiconductor material in a bulk hetero-type organic solar cell, it is known to exhibit high photoelectric conversion efficiency. The disadvantage is that it is expensive. Therefore, from such a background, research and development of a π-extended n-type organic semiconductor material that can be an alternative to fullerene is being carried out. For example, Non-Patent Document 1 describes that the operation of a solar cell was confirmed by using a compound composed of naphthobisthiadiazole and condensed ring imide as an n-type organic semiconductor material.

Shreyam Chatterjee et al.,Adv.Funct.Mater.26,1161-1168(2016)Shreyam Chatterjee et al. , Adv. Funct. Mater. 26,1161-1168 (2016)

しかしながら、非特許文献1に記載された材料を用いた太陽電池では、未だ十分な光電変換効率が得られていないため、更なる改良が求められている。 However, the solar cell using the material described in Non-Patent Document 1 has not yet obtained sufficient photoelectric conversion efficiency, and therefore further improvement is required.

本発明者らは、n型有機半導体材料として良好な特性を示すフラーレン代替となり得る拡張共役系化合物を探索した結果、下記一般式(I)で示される化合物が、優れたn型有機半導体特性を有し、有機半導体材料として高い光電変換効率を達成し、より一層優れたキャリア移動度を達成し得ることを見出し、本発明を完成した。すなわち、本発明は以下に存する。 As a result of searching for an extended conjugated compound that can be an alternative to fullerene showing good properties as an n-type organic semiconductor material, the present inventors have found that the compound represented by the following general formula (I) has excellent n-type organic semiconductor properties. We have found that we can achieve high photoelectric conversion efficiency as an organic semiconductor material and achieve even better carrier mobility, and completed the present invention. That is, the present invention exists as follows.

[1].下記一般式(I)で示される化合物。 [1]. The compound represented by the following general formula (I).

Figure 0007029721000001

(一般式(I)中、 X、X、Y及びYは、それぞれ独立に、水素原子、フッ素原子、炭素原子数1-40の直鎖状もしくは分岐状のアルキル基、又は少なくとも1つのフッ素原子で置換された炭素原子数1-40の直鎖状もしくは分岐状のアルキル基であり、A及びAは、それぞれ独立に、下記式で表される基であり、*は結合手を示す。)
Figure 0007029721000001

(In the general formula (I), X 1 , X 2 , Y 1 and Y 2 are independently hydrogen atoms, fluorine atoms, linear or branched alkyl groups having 1-40 carbon atoms, or at least. It is a linear or branched alkyl group having 1-40 carbon atoms substituted with one hydrogen atom, and A 1 and A 2 are independently represented by the following formulas, and * is a group. Shows the bond.)

Figure 0007029721000002

(式中、R及びRは、それぞれ独立に、炭素原子数1-40の直鎖状もしくは分岐状のアルキル基、又は少なくとも1つのフッ素原子で置換された炭素原子数1-40の直鎖状もしくは分岐状のアルキル基であり、R、R、R、R、R、R及びRは、それぞれ独立に、下記式で表される基である。)
Figure 0007029721000002

(In the formula, R 1 and R 2 are independently substituted with a linear or branched alkyl group having 1-40 carbon atoms or at least one fluorine atom and having 1-40 carbon atoms. It is a chain or branched alkyl group, and R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are independently represented by the following formulas.)

Figure 0007029721000003

(式中、Rは、炭素原子数1-40の直鎖状又は分岐状のアルキル基を示す。)
[2].[1]に記載の化合物を含む、有機半導体材料。
[3].[2]に記載の有機半導体材料を含む層を有する、有機半導体素子。
[4].[3]に記載の有機半導体素子を含む、有機太陽電池。
[5].[3]に記載の有機半導体素子を含む、有機トランジスタ。
Figure 0007029721000003

(In the formula, R represents a linear or branched alkyl group having 1-40 carbon atoms.)
[2]. An organic semiconductor material containing the compound according to [1].
[3]. An organic semiconductor device having a layer containing the organic semiconductor material according to [2].
[4]. An organic solar cell including the organic semiconductor device according to [3].
[5]. An organic transistor including the organic semiconductor device according to [3].

本発明に係る化合物は、高い電子受容骨格であるフッ素原子が置換したナフトビスチアジアゾールと芳香族イミドをそれぞれ有することから、優れたn型有機半導体特性を有する。そのため、本発明に係る化合物は有機半導体材料として、より一層優れた光電変換効率を有する有機太陽電池、あるいはより一層優れたキャリア移動度を有する有機トランジスタ等に有用である。 The compound according to the present invention has excellent n-type organic semiconductor properties because it has naphthobisthiadiazole substituted with a fluorine atom, which is a high electron accepting skeleton, and an aromatic imide, respectively. Therefore, the compound according to the present invention is useful as an organic semiconductor material for an organic solar cell having an even better photoelectric conversion efficiency, an organic transistor having an even better carrier mobility, and the like.

実施例1の有機太陽電池における電流密度-電圧特性を示す図である。It is a figure which shows the current density-voltage characteristic in the organic solar cell of Example 1. FIG.

(化合物の構造)
本発明の化合物は、一般式(I)で示される。
(Structure of compound)
The compound of the present invention is represented by the general formula (I).

Figure 0007029721000004
Figure 0007029721000004

上記一般式(I)中、X及びXは、それぞれ独立に、水素原子、フッ素原子、炭素原子数1-40の直鎖状もしくは分岐状のアルキル基、又は少なくとも1つのフッ素原子で置換された炭素原子数1-40の直鎖状もしくは分岐状のアルキル基である。アルキル基の炭素原子数は、好ましくは1-10である。Y及びYは、それぞれ独立に、水素原子、フッ素原子、炭素原子数1-40の直鎖状もしくは分岐状のアルキル基、又は少なくとも1つのフッ素原子で置換された炭素原子数1-40の直鎖状もしくは分岐状のアルキル基であり、アルキル基の炭素原子数は、好ましくは1-30であり、より好ましくは5-25である。脂肪族炭化水素基は、直鎖状であっても枝分かれしていても環状であっても良い。A及びAは、それぞれ独立に、下記式で表される基であり、*は結合手である。 In the above general formula (I), X 1 and X 2 are independently substituted with a hydrogen atom, a fluorine atom, a linear or branched alkyl group having 1-40 carbon atoms, or at least one fluorine atom. It is a linear or branched alkyl group having 1-40 carbon atoms. The number of carbon atoms of the alkyl group is preferably 1-10. Y 1 and Y 2 are independently substituted with a hydrogen atom, a fluorine atom, a linear or branched alkyl group having 1-40 carbon atoms, or 1-40 carbon atoms substituted with at least one fluorine atom. It is a linear or branched alkyl group of, and the number of carbon atoms of the alkyl group is preferably 1-30, more preferably 5-25. The aliphatic hydrocarbon group may be linear, branched or cyclic. A 1 and A 2 are independent groups represented by the following formulas, and * is a bond.

Figure 0007029721000005

(式中、R及びRは、それぞれ独立に、炭素原子数1-40の直鎖状もしくは分岐状のアルキル基、又は少なくとも1つのフッ素原子で置換された炭素原子数1-40の直鎖状もしくは分岐状のアルキル基であり、アルキル基の炭素原子数は、好ましくは1-30であり、より好ましくは5-25である。R、R、R、R、R、R及びRは、それぞれ独立に、下記式で表される基である。)
Figure 0007029721000005

(In the formula, R 1 and R 2 are independently substituted with a linear or branched alkyl group having 1-40 carbon atoms or at least one fluorine atom and having 1-40 carbon atoms. It is a chain or branched alkyl group, and the number of carbon atoms of the alkyl group is preferably 1-30, more preferably 5-25. R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are independent groups represented by the following formulas.)

Figure 0007029721000006

(式中、Rは、炭素原子数1-40の直鎖状又は分岐状のアルキル基を示す。)
Figure 0007029721000006

(In the formula, R represents a linear or branched alkyl group having 1-40 carbon atoms.)

(化合物の製造方法)
化合物(I)の製造方法は特に限定されないが、一例として、以下の反応スキームに沿って、市販されている化合物から合成して製造することができる。より具体的な一例は、後述の実施例に記載されている。
(Method for manufacturing compounds)
The method for producing the compound (I) is not particularly limited, but as an example, the compound (I) can be synthesized and produced from a commercially available compound according to the following reaction scheme. A more specific example is described in the examples below.

Figure 0007029721000007
Figure 0007029721000007

市販の一般式(II)で表されるナフタレンから工程A,B,Cを経て一般式(V)で表される化合物を合成し、引き続き、一般式(V)で表される化合物から工程D,E,Fを経て(I)を合成する。 A compound represented by the general formula (V) is synthesized from commercially available naphthalene represented by the general formula (II) through steps A, B, and C, and then a compound represented by the general formula (V) is used in step D. , E, F to synthesize (I).

<工程A>
まず、一般式(II)で示される化合物(以下「化合物(II)」という)から、一般式(III)で示される化合物(以下「化合物(III)」という)を製造する(工程A)。化合物(III)において、nは0から4の任意の数字を示す。
<Process A>
First, a compound represented by the general formula (III) (hereinafter referred to as “Compound (III)”) is produced from the compound represented by the general formula (II) (hereinafter referred to as “Compound (II)”) (step A). In compound (III), n represents any number from 0 to 4.

工程Aは、具体的には、例えば、ニトロ化、ハロゲン化、ハロゲン置換、ホウ素化、ヒドロキシル化、アミノ化、保護又は脱保護のうちの少なくとも1つの工程を含むが、特に限定されず、これら工程のうちから必要な工程を適宜選択して組み合わせて行うことによって構成される。必要な工程の選択及び組み合わせ(選択した工程を行う順序)は、当業者であれば容易に理解することができる。 Step A specifically comprises, but is not limited to, at least one of, for example, nitration, halogenation, halogen substitution, boration, hydroxylation, amination, protection or deprotection. It is configured by appropriately selecting and combining necessary processes from the processes. Those skilled in the art can easily understand the selection and combination of necessary processes (the order in which the selected processes are performed).

<工程B>
次いで、化合物(III)から、一般式(IV)で示される化合物(以下「化合物(IV)」という)を製造する(工程B)。
<Process B>
Next, the compound represented by the general formula (IV) (hereinafter referred to as “compound (IV)”) is produced from the compound (III) (step B).

工程Bは、具体的には、例えば、化合物(III)又はその塩と、硫黄化剤とを反応(硫黄化反応)させることにより、化合物(IV)を製造する。硫黄化剤としては、当該反応が進行する硫黄化剤であれば特に限定はなく、例えば、硫黄、一塩化硫黄、二塩化硫黄、塩化チオニル、塩化スルフリル、2,4-ビス(4-メトキシフェニル)-1,3,2,4-ジチアジホスフェタン-2,4-ジスルフィド等が挙げられる。硫黄化剤としては、化合物(III)1当量に対して、1~20当量が好ましく、より好ましくは2~5当量の割合で使用することができる。工程Bの反応は、通常、塩基及び溶媒の存在下で行うことができる。塩基としては、当該反応が進行する塩基であれば特に限定はない。塩基は、化合物(III)1当量に対して、1~20当量が好ましく、より好ましくは2~5当量の割合で使用することができる。溶媒は、当該反応が進行する溶媒であれば特に限定はない。また、ピリジンやキノリンのように、溶媒で塩基を兼ねるものを使用してもよい。反応温度は、通常、0~200℃が好ましく、より好ましくは0~120℃である。反応時間は、通常、1~48時間である。化合物(IV)は、工程Cに供する前に精製することが好ましい。 In step B, specifically, compound (IV) is produced by reacting compound (III) or a salt thereof with a sulfurizing agent (sulfurization reaction). The sulfurizing agent is not particularly limited as long as it is a sulfurizing agent in which the reaction proceeds, and is, for example, sulfur, sulfur dichloride, thionyl chloride, sulfuryl chloride, 2,4-bis (4-methoxyphenyl). )-1,3,2,4-dithiadiphosfetan-2,4-disulfide and the like. As the sulfurizing agent, 1 to 20 equivalents is preferable, and more preferably 2 to 5 equivalents can be used with respect to 1 equivalent of compound (III). The reaction of step B can usually be carried out in the presence of a base and a solvent. The base is not particularly limited as long as it is a base on which the reaction proceeds. The base is preferably used in an amount of 1 to 20 equivalents, more preferably 2 to 5 equivalents, relative to 1 equivalent of compound (III). The solvent is not particularly limited as long as it is a solvent in which the reaction proceeds. Further, a solvent that also serves as a base, such as pyridine and quinoline, may be used. The reaction temperature is usually preferably 0 to 200 ° C, more preferably 0 to 120 ° C. The reaction time is usually 1 to 48 hours. Compound (IV) is preferably purified before being subjected to step C.

<工程C>
次いで、化合物(IV)から、一般式(V)で示される化合物(以下「化合物(V)」という)を製造する(工程C)。
<Process C>
Next, a compound represented by the general formula (V) (hereinafter referred to as “compound (V)”) is produced from the compound (IV) (step C).

工程Cは、具体的には、例えば、化合物(IV)とハロゲン化剤(臭素化剤)を反応(ハロゲン化反応)させることにより、化合物(V)を製造する。ハロゲン化剤としては、当該反応が進行するハロゲン化剤であれば特に限定はなく、例えば、臭素、N-ブロモスクシンイミド等が挙げられる。ハロゲン化剤は、化合物(IV)1当量に対して、1~20当量が好ましく、より好ましくは2~5当量の割合で使用することができる。工程Cの反応は、通常、溶媒の存在下で行うことができる。溶媒は、当該反応が進行する溶媒であれば特に限定はない。反応温度は、通常、0~200℃が好ましく、より好ましくは0~120℃である。反応時間は、通常、1~48時間である。化合物(V)は、工程Dに供する前に精製することが好ましい。 Specifically, in step C, compound (V) is produced by reacting compound (IV) with a halogenating agent (brominating agent) (halogenation reaction). The halogenating agent is not particularly limited as long as it is a halogenating agent in which the reaction proceeds, and examples thereof include bromine and N-bromosuccinimide. The halogenating agent is preferably used in an amount of 1 to 20 equivalents, more preferably 2 to 5 equivalents, relative to 1 equivalent of compound (IV). The reaction of step C can usually be carried out in the presence of a solvent. The solvent is not particularly limited as long as it is a solvent in which the reaction proceeds. The reaction temperature is usually preferably 0 to 200 ° C, more preferably 0 to 120 ° C. The reaction time is usually 1 to 48 hours. Compound (V) is preferably purified before being subjected to step D.

前述の工程Aから工程Cを適宜選択して組み合わせて行うことにより、式(II)の化合物から、式(V)で表されるナフトビスカルコゲナジアゾール誘導体を製造することができる。
具体的に次のステップを行って、ナフトビスカルコゲナジアゾール誘導体を製造するのが好ましい。
(1)ジアミノナフタレンをフッ素化反応させて、ジフルオロナフタレンを製造する。
(2)ジフルオロナフタレンをアミノ化反応させて、ジアミノ-ジフルオロナフタレン又はその塩酸塩を製造する。
(3)ジアミノ-ジフルオロナフタレン又はその塩酸塩をニトロ化反応させて、ジアミノ-ジフルオロ-ジニトロナフタレン又はその塩酸塩を製造する。
(4)ジアミノ-ジフルオロ-ジニトロナフタレン又はその塩酸塩を還元して、テトラアミノ-ジフルオロナフタレン又はその塩酸塩を製造する。
(5)テトラアミノ-ジフルオロナフタレン又はその塩酸塩と硫黄化剤、セレン化剤又はテルル化剤とを反応させて、ナフトビスカルコゲナジアゾールを製造する。
(6)(5)のステップで得られたナフトビスカルコゲナジアゾールとハロゲン化剤又はホウ素化剤とを反応させて、ナフトビスカルコゲナジアゾール誘導体を製造する。
また、別の方法として、具体的に次のステップを行って、ナフトビスカルコゲナジアゾール誘導体(A及びAは酸素原子である)を製造するのが好ましい。
(7)(3)のステップで得られたジアミノ-ジフルオロ-ジニトロナフタレン又はその塩酸塩を酸化し、次いで還元して、ナフトビスカルコゲナジアゾール誘導体(A及びAは酸素原子である)を製造する。
(8)(7)のステップで得られたナフトビスカルコゲナジアゾールとハロゲン化剤又はホウ素化剤とを反応させて、ナフトビスカルコゲナジアゾール誘導体(A及びAは酸素原子である)を製造する。
By appropriately selecting and combining steps A to C as described above, a naphthobiscarcogenaziazole derivative represented by the formula (V) can be produced from the compound of the formula (II).
Specifically, it is preferable to carry out the following steps to produce a naphthobiscarcogenaziazole derivative.
(1) Difluoronaphthalene is produced by fluorinating diaminonaphthalene.
(2) Difluoronaphthalene is subject to an amination reaction to produce diamino-difluoronaphthalene or a hydrochloride thereof.
(3) Diamino-difluoro-dinitronaphthalene or a hydrochloride thereof is subjected to a nitration reaction to produce diamino-difluoro-dinitronaphthalene or a hydrochloride thereof.
(4) Diamino-difluoro-dinitronaphthalene or its hydrochloride is reduced to produce tetraamino-difluoronaphthalene or its hydrochloride.
(5) Tetraamino-difluoronaphthalene or a hydrochloride thereof is reacted with a sulfurizing agent, a selenium agent or a tellurizing agent to produce naphthobiscarcogenaziazole.
(6) The naphthobiscarcogenaziazole obtained in step (5) is reacted with a halogenating agent or a boronizing agent to produce a naphthobiscarcogenaziazole derivative.
Further, as another method, it is preferable to specifically carry out the following steps to produce a naphthobiscarcogenaziazole derivative (A 1 and A 2 are oxygen atoms).
(7) The diamino-difluoro-dinitronaphthalene or its hydrochloride obtained in the step (3) is oxidized and then reduced to obtain a naphthobiscarcogenaziazole derivative (A 1 and A 2 are oxygen atoms). To manufacture.
(8) The naphthobiscarcogenaziazole obtained in step (7) is reacted with a halogenating agent or a boronizing agent to obtain a naphthobiscarcogenaziazole derivative (A 1 and A 2 are oxygen atoms). To manufacture.

<工程D>
次いで、化合物(V)と、化合物(VI)及び/又は化合物(VII)とから、一般式(VIII)で示される化合物(以下「化合物(VIII)」という)を製造する(工程D)。化合物(V)において、X、X、Y及びYはそれぞれ独立に、水素原子、フッ素原子、炭素原子数1-40の直鎖状もしくは分岐状のアルキル基、又は少なくとも1つのフッ素原子で置換された炭素原子数1-40の直鎖状もしくは分岐状のアルキル基である。化合物(VI)において、X及びYは前述の通りである。また、化合物(VII)において、X及びYは前述の通りである。
<Process D>
Next, a compound represented by the general formula (VIII) (hereinafter referred to as “compound (VIII)”) is produced from the compound (V) and the compound (VI) and / or the compound (VII) (step D). In compound (V), X 1 , X 2 , Y 1 and Y 2 , respectively, independently have a hydrogen atom, a fluorine atom, a linear or branched alkyl group having 1-40 carbon atoms, or at least one fluorine. It is a linear or branched alkyl group having 1-40 carbon atoms substituted with an atom. In compound (VI), X 1 and Y 1 are as described above. Further, in compound (VII), X 2 and Y 2 are as described above.

工程Dは、具体的には、例えば、溶媒中で化合物(V)と化合物(VI)及び/又は化合物(VII)とを触媒存在下で反応させて化合物(VIII)を生成させる。溶媒としては、トルエン、クロロベンゼン、DMF、テトラヒドロフラン等が挙げられる。また、触媒としては、Pd(PPh、Pd(PPhCl、Pd(dba)等が挙げられる。配位子として、トリフェニルホスフィン、トリ(o-トリル)ホスフィンを添加しても良い。反応温度は、例えば0℃~200℃とすることができる。化合物(VIII)は、工程Eに供する前に精製することが好ましい。 Specifically, in step D, for example, compound (V) and compound (VI) and / or compound (VII) are reacted in the presence of a catalyst in a solvent to produce compound (VIII). Examples of the solvent include toluene, chlorobenzene, DMF, tetrahydrofuran and the like. Examples of the catalyst include Pd (PPh 3 ) 4 , Pd (PPh 3 ) 2 Cl 2 , Pd 2 (dba) 3 , and the like. Triphenylphosphine and tri (o-tolyl) phosphine may be added as the ligand. The reaction temperature can be, for example, 0 ° C to 200 ° C. Compound (VIII) is preferably purified prior to subjecting to step E.

<工程E>
次いで、化合物(VIII)から、一般式(IX)で示される化合物(以下「化合物(IX)」という)を製造する(工程E)。化合物(IX)において、Bは臭素原子又はヨウ素原子を表す。化合物(IX)において、X、X、Y及びYは前述の通りである。
<Process E>
Next, a compound represented by the general formula (IX) (hereinafter referred to as “compound (IX)”) is produced from the compound (VIII) (step E). In compound (IX), B 3 represents a bromine atom or an iodine atom. In compound (IX), X 1 , X 2 , Y 1 and Y 2 are as described above.

工程Eは、具体的には、例えば、塩化メチレン及び/又はクロロホルム等の溶媒中で、化合物(VIII)に臭素、N-ブロモスクシンイミド(NBS)、ヨウ素、N-ヨードスクシンイミド(NIS)又は一塩化ヨウ素等を反応させて化合物(IX)を生成させる。反応温度は、例えば-78℃~60℃とすることができる。化合物(IX)は、工程Fに供する前に精製することが好ましい。 In step E, specifically, in a solvent such as methylene chloride and / or chloroform, compound (VIII) is bromine, N-bromosuccinimide (NBS), iodine, N-iodosuccinimide (NIS) or monochloride. Compound (IX) is produced by reacting with iodine or the like. The reaction temperature can be, for example, −78 ° C. to 60 ° C. The compound (IX) is preferably purified before being subjected to step F.

<工程F>
次いで、化合物(X)又は化合物(XI)と、化合物(IX)とを反応させることによって一般式(I)で示される化合物(以下「化合物(I)」という)を製造する(工程F)。化合物(I)において、X、X、Y及びYは前述の通りである。一般式(I)において、A及びAは、それぞれ独立に、下記式で表される基であり、*は結合手を示す。)
<Process F>
Then, the compound (X) or the compound (XI) is reacted with the compound (IX) to produce a compound represented by the general formula (I) (hereinafter referred to as “compound (I)”) (step F). In compound (I), X 1 , X 2 , Y 1 and Y 2 are as described above. In the general formula (I), A 1 and A 2 are each independently represented by the following formula, and * indicates a bond. )

Figure 0007029721000008

(式中、R及びRは、それぞれ独立に、炭素原子数1-40の直鎖状もしくは分岐状のアルキル基、又は少なくとも1つのフッ素原子で置換された炭素原子数1-40の直鎖状もしくは分岐状のアルキル基であり、R、R、R、R、R、R及びRは、それぞれ独立に、下記式で表される基である。)
Figure 0007029721000008

(In the formula, R 1 and R 2 are independently substituted with a linear or branched alkyl group having 1-40 carbon atoms or at least one fluorine atom and having 1-40 carbon atoms. It is a chain or branched alkyl group, and R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are independently represented by the following formulas.)

Figure 0007029721000009

(式中、Rは、炭素原子数1-40の直鎖状又は分岐状のアルキル基を示す。)
Figure 0007029721000009

(In the formula, R represents a linear or branched alkyl group having 1-40 carbon atoms.)

工程Fは、具体的には、例えば、溶媒中で化合物(X)又は化合物(XI)と化合物(IX)とを触媒及び塩基の存在下で反応させて化合物(I)を生成させる。溶媒としては、トルエン、クロロベンゼン、DMF、テトラヒドロフラン等が挙げられる。触媒としては、Pd(PPh、Pd(PPhCl、Pd(dba)等が挙げられる。配位子として、トリフェニルホスフィン、トリ(o-トリル)ホスフィンを添加しても良い。また、塩基としては、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等のアルカリ金属炭酸塩;ナトリウムメトキシド、ナトリウムエトキシド、カリウム第3級ブトキシド等のアルカリ金属アルコキシド;炭酸水素ナトリウム等のアルカリ金属の炭酸水素塩;炭酸カルシウム等のアルカリ土類金属の炭酸塩;水酸化ナトリウム、水酸化カリウム等の金属水酸化物;水素化ナトリウム、水素化カリウム等の金属水素化物;トリエチルアミン、ジイソプロピルエチルアミン、ピリジン、4-(N,N-ジメチルアミノ)ピリジン等の有機アミン類;等が挙げられる。反応温度は、例えば80℃~200℃とすることができる。得られた化合物(I)は精製しても良い。このようにして、本発明の化合物(I)を製造することができる。 Specifically, in step F, for example, compound (X) or compound (XI) and compound (IX) are reacted in the presence of a catalyst and a base in a solvent to produce compound (I). Examples of the solvent include toluene, chlorobenzene, DMF, tetrahydrofuran and the like. Examples of the catalyst include Pd (PPh 3 ) 4 , Pd (PPh 3 ) 2 Cl 2 , Pd 2 (dba) 3 , and the like. Triphenylphosphine and tri (o-tolyl) phosphine may be added as the ligand. The bases include alkali metal carbonates such as sodium carbonate, potassium carbonate and cesium carbonate; alkali metal alkoxides such as sodium methoxydo, sodium ethoxydo and potassium tertiary butoxide; alkali metal hydrogen carbonates such as sodium hydrogen carbonate. Salts; carbonates of alkaline earth metals such as calcium carbonate; metal hydroxides such as sodium hydroxide and potassium hydroxide; metal hydrides such as sodium hydride and potassium hydride; triethylamine, diisopropylethylamine, pyridine, 4- Organic amines such as (N, N-dimethylamino) pyridine; and the like. The reaction temperature can be, for example, 80 ° C to 200 ° C. The obtained compound (I) may be purified. In this way, the compound (I) of the present invention can be produced.

(有機半導体材料)
本発明の化合物(I)は、有機半導体材料として用いることができる。特に、n型有機半導体材料として優れた効果を有する。
(Organic semiconductor material)
The compound (I) of the present invention can be used as an organic semiconductor material. In particular, it has an excellent effect as an n-type organic semiconductor material.

(有機半導体素子)
前記の有機半導体材料を含有する層を基板上に形成して、有機半導体素子として用いることができる。基板としては、例えば、ガラス、樹脂を用いても良い。有機半導体材料を含む層を形成するには、公知の方法を用いて、溶媒に溶解した溶液を塗布したり、有機半導体材料を蒸着して形成することができる。
(Organic semiconductor device)
A layer containing the above-mentioned organic semiconductor material can be formed on a substrate and used as an organic semiconductor element. As the substrate, for example, glass or resin may be used. In order to form the layer containing the organic semiconductor material, a known method can be used to apply a solution dissolved in a solvent or to form the organic semiconductor material by vapor deposition.

(有機半導体デバイス)
前記の有機半導体素子を用いて、必要に応じて電極や配線を施して、有機半導体デバイスとすることができる。有機半導体デバイスとしては、有機エレクトロニクス全般、例えば、有機太陽電池、有機トランジスタ(有機電界効果型トランジスタ、光トランジスタ等)、有機エレクトロルミネッセンス、センサ(光センサ等)、メモリ、電子写真用感光体、コンデンサ及び/又はバッテリー等においても使用することができる。また、プロトン導電膜の材料としても使用し得る。
(Organic semiconductor device)
Using the above-mentioned organic semiconductor element, electrodes and wiring can be provided as needed to obtain an organic semiconductor device. Organic semiconductor devices include organic electronics in general, for example, organic solar cells, organic transistors (organic field effect transistors, optical transistors, etc.), organic electroluminescence, sensors (optical sensors, etc.), memories, photoconductors, capacitors. And / or it can also be used in a battery or the like. It can also be used as a material for a proton conductive film.

(有機太陽電池)
前記の有機半導体素子を用いて有機太陽電池を作製することができる。有機太陽電池は、例えば、基板上に電極層、電子輸送層(電子取出層)、光電変換層(光活性層)、正孔輸送層(正孔取出層)、及び電極層を順に積層した構造を有する。本発明に係る化合物を含む有機半導体材料は、例えば、光電変換層(光活性層)を形成する。基板としては、例えば、受光性能を阻害しないよう、光透過性を有する基板が挙げられる。そのような基板としては、例えば、無色又は有色ガラス、網入りガラス、ガラスブロック等が用いられる他、無色又は有色の透明性を有する樹脂を用いても良い。また、そのような樹脂としては、具体的には、ポリエチレンテレフタレート等のポリエステル、ポリアミド、ポリスルホン、ポリエーテルサルホン、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリカーボネート、ポリイミド、ポリメチルメタクリレート、ポリスチレン、トリアセチルセルロース、及びポリメチルペンテン等が挙げられる。電極としては、例えば、ITO(Indium Tin Oxide)電極、銀電極、アルミニウム電極、金電極、クロム電極、酸化チタン電極、酸化亜鉛電極などが挙げられる。電子輸送層(電子取出層)としては、例えば、フェナントロリン、バソキュプロイン、及びペリレン等の有機半導体分子並びにこれらの誘導体;遷移金属錯体等の有機物;LiF、CsF,CsO,CsCO,TiOx(xは0~2の任意の数字)、及びZnO等の無機化合物;Ca、Ba等の金属;等が挙げられる。正孔輸送層(正孔取出層)としては、例えば、PEDOT(ポリスチレンスルホネート、poly(styrenesulfonate))、ポリピロール、ポリアニリン、ポリフラン、ポリピリジン、及びポリカルバゾール等の導電性高分子;MoO及びWO等の無機化合物;フタロシアニン、及びポルフィリン等の有機半導体分子ならびにこれらの誘導体;遷移金属錯体;トリフェニルアミン化合物及びヒドラジン化合物等の電荷移動剤;TTF(テトラチアフルバレン)のような電荷移動錯体;等の正孔移動度が高い材料が挙げられる。
(Organic solar cell)
An organic solar cell can be manufactured by using the above-mentioned organic semiconductor element. An organic solar cell has, for example, a structure in which an electrode layer, an electron transport layer (electron extraction layer), a photoelectric conversion layer (photoactive layer), a hole transport layer (hole extraction layer), and an electrode layer are laminated in this order on a substrate. Have. The organic semiconductor material containing the compound according to the present invention forms, for example, a photoelectric conversion layer (photoactive layer). Examples of the substrate include a substrate having light transmission so as not to impair the light receiving performance. As such a substrate, for example, colorless or colored glass, braided glass, glass blocks, or the like may be used, or a colorless or colored transparent resin may be used. Specific examples of such resins include polyesters such as polyethylene terephthalate, polyamides, polysulfones, polyethersulfones, polyether ether ketones, polyphenylene sulfides, polycarbonates, polyimides, polymethylmethacrylates, polystyrenes, and triacetyl celluloses. , And polymethylpentene and the like. Examples of the electrode include an ITO (Indium Tin Oxide) electrode, a silver electrode, an aluminum electrode, a gold electrode, a chromium electrode, a titanium oxide electrode, a zinc oxide electrode and the like. Examples of the electron transport layer (electron extraction layer) include organic semiconductor molecules such as phenanthroline, vasocuproin, and perylene and derivatives thereof; organic substances such as transition metal complexes; LiF, CsF, CsO, Cs 2 CO 3 , and TiOx (x). Is an arbitrary number from 0 to 2), and inorganic compounds such as ZnO; metals such as Ca and Ba; and the like. Examples of the hole transport layer (hole extraction layer) include conductive polymers such as PEDOT (polystyrene sulfonate, poly (stylene compound)), polypyrrole, polyaniline, polyfuran, polypyridine, and polycarbazole; MoO 3 and WO 3 and the like. Inorganic compounds; organic semiconductor molecules such as phthalocyanine and porphyrin and derivatives thereof; transition metal complexes; charge transfer agents such as triphenylamine compounds and hydrazine compounds; charge transfer complexes such as TTF (tetrathiafluvalene); etc. Examples include materials with high hole mobility.

本発明の化合物(I)をn型半導体材料として用いる場合において、正孔輸送層(正孔取出層)として共に用いるp型半導体材料としては、ドナー型π共役高分子やドナーアクセプタ型π共役高分子等が挙げられる。ドナー型π共役高分子としては、ポリ-3-へキシルチオフェン(P3HT)、ポリ-p-フェニレンビニレン、ポリ-アルコキシ-p-フェニレンビニレン、ポリ-9,9-ジアルキルフルオレン、ポリ-p-フェニレンビニレンを挙げることができる。ドナーアクセプタ型π共役高分子中のドナーユニットとしては、ベンゾチオフェン、ジチエノシロール、N-アルキルカルバゾールが、またアクセプタユニットとしては、ベンゾチアジアゾール、チエノチオフェン、チオフェンピロールジオンなどが挙げられ、具体的には、これらのユニットを組み合わせた、ポリ(チエノ[3,4-b]チオフェン-co-ベンゾ[1,2-b:4,5-b’]チオフェン)(PTBxシリーズ)、ポリ(ジチエノ[1,2-b:4,5-b’][3,2-b:2’,3’-d]シロール-alt-(2,1,3-ベンゾチアジアゾール)類等の高分子化合物が挙げられる。これらのうちで、好ましいものとしては、ポリ({4,8-ビス[(2-エチルヘキシル)オキシ]ベンゾ[1,2-b:4,5-b’]ジチオフェン-2,6-ジイル}{3-フルオロ-2-[(2-エチルヘキシル)カルボニル]チエノ[3,4-b]チオフェンジイル})(PTB7)、ポリ[4,8-ジ(2-エチルヘキシルオキシ)ベンゾ[1,2-b:4,5-b’]ジチオフェン]-2,6-ジイル-alt-((5-オクチルチエノ[3,4-c]ピロール-4,6-ジオン)-1,3-ジイル)(PBCTTPD)、ポリ[(4,4’-ビス(2-エチルヘキシル)ジチエノ[3,2-b:2’,3’-d]シロール)-2,6-ジイル-alt-(2,1,3-ベンゾチアジアゾール-4,7-ジイル)(PSBTBT)、ポリ[N-9’’-ヘプタデカニル-2,7-カルバゾール-alt-5,5-(4’,7’-ジ-2-チエニル-2’,1’,3’-ベンゾチアジアゾール)](PCDTBT)、ポリ[1-(6-{4,8-ビス[(2-エチルヘキシル)オキシ]-6-メチルベンゾ[1,2-b:4,5-b’]ジチオフェン-2-イル}{3-フルオロ-4-メチルチエノ[3,4-b]チオフェン-2-イル}-1-オクタノン)(PBDTTT-CF)が挙げられる。 When the compound (I) of the present invention is used as an n-type semiconductor material, the p-type semiconductor material used together as the hole transport layer (hole extraction layer) includes a donor-type π-conjugated polymer and a donor-acceptor-type π-conjugated polymer. Examples include molecules. Examples of donor-type π-conjugated polymers include poly-3-hexylthiophene (P3HT), poly-p-phenylene vinylene, poly-alkoxy-p-phenylene vinylene, poly-9,9-dialkylfluorene, and poly-p-phenylene. Vinylene can be mentioned. Examples of the donor unit in the donor acceptor type π-conjugated polymer include benzothiophene, dithienosyrole and N-alkylcarbazole, and examples of the acceptor unit include benzothiadiazole, thienothiophene and thiophenepyrroldione. A combination of these units, poly (thieno [3,4-b] thiophene-co-benzo [1,2-b: 4,5-b'] thiophene) (PTBx series), poly (dithione [1,2] -B: 4,5-b'] [3,2-b: 2', 3'-d] Pyrrole-alt- (2,1,3-benzothiadiazole) and other high molecular compounds can be mentioned. Of these, poly ({4,8-bis [(2-ethylhexyl) oxy] benzo [1,2-b: 4,5-b'] dithiophene-2,6-diyl} {3 is preferable. -Fluoro-2-[(2-ethylhexyl) carbonyl] thieno [3,4-b] thiophendiyl}) (PTB7), poly [4,8-di (2-ethylhexyloxy) benzo [1,2-b: 4,5-b'] Dithiophene] -2,6-diyl-alt- ((5-octylthioeno [3,4-c] pyrrole-4,6-dione) -1,3-diyl) (PBCTTPD), poly [(4,4'-bis (2-ethylhexyl) dithieno [3,2-b: 2', 3'-d] pyrrole) -2,6-diyl-alt- (2,1,3-benzothiadiazole-) 4,7-diyl) (PSBTBT), poly [N-9''-heptadecanyl-2,7-carbazole-alt-5,5- (4', 7'-di-2-thienyl-2', 1', 1' , 3'-benzothiadiazole)] (PCDTBT), poly [1- (6- {4,8-bis [(2-ethylhexyl) oxy] -6-methylbenzo [1,2-b: 4,5-b' ] Dithiophene-2-yl} {3-fluoro-4-methylthieno [3,4-b] thiophen-2-yl} -1-octanone) (PBDTTT-CF).

(有機トランジスタ)
前記の有機半導体素子を用いて有機トランジスタを作製することができる。有機トランジスタは、具体的には、ソース電極、ドレイン電極、ゲート電極及び活性層を有し、該活性層に前記の有機半導体素子を用いることができる。
(Organic transistor)
An organic transistor can be manufactured by using the above-mentioned organic semiconductor element. Specifically, the organic transistor has a source electrode, a drain electrode, a gate electrode, and an active layer, and the organic semiconductor element can be used for the active layer.

以下、実施例に基づき、有機半導体材料を構成する各種化合物の合成、化合物を含む有機半導体材料を用いた有機太陽電池の特性について更に詳しく説明する。なお、これらの記載は本発明の実施形態の例示であって、本発明はこれらの実施例に限定されるものではない。 Hereinafter, based on Examples, the synthesis of various compounds constituting the organic semiconductor material and the characteristics of the organic solar cell using the organic semiconductor material containing the compound will be described in more detail. It should be noted that these descriptions are examples of embodiments of the present invention, and the present invention is not limited to these examples.

[化合物1~3]
(化合物1の合成)
市販のナフタレン誘導体をハロゲン化、アミノ化の製法を適宜選択して組み合わせて行うことにより、1,2,5,6-テトラアミノ-4,8-ジフルオロナフタレン塩酸塩(化合物1)を合成した。
[Compounds 1 to 3]
(Synthesis of Compound 1)
1,2,5,6-tetraamino-4,8-difluoronaphthalene hydrochloride (Compound 1) was synthesized by appropriately selecting and combining commercially available naphthalene derivatives in the production methods of halogenation and amination.

(1,5-ジフルオロナフタレンの合成)
500mLナス型フラスコに、1,5-ジアミノナフタレン(7.5g)、及び水(200mL)を入れ、0℃に冷却後濃硫酸(12.6mL)を入れた。その後、0℃で亜硝酸(8.21g)の水溶液(20mL)を滴下し、滴下終了後0℃で1時間撹拌した。その後、室温で1時間撹拌した。その後、0℃に冷却しHBF(38mL)を滴下し、滴下終了後0℃で1時間撹拌した。析出物を濾取し、水及びメタノールで洗浄し、減圧下で乾燥して固体を得た。500mLナス型フラスコに、得られた固体(17.6g)、及びクロロベンゼン150mLを入れ、3時間加熱還流した。その後、0℃に冷却し反応液に水を加え、クロロホルムで抽出し、有機層を無水硫酸ナトリウムで乾燥、濾過後溶媒を減圧下で留去した。得られた反応混合物を、ヘキサンを移動層とするシリカゲルカラムクロマトグラフィーで分離精製し、1,5-ジフルオロナフタレンを白色固体で得た(3.048g,収率39%)。反応式を以下に示す。
(Synthesis of 1,5-difluoronaphthalene)
In a 500 mL eggplant-shaped flask, 1,5-diaminonaphthalene (7.5 g) and water (200 mL) were placed, cooled to 0 ° C., and then concentrated sulfuric acid (12.6 mL) was added. Then, an aqueous solution (20 mL) of nitrite (8.21 g) was added dropwise at 0 ° C., and after completion of the addition, the mixture was stirred at 0 ° C. for 1 hour. Then, the mixture was stirred at room temperature for 1 hour. Then, the mixture was cooled to 0 ° C., HBF 4 (38 mL) was added dropwise, and the mixture was stirred at 0 ° C. for 1 hour after the completion of the addition. The precipitate was collected by filtration, washed with water and methanol, and dried under reduced pressure to give a solid. The obtained solid (17.6 g) and 150 mL of chlorobenzene were placed in a 500 mL eggplant-shaped flask, and the mixture was heated under reflux for 3 hours. Then, the mixture was cooled to 0 ° C., water was added to the reaction solution, the mixture was extracted with chloroform, the organic layer was dried over anhydrous sodium sulfate, filtered, and the solvent was distilled off under reduced pressure. The obtained reaction mixture was separated and purified by silica gel column chromatography using hexane as a moving layer to obtain 1,5-difluoronaphthalene as a white solid (3.048 g, yield 39%). The reaction formula is shown below.

Figure 0007029721000010
Figure 0007029721000010

得られた目的物の物性を測定した。測定結果を以下に示す。
H-NMR(400MHz,CDCl):δ=7.88(d,J=8.4Hz,1H), 7.49-7.44(m,1H),7.21(dd,J=7.8Hz,11Hz,1H)。
The physical characteristics of the obtained target product were measured. The measurement results are shown below.
1 1 H-NMR (400 MHz, CDCl 3 ): δ = 7.88 (d, J = 8.4 Hz, 1H), 7.49-7.44 (m, 1H), 7.21 (dd, J = 7) .8Hz, 11Hz, 1H).

(1,5-ジブロモ-4,8-ジフルオロナフタレンの合成)
200mLナス型フラスコに、1,5-ジフルオロナフタレン(3.048g)、及びトリフルオロ酢酸(25mL)を入れた後、N-ブロモスクシンイミド(7.939g)を加え70℃で16時間撹拌した。その後、0℃に冷却し反応液に水を加え、得られた析出物を濾取し、水及びメタノールで洗浄した。その後減圧下で乾燥し、1,5-ジブロモ-4,8-ジフルオロナフタレンを淡褐色固体で得た(5.321g,収率89%)。反応式を以下に示す。
(Synthesis of 1,5-dibromo-4,8-difluoronaphthalene)
After adding 1,5-difluoronaphthalene (3.048 g) and trifluoroacetic acid (25 mL) to a 200 mL eggplant-shaped flask, N-bromosuccinimide (7.939 g) was added and the mixture was stirred at 70 ° C. for 16 hours. Then, the mixture was cooled to 0 ° C., water was added to the reaction solution, the obtained precipitate was collected by filtration, and washed with water and methanol. Then, it was dried under reduced pressure to obtain 1,5-dibromo-4,8-difluoronaphthalene as a light brown solid (5.321 g, yield 89%). The reaction formula is shown below.

Figure 0007029721000011
Figure 0007029721000011

得られた目的物の物性を測定した。測定結果を以下に示す。
H-NMR(400MHz,CDCl):δ=7.88(dd,J=4.2Hz,8.6Hz,2H),7.12(dd,J=8.6Hz,12.6Hz,2H)。
The physical characteristics of the obtained target product were measured. The measurement results are shown below.
1 1 H-NMR (400 MHz, CDCl 3 ): δ = 7.88 (dd, J = 4.2 Hz, 8.6 Hz, 2H), 7.12 (dd, J = 8.6 Hz, 12.6 Hz, 2H) ..

(1,5-ジアミノ-4,8-ジフルオロナフタレン塩酸塩の合成)
300mLナス型フラスコに、1,5-ジブロモ-4,8-ジフルオロナフタレン(5.00g)、トリス(ジベンジリデンアセトン)ジパラジウム(0)-クロロホルム付加体(802mg)、rac-2,2’-ビス(ジフェニルホスフィノ)1,1’-ビナフチル(483mg)、ナトリウムtert-ブトキシド(5.96g)、ベンゾフェノンイミン(802mg)、及びトルエン(80mL)を入れてフラスコ内を窒素置換し、110℃で16時間撹拌した。析出物をセライト濾過で取り除き、酢酸エチルで洗浄し、濾液を減圧下で留去した。得られた反応混合物を、ヘキサン:酢酸エチル(1:1)溶媒を移動層とするシリカゲルカラムクロマトグラフィーで分離精製した。300mLナス型フラスコに得られた反応生成物とTHF(115mL)を入れて、0℃で2規定の塩酸(23.5mL)を加えて、0℃で1時間撹拌した。析出物を濾取し、テトラヒドロフランで洗浄した。その後減圧下で乾燥し、1,5-ジアミノ-4,8-ジフルオロナフタレン塩酸塩を淡褐色固体で得た(2.00g,収率48%)。反応式を以下に示す。式中、nは0~4の任意の数字を示す。
(Synthesis of 1,5-diamino-4,8-difluoronaphthalene hydrochloride)
In a 300 mL eggplant-shaped flask, 1,5-dibromo-4,8-difluoronaphthalene (5.00 g), tris (dibenzylideneacetone) dipalladium (0) -chloroform adduct (802 mg), rac-2,2'- Add bis (diphenylphosphino) 1,1'-binaphthyl (483 mg), sodium tert-butoxide (5.96 g), benzophenone imine (802 mg), and toluene (80 mL) to replace the inside of the flask with nitrogen, and at 110 ° C. The mixture was stirred for 16 hours. The precipitate was removed by filtration through cerite, washed with ethyl acetate, and the filtrate was distilled off under reduced pressure. The obtained reaction mixture was separated and purified by silica gel column chromatography using a hexane: ethyl acetate (1: 1) solvent as a moving layer. The reaction product obtained and THF (115 mL) were placed in a 300 mL eggplant-shaped flask, 2N hydrochloric acid (23.5 mL) was added at 0 ° C., and the mixture was stirred at 0 ° C. for 1 hour. The precipitate was collected by filtration and washed with tetrahydrofuran. Then, it was dried under reduced pressure to obtain 1,5-diamino-4,8-difluoronaphthalene hydrochloride as a light brown solid (2.00 g, yield 48%). The reaction formula is shown below. In the formula, n represents any number from 0 to 4.

Figure 0007029721000012
Figure 0007029721000012

得られた目的物の物性を測定した。測定結果を以下に示す。
H-NMR(400MHz,DMSO-d):δ=7.30-7.25(m,4H)。
The physical characteristics of the obtained target product were measured. The measurement results are shown below.
1 1 H-NMR (400 MHz, DMSO-d 6 ): δ = 7.30-7.25 (m, 4H).

(N,N’-(4,8-ジフルオロナフタレン-1,5-ジイル)ビス(2,2,2-トリフルオロアセトアミド)の合成)
300mLナス型フラスコに、1,5-ジアミノ-4,8-ジフルオロナフタレン塩酸塩(1.95g)、及びジクロロメタン(85mL)を入れ、0℃に冷却した。0℃でトリエチルアミン(2.95g)、無水トリフルオロ酢酸(7.67g)を加え、室温で終夜撹拌した。得られた反応混合物を減圧下で乾燥した。析出物にメタノールを加え濾取し、メタノールで洗浄した。その後減圧下で乾燥し、N,N’-(4,8-ジフルオロナフタレン-1,5-ジイル)ビス(2,2,2-トリフルオロアセトアミドを白色固体で得た(2.410g,収率86%)。反応式を以下に示す。
(Synthesis of N, N'-(4,8-difluoronaphthalene-1,5-diyl) bis (2,2,2-trifluoroacetamide))
1,5-Diamino-4,8-difluoronaphthalene hydrochloride (1.95 g) and dichloromethane (85 mL) were placed in a 300 mL eggplant-shaped flask and cooled to 0 ° C. Triethylamine (2.95 g) and trifluoroacetic anhydride (7.67 g) were added at 0 ° C., and the mixture was stirred overnight at room temperature. The resulting reaction mixture was dried under reduced pressure. Methanol was added to the precipitate, collected by filtration, and washed with methanol. Then, it was dried under reduced pressure to obtain N, N'-(4,8-difluoronaphthalene-1,5-diyl) bis (2,2,2-trifluoroacetamide) as a white solid (2.410 g, yield). 86%). The reaction formula is shown below.

Figure 0007029721000013
Figure 0007029721000013

得られた目的物の物性を測定した。測定結果を以下に示す。
H-NMR(400MHz,Acetone-d):δ=10.43(br,2H),7.84-7.79(m,2H),7.50(dd,J=8.4Hz,13.6Hz,2H)。
The physical characteristics of the obtained target product were measured. The measurement results are shown below.
1 1 H-NMR (400 MHz, Acetone-d 6 ): δ = 10.43 (br, 2H), 7.84-7.79 (m, 2H), 7.50 (dd, J = 8.4 Hz, 13) .6Hz, 2H).

(N,N’-(4,8-ジフルオロ-2,6-ジニトロナフタレン-1,5-ジイル)ビス(2,2,2-トリフルオロアセトアミド)の合成)
50mLナス型フラスコに、N,N’-(4,8-ジフルオロナフタレン-1,5-ジイル)ビス(2,2,2-トリフルオロアセトアミド)(500mg)、及び濃硫酸(10mL)を入れ、-45℃に冷却した。その後、硝酸(2.5mL)を加え、-45℃で5分間撹拌した。氷水に得られた反応混合物を加え、酢酸エチルで抽出し、有機層を水で洗浄した。有機層を無水硫酸ナトリウムで乾燥し、濾過後溶媒を減圧下で留去した。析出した固体にジエチルエーテルを加え濾取し、ジエチルエーテルで洗浄した。その後減圧下で乾燥し、N,N’-(4,8-ジフルオロ-2,6-ジニトロナフタレン-1,5-ジイル)ビス(2,2,2-トリフルオロアセトアミド)を淡褐色固体で得た(313mg,収率51%)。反応式を以下に示す。
(Synthesis of N, N'-(4,8-difluoro-2,6-dinitronaphthalene-1,5-diyl) bis (2,2,2-trifluoroacetamide))
In a 50 mL eggplant-shaped flask, N, N'-(4,8-difluoronaphthalene-1,5-diyl) bis (2,2,2-trifluoroacetamide) (500 mg) and concentrated sulfuric acid (10 mL) were placed. It was cooled to −45 ° C. Then, nitric acid (2.5 mL) was added, and the mixture was stirred at −45 ° C. for 5 minutes. The reaction mixture obtained was added to ice water, extracted with ethyl acetate, and the organic layer was washed with water. The organic layer was dried over anhydrous sodium sulfate, and after filtration, the solvent was distilled off under reduced pressure. Diethyl ether was added to the precipitated solid, and the solid was collected by filtration and washed with diethyl ether. Then, it was dried under reduced pressure to obtain N, N'-(4,8-difluoro-2,6-dinitronaphthalene-1,5-diyl) bis (2,2,2-trifluoroacetamide) as a light brown solid. (313 mg, yield 51%). The reaction formula is shown below.

Figure 0007029721000014
Figure 0007029721000014

得られた目的物の物性を測定した。測定結果を以下に示す。
H-NMR(400MHz,Acetone-d):δ=11.00(br,2H),8.31(d,J=12.8Hz,2H)。
The physical characteristics of the obtained target product were measured. The measurement results are shown below.
1 1 H-NMR (400 MHz, Acetone-d 6 ): δ = 11.00 (br, 2H), 8.31 (d, J = 12.8 Hz, 2H).

(1,5-ジアミノ-4,8-ジフルオロ-2,6-ジニトロナフタレン塩酸塩の合成)
300mLナス型フラスコに、N,N’-(4,8-ジフルオロ-2,6-ジニトロナフタレン-1,5-ジイル)ビス(2,2,2-トリフルオロアセトアミド)(1.340g)、メタノール(110mL)、及び濃塩酸(55mL)を入れ、90℃で終夜撹拌した。反応混合物を減圧下で濃縮した。析出した固体を濾取し、濃塩酸とジクロロメタンで洗浄した。その後減圧下で乾燥し、1,5-ジアミノ-4,8-ジフルオロ-2,6-ジニトロナフタレン塩酸塩を暗褐色固体で得た(679mg,収率68%)。反応式を以下に示す。式中、nは0~4の任意の数字を示す。
(Synthesis of 1,5-diamino-4,8-difluoro-2,6-dinitronaphthalene hydrochloride)
N, N'-(4,8-difluoro-2,6-dinitronaphthalene-1,5-diyl) bis (2,2,2-trifluoroacetamide) (1.340 g), methanol in a 300 mL eggplant-shaped flask. (110 mL) and concentrated hydrochloric acid (55 mL) were added, and the mixture was stirred at 90 ° C. overnight. The reaction mixture was concentrated under reduced pressure. The precipitated solid was collected by filtration and washed with concentrated hydrochloric acid and dichloromethane. Then, it was dried under reduced pressure to obtain 1,5-diamino-4,8-difluoro-2,6-dinitronaphthalene hydrochloride as a dark brown solid (679 mg, yield 68%). The reaction formula is shown below. In the formula, n represents any number from 0 to 4.

Figure 0007029721000015
Figure 0007029721000015

得られた目的物の物性を測定した。測定結果を以下に示す。
H-NMR(400MHz,DMSO-d):δ=8.15(br,4H),7.92(d,J=16.4Hz,2H)。
The physical characteristics of the obtained target product were measured. The measurement results are shown below.
1 1 H-NMR (400 MHz, DMSO-d 6 ): δ = 8.15 (br, 4H), 7.92 (d, J = 16.4 Hz, 2H).

(1,2,5,6-テトラアミノ-4,8-ジフルオロナフタレン塩酸塩の合成)
300mLナス型フラスコに、1,5-ジアミノ-4,8-ジフルオロ-2,6-ジニトロナフタレン塩酸塩(797mg)、濃塩酸(80mL)、及び塩化スズ(II)(8.46g)を入れ、70℃で1時間撹拌した。析出した固体を濾取し、濃塩酸とジクロロメタンで洗浄した。その後、減圧下で乾燥し、1,2,5,6-テトラアミノ-4,8-ジフルオロナフタレン塩酸塩(化合物1)を褐色固体で得た(718mg,収率87%)。反応式を以下に示す。式中、m及びnは、それぞれ独立に、0~4の任意の数字を示す。
(Synthesis of 1,2,5,6-tetraamino-4,8-difluoronaphthalene hydrochloride)
In a 300 mL eggplant-shaped flask, 1,5-diamino-4,8-difluoro-2,6-dinitronaphthalene hydrochloride (797 mg), concentrated hydrochloric acid (80 mL), and tin (II) chloride (8.46 g) were placed. The mixture was stirred at 70 ° C. for 1 hour. The precipitated solid was collected by filtration and washed with concentrated hydrochloric acid and dichloromethane. Then, it was dried under reduced pressure to obtain 1,2,5,6-tetraamino-4,8-difluoronaphthalene hydrochloride (Compound 1) as a brown solid (718 mg, 87% yield). The reaction formula is shown below. In the formula, m and n each independently represent any number from 0 to 4.

Figure 0007029721000016
Figure 0007029721000016

得られた目的物である化合物1の物性を測定した。測定結果を以下に示す。
H-NMR(400MHz,DMSO-d):δ=6.94(d,J=16.8Hz,2H)。
The physical characteristics of the obtained target compound 1 were measured. The measurement results are shown below.
1 1 H-NMR (400 MHz, DMSO-d 6 ): δ = 6.94 (d, J = 16.8 Hz, 2H).

(化合物2の合成)
5,10-ジフルオロナフト[1,2-c:5,6-c’]ビス[1,2,5]チアジアゾールを合成した。
100mLナス型フラスコに、得られた1,2,5,6-テトラアミノ-4,8-ジフルオロナフタレン塩酸塩(174mg)、ピリジン(18mL)、及び塩化チオニル(1.12g)を入れ、90℃で2時間撹拌した。その後、反応液を減圧下で乾燥して固体を得た。得られた固体にメチルアルコールを加えて濾取した後、濾取した固体をメチルアルコールで洗浄した。洗浄後の固体を乾燥して、淡褐色で5,10-ジフルオロナフト[1,2-c:5,6-c’]ビス[1,2,5]チアジアゾール(130mg,99%)(化合物2)を得た。反応式を以下に示す。
(Synthesis of compound 2)
5,10-Difluoronaphtho [1,2-c: 5,6-c'] bis [1,2,5] thiadiazole was synthesized.
In a 100 mL eggplant-shaped flask, the obtained 1,2,5,6-tetraamino-4,8-difluoronaphthalene hydrochloride (174 mg), pyridine (18 mL), and thionyl chloride (1.12 g) were placed and 90 ° C. Was stirred for 2 hours. Then, the reaction solution was dried under reduced pressure to obtain a solid. Methyl alcohol was added to the obtained solid and collected by filtration, and then the collected solid was washed with methyl alcohol. The washed solid is dried and is light brown with 5,10-difluoronaphtho [1,2-c: 5,6-c'] bis [1,2,5] thiadiazole (130 mg, 99%) (Compound 2). ) Was obtained. The reaction formula is shown below.

Figure 0007029721000017
Figure 0007029721000017

得られた化合物2の物性データは次の通りである。
HNMR(400MHz,CDCl):δ=8.08-8.03(m,2H)。19FNMR(565MHz,CDCl):δ=-107.71。
The physical characteristic data of the obtained compound 2 are as follows.
1 HNMR (400 MHz, CDCl 3 ): δ = 8.08-8.03 (m, 2H). 19 FNMR (565 MHz, CDCl 3 ): δ = −107.71.

(化合物3の合成)
反応容器にトリフルオロ酢酸(20mL)、化合物2(90mg,0.32mmol)、N-ブロモスクシンイミド(1.28g,7.2mmol)を加え、70℃で20時間撹拌した。その後、反応溶液に水を加え、析出してきた黄色固体を濾過し、メタノールで洗浄することで化合物3を得た(100mg,72%)。反応式を以下に示す。
(Synthesis of compound 3)
Trifluoroacetic acid (20 mL), compound 2 (90 mg, 0.32 mmol) and N-bromosuccinimide (1.28 g, 7.2 mmol) were added to the reaction vessel, and the mixture was stirred at 70 ° C. for 20 hours. Then, water was added to the reaction solution, the precipitated yellow solid was filtered, and the mixture was washed with methanol to obtain Compound 3 (100 mg, 72%). The reaction formula is shown below.

Figure 0007029721000018

得られた目的物の物性を測定した。測定結果を以下に示す。
19F-NMR(470MHz,CDCl):δ=-99.9(s)。融点(m.p.)=270~272℃。
Figure 0007029721000018

The physical characteristics of the obtained target product were measured. The measurement results are shown below.
19 F-NMR (470 MHz, CDCl 3 ): δ = -99.9 (s). Melting point (mp) = 270-272 ° C.

[化合物4~6]
(化合物4の合成)
化合物4は、文献:Macromolecules,46,3391(2013)に記載された手順を参考に合成した。
[Compounds 4 to 6]
(Synthesis of compound 4)
Compound 4 was synthesized with reference to the procedure described in Document: Macromolecules, 46, 3391 (2013).

(化合物5の合成)
反応容器にテトラヒドロフラン(30mL)、化合物3(100mg,0.23mmol)、化合物4(1.0g,2.2mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(30mg,1.5mol%)を加えた。反応容器を窒素置換し、120℃で12時間撹拌した。その後、反応溶液に水を加え、クロロホルムで抽出し、有機層を水で洗浄した。有機層を無水硫酸ナトリウムで乾燥、濾過後溶媒を減圧下で留去した。得られた反応混合物を、ヘキサン:クロロホルム(1:1)溶媒を移動層とするシリカゲルカラムクロマトグラフィーで分離精製し、化合物5を赤色固体で得た(134mg,収率87%)。
(Synthesis of Compound 5)
Tetrahydrofuran (30 mL), compound 3 (100 mg, 0.23 mmol), compound 4 (1.0 g, 2.2 mmol), tetrakis (triphenylphosphine) palladium (0) (30 mg, 1.5 mol%) were added to the reaction vessel. rice field. The reaction vessel was replaced with nitrogen and stirred at 120 ° C. for 12 hours. Then, water was added to the reaction solution, the mixture was extracted with chloroform, and the organic layer was washed with water. The organic layer was dried over anhydrous sodium sulfate, filtered, and the solvent was evaporated under reduced pressure. The obtained reaction mixture was separated and purified by silica gel column chromatography using a hexane: chloroform (1: 1) solvent as a moving layer to obtain Compound 5 as a red solid (134 mg, yield 87%).

得られた化合物5の物性データは次の通りである。
HNMR(400MHz,CDCl):δ=8.21(s,2H),7.18(s,2H),2.64-2.62(m,4H),1.67-1.64(m,2H),1.40-1.28(m,16H),0.94-0.88(m,12H)。
The physical characteristic data of the obtained compound 5 are as follows.
1 HNMR (400 MHz, CDCl 3 ): δ = 8.21 (s, 2H), 7.18 (s, 2H), 2.64-2.62 (m, 4H), 1.67-1.64 ( m, 2H), 1.40-1.28 (m, 16H), 0.94-0.88 (m, 12H).

(化合物6の合成)
反応容器にテトラヒドロフラン(15mL)、化合物5(134mg,0.20mmol)、N-ブロモスクシンイミド(89mg,0.50mmol)を加え、50℃で4時間撹拌した。その後、反応溶液に水を加え、クロロホルムで抽出し、有機層を水で洗浄した。有機層を無水硫酸ナトリウムで乾燥、濾過後溶媒を減圧下で留去した。得られた反応混合物を、クロロホルムを移動層とするシリカゲルカラムクロマトグラフィーで分離精製し、化合物6を赤色固体で得た(130mg,収率80%)。
(Synthesis of Compound 6)
Tetrahydrofuran (15 mL), compound 5 (134 mg, 0.20 mmol) and N-bromosuccinimide (89 mg, 0.50 mmol) were added to the reaction vessel, and the mixture was stirred at 50 ° C. for 4 hours. Then, water was added to the reaction solution, the mixture was extracted with chloroform, and the organic layer was washed with water. The organic layer was dried over anhydrous sodium sulfate, filtered, and the solvent was evaporated under reduced pressure. The obtained reaction mixture was separated and purified by silica gel column chromatography using chloroform as a moving layer to obtain Compound 6 as a red solid (130 mg, yield 80%).

得られた化合物6の物性データは次の通りである。
HNMR(400MHz,CDCl):δ=7.99(s,2H),2.58-2.49(m,4H),1.68-1.62(m,2H),1.33-1.17(m,8H),1.11-0.98(m,8H),0.94-0.89(m,12H)。反応式を以下に示す。
The physical characteristic data of the obtained compound 6 are as follows.
1 HNMR (400 MHz, CDCl 3 ): δ = 7.99 (s, 2H), 2.58-2.49 (m, 4H), 1.68-1.62 (m, 2H), 1.33- 1.17 (m, 8H), 1.11-0.98 (m, 8H), 0.94-0.89 (m, 12H). The reaction formula is shown below.

Figure 0007029721000019
Figure 0007029721000019

[化合物7~13]
(化合物7の合成)
化合物7は、文献:J.Org.Chem.81,8312-8318(2016).に記載された手順を参考に合成した。
[Compounds 7 to 13]
(Synthesis of compound 7)
Compound 7 is described in Reference: J. Mol. Org. Chem. 81,8312-8318 (2016). It was synthesized with reference to the procedure described in.

(化合物8の合成)
窒素雰囲気下、反応容器にN,N-ジメチルホルムアミド(5mL)、酢酸パラジウム(II)(24mg)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(XPhos)(94mg)を加え、室温で撹拌した。その後、化合物7(620mg)を加え室温で30分間撹拌した。その後、トリエチルアミン(2mL)、化合物7に対して3当量のアクリル酸tert-ブチルを加え、90℃で12時間撹拌した。その後、水とクロロホルムの混合溶媒に反応溶液を加え、クロロホルムで抽出し、有機層を水で洗浄した。有機層を無水硫酸ナトリウムで乾燥、濾過後溶媒を減圧下で留去した。得られた反応混合物を、ヘキサンと酢酸エチルの混合溶媒を移動層とするシリカゲルカラムクロマトグラフィーで分離精製し、化合物8を得た(315mg,収率40%)。
(Synthesis of Compound 8)
N, N-dimethylformamide (5 mL), palladium (II) acetate (24 mg), 2-dicyclohexylphosphino-2', 4', 6'-triisopropylbiphenyl (XPhos) (94 mg) in a reaction vessel under a nitrogen atmosphere. Was added, and the mixture was stirred at room temperature. Then, compound 7 (620 mg) was added, and the mixture was stirred at room temperature for 30 minutes. Then, 3 equivalents of tert-butyl acrylate was added to triethylamine (2 mL) and compound 7, and the mixture was stirred at 90 ° C. for 12 hours. Then, the reaction solution was added to a mixed solvent of water and chloroform, extracted with chloroform, and the organic layer was washed with water. The organic layer was dried over anhydrous sodium sulfate, filtered, and the solvent was evaporated under reduced pressure. The obtained reaction mixture was separated and purified by silica gel column chromatography using a mixed solvent of hexane and ethyl acetate as a moving layer to obtain Compound 8 (315 mg, yield 40%).

得られた化合物8の物性データは次の通りである。
HNMR(400MHz,CDCl):δ=8.14(s,2H),8.10(d,2H,J=8.0Hz),7.92(d,2H,J=6.8Hz),7.69-7.66(m,2H),1.65(s,18H)。
The physical characteristic data of the obtained compound 8 are as follows.
1 HNMR (400 MHz, CDCl 3 ): δ = 8.14 (s, 2H), 8.10 (d, 2H, J = 8.0 Hz), 7.92 (d, 2H, J = 6.8 Hz), 7.69-7.66 (m, 2H), 1.65 (s, 18H).

(化合物9の合成)
反応容器にエタノールと水の混合溶媒、化合物8(315mg)、水酸化ナトリウム(1.2g)を加え、100℃で12時間撹拌した。その後、2規定の塩酸を加え反応液を酸性にした。その後、析出してきた固体を濾過し、水とメタノールで洗浄することで化合物9を得た(260mg,収率80%)。
(Synthesis of compound 9)
A mixed solvent of ethanol and water, compound 8 (315 mg) and sodium hydroxide (1.2 g) were added to the reaction vessel, and the mixture was stirred at 100 ° C. for 12 hours. Then, 2N hydrochloric acid was added to make the reaction solution acidic. Then, the precipitated solid was filtered and washed with water and methanol to obtain compound 9 (260 mg, yield 80%).

(化合物10の合成)
反応容器に無水酢酸(10mL)、化合物9(260mg)を加え、130℃で4時間撹拌した。その後、析出してきた固体を濾過し、水とメタノールで洗浄することで化合物10を得た(200mg,収率82%)。
(Synthesis of compound 10)
Acetic anhydride (10 mL) and compound 9 (260 mg) were added to the reaction vessel, and the mixture was stirred at 130 ° C. for 4 hours. Then, the precipitated solid was filtered and washed with water and methanol to obtain compound 10 (200 mg, yield 82%).

得られた化合物10の物性データは次の通りである。
HNMR(400MHz,CDCl):δ=8.45(s,2H),8.21(d,2H,J=7.2Hz),8.10(d,2H,J=8.0Hz),7.83-7.79(m,2H)。
The physical property data of the obtained compound 10 are as follows.
1 HNMR (400 MHz, CDCl 3 ): δ = 8.45 (s, 2H), 8.21 (d, 2H, J = 7.2 Hz), 8.10 (d, 2H, J = 8.0 Hz), 7.83-7.79 (m, 2H).

(化合物11の合成)
反応容器にピリジン(10mL)、化合物10(200mg,0.73mmol)、2-アミノヘプタン(180mg,1.56mmol)を加え、140℃で12時間撹拌した。その後、反応溶液に水を加え、酢酸エチルで抽出し、有機層を水で洗浄した。有機層を無水硫酸ナトリウムで乾燥、濾過後溶媒を減圧下で留去した。得られた反応混合物を、ヘキサン:酢酸エチル(10:1)溶媒を移動層とするシリカゲルカラムクロマトグラフィーで分離精製し、化合物11を黄色固体で得た(235mg,収率87%)。
(Synthesis of compound 11)
Pyridine (10 mL), compound 10 (200 mg, 0.73 mmol) and 2-aminoheptane (180 mg, 1.56 mmol) were added to the reaction vessel, and the mixture was stirred at 140 ° C. for 12 hours. Then, water was added to the reaction solution, the mixture was extracted with ethyl acetate, and the organic layer was washed with water. The organic layer was dried over anhydrous sodium sulfate, filtered, and the solvent was evaporated under reduced pressure. The obtained reaction mixture was separated and purified by silica gel column chromatography using a hexane: ethyl acetate (10: 1) solvent as a moving layer to obtain Compound 11 as a yellow solid (235 mg, yield 87%).

得られた化合物11の物性データは次の通りである。
HNMR(400MHz,CDCl):δ=8.30(s,2H),8.12(d,2H,J=6.8Hz),8.00(d,2H,J=8.0Hz),7.76-7.72(m,2H),4.42-4.34(m,1H),2.16-2.03(m,1H),1.79-1.65(m,1H),1.51(d,3H,J=6.8Hz),1.35-1.23(m,6H),0.88-0.82(m,3H)。
The physical property data of the obtained compound 11 are as follows.
1 HNMR (400 MHz, CDCl 3 ): δ = 8.30 (s, 2H), 8.12 (d, 2H, J = 6.8 Hz), 8.00 (d, 2H, J = 8.0 Hz), 7.76-7.72 (m, 2H), 4.42-4.34 (m, 1H), 2.16-2.03 (m, 1H), 1.79-1.65 (m, 1H) ), 1.51 (d, 3H, J = 6.8Hz), 1.35-1.23 (m, 6H), 0.88-0.82 (m, 3H).

(化合物12の合成)
反応容器に酢酸(15mL)、化合物11(235mg,0.64mmol)、2-アミノヘプタン(180mg,1.56mmol)、触媒量のヨウ素を加えた。その後、臭素(1.03g,6.4mmol)をゆっくり加えた。その後、室温で20時間撹拌した。その後、反応溶液にチオ硫酸ナトリウム水溶液を加え室温で撹拌した。その後、反応液に水を加え、酢酸エチルで抽出し、有機層を水で洗浄した。有機層を無水硫酸ナトリウムで乾燥、濾過後溶媒を減圧下で留去した。得られた反応混合物を、ヘキサン:酢酸エチル(10:1)溶媒を移動層とするシリカゲルカラムクロマトグラフィーで分離精製し、化合物12を黄色固体で得た(200mg,収率70%)。
(Synthesis of compound 12)
Acetic acid (15 mL), compound 11 (235 mg, 0.64 mmol), 2-aminoheptane (180 mg, 1.56 mmol) and a catalytic amount of iodine were added to the reaction vessel. Then bromine (1.03 g, 6.4 mmol) was added slowly. Then, the mixture was stirred at room temperature for 20 hours. Then, an aqueous sodium thiosulfate solution was added to the reaction solution, and the mixture was stirred at room temperature. Then, water was added to the reaction solution, the mixture was extracted with ethyl acetate, and the organic layer was washed with water. The organic layer was dried over anhydrous sodium sulfate, filtered, and the solvent was evaporated under reduced pressure. The obtained reaction mixture was separated and purified by silica gel column chromatography using a hexane: ethyl acetate (10: 1) solvent as a moving layer to obtain Compound 12 as a yellow solid (200 mg, yield 70%).

得られた化合物12の物性データは次の通りである。
HNMR(400MHz,CDCl):δ=8.08-7.83(m,4H),7.73-7.69(m,1H),7.64-7.57(m,2H),4.42-4.34(m,1H),2.13-2.04(m,1H),1.80-1.68(m,1H),1.52(d,3H,J=6.8Hz),1.35-1.23(m,6H),0.86-0.82(m,3H)。
The physical property data of the obtained compound 12 are as follows.
1 HNMR (400 MHz, CDCl 3 ): δ = 8.08-7.83 (m, 4H), 7.73-7.69 (m, 1H), 7.64-7.57 (m, 2H), 4.42-4.34 (m, 1H), 2.13-2.04 (m, 1H), 1.80-1.68 (m, 1H), 1.52 (d, 3H, J = 6) 0.8Hz), 1.35-1.23 (m, 6H), 0.86-0.82 (m, 3H).

(化合物13の合成)
窒素雰囲気下、反応容器に1,4-ジオキサン(15mL)、化合物12(200mg,0.45mmol)、ビス(ピナコラト)ジボラン(340mg,1.35mmol)、酢酸カリウム(450mg,4.5mmol)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)(37mg,0.050mmol)を加えた。その後、90℃で終夜撹拌した。その後、反応溶液に水を加え、酢酸エチルで抽出し、有機層を水で洗浄した。有機層を無水硫酸ナトリウムで乾燥、濾過後溶媒を減圧下で留去した。得られた反応混合物を、ヘキサン:酢酸エチル(10:1)溶媒を移動層とするシリカゲルカラムクロマトグラフィーで分離精製し、化合物13を黄色固体で得た(185mg,収率81%)。
(Synthesis of compound 13)
Under a nitrogen atmosphere, 1,4-dioxane (15 mL), compound 12 (200 mg, 0.45 mmol), bis (pinacolato) diborane (340 mg, 1.35 mmol), potassium acetate (450 mg, 4.5 mmol), [ 1,1'-Bis (diphenylphosphino) ferrocene] dichloropalladium (II) (37 mg, 0.050 mmol) was added. Then, the mixture was stirred at 90 ° C. overnight. Then, water was added to the reaction solution, the mixture was extracted with ethyl acetate, and the organic layer was washed with water. The organic layer was dried over anhydrous sodium sulfate, filtered, and the solvent was evaporated under reduced pressure. The obtained reaction mixture was separated and purified by silica gel column chromatography using a hexane: ethyl acetate (10: 1) solvent as a moving layer to obtain Compound 13 as a yellow solid (185 mg, yield 81%).

得られた化合物13の物性データは次の通りである。
HNMR(400MHz,CDCl):δ=8.71(d,1H,J=8.8Hz),8.27(d,1H,J=6.8Hz),8.20(m,2H),8.03-7.99(m,2H),7.72-7.68(m,1H),4.42-4.33(m,1H),2.14-2.03(m,1H),1.79-1.65(m,1H),1.51(d,3H,J=6.8Hz),1.45(s,12H)、1.38-1.26(m,6H),0.86-0.82(m,3H)。反応式を以下に示す。
The physical property data of the obtained compound 13 are as follows.
1 HNMR (400 MHz, CDCl 3 ): δ = 8.71 (d, 1H, J = 8.8 Hz), 8.27 (d, 1H, J = 6.8 Hz), 8.20 (m, 2H), 8.03-7.99 (m, 2H), 7.72-7.68 (m, 1H), 4.42-4.33 (m, 1H), 2.14-2.03 (m, 1H) ), 1.79-1.65 (m, 1H), 1.51 (d, 3H, J = 6.8Hz), 1.45 (s, 12H), 1.38-1.26 (m, 6H) ), 0.86-0.82 (m, 3H). The reaction formula is shown below.

Figure 0007029721000020
Figure 0007029721000020

(化合物14の合成)
窒素雰囲気下、反応容器にトルエン(10mL)、化合物6(130mg,0.16mmol)、化合物13(198mg,0.40mmol)、炭酸ナトリウム水溶液(1mL,2mol/L)を加えた。その後、120℃で終夜撹拌した。その後、反応溶液に水を加え、クロロホルムで抽出し、有機層を水で洗浄した。有機層を無水硫酸ナトリウムで乾燥、濾過後溶媒を減圧下で留去した。得られた反応混合物を、クロロホルムを移動層とするゲル浸透クロマトグラフィーで分離精製し、化合物14を赤色固体で得た(185mg,収率81%)。
(Synthesis of compound 14)
Toluene (10 mL), compound 6 (130 mg, 0.16 mmol), compound 13 (198 mg, 0.40 mmol) and an aqueous sodium carbonate solution (1 mL, 2 mol / L) were added to the reaction vessel under a nitrogen atmosphere. Then, the mixture was stirred at 120 ° C. overnight. Then, water was added to the reaction solution, the mixture was extracted with chloroform, and the organic layer was washed with water. The organic layer was dried over anhydrous sodium sulfate, filtered, and the solvent was evaporated under reduced pressure. The obtained reaction mixture was separated and purified by gel permeation chromatography using chloroform as a moving layer to obtain compound 14 as a red solid (185 mg, yield 81%).

得られた化合物14の物性データは次の通りである。
HNMR(400MHz,CDCl):δ=8.46(s,2H)、8.29(s,2H)、8.26(s,2H)、8.15-8.06(m,6H)、7.83(d,2H,J=7.2Hz)、7.73-7.69(m,2H)、4.42-4.37(m,2H)、2.62(d,4H,J=7.2Hz)、2.14-2.09(m,2H)、1.79-1.75(m,2H)、1.53(d,6H,J=6.8Hz),1.28-0.83(m,36H),0.67-0.61(m,12H)。13CNMR(100MHz,CDCl):δ=168.8、144.6、144.0、141.3、135.2、135.1、133.9、133.1、131.7、131.5、131.3、129.6、128.9、127.9、122.6、121.9、116.1、47.7、40.7、33.9、33.2、32.5、31.6、28.6、26.6、25.8、22.9、22.6、18.8、14.1、10.8。MS(MALDI)m/z=1402.51(M)。元素分析;理論値(炭素)71.87%、(水素)5.74%、(窒素)5.99%、実測値(炭素)71.64%、(水素)5.94%、(窒素)5.85%。反応式を以下に示す。
The physical property data of the obtained compound 14 are as follows.
1 HNMR (400 MHz, CDCl 3 ): δ = 8.46 (s, 2H), 8.29 (s, 2H), 8.26 (s, 2H), 8.15-8.06 (m, 6H). , 7.83 (d, 2H, J = 7.2Hz), 7.73-7.69 (m, 2H), 4.42-4.37 (m, 2H), 2.62 (d, 4H, J = 7.2Hz), 2.14-2.09 (m, 2H), 1.79-1.75 (m, 2H), 1.53 (d, 6H, J = 6.8Hz), 1. 28-0.83 (m, 36H), 0.67-0.61 (m, 12H). 13 CNMR (100MHz, CDCl 3 ): δ = 168.8, 144.6, 144.0, 141.3, 135.2, 135.1, 133.9, 133.1, 131.7, 131.5 , 131.3, 129.6, 128.9, 127.9, 122.6, 121.9, 116.1, 47.7, 40.7, 33.9, 33.2, 32.5, 31 6.6, 28.6, 26.6, 25.8, 22.9, 22.6, 18.8, 14.1, 10.8. MS (MALDI) m / z = 1402.51 (M + ). Elemental analysis; theoretical value (carbon) 71.87%, (hydrogen) 5.74%, (nitrogen) 5.99%, measured value (carbon) 71.64%, (hydrogen) 5.94%, (nitrogen) 5.85%. The reaction formula is shown below.

Figure 0007029721000021
Figure 0007029721000021

続いて、合成した化合物14を用いて有機太陽電池を作製し、光電変換効率等の性能を評価した。 Subsequently, an organic solar cell was produced using the synthesized compound 14, and the performance such as photoelectric conversion efficiency was evaluated.

[有機太陽電池の性能評価]
(実施例1)
化合物14をn型有機半導体材料として用いて有機太陽電池の評価を行った。
p型有機半導体材料としてはP3HTを、電極としてはITO(陰極)及びアルミニウム(陽極)を、正孔輸送材料としてはPEDOT:PSSを、電子輸送材料としてはCaをそれぞれ用いた。
まず、ITO膜がパターニングされたガラス基板をトルエン、アセトン、水、イソプロピルアルコールでそれぞれ15分間超音波洗浄した後、プラズマ洗浄機中に入れて、酸素ガスを流入しながら発生したプラズマにより基板表面を20分間洗浄処理した。さらに、オゾンUVを90分照射して表面を洗浄した。その後、スピンコート法製膜装置を用い、前記のITOガラス上にPEDOT:PSS薄膜を形成した。次いで、135℃で10分間アニール処理した。形成されたPEDOT:PSSの膜厚は30nmであった。さらに、スピンコート法製膜装置を用い、事前にクロロベンゼン(1mL)に溶かしたP3HT(18mg)と化合物14(18mg)を含有する溶液を前述のPEDOT:PSS薄膜の上にスピンコート(3000rpm、2分間)し、有機半導体層を形成させて、積層体を得た。その後、小型高真空蒸着装置を用い、前記で作製した積層帯を高真空蒸着装置中のマスクの上に置き、電子輸送層としてCa(30nm)、及び金属電極としてのアルミニウム層(70nm)を順次製膜し、3mm角の有機太陽電池を作製した。
[Performance evaluation of organic solar cells]
(Example 1)
An organic solar cell was evaluated using compound 14 as an n-type organic semiconductor material.
P3HT was used as the p-type organic semiconductor material, ITO (cathode) and aluminum (anode) were used as the electrodes, PEDOT: PSS was used as the hole transport material, and Ca was used as the electron transport material.
First, the glass substrate on which the ITO film is patterned is ultrasonically washed with toluene, acetone, water, and isopropyl alcohol for 15 minutes each, and then placed in a plasma washing machine to clean the substrate surface with plasma generated while inflowing oxygen gas. It was washed for 20 minutes. Further, the surface was washed by irradiating with ozone UV for 90 minutes. Then, a PEDOT: PSS thin film was formed on the ITO glass using a spin coating method film forming apparatus. Then, it was annealed at 135 ° C. for 10 minutes. The film thickness of the formed PEDOT: PSS was 30 nm. Further, using a spin coating method film forming apparatus, a solution containing P3HT (18 mg) and compound 14 (18 mg) previously dissolved in chlorobenzene (1 mL) was spin coated on the above-mentioned PEDOT: PSS thin film (3000 rpm, 2 minutes). ), And an organic semiconductor layer was formed to obtain a laminate. Then, using a small high-vacuum vapor deposition apparatus, the laminated band produced above is placed on a mask in the high-vacuum vapor deposition apparatus, and Ca (30 nm) as an electron transport layer and an aluminum layer (70 nm) as a metal electrode are sequentially placed. A film was formed to produce a 3 mm square organic solar cell.

得られた有機太陽電池に、ソーラーシュミレーター(AM1.5Gフィルター、放射照度100mW/cm)を用いて一定の光を照射し、発生する電流と電圧を測定した。図1に電流密度-電圧特性のグラフを示す。 The obtained organic solar cell was irradiated with constant light using a solar simulator (AM1.5G filter, irradiance 100 mW / cm 2 ), and the generated current and voltage were measured. FIG. 1 shows a graph of current density-voltage characteristics.

図1に基づいて短絡電流密度Jsc(mA/cm)、開放電圧Voc(V)、形状因子FFを求めたところ、Jsc=5.66mA/cm、Voc=0.89、FF=0.60であった。光電変換効率(η)を、式η=(Jsc×Voc×FF)/100より算出したところ、3.0%であった。 When the short-circuit current density Jsc (mA / cm 2 ), the open circuit voltage Voc (V), and the shape factor FF were obtained based on FIG. 1, Jsc = 5.66 mA / cm 2 , Voc = 0.89, FF = 0. It was 60. The photoelectric conversion efficiency (η) was calculated from the formula η = (Jsc × Voc × FF) / 100 and found to be 3.0%.

このように、本発明の化合物は、n型有機半導体材料として、例えばフラーレン誘導体の代替となり得る高い光電変換効率を達成できることが実証された。 As described above, it has been demonstrated that the compound of the present invention can achieve high photoelectric conversion efficiency as an n-type organic semiconductor material, which can be a substitute for, for example, a fullerene derivative.

本発明の化合物は良好な光電変換効率等の半導体特性を有するため、有機半導体材料として有機太陽電池等の有機半導体デバイスに利用可能である。 Since the compound of the present invention has semiconductor properties such as good photoelectric conversion efficiency, it can be used as an organic semiconductor material in an organic semiconductor device such as an organic solar cell.

Claims (5)

下記一般式(I)で示される化合物。
Figure 0007029721000022

(一般式(I)中、 X、X、Y及びYは、それぞれ独立に、水素原子、フッ素原子、炭素原子数1-40の直鎖状もしくは分岐状のアルキル基、又は少なくとも1つのフッ素原子で置換された炭素原子数1-40の直鎖状もしくは分岐状のアルキル基であり、A及びAは、それぞれ独立に、下記式で表される基であり、*は結合手を示す。)
Figure 0007029721000023

(式中、R及びRは、それぞれ独立に、炭素原子数1-40の直鎖状もしくは分岐状のアルキル基又は少なくとも1つのフッ素原子で置換された炭素原子数1-40の直鎖状もしくは分岐状のアルキル基であり、R、R、R、R、R、R及びRは、それぞれ独立に、下記式で表される基である。)
Figure 0007029721000024

(式中、Rは、それぞれ独立に、水素原子、炭素原子数1-40の直鎖状又は分岐状のアルキル基を示す。)
The compound represented by the following general formula (I).
Figure 0007029721000022

(In the general formula (I), X 1 , X 2 , Y 1 and Y 2 are independently hydrogen atoms, fluorine atoms, linear or branched alkyl groups having 1-40 carbon atoms, or at least. It is a linear or branched alkyl group having 1-40 carbon atoms substituted with one hydrogen atom, and A 1 and A 2 are independently represented by the following formulas, and * is a group. Shows the bond.)
Figure 0007029721000023

(In the formula, R 1 and R 2 are independently linear or branched alkyl groups having 1-40 carbon atoms or linear chains having 1-40 carbon atoms substituted with at least one fluorine atom. It is a shaped or branched alkyl group, and R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are independently represented by the following formulas.)
Figure 0007029721000024

(In the formula, R independently represents a hydrogen atom and a linear or branched alkyl group having 1-40 carbon atoms.)
請求項1に記載の化合物を含む、有機半導体材料。 An organic semiconductor material containing the compound according to claim 1. 請求項2に記載の有機半導体材料を含む層を有する、有機半導体素子。 An organic semiconductor device having a layer containing the organic semiconductor material according to claim 2. 請求項3に記載の有機半導体素子を含む、有機太陽電池。 An organic solar cell comprising the organic semiconductor device according to claim 3. 請求項3に記載の有機半導体素子を含む、有機トランジスタ。
An organic transistor including the organic semiconductor device according to claim 3.
JP2017199989A 2017-10-16 2017-10-16 Compounds, organic semiconductor materials, organic semiconductor devices, organic solar cells and organic transistors Active JP7029721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017199989A JP7029721B2 (en) 2017-10-16 2017-10-16 Compounds, organic semiconductor materials, organic semiconductor devices, organic solar cells and organic transistors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017199989A JP7029721B2 (en) 2017-10-16 2017-10-16 Compounds, organic semiconductor materials, organic semiconductor devices, organic solar cells and organic transistors

Publications (2)

Publication Number Publication Date
JP2019073468A JP2019073468A (en) 2019-05-16
JP7029721B2 true JP7029721B2 (en) 2022-03-04

Family

ID=66543773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017199989A Active JP7029721B2 (en) 2017-10-16 2017-10-16 Compounds, organic semiconductor materials, organic semiconductor devices, organic solar cells and organic transistors

Country Status (1)

Country Link
JP (1) JP7029721B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021230035A1 (en) * 2020-05-11 2021-11-18

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047192A (en) 2012-09-03 2014-03-17 Sumitomo Chemical Co Ltd Compound, organic semiconductor material containing compound, and organic semiconductor element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047192A (en) 2012-09-03 2014-03-17 Sumitomo Chemical Co Ltd Compound, organic semiconductor material containing compound, and organic semiconductor element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHATTERJEE, S. et al.,Advanced Functional Materials ,2016年,Vol. 26,pp. 1161-1168

Also Published As

Publication number Publication date
JP2019073468A (en) 2019-05-16

Similar Documents

Publication Publication Date Title
Koizumi et al. Thienoisoindigo-based low-band gap polymers for organic electronic devices
ES2707886T3 (en) Electronic devices that use small molecule organic semiconductor compounds
KR101369244B1 (en) organic semiconductor compound, process for producing the organic semiconductor compound and organic solar cells using the Same
JP2017224820A (en) Fullerene derivative and n-type semiconductor material
KR20100128279A (en) Branched compounds, organic thin films made by using the same, and organic thin film devices
Cheon et al. DTBDT-TTPD: a new dithienobenzodithiophene-based small molecule for use in efficient photovoltaic devices
Kirkus et al. Hole-transporting glass-forming indolo [3, 2-b] carbazole-based diepoxy monomer and polymers
KR101595919B1 (en) organinc semiconductor compound and organic solar cell having them
JP7029721B2 (en) Compounds, organic semiconductor materials, organic semiconductor devices, organic solar cells and organic transistors
JP7162847B2 (en) Polymer compound and its production method, organic semiconductor material containing the same, and organic solar cell containing the same
KR101553806B1 (en) Organic semiconductor compounds Containing Posphine oxide and Solar Cell Device Using This Material
JP2018095692A (en) Conjugated polymer compound containing novel sulfanyl-substituted dithienylthienopyrazine derivative structure as monomer segment, method for producing the same and photoelectric conversion element using the same
KR101495152B1 (en) organic semiconductor compound, manufacturing method thereof, and organic electronic device that contains it
JP6016891B2 (en) ORGANIC SEMICONDUCTOR COMPOUND, PROCESS FOR PRODUCING THE SAME, AND ORGANIC SEMICONDUCTOR DEVICE USING THE SAME
JP2020186316A (en) Acceptor-acceptor type n-type semiconductor polymer, manufacturing method thereof, as well as organic semiconductor layer containing such polymer and organic electronic device
JP2012162514A (en) Dithienogermole polymer and organic semiconductor device containing the same
JP2011187541A (en) New polymer and photoelectric conversion element using the same
KR101678580B1 (en) Organic semiconducting compounds, manufacturing method thereof, and organic electronic device and organic photovoltaic device containing the same
KR101317912B1 (en) Polymer with phenanthrothiadiazole thereof and photovoltaic device using same
KR101535066B1 (en) Double junction organic photovoltaic device fabricated using organic semiconductor compound, and organic electronic device that contains it
US10344028B2 (en) Organic semiconductor compound, production method thereof, and organic electronic device using the same
JP2017043590A (en) Novel compound, novel polymer and use thereof
KR101466716B1 (en) Cyclopentadithiophene-based polymers and organic optoelectronic device comprising the polymers
JP5503184B2 (en) Fullerene derivative, composition and organic photoelectric conversion device
WO2021230035A1 (en) Naphthobisthiadiazole compound, production method for same, and organic semiconductor material and organic semiconductor device using said compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220209

R150 Certificate of patent or registration of utility model

Ref document number: 7029721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150