JP2011187541A - New polymer and photoelectric conversion element using the same - Google Patents

New polymer and photoelectric conversion element using the same Download PDF

Info

Publication number
JP2011187541A
JP2011187541A JP2010049128A JP2010049128A JP2011187541A JP 2011187541 A JP2011187541 A JP 2011187541A JP 2010049128 A JP2010049128 A JP 2010049128A JP 2010049128 A JP2010049128 A JP 2010049128A JP 2011187541 A JP2011187541 A JP 2011187541A
Authority
JP
Japan
Prior art keywords
group
compound
carbon atoms
formula
hydrocarbon group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010049128A
Other languages
Japanese (ja)
Inventor
Kwang-Hoi Lee
廣會 李
Kazuhide Morino
一英 森野
Atsushi Sudo
篤 須藤
Takeshi Endo
剛 遠藤
Ho-Jin Lee
イ・ホジン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2010049128A priority Critical patent/JP2011187541A/en
Publication of JP2011187541A publication Critical patent/JP2011187541A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new polymer that can be simply and efficiently manufactured and has an excellent charge transport capability, a photoelectric conversion element using the same, and a solar cell. <P>SOLUTION: The polymer has a structural unit expressed by the following formula (1). (In the formula (1), R<SP>1</SP>and R<SP>2</SP>respectively independently represent a hydrogen atom or a hydrocarbon group that may have a substituent, R<SP>3</SP>and R<SP>4</SP>respectively independently represent a hydrogen atom, a hydrocarbon group that may have a substituent, a carboxyl group, an alkoxycarbonyl group, or an alkenyloxycarbonyl group, and R<SP>5</SP>and R<SP>6</SP>respectively independently represent a hydrocarbon group that may have a substituent). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、新規重合体並びにこれを用いた光電変換素子および太陽電池に関する。   The present invention relates to a novel polymer, a photoelectric conversion element using the same, and a solar cell.

従来から、種々の用途に光電変換材料が開発されている。光電変換材料とは、光電効果を利用して光エネルギーを電気エネルギーに変換することが可能な材料である。光電変換材料では、光が照射されるとその材料内の原子に束縛されていた電子が光エネルギーにより自由に動けるようになり、これによって自由電子と自由電子の抜け孔(正孔)が発生して、これら自由電子と正孔とが効率良く分離し、連続的に電気エネルギーを取り出すことが可能になる。このような光電変換材料は、例えば太陽電池等に利用されている。   Conventionally, photoelectric conversion materials have been developed for various applications. A photoelectric conversion material is a material that can convert light energy into electrical energy using the photoelectric effect. In photoelectric conversion materials, when light is irradiated, electrons bound to atoms in the material can move freely by light energy, and free electrons and free electron holes (holes) are generated. Thus, these free electrons and holes are efficiently separated, and electric energy can be continuously taken out. Such a photoelectric conversion material is used for, for example, a solar battery.

上記光電変換材料を用いて低コストで太陽電池を製造する研究が活発に行われている。このような太陽電池としては、色素増感型太陽電池、導電性高分子を用いた固体型太陽電池などが挙げられる。   Researches for producing solar cells at low cost using the photoelectric conversion material are being actively conducted. Examples of such a solar cell include a dye-sensitized solar cell and a solid solar cell using a conductive polymer.

色素増感型太陽電池は、例えば、色素を吸着させた半導体電極および対極と、これら電極間に挟持された電解質層から主に構成されており、半導体電極に光が照射されるとこの電極側で電子が発生し、発生した電子が電気回路を通って対極に移動し、対極に移動した電子が電解質中をイオンとして移動して半導体電極に戻り、これが繰り返されて電気エネルギーを取り出すことができるものである。   A dye-sensitized solar cell is mainly composed of, for example, a semiconductor electrode and a counter electrode on which a dye is adsorbed, and an electrolyte layer sandwiched between the electrodes. The generated electrons move to the counter electrode through the electric circuit, and the electrons moved to the counter electrode move as ions in the electrolyte and return to the semiconductor electrode, which can be repeated to extract electric energy. Is.

しかしながら、この色素増感型太陽電池で用いられている半導体は、酸化チタンなどの光酸化触媒を使用しており、色素がこれにより分解されたり、あるいは併用される電解質は主として電解液が用いられているため、電解液を十分に保持できず、作用電極と対極のすき間から電解液が漏れ出したり揮発したりしてしまうという問題がある。また、電解液の漏れを防ぐための構成が複雑になるという問題がある。   However, the semiconductor used in this dye-sensitized solar cell uses a photo-oxidation catalyst such as titanium oxide, and the electrolyte is mainly used as the electrolyte that is decomposed or used together. Therefore, there is a problem that the electrolytic solution cannot be sufficiently retained and the electrolytic solution leaks or volatilizes from the gap between the working electrode and the counter electrode. In addition, there is a problem that the configuration for preventing leakage of the electrolyte is complicated.

一方、導電性高分子を用いた固体型太陽電池としては、例えば、特定の複素環高分子とフラーレン誘導体を含有する光電変換素子が報告されている(特許文献1および2)。   On the other hand, as a solid-type solar cell using a conductive polymer, for example, a photoelectric conversion element containing a specific heterocyclic polymer and a fullerene derivative has been reported (Patent Documents 1 and 2).

特開2005−116617号公報JP 2005-116617 A 特開2006−278682号公報JP 2006-278682 A

しかしながら、これまでの光電変換素子は、導電性高分子の電荷輸送能の点で十分満足のいくものではなかった。   However, conventional photoelectric conversion elements have not been sufficiently satisfactory in terms of charge transport ability of conductive polymers.

従って、本発明は、簡便かつ効率よく製造でき、かつ優れた電荷輸送能を有する新規な重合体、並びにこれを用いた光電変換素子および太陽電池を提供することを課題とする。   Therefore, an object of the present invention is to provide a novel polymer that can be easily and efficiently produced and has an excellent charge transport ability, and a photoelectric conversion element and a solar cell using the same.

そこで、本発明者らは、共役ポリマーについて鋭意検討したところ、4位と8位にエーテル結合を有する特定のベンゾジチオフェン誘導体と特定のジチオフェン誘導体とを、遷移金属触媒の存在下でスティルカップリングさせることにより、簡便かつ効率よく、優れた電荷輸送能を有する新規重合体が得られることを見出し、本発明を完成した。   Accordingly, the present inventors have conducted intensive studies on conjugated polymers, and found that a specific benzodithiophene derivative having an ether bond at positions 4 and 8 and a specific dithiophene derivative were still coupled in the presence of a transition metal catalyst. As a result, it was found that a novel polymer having an excellent charge transport ability can be obtained simply and efficiently, and the present invention was completed.

すなわち、1)本発明は、下記式(1)   That is, 1) The present invention provides the following formula (1)

Figure 2011187541
Figure 2011187541

(式(1)中、R1およびR2は、それぞれ独立に、水素原子または置換基を有していてもよい炭素数1〜20の炭化水素基を示し、R3およびR4は、それぞれ独立に、水素原子、置換基を有していてもよい炭素数1〜20の炭化水素基、カルボキシル基、アルコキシカルボニル基またはアルケニルオキシカルボニル基を示し、R5およびR6は、それぞれ独立に置換基を有していてもよい炭素数1〜30の炭化水素基を示す。)
で表される構造単位を有する重合体を提供するものである。
(In Formula (1), R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, and R 3 and R 4 are each represented by Independently represents a hydrogen atom, an optionally substituted hydrocarbon group having 1 to 20 carbon atoms, a carboxyl group, an alkoxycarbonyl group or an alkenyloxycarbonyl group, wherein R 5 and R 6 are each independently substituted; (The C1-C30 hydrocarbon group which may have a group is shown.)
The polymer which has a structural unit represented by this is provided.

2)また、本発明は、1対の電極の間に、上記1)記載の重合体を含有する固体層を有することを特徴とする光電変換素子を提供するものである。
3)また、本発明は、上記2)記載の光電変換素子を有することを特徴とする太陽電池を提供するものである。
4)さらに、本発明は、上記1)記載の重合体の製造方法、およびその製造中間体を提供するものである。
2) Moreover, this invention provides the photoelectric conversion element characterized by having a solid layer containing the polymer of said 1) between a pair of electrodes.
3) Moreover, this invention provides the solar cell characterized by having the photoelectric conversion element of said 2) description.
4) Furthermore, the present invention provides a method for producing the polymer described in 1) above and a production intermediate thereof.

本発明の重合体は、広範囲の光を吸収し、優れた電荷輸送能を有し、且つ高い熱安定性を有する。従って、本発明によれば、優れた光電変換効率と耐久性を有する光電変換素子、並びにこれを用いた太陽電池、および光スイッチング装置、センサなどの光電変換装置を提供できる。   The polymer of the present invention absorbs a wide range of light, has an excellent charge transport ability, and has high thermal stability. Therefore, according to the present invention, it is possible to provide a photoelectric conversion device having excellent photoelectric conversion efficiency and durability, a solar cell using the photoelectric conversion device, and a photoelectric conversion device such as an optical switching device and a sensor.

本発明の光電変換素子の層構成を模式的に示した概念図である。It is the conceptual diagram which showed typically the layer structure of the photoelectric conversion element of this invention. 化合物12の1H−NMRスペクトル1H−NMR測定結果を示す図である。FIG. 2 shows the 1 H-NMR spectrum 1 H-NMR measurement result of Compound 12. 化合物13の1H−NMRスペクトル1H−NMR測定結果を示す図である。FIG. 3 is a diagram showing a 1 H-NMR spectrum 1 H-NMR measurement result of Compound 13. 重合体P1の1H−NMR測定結果を示す図である。It is a figure which shows the < 1 > H-NMR measurement result of the polymer P1. 重合体P1のIRスペクトル測定結果を示す図である。It is a figure which shows the IR spectrum measurement result of the polymer P1. 重合体P2の1H−NMR測定結果を示す図である。It is a figure which shows the < 1 > H-NMR measurement result of the polymer P2. 重合体P2のIRスペクトル測定結果を示す図である。It is a figure which shows the IR spectrum measurement result of the polymer P2. 重合体P1を用いたデバイスのIV曲線を示す図である。It is a figure which shows the IV curve of the device using the polymer P1.

<重合体>
式(1)中、R1およびR2としては、電荷輸送能、溶解性向上およびフラーレン誘導体を用いた場合の相溶性の点から、置換基を有していてもよい炭素数1〜20の炭化水素基が好ましい。当該「炭素数1〜20の炭化水素基」としては、炭素数1〜20の直鎖または分岐鎖の炭化水素基、炭素数3〜20の脂環式炭化水素基、および炭素数6〜20の芳香族炭化水素基が挙げられる。
<Polymer>
In formula (1), R 1 and R 2 have 1 to 20 carbon atoms which may have a substituent from the viewpoint of charge transportability, solubility improvement and compatibility when a fullerene derivative is used. A hydrocarbon group is preferred. Examples of the “C1-C20 hydrocarbon group” include linear or branched hydrocarbon groups having 1 to 20 carbon atoms, alicyclic hydrocarbon groups having 3 to 20 carbon atoms, and 6 to 20 carbon atoms. The aromatic hydrocarbon group of these is mentioned.

上記炭素数1〜20の直鎖または分岐鎖の炭化水素基としては、例えば、炭素数1〜20のアルキル基、炭素数2〜20のアルケニル基、炭素数2〜20のアルキニル基等が挙げられる。炭素数3〜20の脂環式炭化水素基としては、例えば、炭素数3〜20のシクロアルキル基、炭素数5〜20のシクロアルケニル基等が挙げられる。炭素数6〜20の芳香族炭化水素基としては、例えば、フェニル基、ナフチル基、フェナントレニル基等が挙げられる。   Examples of the linear or branched hydrocarbon group having 1 to 20 carbon atoms include an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, and an alkynyl group having 2 to 20 carbon atoms. It is done. Examples of the alicyclic hydrocarbon group having 3 to 20 carbon atoms include a cycloalkyl group having 3 to 20 carbon atoms and a cycloalkenyl group having 5 to 20 carbon atoms. Examples of the aromatic hydrocarbon group having 6 to 20 carbon atoms include a phenyl group, a naphthyl group, and a phenanthrenyl group.

上記炭素数1〜20のアルキル基としては、電荷輸送能、溶解性向上およびフラーレン誘導体を用いた場合の相溶性の点から、炭素数1〜18のアルキル基が好ましく、炭素数1〜16のアルキル基がより好ましく、炭素数1〜12のアルキル基がさらに好ましく、炭素数1〜12の分岐のアルキル基が特に好ましい。当該炭素数1〜20のアルキル基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、2−エチルへキシル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ヘキサデシル基等が挙げられるが、このうち、電荷輸送能、溶解性向上およびフラーレン誘導体を用いた場合の相溶性の点から、イソプロピル基、イソブチル基、sec−ブチル基、tert−ブチル基、2−エチルへキシル基が好ましく、2−エチルへキシル基が特に好ましい。   The alkyl group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 18 carbon atoms from the viewpoint of charge transportability, improved solubility, and compatibility when a fullerene derivative is used. An alkyl group is more preferable, an alkyl group having 1 to 12 carbon atoms is more preferable, and a branched alkyl group having 1 to 12 carbon atoms is particularly preferable. Specific examples of the alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, and n-pentyl. Group, n-hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n -Tetradecyl group, n-hexadecyl group, etc. Among these, isopropyl group, isobutyl group, sec-butyl group, tert. -A butyl group and a 2-ethylhexyl group are preferable, and a 2-ethylhexyl group is particularly preferable.

前記炭素数2〜20のアルケニル基としては、炭素数2〜18のアルケニル基が好ましく、炭素数2〜12のアルケニル基がより好ましい。好適な具体例としては、ビニル基、1−プロペニル基、アリル基、ブテニル基、ペンテニル基等が挙げられる。
また、前記炭素数2〜20のアルキニル基としては、炭素数2〜18のアルキニル基が好ましい。好適な具体例としては、プロピニル基、ブチニル基等が挙げられる。
前記炭素数3〜20のシクロアルキル基としては、炭素数3〜7のシクロアルキル基が好ましく、好適な具体例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
また、前記炭素数5〜20のシクロアルケニル基としては、炭素数5〜7のシクロアルケニル基が好ましく、好適な具体例としては、シクロペンテニル基、シクロヘキセニル基等が挙げられる。
As said C2-C20 alkenyl group, a C2-C18 alkenyl group is preferable and a C2-C12 alkenyl group is more preferable. Preferable specific examples include vinyl group, 1-propenyl group, allyl group, butenyl group, pentenyl group and the like.
Moreover, as said C2-C20 alkynyl group, a C2-C18 alkynyl group is preferable. Preferable specific examples include propynyl group and butynyl group.
As said C3-C20 cycloalkyl group, a C3-C7 cycloalkyl group is preferable and a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group etc. are mentioned as a suitable specific example.
Moreover, as said C5-C20 cycloalkenyl group, a C5-C7 cycloalkenyl group is preferable, A cyclopentenyl group, a cyclohexenyl group, etc. are mentioned as a suitable specific example.

また、前記「炭素数1〜20の炭化水素基」に置換しうる基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、シクロヘキシルオキシ基等の炭素数1〜12のアルコキシ基;フッ素、塩素、臭素、ヨウ素等のハロゲン原子;シアノ基;アミノ基;オキソ基;tert−ブチルカルボニル基等の炭素数2〜10のアルカノイル基;メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基等が挙げられる。これら置換基の数は、1またはそれ以上でよく、置換基を2以上有する場合、当該置換基は同一でも異なっていてもよい。   Examples of the group that can be substituted with the “hydrocarbon group having 1 to 20 carbon atoms” include alkoxy groups having 1 to 12 carbon atoms such as a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a cyclohexyloxy group; Halogen atoms such as fluorine, chlorine, bromine and iodine; cyano group; amino group; oxo group; alkanoyl group having 2 to 10 carbon atoms such as tert-butylcarbonyl group; alkoxycarbonyl group such as methoxycarbonyl group and ethoxycarbonyl group Is mentioned. The number of these substituents may be 1 or more, and when having 2 or more substituents, the substituents may be the same or different.

式(1)中、R3およびR4において、「置換基を有していてもよい炭素数1〜20の炭化水素基」としては、前記R1と同様のものが挙げられる。
また、R3およびR4において、「アルコキシカルボニル基」としては、電荷輸送能、溶解性向上およびフラーレン誘導体を用いた場合の相溶性の点から、炭素数2〜30のアルコキシカルボニル基が好ましく、炭素数2〜20のアルコキシカルボニル基がより好ましく、炭素数2〜14のアルコキシカルボニル基が特に好ましい。好適な具体例としては、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシルオキシカルボニル基、ヘプチルオキシカルボニル基、オクチルオキシカルボニル基、2−エチルヘキシルオキシカルボニル基、ノニルオキシカルボニル基、デシルオキシカルボニル基、ウンデシルオキシカルボニル基、ドデシルオキシカルボニル基、トリデシルオキシカルボニル基、テトラデシルオキシカルボニル基等が挙げられ、このうち、電荷輸送能、溶解性向上およびフラーレン誘導体を用いた場合の相溶性の点から、ドデシルオキシカルボニル基、2−エチルヘキシルオキシカルボニル基が特に好ましい。なお、上記アルコキシカルボニル基は、前記の炭素数1〜20の炭化水素基と同様の置換基を有していてもよい。
In formula (1), in R 3 and R 4 , examples of the “optionally substituted hydrocarbon group having 1 to 20 carbon atoms” include the same groups as those described above for R 1 .
In R 3 and R 4 , the “alkoxycarbonyl group” is preferably an alkoxycarbonyl group having 2 to 30 carbon atoms from the viewpoint of charge transportability, improved solubility, and compatibility when a fullerene derivative is used. An alkoxycarbonyl group having 2 to 20 carbon atoms is more preferable, and an alkoxycarbonyl group having 2 to 14 carbon atoms is particularly preferable. Preferred examples include methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, butoxycarbonyl group, pentyloxycarbonyl group, hexyloxycarbonyl group, heptyloxycarbonyl group, octyloxycarbonyl group, 2-ethylhexyloxycarbonyl group, Nonyloxycarbonyl group, decyloxycarbonyl group, undecyloxycarbonyl group, dodecyloxycarbonyl group, tridecyloxycarbonyl group, tetradecyloxycarbonyl group, etc. Among them, charge transport ability, solubility improvement and fullerene derivatives From the viewpoint of compatibility when using, a dodecyloxycarbonyl group and a 2-ethylhexyloxycarbonyl group are particularly preferable. In addition, the said alkoxycarbonyl group may have a substituent similar to the said C1-C20 hydrocarbon group.

また、R3およびR4において、「アルケニルオキシカルボニル基」としては、炭素数3〜20のアルケニルオキシカルボニル基が好ましく、炭素数3〜14のアルケニルオキシカルボニル基がより好ましく、炭素数3〜8のアルケニルオキシカルボニル基がさらに好ましい。好適な具体例としては、ビニルオキシカルボニル基、アリルオキシカルボニル基、ブテニルオキシカルボニル基等が挙げられる。 In R 3 and R 4 , the “alkenyloxycarbonyl group” is preferably an alkenyloxycarbonyl group having 3 to 20 carbon atoms, more preferably an alkenyloxycarbonyl group having 3 to 14 carbon atoms, and 3 to 8 carbon atoms. The alkenyloxycarbonyl group is more preferable. Preferable specific examples include vinyloxycarbonyl group, allyloxycarbonyl group, butenyloxycarbonyl group and the like.

また、式(1)中、R3およびR4としては、電荷輸送能、溶解性向上およびフラーレン誘導体を用いた場合の相溶性の点から、水素原子、置換基を有していてもよい炭素数1〜20の炭化水素基、アルコキシカルボニル基が好ましく、水素原子が特に好ましい。 In Formula (1), R 3 and R 4 are each a hydrogen atom or carbon that may have a substituent from the viewpoint of charge transportability, improved solubility, and compatibility when a fullerene derivative is used. A hydrocarbon group of 1 to 20 and an alkoxycarbonyl group are preferable, and a hydrogen atom is particularly preferable.

式(1)中、R5およびR6において、「炭素数1〜30の炭化水素基」としては、炭素数1〜30の直鎖または分岐鎖の炭化水素基、炭素数3〜30の脂環式炭化水素基、および炭素数6〜30の芳香族炭化水素基が挙げられる。 In formula (1), in R 5 and R 6 , the “C 1-30 hydrocarbon group” is a C 1-30 linear or branched hydrocarbon group, C 3-30 fat. Examples thereof include a cyclic hydrocarbon group and an aromatic hydrocarbon group having 6 to 30 carbon atoms.

上記炭素数1〜30の直鎖または分岐鎖の炭化水素基としては、例えば、炭素数1〜30のアルキル基、炭素数2〜30のアルケニル基、炭素数2〜30のアルキニル基等が挙げられる。炭素数3〜30の脂環式炭化水素基としては、例えば、炭素数3〜30のシクロアルキル基、炭素数5〜30のシクロアルケニル基等が挙げられる。当該のアルケニル基、アルキニル基、シクロアルキル基およびシクロアルケニル基としては、前記R1と同様のものが好ましい。 Examples of the linear or branched hydrocarbon group having 1 to 30 carbon atoms include an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, and an alkynyl group having 2 to 30 carbon atoms. It is done. Examples of the alicyclic hydrocarbon group having 3 to 30 carbon atoms include a cycloalkyl group having 3 to 30 carbon atoms and a cycloalkenyl group having 5 to 30 carbon atoms. The alkenyl group, alkynyl group, cycloalkyl group and cycloalkenyl group are preferably the same as those for R 1 .

上記炭素数1〜30のアルキル基としては、電荷輸送能、溶解性向上およびフラーレン誘導体を用いた場合の相溶性の点から、炭素数1〜24のアルキル基が好ましく、炭素数1〜20のアルキル基がより好ましく、炭素数1〜16のアルキル基がさらに好ましく、炭素数1〜14のアルキル基が特に好ましい。当該炭素数1〜30のアルキル基の具体例としては、前記R1と同様のものが挙げられるが、電荷輸送能、溶解性向上およびフラーレン誘導体を用いた場合の相溶性の点から、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、2−エチルへキシル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ヘキサデシル基が好ましく、n−ドデシル基、2−エチルヘキシル基が特に好ましい。
なお、前記「炭素数1〜30の炭化水素基」に置換しうる基としては、R1と同様のものが挙げられる。
The alkyl group having 1 to 30 carbon atoms is preferably an alkyl group having 1 to 24 carbon atoms from the viewpoint of charge transportability, improved solubility and compatibility when a fullerene derivative is used, and has 1 to 20 carbon atoms. An alkyl group is more preferable, an alkyl group having 1 to 16 carbon atoms is more preferable, and an alkyl group having 1 to 14 carbon atoms is particularly preferable. Specific examples of the alkyl group having 1 to 30 carbon atoms include those similar to the above R 1 , but from the viewpoint of charge transportability, improved solubility, and compatibility when a fullerene derivative is used, a methyl group , Ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group N-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group and n-hexadecyl group are preferable, and n-dodecyl group and 2-ethylhexyl group are particularly preferable.
Examples of the group that can be substituted with the “hydrocarbon group having 1 to 30 carbon atoms” include those similar to R 1 .

また、式(1)で表される構造単位の位置異性体としては、以下の式(1−1)〜(1−4)   Moreover, as positional isomers of the structural unit represented by the formula (1), the following formulas (1-1) to (1-4)

Figure 2011187541
Figure 2011187541

(式(1−1)〜(1−4)中、R1〜R6は、前記式(1)と同じ。)
で表される構造単位が挙げられるが、このうち、反応効率、電荷輸送能および広範囲の光を吸収し得る点から、式(1−2)、(1−3)で表される構造単位が好ましく、式(1−3)で表される構造単位が特に好ましい。
(In formulas (1-1) to (1-4), R 1 to R 6 are the same as those in formula (1).)
Among them, the structural units represented by the formulas (1-2) and (1-3) are preferable from the viewpoint that reaction efficiency, charge transporting ability and a wide range of light can be absorbed. The structural unit represented by the formula (1-3) is particularly preferable.

また、式(1)で表される構造単位を有する重合体(以下、本発明重合体(1)ともいう)は、共役ポリマーであり、その重量平均分子量(Mw)は、1000〜1000000が好ましく、5000〜500000がより好ましく、7500〜300000が特に好ましい。また、本発明の重合体のMw/Mnとしては、1.01〜10が好ましく、1.01〜5がより好ましく、1.01〜3.5が特に好ましい。   The polymer having the structural unit represented by the formula (1) (hereinafter also referred to as the polymer (1) of the present invention) is a conjugated polymer, and the weight average molecular weight (Mw) is preferably 1000 to 100,000. 5000 to 500000 is more preferable, and 7500 to 300000 is particularly preferable. Moreover, as Mw / Mn of the polymer of this invention, 1.01-10 are preferable, 1.01-5 are more preferable, and 1.01-3.5 are especially preferable.

<重合体の製造方法>
本発明重合体(1)は、次の反応に従い製造できる。すなわち、下記式(5)で表されるチオフェンカルボン酸誘導体と式(6)で表されるアルコールとをエステル化反応させ、下記式(4)で表されるチオフェンカルボン酸エステル誘導体を得て(以下、工程1ともいう)、当該化合物(4)を遷移金属触媒存在下で二量化させ、下記式(3)で表されるジチオフェン誘導体を得る(以下、工程2ともいう)。次いで、この化合物(3)と下記式(2)で表されるベンゾジチオフェン誘導体とを遷移金属触媒の存在下でスティルカップリングさせることにより(以下、工程3ともいう)、本発明重合体(1)を製造できる。
<Method for producing polymer>
The polymer (1) of the present invention can be produced according to the following reaction. That is, the thiophenecarboxylic acid derivative represented by the following formula (5) and the alcohol represented by the formula (6) are esterified to obtain a thiophenecarboxylic acid ester derivative represented by the following formula (4) ( Hereinafter, the compound (4) is also dimerized in the presence of a transition metal catalyst to obtain a dithiophene derivative represented by the following formula (3) (hereinafter also referred to as Step 2). Next, this polymer (3) and a benzodithiophene derivative represented by the following formula (2) are still-coupled in the presence of a transition metal catalyst (hereinafter also referred to as step 3), whereby the polymer of the present invention ( 1) can be manufactured.

Figure 2011187541
Figure 2011187541

(上記式中、R7およびR8は、それぞれ独立に、水素原子または置換基を有していてもよい炭素数1〜20の炭化水素基を示し、X1およびX2はそれぞれ独立にハロゲン原子を示す。R1〜R6は、前記と同じ。) (In the above formula, R 7 and R 8 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, and X 1 and X 2 each independently represent a halogen atom. Represents an atom, and R 1 to R 6 are the same as above.)

なお、上記式(1−1)または(1−4)で表される構造単位を有する重合体を製造する場合は、上記工程2に代えて、下記式(7)で表されるチオフェンカルボン酸エステル誘導体と下記式(10)で表されるチオフェンカルボン酸エステル誘導体とを遷移金属触媒の存在下でスティルカップリングさせ、下記式(11)で表されるジチオフェン誘導体を得て、当該化合物(11)をハロゲン化反応させることにより、下記式(3−1)で表されるジチオフェン誘導体を得る工程(以下、工程2'ともいう);または下記式(7)で表されるチオフェンカルボン酸エステル誘導体と下記式(12)で表されるチオフェンカルボン酸エステル誘導体とをスズキカップリングさせて、下記式(11)で表されるジチオフェン誘導体を得て、当該化合物(11)をハロゲン化することにより、下記式(3−1)で表されるジチオフェン誘導体を得る工程(以下、工程2''ともいう)を経ることにより製造してもよい。   In addition, when manufacturing the polymer which has a structural unit represented by the said Formula (1-1) or (1-4), it replaces with the said process 2 and the thiophenecarboxylic acid represented by following formula (7). An ester derivative and a thiophenecarboxylic acid ester derivative represented by the following formula (10) are still coupled in the presence of a transition metal catalyst to obtain a dithiophene derivative represented by the following formula (11), and the compound (11 ) Is subjected to a halogenation reaction to obtain a dithiophene derivative represented by the following formula (3-1) (hereinafter also referred to as step 2 ′); or a thiophenecarboxylic acid ester derivative represented by the following formula (7) And a thiophenecarboxylic acid ester derivative represented by the following formula (12) by Suzuki coupling to obtain a dithiophene derivative represented by the following formula (11). You may manufacture by going through the process (henceforth process 2 '') which obtains the dithiophene derivative represented by following formula (3-1) by halogenating compound (11).

Figure 2011187541
Figure 2011187541

(上記式中、R5〜R7、X1およびX2は前記と同じ。) (In the above formula, R 5 to R 7 , X 1 and X 2 are the same as above.)

<工程1について>
上記式(5)中、X1としては、臭素原子、塩素原子、ヨウ素原子、フッ素原子等が挙げられるが、反応効率の点で、臭素原子が特に好ましい。
また、前記化合物(6)の使用量は、化合物(5)に対して、例えば、0.9〜3モル当量程度が好ましい。
また、上記反応は、化合物(5)からワンポットでエステル化して化合物(6)を得ても良く、化合物(5)から塩化チオニル等を用いてカルボン酸塩化物を得て、次いで当該カルボン酸塩化物をエステル化して化合物(6)を得ても良い。
また、上記ワンポットのエステル化は、酸触媒存在下で行うのが好ましく、当該酸触媒としては、硫酸、硝酸等が挙げられる。酸触媒の使用量は、化合物(5)に対し、例えば、0.05〜1モル当量程度が好ましい。
<About Step 1>
In the above formula (5), examples of X 1 include a bromine atom, a chlorine atom, an iodine atom, and a fluorine atom, and a bromine atom is particularly preferable from the viewpoint of reaction efficiency.
Moreover, the usage-amount of the said compound (6) has a preferable about 0.9-3 molar equivalent with respect to a compound (5).
In the above reaction, the compound (5) may be esterified in one pot to obtain the compound (6). From the compound (5), a carboxylic acid chloride is obtained using thionyl chloride and the like, and then the carboxylic acid chloride is obtained. The product may be esterified to obtain the compound (6).
The one-pot esterification is preferably performed in the presence of an acid catalyst, and examples of the acid catalyst include sulfuric acid and nitric acid. The amount of the acid catalyst used is preferably about 0.05 to 1 molar equivalent, for example, relative to compound (5).

また、上記反応は、溶媒存在下、溶媒非存在下いずれでも行うことができるが、円滑な反応性の点で、溶媒存在下で行うことが好ましい。
当該溶媒としては、特に限定されないが、具体的には、トルエン、ピリジン、これらの混合溶媒等が挙げられ、トルエン、ピリジンが特に好ましい。
The above reaction can be performed in the presence of a solvent or in the absence of a solvent, but it is preferably performed in the presence of a solvent from the viewpoint of smooth reactivity.
Although it does not specifically limit as the said solvent, Specifically, toluene, a pyridine, these mixed solvents, etc. are mentioned, Toluene and a pyridine are especially preferable.

上記反応の反応時間としては、5〜80時間が好ましい。反応温度としては、室温〜200℃が好ましい。   The reaction time for the above reaction is preferably 5 to 80 hours. The reaction temperature is preferably room temperature to 200 ° C.

目的化合物(4)は、ろ過、洗浄、乾燥、再結晶、遠心分離、各種溶媒による抽出、クロマトグラフィー等の通常の手段を適宜組み合わせて、反応系から、単離、精製することで分離することができる。
なお、工程1により得られる化合物(4)のうち、下記式(7)
The target compound (4) is separated by isolation and purification from the reaction system by appropriately combining ordinary means such as filtration, washing, drying, recrystallization, centrifugation, extraction with various solvents, chromatography and the like. Can do.
Of the compound (4) obtained by step 1, the following formula (7)

Figure 2011187541
Figure 2011187541

(式(7)中、R5およびX1は前記と同じ。)
で表されるチオフェンカルボン酸エステル誘導体は、新規化合物である。
(In formula (7), R 5 and X 1 are the same as above.)
Is a novel compound.

<工程2>
工程2は、工程1で得られた化合物(4)を遷移金属触媒存在下で二量化させることにより、下記式(3)で表されるジチオフェン誘導体を得る工程である。
式(3)中、X2は、前記X1と同様のものが好ましい。
<Process 2>
Step 2 is a step of obtaining a dithiophene derivative represented by the following formula (3) by dimerizing the compound (4) obtained in Step 1 in the presence of a transition metal catalyst.
In formula (3), X 2 is preferably the same as X 1 described above.

上記反応に用いる遷移金属触媒としては、パラジウムまたはパラジウム化合物、ニッケルまたはニッケル化合物、コバルトまたはコバルト化合物、鉄または鉄化合物が挙げられる。当該遷移金属触媒の使用量は、化合物(4)に対し、0.01〜1モル当量が好ましい。
上記パラジウム化合物としては、例えば、塩化パラジウム、臭化パラジウム、酸化パラジウム、硫化パラジウム、二硫化パラジウム、二塩化パラジウム、二テルル化パラジウム、水酸化パラジウム(II)、セレン化パラジウム、Pd(PPh3)4、Pd(PhCN)2Cl2、PdCl2[PPh3]2、PdCl2(CH3CN)2、[Pd(CH3CN)4][BF4]2、[Pd(C2H5CN)4][BF4]2、パラジウムアセチルアセトナート、酢酸パラジウム等が挙げられる。
Examples of the transition metal catalyst used in the above reaction include palladium or a palladium compound, nickel or a nickel compound, cobalt or a cobalt compound, and iron or an iron compound. The amount of the transition metal catalyst used is preferably 0.01 to 1 molar equivalent relative to compound (4).
Examples of the palladium compound include palladium chloride, palladium bromide, palladium oxide, palladium sulfide, palladium disulfide, palladium dichloride, palladium ditelluride, palladium hydroxide (II), palladium selenide, Pd (PPh 3 ). 4 , Pd (PhCN) 2 Cl 2 , PdCl 2 [PPh 3 ] 2 , PdCl 2 (CH 3 CN) 2 , [Pd (CH 3 CN) 4 ] [BF 4 ] 2 , [Pd (C 2 H 5 CN ) 4 ] [BF 4 ] 2 , palladium acetylacetonate, palladium acetate and the like.

また、上記反応においては、フッ化銀(I)等を添加してもよい。   In the above reaction, silver fluoride (I) or the like may be added.

また、上記反応は、溶媒存在下、溶媒非存在下いずれでも行うことができるが、円滑な反応性の点で、溶媒存在下で行うことが好ましい。
当該溶媒としては、特に限定されないが、具体的には、ジメチルスルホキシド、テトラヒドロフラン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、これらの混合溶媒等が挙げられ、ジメチルスルホキシドが特に好ましい。
The above reaction can be performed in the presence of a solvent or in the absence of a solvent, but it is preferably performed in the presence of a solvent from the viewpoint of smooth reactivity.
The solvent is not particularly limited, and specific examples include dimethyl sulfoxide, tetrahydrofuran, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, a mixed solvent thereof, and the like. Is particularly preferred.

上記反応の反応時間としては、1〜80時間が好ましい。反応温度としては、室温〜140℃が好ましい。   The reaction time for the above reaction is preferably 1 to 80 hours. The reaction temperature is preferably room temperature to 140 ° C.

目的化合物(3)は、ろ過、洗浄、乾燥、再結晶、遠心分離、各種溶媒による抽出、クロマトグラフィー等の通常の手段を適宜組み合わせて、反応系から、単離、精製することで分離することができる。
なお、工程2により得られる化合物(3)のうち、下記式(8)
The target compound (3) is separated by isolation and purification from the reaction system by appropriately combining ordinary means such as filtration, washing, drying, recrystallization, centrifugation, extraction with various solvents, and chromatography. Can do.
Of the compound (3) obtained in step 2, the following formula (8)

Figure 2011187541
Figure 2011187541

(式(8)中、R5、R6、X1およびX2は前記と同じ。)
で表されるジチオフェン誘導体は、新規化合物である。
(In the formula (8), R 5 , R 6 , X 1 and X 2 are the same as above.)
Is a novel compound.

<工程3>
工程3は、工程2により得られた化合物(3)と式(2)で表されるベンゾジチオフェン誘導体とを遷移金属触媒の存在下でスティルカップリングさせることにより本発明重合体(1)を得る工程である。
<Step 3>
In step 3, the compound (3) obtained in step 2 and the benzodithiophene derivative represented by the formula (2) are still-coupled in the presence of a transition metal catalyst to thereby produce the polymer (1) of the present invention. It is a process to obtain.

式(2)中、R7およびR8としては、反応効率の点で、置換基を有していてもよい炭素数1〜20の炭化水素基が好ましい。当該「炭素数1〜20の炭化水素基」としては、R1と同様のものが挙げられるが、反応効率の点で、炭素数1〜16のアルキル基が好ましく、炭素数1〜10のアルキル基がより好ましく、炭素数1〜6のアルキル基がより好ましい。好適な具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、n−ヘキシル基が好ましく、メチル基が特に好ましい。 In formula (2), R 7 and R 8 are preferably a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent from the viewpoint of reaction efficiency. Examples of the “hydrocarbon group having 1 to 20 carbon atoms” include those similar to R 1 , but an alkyl group having 1 to 16 carbon atoms is preferable in terms of reaction efficiency, and alkyl having 1 to 10 carbon atoms. Group is more preferable, and an alkyl group having 1 to 6 carbon atoms is more preferable. Preferable specific examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group and n-hexyl group. A methyl group is particularly preferred.

また、前記化合物(3)の使用量は、化合物(2)に対して、例えば、0.8〜1.5モル当量程度が好ましい。なお、化合物(2)は公知の方法により製造できる。   Moreover, the usage-amount of the said compound (3) has a preferable about 0.8-1.5 molar equivalent with respect to a compound (2), for example. Compound (2) can be produced by a known method.

上記反応に用いる遷移金属触媒としては、工程2の遷移金属触媒と同様のものが挙げられる。当該遷移金属触媒の使用量は、化合物(2)に対し、0.01〜1モル当量が好ましい。   Examples of the transition metal catalyst used in the above reaction include the same transition metal catalysts as those in Step 2. The amount of the transition metal catalyst used is preferably 0.01 to 1 molar equivalent relative to compound (2).

上記反応は、溶媒存在下、溶媒非存在下いずれでも行うことができるが、円滑な反応性の点で、溶媒存在下で行うことが好ましい。当該溶媒としては、特に限定されないが、トルエン、ベンゼン、キシレン等の芳香族炭化水素;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒;THF等のエーテル系溶媒;これらの混合溶媒等が挙げられる。反応温度は、30〜250℃、特に80〜150℃が好ましい。   The above reaction can be performed in the presence or absence of a solvent, but is preferably performed in the presence of a solvent in terms of smooth reactivity. The solvent is not particularly limited, and examples thereof include aromatic hydrocarbons such as toluene, benzene, and xylene; amide solvents such as dimethylformamide and dimethylacetamide; ether solvents such as THF; and mixed solvents thereof. The reaction temperature is preferably 30 to 250 ° C, particularly 80 to 150 ° C.

上記反応は、円滑なスティルカップリング促進の点から、不活性ガス雰囲気下で行うことが好ましい。不活性ガスは、特に限定されないが、例えば、アルゴンガス、窒素ガス、ヘリウムガス等が挙げられる。
目的重合体(1)は、ろ過、洗浄、乾燥、再結晶、遠心分離、各種溶媒による抽出、クロマトグラフィー等の通常の手段を適宜組み合わせて、反応系から、単離、精製することで分離することができる。
上記工程3により得られる本発明重合体(1)は新規な共役ポリマーである。また、下記実施例に示すとおり、本発明重合体(1)は、優れた広範囲の光を吸収し、高い電荷輸送能および高い熱安定性を有する。従って、当該重合体(1)は、光電変換素子における電荷輸送材料として有用である。
The above reaction is preferably performed in an inert gas atmosphere from the viewpoint of smooth smooth coupling promotion. The inert gas is not particularly limited, and examples thereof include argon gas, nitrogen gas, and helium gas.
The target polymer (1) is separated by isolation and purification from the reaction system by appropriately combining ordinary means such as filtration, washing, drying, recrystallization, centrifugation, extraction with various solvents, chromatography and the like. be able to.
The polymer (1) of the present invention obtained by the above step 3 is a novel conjugated polymer. Moreover, as shown in the following Examples, the polymer (1) of the present invention absorbs a wide range of light and has a high charge transporting ability and a high thermal stability. Therefore, the said polymer (1) is useful as a charge transport material in a photoelectric conversion element.

<光電変換素子>
本発明において、「光電変換素子」としては、電気エネルギーを光に変換する素子および光を電気エネルギーに変換する素子が挙げられるが、光を電気エネルギーに変換する素子が好ましい。また、光電変換素子は、1対の電極を有する光電変換素子であり、作用電極と当該作用電極と対をなす対極とを有する光電変換素子が好ましく、作用電極、当該作用電極と対をなす対極および固体層を有する光電変換素子がより好ましく、作用電極と当該作用電極と対をなす対極とを有し、かつ当該作用電極と対極との間に固体層を有する光電変換素子が特に好ましい。本発明重合体を含有する固体層は、電荷輸送層であるのが好ましい。
<Photoelectric conversion element>
In the present invention, examples of the “photoelectric conversion element” include an element that converts electric energy into light and an element that converts light into electric energy, and an element that converts light into electric energy is preferable. In addition, the photoelectric conversion element is a photoelectric conversion element having a pair of electrodes, and a photoelectric conversion element having a working electrode and a counter electrode that forms a pair with the working electrode is preferable, and the working electrode and the counter electrode that forms a pair with the working electrode. A photoelectric conversion element having a solid layer is more preferable, and a photoelectric conversion element having a working electrode and a counter electrode that forms a pair with the working electrode, and having a solid layer between the working electrode and the counter electrode is particularly preferable. The solid layer containing the polymer of the present invention is preferably a charge transport layer.

本発明の光電変換素子において、固体層は本発明重合体(1)を含有する。当該重合体(1)の含有量は、固体層全体に対して20〜60質量%が好ましく、20〜50質量%がより好ましい。
また、当該固体層には、光電変換効率の点で、フラーレン、フラーレン誘導体、カーボンナノチューブ等を含有せしめるのが好ましく、光電変換効率の点から、フラーレン誘導体を含有せしめるのが特に好ましい。
なお、上記フラーレンとしては、安定性、安全性の点からC60フラーレン、C70フラーレンまたはこれらの混合体が好ましい。
当該フラーレン誘導体とは、電荷輸送性を示し、フラーレンに種々の官能基を導入したものをいい、C60フラーレン誘導体、C70フラーレン誘導体が好ましく、これらを1種または2種用いてもよい。上記導入する官能基としては、溶解性およびエネルギーレベルの最適化の点から、エステル基、イミノ基、アルキル基、アラルキル基、チオフェニル基が好ましい。なお、当該官能基は、フェニル基、アルコキシカルボニル基等の置換基をさらに有していてもよい。
In the photoelectric conversion element of the present invention, the solid layer contains the polymer (1) of the present invention. 20-60 mass% is preferable with respect to the whole solid layer, and, as for content of the said polymer (1), 20-50 mass% is more preferable.
The solid layer preferably contains fullerene, fullerene derivatives, carbon nanotubes, etc. from the viewpoint of photoelectric conversion efficiency, and particularly preferably contains fullerene derivatives from the viewpoint of photoelectric conversion efficiency.
The fullerene is preferably C60 fullerene, C70 fullerene or a mixture thereof from the viewpoint of stability and safety.
The fullerene derivative refers to a substance having a charge transport property and having various functional groups introduced into fullerene, preferably a C60 fullerene derivative or a C70 fullerene derivative, and one or two of these may be used. The functional group to be introduced is preferably an ester group, an imino group, an alkyl group, an aralkyl group, or a thiophenyl group from the viewpoint of optimization of solubility and energy level. The functional group may further have a substituent such as a phenyl group or an alkoxycarbonyl group.

フラーレン誘導体の具体例としては、例えば、[6,6]フェニルC61酪酸ヘキシルエステル等が挙げられる。フラーレンまたはフラーレン誘導体を含有せしめる場合、当該フラーレンまたはフラーレン誘導体の含有量は、固体層全体に対して40〜80質量%が好ましく、50〜80質量%がより好ましい。また、フラーレンまたはフラーレン誘導体を含有せしめる場合、本発明重合体(1)とフラーレンまたはフラーレン誘導体との含有比は、フラーレンまたはフラーレン誘導体1質量部に対して、重合体(1)を0.25〜1質量部含有するのが好ましい。
なお、上記フラーレン誘導体は、付加反応、置換反応、ラジカル反応、環化付加反応などの公知の方法により製造できる。
Specific examples of the fullerene derivative include [6,6] phenyl C 61 butyric acid hexyl ester and the like. When the fullerene or fullerene derivative is contained, the content of the fullerene or fullerene derivative is preferably 40 to 80% by mass, more preferably 50 to 80% by mass with respect to the entire solid layer. When the fullerene or fullerene derivative is contained, the content ratio of the polymer (1) of the present invention to the fullerene or fullerene derivative is such that the polymer (1) is 0.25 to 1 part by weight of the fullerene or fullerene derivative. It is preferable to contain 1 part by mass.
In addition, the said fullerene derivative can be manufactured by well-known methods, such as addition reaction, substitution reaction, radical reaction, and cycloaddition reaction.

なお、固体層3の厚さとしては、0.1〜5000nmが好ましく、1〜1000nmがより好ましく、100〜500nmがさらに好ましい。また、当該固体層の製膜方法は、特に限定されないが、スピンコーターにより1000〜5000rpm程度の回転で製膜するのが好ましい。   In addition, as thickness of the solid layer 3, 0.1-5000 nm is preferable, 1-1000 nm is more preferable, and 100-500 nm is further more preferable. Moreover, the film forming method of the solid layer is not particularly limited, but it is preferable to form the film at a rotation of about 1000 to 5000 rpm with a spin coater.

また、前記作用電極は透明膜と光透過性導電層を有するのが好ましい。当該光透過性導電層としては、例えば、ITO、酸化スズ、酸化亜鉛などの透明導電膜が好ましい。
また、前記対極としては、アルミニウム電極等が好ましい。
The working electrode preferably has a transparent film and a light transmissive conductive layer. As the light transmissive conductive layer, for example, a transparent conductive film such as ITO, tin oxide, or zinc oxide is preferable.
The counter electrode is preferably an aluminum electrode.

なお、本発明の光電変換素子は、前記作用電極と固体層との間に、ポリ(3,4-エチレンジオキシチオフェン)−ポリ(スチレンスルフォネート)等を含むドナーバッファ層を有していてもよく、対極と固体層との間に、フッ化リチウム等を含む電子バッファ層を有していてもよい。   The photoelectric conversion element of the present invention has a donor buffer layer containing poly (3,4-ethylenedioxythiophene) -poly (styrene sulfonate) or the like between the working electrode and the solid layer. Alternatively, an electronic buffer layer containing lithium fluoride or the like may be provided between the counter electrode and the solid layer.

下記実施例に示すとおり、上記本発明の光電変換素子は、優れた光電変換効率と耐久性を有する。従って、本発明の光電変換素子は、太陽電池、および光スイッチング装置、センサなどの光電変換装置等の原料として有用である。   As shown in the following examples, the photoelectric conversion element of the present invention has excellent photoelectric conversion efficiency and durability. Therefore, the photoelectric conversion element of the present invention is useful as a raw material for photovoltaic cells such as solar cells and optical switching devices and sensors.

<ベンゾジチオフェン誘導体の合成>
下記の合成経路に従い、3-チオフェンカルボン酸(化合物1)を原料として、2,6-ビス(トリメチルスタンニル)-4,8-ビス(2-エチルヘキシルオキシ)ベンゾ[1,2-b:4,5-b']ジチオフェン(化合物7)を合成した。
<Synthesis of benzodithiophene derivative>
According to the following synthesis route, using 3-thiophenecarboxylic acid (compound 1) as a raw material, 2,6-bis (trimethylstannyl) -4,8-bis (2-ethylhexyloxy) benzo [1,2-b: 4 , 5-b '] dithiophene (compound 7) was synthesized.

Figure 2011187541
Figure 2011187541

1)チオフェン-3-カルボン酸クロリド(化合物2)の合成
化合物1(5.00 g, 39.0 mmol)とジクロロメタン(10 mL)の溶液に、0℃でオキサリルクロリド(9.9 g, 78.0 mmol)を加えた。18時間室温で攪拌した後、減圧で溶媒を留去し白色固体の化合物2を得た。得た化合物2は精製せず次の反応に用いた。
1) Synthesis of thiophene-3-carboxylic acid chloride (compound 2) To a solution of compound 1 (5.00 g, 39.0 mmol) and dichloromethane (10 mL) was added oxalyl chloride (9.9 g, 78.0 mmol) at 0 ° C. After stirring at room temperature for 18 hours, the solvent was distilled off under reduced pressure to obtain Compound 2 as a white solid. The obtained compound 2 was used in the next reaction without purification.

2)チオフェン-3-カルボン酸ジエチルアミン(化合物3)の合成
0℃で、上記反応により得た化合物2と12 mLのジクロロメタン(塩化メチレン)を混合し、この溶液を、ジエチルアミン(5.7g, 78.0 mmol)とジクロロメタン(12 mL)の溶液に加えた。次いで、この混合溶液を室温で1時間攪拌した後、ジクロロメタン(100 mL)に注いだ。これを水(50 mL)で3回洗浄した後、有機相を分離し、これを硫酸マグネシウムで乾燥した。溶媒を留去した後、蒸留にて精製し無色オイル状の化合物3(4.9 g)を69%の収率で得た。以下に得られた化合物3の1H NMR (400MHz, CDCl3)測定結果を示す。
2) Synthesis of thiophene-3-carboxylic acid diethylamine (compound 3)
At 0 ° C., Compound 2 obtained by the above reaction was mixed with 12 mL of dichloromethane (methylene chloride), and this solution was added to a solution of diethylamine (5.7 g, 78.0 mmol) and dichloromethane (12 mL). Then, the mixed solution was stirred at room temperature for 1 hour and then poured into dichloromethane (100 mL). After washing this with water (50 mL) three times, the organic phase was separated and dried over magnesium sulfate. After the solvent was distilled off, the residue was purified by distillation to obtain colorless oily compound 3 (4.9 g) in a yield of 69%. The 1 H NMR (400 MHz, CDCl 3 ) measurement result of the obtained compound 3 is shown below.

1H NMR (CDCl3): δ (ppm) 1.20 (br, -CH3, 6H), 3.38-3.51 (br, -CH2-, 4H), 7.19 (dd, J=1.2 and 5.0 Hz, Th-H, 1H), 7.21 (dd, J=3.2 and 5.0 Hz, Th-H, 1H), 7.48 (dd, J=1.2 and 3.2 Hz, Th-H, 1H) 1 H NMR (CDCl 3 ): δ (ppm) 1.20 (br, -CH 3 , 6H), 3.38-3.51 (br, -CH 2- , 4H), 7.19 (dd, J = 1.2 and 5.0 Hz, Th- H, 1H), 7.21 (dd, J = 3.2 and 5.0 Hz, Th-H, 1H), 7.48 (dd, J = 1.2 and 3.2 Hz, Th-H, 1H)

3)ベンゾ[1,2-b:4,5-b']ジチオフェン-4,8-ジオン(化合物4)の合成
化合物3(4.05 g, 22.10 mmol)とTHF(20 mL)を混合し、この溶液に、0℃でn-BuLi (14.1 mL, 23.2 mmol) (1.65 M ヘキサン溶液)を加えた。温度を上げ室温で30分間攪拌した後、氷水に注いだ。固体の生成物をろ過した後、水、メタノール、ヘキサンで洗浄し、黄色い固体の化合物4(1.93 g)を79%の収率で得た。以下に得られた化合物4の1H NMR (400MHz, CDCl3)測定結果を示す。
3) Synthesis of benzo [1,2-b: 4,5-b '] dithiophene-4,8-dione (compound 4) Compound 3 (4.05 g, 22.10 mmol) and THF (20 mL) were mixed together. N-BuLi (14.1 mL, 23.2 mmol) (1.65 M hexane solution) was added to the solution at 0 ° C. The temperature was raised and the mixture was stirred at room temperature for 30 minutes and then poured into ice water. The solid product was filtered and then washed with water, methanol and hexane to obtain a yellow solid compound 4 (1.93 g) in a yield of 79%. The 1 H NMR (400 MHz, CDCl 3 ) measurement result of the obtained compound 4 is shown below.

1H NMR (CDCl3): δ (ppm) 7.65 (d, J=5.2 Hz, Th-H, 2H), 7.69 (d, J=5.2 Hz, Th-H, 2H) 1 H NMR (CDCl 3 ): δ (ppm) 7.65 (d, J = 5.2 Hz, Th-H, 2H), 7.69 (d, J = 5.2 Hz, Th-H, 2H)

4)p-トルエンスルフォン酸2-エチルヘキシル(化合物5)の合成
2-エチル-1-ヘキサノール(5.69 g, 43.7 mmol)とピリジン(50 mL)の溶液にp-トルエンスルホニルクロリド(10.0 g, 52.5 mmol)を0℃で加えた。室温で3時間攪拌した後、水(300 mL)に注ぎエチルエテルで抽出した。有機相を硫酸マグネシウムで乾燥した後、溶液を留去した。オイル状の残存物をシリカゲルカラムクロマトグラフィー(ヘキサン/ジエチルエーテル=1:1)で精製し無色オイル状の化合物5(10.5 g)を84%の収率で得た。以下に得られた化合物5の1H NMR (400MHz, CDCl3)測定結果を示す。
4) Synthesis of 2-ethylhexyl p-toluenesulfonate (compound 5)
To a solution of 2-ethyl-1-hexanol (5.69 g, 43.7 mmol) and pyridine (50 mL) was added p-toluenesulfonyl chloride (10.0 g, 52.5 mmol) at 0 ° C. The mixture was stirred at room temperature for 3 hours, poured into water (300 mL), and extracted with ethyl ether. After drying the organic phase with magnesium sulfate, the solution was distilled off. The oily residue was purified by silica gel column chromatography (hexane / diethyl ether = 1: 1) to obtain colorless oily compound 5 (10.5 g) in a yield of 84%. The 1 H NMR (400 MHz, CDCl 3 ) measurement result of Compound 5 obtained is shown below.

1H NMR (CDCl3) : δ (ppm) 0.79 (t, J=7.6 Hz, -CH3, 3H), 0.84 (t, J=7.4 Hz, -CH3, 3H), 1.10-1.35 (m, -CH2-, 8H), 1.51-1.57 (m, -CH-, 1H), 2.54 (s, Ph-CH3, 3H), 3.89-3.95 (m, -OCH2-, 2H), 7.35 (d, J=8.0 Hz, Ph-H, 2H), 7.79 (d, J=8.0 Hz, Ph-H, 2H) 1 H NMR (CDCl 3 ): δ (ppm) 0.79 (t, J = 7.6 Hz, -CH 3 , 3H), 0.84 (t, J = 7.4 Hz, -CH 3 , 3H), 1.10-1.35 (m, -CH 2- , 8H), 1.51-1.57 (m, -CH-, 1H), 2.54 (s, Ph-CH 3 , 3H), 3.89-3.95 (m, -OCH 2- , 2H), 7.35 (d , J = 8.0 Hz, Ph-H, 2H), 7.79 (d, J = 8.0 Hz, Ph-H, 2H)

5)4,8-ビス(2-エチルヘキシルオキシ)ベンゾ[1,2-b:4,5-b']ジチオフェン(化合物6)の合成
化合物4(2.00 g, 9.08 mmol)と亜鉛粉(1.31 g, 19.98 mmol)の混合物に、エタノール(8 mL) と20%水酸化ナトリウム水溶液(30 mL)を加えた。2時間還流した後、化合物5 (8.01 g, 28.15 mmol)を加え、更に14時間還流した。温度を下げ不溶物はろ過により除去した。
このろ液に水(150 mL)を加え薄めた後、クロロホルム(50 mL)で3回抽出した。この有機相を硫酸マグネシウムで乾燥した後、溶媒を留去しシリカゲルカラムクロマトグラフィー(クロロホルム/ヘキサン=1:5)により精製し、無色オイル状の化合物6(1.72 g)を42%の収率で得た。以下に得られた化合物6の1H NMR (400MHz, CDCl3)測定結果を示す。
5) Synthesis of 4,8-bis (2-ethylhexyloxy) benzo [1,2-b: 4,5-b '] dithiophene (Compound 6) Compound 4 (2.00 g, 9.08 mmol) and zinc powder (1.31 g , 19.98 mmol), ethanol (8 mL) and 20% aqueous sodium hydroxide solution (30 mL) were added. After refluxing for 2 hours, Compound 5 (8.01 g, 28.15 mmol) was added, and the mixture was further refluxed for 14 hours. The temperature was lowered and insoluble matters were removed by filtration.
The filtrate was diluted with water (150 mL) and extracted three times with chloroform (50 mL). After drying this organic phase with magnesium sulfate, the solvent was distilled off and the residue was purified by silica gel column chromatography (chloroform / hexane = 1: 5) to give colorless oily compound 6 (1.72 g) in a yield of 42%. Obtained. The 1 H NMR (400 MHz, CDCl 3 ) measurement result of the obtained compound 6 is shown below.

1H NMR (CDCl3) : δ (ppm) 0.94 (t, J=6.8 Hz, -CH3, 6H), 1.01 (t, J=7.6 Hz, -CH3, 6H), 1.26-1.72 (m, -CH2-, 16H), 1.78-1.84(m, -CH-, 2H), 4.18 (d, J=5.2Hz, -OCH2-, 4H), 7.37 (d, J=5.6 Hz, Th-H, 2H), 7.48 (d, J=5.6 Hz, Th-H, 2H) 1 H NMR (CDCl 3 ): δ (ppm) 0.94 (t, J = 6.8 Hz, -CH 3 , 6H), 1.01 (t, J = 7.6 Hz, -CH 3 , 6H), 1.26-1.72 (m, -CH 2- , 16H), 1.78-1.84 (m, -CH-, 2H), 4.18 (d, J = 5.2Hz, -OCH2-, 4H), 7.37 (d, J = 5.6 Hz, Th-H, 2H), 7.48 (d, J = 5.6 Hz, Th-H, 2H)

6)2,6-ビス(トリメチルスタンニル)-4,8-ビス(2-エチルヘキシルオキシ)ベンゾ[1,2-b:4,5-b']ジチオフェン(化合物7)の合成
化合物6(1.50 g, 3.36mmol)とTHF(30mL)の混合液に、-80℃でn-BuLi (3.5 mL, 8.39 mmol) (1.57 Mヘキサン溶液)を加えた。-80℃で30分攪拌し後、室温で30分攪拌した。再び-80℃まで温度を下げTHF( 5mL)に溶かした。クロロトリメチルスズ(2.01 g, 10.09 mmol)を加えた。室温で18時間攪拌した後、水を加えた。ヘキサンで抽出し有機相は硫酸マグネシウムで乾燥した。溶媒を留去した後、得た固体をイソプロパノールで再結晶を行い無色固体の化合物7(1.52 g)を 59%収率で得た。以下に得られた化合物7の1H NMR (400MHz, CDCl3)測定結果を示す。
6) Synthesis of 2,6-bis (trimethylstannyl) -4,8-bis (2-ethylhexyloxy) benzo [1,2-b: 4,5-b '] dithiophene (Compound 7) Compound 6 (1.50 g, 3.36 mmol) and THF (30 mL) were added n-BuLi (3.5 mL, 8.39 mmol) (1.57 M hexane solution) at -80 ° C. The mixture was stirred at -80 ° C for 30 minutes and then stirred at room temperature for 30 minutes. The temperature was lowered again to −80 ° C. and dissolved in THF (5 mL). Chlorotrimethyltin (2.01 g, 10.09 mmol) was added. After stirring for 18 hours at room temperature, water was added. Extracted with hexane and the organic phase was dried over magnesium sulfate. After the solvent was distilled off, the obtained solid was recrystallized from isopropanol to obtain colorless solid compound 7 (1.52 g) in 59% yield. The 1 H NMR (400 MHz, CDCl 3 ) measurement result of Compound 7 obtained is shown below.

1H NMR (CDCl3) : δ (ppm) 0.44 (s, -SnMe3, 18H), 0.94 (t, J=7.2 Hz, -CH3, 6H), 1.03 (t, J=7.6 Hz, -CH3, 6H), 1.36-1.77 (m, -CH2-, 16H), 1.78 (m, -CH-, 2H), 4.19 (d, J=5.6, -OCH2-, 4H), 7.51 (s, Th-H, 2H) 1 H NMR (CDCl 3 ): δ (ppm) 0.44 (s, -SnMe 3 , 18H), 0.94 (t, J = 7.2 Hz, -CH 3 , 6H), 1.03 (t, J = 7.6 Hz, -CH 3 , 6H), 1.36-1.77 (m, -CH 2- , 16H), 1.78 (m, -CH-, 2H), 4.19 (d, J = 5.6, -OCH 2- , 4H), 7.51 (s, (Th-H, 2H)

<ジチオフェン誘導体の合成(1)>
下記の合成経路に従い、3-チオフェンカルボン酸(化合物1)を原料として、5,5'-ジブロモ-[2,2']ビチオフェン-4,4'-ジカルボン酸ジドデシル(化合物10)を合成した。
<Synthesis of dithiophene derivative (1)>
According to the following synthesis route, 5-thiophenecarboxylic acid (Compound 1) was used as a raw material, and 5,5′-dibromo- [2,2 ′] bithiophene-4,4′-dicarboxylate didodecyl (Compound 10) was synthesized.

Figure 2011187541
Figure 2011187541

1)2−ブロモ-3-チオフェンカルボン酸(化合物8)の合成
イソプロピルアミン(3.06 g, 60.0 mmol)とTHF(70 mL)の溶液に、-80℃でn-BuLi(40.1 mL, 61.0 mmol) (1.52 M ヘキサン溶液)を加えた後、-80℃で30分攪拌した。これに、-80℃でTHF(15mL)に溶かした3-チオフェンカルボン酸(3.84 g, 30.00 mmol)を加え30分攪拌した後、THF(15mL)に溶かしたCBr4(9.96 g, 30.0 mmol)を-80℃で加えた。室温でまで温度を上げた後、1M塩酸(150 mL)に注いだ。酢酸エチル(50 mL)で3回抽出した後、有機相を硫酸マグネシウムで乾燥した。溶媒を留去した後、水とエタノールの混合溶液で再結晶を行い無色固体の化合物8(2.1 g)を34%の収率で得た。
1) Synthesis of 2-bromo-3-thiophenecarboxylic acid (compound 8) To a solution of isopropylamine (3.06 g, 60.0 mmol) and THF (70 mL) at −80 ° C., n-BuLi (40.1 mL, 61.0 mmol) (1.52 M hexane solution) was added, followed by stirring at −80 ° C. for 30 minutes. To this was added 3-thiophenecarboxylic acid (3.84 g, 30.00 mmol) dissolved in THF (15 mL) at −80 ° C. and stirred for 30 minutes, and then CBr4 (9.96 g, 30.0 mmol) dissolved in THF (15 mL) was added. Added at -80 ° C. After raising the temperature to room temperature, it was poured into 1M hydrochloric acid (150 mL). After extraction three times with ethyl acetate (50 mL), the organic phase was dried over magnesium sulfate. After the solvent was distilled off, recrystallization was performed with a mixed solution of water and ethanol to obtain colorless solid compound 8 (2.1 g) in a yield of 34%.

2)2−ブロモチオフェン-3-カルボン酸ドデシル(化合物9)の合成
化合物8(6.80 g, 32.84 mmol)と塩化チオニル(34.4 g, 28.1 mmol)を混合し、この混合物を18時間攪拌した後、室温まで温度を下げ減圧により塩化チオニルを除去した。その後、1-ドデカノール(7.0 g, 37.6 mmol)とピリジン(20 mL)の混合液を加え80℃で12時間攪拌した。温度を下げた後、氷と1Mの塩酸(100 mL)水溶液に注いだ。酢酸エチル(100 mL)で3回抽出した後、有機相を飽和炭酸水素ナトリウム水溶液と食塩水で洗浄した。有機相を硫酸マグネシウムで乾燥した後、溶媒を留去した。残存物をシリカゲルカラムクロマトグラフィー(へキサン:酢酸エチル=1:5)にて精製し、薄い黄色の液体の化合物9(6.90 g)を56%の収率で得た。
2) Synthesis of dodecyl 2-bromothiophene-3-carboxylate (Compound 9) Compound 8 (6.80 g, 32.84 mmol) and thionyl chloride (34.4 g, 28.1 mmol) were mixed, and this mixture was stirred for 18 hours. The temperature was lowered to room temperature, and thionyl chloride was removed under reduced pressure. Then, the liquid mixture of 1-dodecanol (7.0 g, 37.6 mmol) and pyridine (20 mL) was added, and it stirred at 80 degreeC for 12 hours. After the temperature was lowered, the mixture was poured into ice and 1M aqueous hydrochloric acid (100 mL). After extraction three times with ethyl acetate (100 mL), the organic phase was washed with a saturated aqueous sodium bicarbonate solution and brine. After the organic phase was dried over magnesium sulfate, the solvent was distilled off. The residue was purified by silica gel column chromatography (hexane: ethyl acetate = 1: 5) to obtain Compound 9 (6.90 g) as a light yellow liquid in a yield of 56%.

3)5,5'-ジブロモ-[2,2']ビチオフェン-4,4'-ジカルボン酸ジドデシル(化合物10)の合成
化合物9(1.50 g, 4.0 mmol)、Pd(PhCN)2Cl2 (46 mg, 0.12 mmol)およびDMSO(20 mL)を混合し、この混合液にAgF(1.0 g, 8.0 mmol)を加えた後、35℃で48時間攪拌した。反応終了後、クロロホルム(150 mL)を加え薄めた後、水で洗浄した。有機相を分離し、これを硫酸ナトリウムで乾燥した後、溶媒を留去した。残存物をシリカゲルカラムクロマトグラフィー(ヘキサン:クロロホルム=3:1)にて精製し無色固体の化合物10(1.02 g)を69%の収率で得た。以下に得られた化合物10の1H NMR (400MHz, CDCl3)測定結果を示す。
3) Synthesis of 5,5′-dibromo- [2,2 ′] bithiophene-4,4′-dicarboxylate didodecyl (Compound 10) Compound 9 (1.50 g, 4.0 mmol), Pd (PhCN) 2 Cl 2 (46 mg, 0.12 mmol) and DMSO (20 mL) were mixed, and AgF (1.0 g, 8.0 mmol) was added to the mixture, followed by stirring at 35 ° C. for 48 hours. After completion of the reaction, chloroform (150 mL) was added to dilute, and then washed with water. The organic phase was separated and dried over sodium sulfate, and then the solvent was distilled off. The residue was purified by silica gel column chromatography (hexane: chloroform = 3: 1) to obtain colorless solid compound 10 (1.02 g) in a yield of 69%. The 1 H NMR (400 MHz, CDCl 3 ) measurement result of the obtained compound 10 is shown below.

1H NMR (CDCl3) : δ (ppm) 0.88 (t, J=6.8 Hz, -CH3, 6H), 1.21-1.47 (m, -CH2-, 36H), 1.72-1.79 (m, -CH2-, 4H), 4.30 (t, J=6.8 Hz, -OCH2-, 4H), 7.36 (s, Th-H, 2H) 1 H NMR (CDCl 3 ): δ (ppm) 0.88 (t, J = 6.8 Hz, -CH 3 , 6H), 1.21-1.47 (m, -CH 2- , 36H), 1.72-1.79 (m, -CH 2- , 4H), 4.30 (t, J = 6.8 Hz, -OCH 2- , 4H), 7.36 (s, Th-H, 2H)

<ジチオフェン誘導体の合成(2)>
下記の合成経路に従い、3-チオフェンカルボン酸(化合物1)を原料として、5,5'-ジブロモ-[2,2']ビチオフェン-3,3'-ジカルボン酸ジドデシル(化合物13)を合成した。
<Synthesis of dithiophene derivative (2)>
According to the following synthesis route, 5-thiophenecarboxylic acid (Compound 1) was used as a raw material, and 5,5′-dibromo- [2,2 ′] bithiophene-3,3′-dicarboxylate didodecyl (Compound 13) was synthesized.

Figure 2011187541
Figure 2011187541

1)5-ブロモ-3-チオフェンカルボン酸(化合物11)の合成
化合物1(3.00 g, 23.4 mmol)と酢酸(25 mL)の混合溶液に、臭素(3.5 g, 22.2 mmol)と酢酸(20 mL)の混合溶液を室温で加えた。2時間室温で攪拌した後、これを水(500 mL)に注いだ。得られた固体をろ過した後、水で洗浄して、無色固体の化合物11(3.2g)を66%の収率で得た。
1) Synthesis of 5-bromo-3-thiophenecarboxylic acid (compound 11) To a mixed solution of compound 1 (3.00 g, 23.4 mmol) and acetic acid (25 mL), bromine (3.5 g, 22.2 mmol) and acetic acid (20 mL ) Was added at room temperature. After stirring for 2 hours at room temperature, it was poured into water (500 mL). The obtained solid was filtered and washed with water to obtain a colorless solid compound 11 (3.2 g) in a yield of 66%.

2)5-ブロモチオフェン-3-カルボン酸ドデシル(化合物12)の合成
化合物11(2.00 g, 9.96 mmol)とトルエン(50 mL)の混合溶液に、1-ドデカノール(1.80 g, 9.66 mmol)と硫酸(0.1 mL)を加えた。ディーン・スターク装置を用いて生成する水を除去しながら16時間還流した後、温度を室温まで下げた。溶媒を留去した後、得られたオイルをシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=20:1)にて精製し無色オイルの化合物12(1.9 g)を52%の収率得た。以下に得られた化合物12の1H NMR (400MHz, CDCl3)測定結果を示す(図2)。
2) Synthesis of 5-bromothiophene-3-carboxylate dodecyl (compound 12) To a mixed solution of compound 11 (2.00 g, 9.96 mmol) and toluene (50 mL), 1-dodecanol (1.80 g, 9.66 mmol) and sulfuric acid were added. (0.1 mL) was added. The mixture was refluxed for 16 hours while removing water generated using a Dean-Stark apparatus, and then the temperature was lowered to room temperature. After the solvent was distilled off, the resulting oil was purified by silica gel column chromatography (hexane / ethyl acetate = 20: 1) to obtain 52% yield of colorless oil compound 12 (1.9 g). The 1 H NMR (400 MHz, CDCl 3 ) measurement result of the obtained compound 12 is shown below (FIG. 2).

1H NMR (CDCl3) : δ (ppm) 0.88 (t, J=6.8, -CH3, 3H), 1.26-1.45 (m, -CH2-, 18H), 1.70-1.74 (m, -CH2-, 2H), 4.25 (t, J=6.8 Hz, -OCH2-, 2H), 7.47 (d, J=1.6 Hz, Th-H, 1H), 7.98 (d, J=1.6 Hz, 1H) 1 H NMR (CDCl 3 ): δ (ppm) 0.88 (t, J = 6.8, -CH 3 , 3H), 1.26-1.45 (m, -CH 2- , 18H), 1.70-1.74 (m, -CH 2 -, 2H), 4.25 (t, J = 6.8 Hz, -OCH 2- , 2H), 7.47 (d, J = 1.6 Hz, Th-H, 1H), 7.98 (d, J = 1.6 Hz, 1H)

3)5,5'-ジブロモ-[2,2']ビチオフェン-3,3'-ジカルボン酸ジドデシル(化合物13)の合成
化合物12 (1.30 g, 3.46 mmol)、Pd(PhCN)2Cl2 (40 mg, 0.10 mmol)およびDMSO (15 mL)の混合物に、AgF (0.88 g, 6.93 mmol)を加えた。35℃で48時間攪拌した後、クロロホルム(150 mL)に注いだ。水で洗浄した後、有機相を硫酸マグネシウムで乾燥した。有機溶媒を留去した後、残存物をシリカゲルカラムクロマトグラフィー(ヘキサン/クロロホルム=3:1)にて精製し、無色固体の化合物13 (0.62 g)を48%の収率で得た。以下に得られた化合物13の1H NMR (400MHz, CDCl3)測定結果を示す(図3)。
3) Synthesis of 5,5′-dibromo- [2,2 ′] bithiophene-3,3′-dicarboxylate didodecyl (compound 13) Compound 12 (1.30 g, 3.46 mmol), Pd (PhCN) 2 Cl 2 (40 To a mixture of mg, 0.10 mmol) and DMSO (15 mL) was added AgF (0.88 g, 6.93 mmol). After stirring at 35 ° C. for 48 hours, the mixture was poured into chloroform (150 mL). After washing with water, the organic phase was dried over magnesium sulfate. After distilling off the organic solvent, the residue was purified by silica gel column chromatography (hexane / chloroform = 3: 1) to obtain Compound 13 (0.62 g) as a colorless solid in a yield of 48%. The 1 H NMR (400 MHz, CDCl 3 ) measurement result of Compound 13 obtained is shown below (FIG. 3).

1H NMR (CDCl3): δ (ppm) 0.88(t, J=7.2 Hz, -CH3, 6H), 1.19-1.32(m, -CH2-, 36H), 1.46-1.54 (m, -CH2-, 4H), 4.08 (t, J=6.6 Hz, -OCH2-, 4H), 7.48 (s, Th-H, 2H) 1 H NMR (CDCl 3 ): δ (ppm) 0.88 (t, J = 7.2 Hz, -CH 3 , 6H), 1.19-1.32 (m, -CH 2- , 36H), 1.46-1.54 (m, -CH 2- , 4H), 4.08 (t, J = 6.6 Hz, -OCH 2- , 4H), 7.48 (s, Th-H, 2H)

<重合体P1の合成>
下記の反応式に従い、前記の化合物7を原料として重合体P1を合成した。
<Synthesis of polymer P1>
According to the following reaction formula, polymer P1 was synthesized using compound 7 as a raw material.

Figure 2011187541
Figure 2011187541

化合物7(386 mg, 0.50 mmol)、化合物10(374 mg, 0.50 mmol)およびPd(PPh3)4 (25 mg, 0.02 mmol)を混合し、この混合物を10分間真空中で乾燥した後、トルエン(8 mL)とDMF(2mL)を加えた。この混合溶液を10分間アルゴンガスでバブリングした後、アルゴン雰囲気下120℃で20時間攪拌した。その後、温度を室温まで戻し、メタノールで再沈殿し沈澱物をろ過した。固形物をクロロホルムに溶かしカラムクロマトグラフィー(PSQ100B, クロロホルム)にて精製した。有機溶媒を留去した後、トルエン(40 mL)を加えた後に、メタノール(400 mL)で再沈し、赤色固体のP1(0.46 g)を89%収率で得た。
固体状の重合体P1をThermo fishier Scientific NICOLET iS10 スペクトルメーターでIRスペクトル測定を行った。結果を図5に示す。
以下に得られた重合体P1の1H NMR (400MHz, CDCl3)測定結果を示す(図4)。
Compound 7 (386 mg, 0.50 mmol), Compound 10 (374 mg, 0.50 mmol) and Pd (PPh 3 ) 4 (25 mg, 0.02 mmol) were mixed, and the mixture was dried in vacuo for 10 minutes. (8 mL) and DMF (2 mL) were added. This mixed solution was bubbled with argon gas for 10 minutes, and then stirred at 120 ° C. for 20 hours under an argon atmosphere. Thereafter, the temperature was returned to room temperature, reprecipitated with methanol, and the precipitate was filtered. The solid was dissolved in chloroform and purified by column chromatography (PSQ100B, chloroform). After distilling off the organic solvent, toluene (40 mL) was added, followed by reprecipitation with methanol (400 mL) to obtain red solid P1 (0.46 g) in 89% yield.
The solid polymer P1 was subjected to IR spectrum measurement with a Thermo fishier Scientific NICOLET iS10 spectrometer. The results are shown in FIG.
The 1 H NMR (400 MHz, CDCl 3 ) measurement result of the obtained polymer P1 is shown below (FIG. 4).

1H NMR (CDCl3): δ (ppm) 0.85 (t, J=6.8 Hz, -CH3, 6H), 0.96-1.86 (m, -CH2- and -CH3, 70H), 4.26-4.32 (m, -OCH2-, 8H), 7.65 (s, Th-H, 2H), 7.94 (s, Th-H, 2H) 1 H NMR (CDCl 3 ): δ (ppm) 0.85 (t, J = 6.8 Hz, -CH 3 , 6H), 0.96-1.86 (m, -CH 2 -and -CH 3 , 70H), 4.26-4.32 ( m, -OCH 2- , 8H), 7.65 (s, Th-H, 2H), 7.94 (s, Th-H, 2H)

<重合体P2の合成>
下記の反応式に従い前記の化合物7を原料として重合体P2を合成した。
<Synthesis of polymer P2>
Polymer P2 was synthesized using Compound 7 as a raw material according to the following reaction formula.

Figure 2011187541
Figure 2011187541

化合物7(386 mg, 0.50 mmol)、化合物13(374 mg, 0.50 mmol) およびPd(PPh3)4 (25 mg, 0.02mmol)を混合し、この混合物を10分間真空中で乾燥した後、トルエン(8 mL)とDMF(2mL)を加えた。混合溶液を10分間アルゴンガスでバブリングした後、アルゴン雰囲気下120℃で20時間攪拌した。その後、温度を室温まで戻し、メタノールで再沈殿し沈澱物をろ過した。固形物をクロロホルムに溶かしカラムクロマトグラフィー(PSQ100B, クロロホルム)にて精製した。有機溶媒を留去した後、トルエン(40 mL)を加えた後、メタノール(400 mL)で再沈し茶色固体のP2(0.44 g)を86%収率で得た。
重合体P1と同様の条件で、重合体P2についてIRスペクトル測定を行った。結果を図7に示す。
以下に得られた重合体P2の1H NMR (400MHz, CDCl3)測定結果を示す(図6)。
Compound 7 (386 mg, 0.50 mmol), Compound 13 (374 mg, 0.50 mmol) and Pd (PPh 3 ) 4 (25 mg, 0.02 mmol) were mixed, and the mixture was dried in vacuo for 10 minutes. (8 mL) and DMF (2 mL) were added. The mixed solution was bubbled with argon gas for 10 minutes, and then stirred at 120 ° C. for 20 hours under an argon atmosphere. Thereafter, the temperature was returned to room temperature, reprecipitated with methanol, and the precipitate was filtered. The solid was dissolved in chloroform and purified by column chromatography (PSQ100B, chloroform). After distilling off the organic solvent, toluene (40 mL) was added and then reprecipitated with methanol (400 mL) to obtain P2 (0.44 g) as a brown solid in 86% yield.
The IR spectrum of polymer P2 was measured under the same conditions as for polymer P1. The results are shown in FIG.
The 1 H NMR (400 MHz, CDCl 3 ) measurement result of the obtained polymer P2 is shown below (FIG. 6).

1H NMR (CDCl3): δ (ppm) 0.84 (t, J=7.0 Hz, -CH3, 6H), 0.98 (t, J=7.0 Hz, -CH3, 6H), 1.05-1.90 (m, -CH2- and -CH3, 64H), 4.14-4.23 (m, -OCH2-, 8H), 7.56 (s, Th-H, 2H), 7.77 (s, Th-H, 2H) 1 H NMR (CDCl 3 ): δ (ppm) 0.84 (t, J = 7.0 Hz, -CH 3 , 6H), 0.98 (t, J = 7.0 Hz, -CH 3 , 6H), 1.05-1.90 (m, -CH 2 -and -CH 3 , 64H), 4.14-4.23 (m, -OCH 2- , 8H), 7.56 (s, Th-H, 2H), 7.77 (s, Th-H, 2H)

<試験例1>
1)分子量測定
P1およびP2について、重量平均分子量と分子量分布を測定した。GPC(ゲルパーミエーションクロマトグラフィー:溶媒THF)HLC-8320GPC(東ソー(株)製)を用いたポリマーの分子量測定結果、P1がMw 215000 (PDI 3.09)、P2がMw87000 (PDI 1.89)を示した。測定値は、ポリスチレン換算によるものである。
<Test Example 1>
1) Molecular weight measurement
For P1 and P2, the weight average molecular weight and molecular weight distribution were measured. As a result of measuring the molecular weight of the polymer using GPC (gel permeation chromatography: solvent THF) HLC-8320GPC (manufactured by Tosoh Corporation), P1 was Mw 215000 (PDI 3.09) and P2 was Mw87000 (PDI 1.89). The measured value is based on polystyrene.

2)UV-vis測定
重合体P1、P2の1.0×10-5Mクロロホルム溶液をそれぞれ調製した(P1溶液、P2溶液)。
また、重合体P1、P2の10mg/mL濃度のクロロホルム溶液をそれぞれ調製し、これらをガラス基板上に垂らした後、共和理研(株)製スピンコーター(MODEL K-359S-1)(1000 rpmで10秒、3000rpmで60秒)を用いて製膜した(P1薄膜、P2薄膜)。
P1溶液、P2溶液、P1薄膜、P2薄膜それぞれについて、JASCO V570スペクトルメーターで、UV-vis測定を行った。
溶液中での最大吸収はP1が473 nm、P2が455 nm に観測された。そして、薄膜での最大吸収はP1が574 nm、P2が459 nmに観測され、P1がP2より115nmの長波長シフトが見られた。すなわち、UV-vis測定の結果、溶液と薄膜いずれもP1のほうが長波長側で最大吸収が観測された。
UV-vis測定の結果から、ポリマー側鎖のエステル位置による光の吸収波長をコントロールが可能であることが分かった。そして、この結果は、エステルの位置がビチオフェンの外側向きのほうが内側向きより共役の長さが長いことを示唆している。
2) UV-vis measurement 1.0 × 10 −5 M chloroform solutions of polymers P1 and P2 were prepared (P1 solution and P2 solution), respectively.
In addition, 10 mg / mL concentration chloroform solutions of the polymers P1 and P2 were prepared, and these were dropped on a glass substrate, and then a spin coater (MODEL K-359S-1) manufactured by Kyowa Riken Co., Ltd. (at 1000 rpm). (P1 thin film, P2 thin film).
Each of the P1 solution, P2 solution, P1 thin film, and P2 thin film was subjected to UV-vis measurement with a JASCO V570 spectrum meter.
The maximum absorption in the solution was observed at 473 nm for P1 and 455 nm for P2. The maximum absorption in the thin film was observed at P1 of 574 nm and P2 of 459 nm, and P1 had a long wavelength shift of 115 nm from P2. That is, as a result of UV-vis measurement, maximum absorption was observed on the longer wavelength side for P1 in both the solution and the thin film.
From the results of UV-vis measurement, it was found that the light absorption wavelength by the ester position of the polymer side chain can be controlled. This result suggests that the conjugation length of the ester position in the outward direction of bithiophene is longer than the inward direction.

3)熱分解測定
上記のP1、P2について、それぞれTGAにより熱分解測定を行った。
熱分解測定は、セイコーインスツルメント社製TG-DTA6200により、アルミパンを用いて、150mL/minの窒素気流中10℃/minで昇温させて測定した。
TGAによる熱分解測定結果、両ポリマーとも300℃まで熱分解せず安定であることがわかった。また、P2の方がP1より高い熱安定を示した。5%分解温度はP1が309℃、P2が321℃に観測された。表1にこれらの結果を示す。
3) Pyrolysis measurement The above P1 and P2 were each subjected to pyrolysis measurement by TGA.
Pyrolysis measurement was performed by using a TG-DTA6200 manufactured by Seiko Instruments Inc. and using an aluminum pan to raise the temperature in a nitrogen stream of 150 mL / min at 10 ° C./min.
As a result of thermal decomposition measurement by TGA, it was found that both polymers were stable up to 300 ° C without thermal decomposition. P2 showed higher thermal stability than P1. The 5% decomposition temperature was observed at 309 ° C for P1 and 321 ° C for P2. Table 1 shows these results.

Figure 2011187541
Figure 2011187541

<フラーレン誘導体の合成> <Synthesis of fullerene derivative>

下記の合成経路に従い、4-ベンゾイル酪酸(化合物14)を原料として、[6,6]フェニルC61酪酸ヘキシルエステル([6,6]PCBH、フラーレン誘導体)を合成した。 According to the following synthetic route, [6,6] phenyl C 61 butyric acid hexyl ester ([6,6] PCBH, fullerene derivative) was synthesized using 4-benzoylbutyric acid (compound 14) as a raw material.

Figure 2011187541
Figure 2011187541

1)4-ベンゾイル酪酸ヘキシル(化合物15)の合成
4-ベンゾイル酪酸(化合物14)(5.0 g, 26.0 mmol)、n-ヘキサノール(3.46 g, 33.8 mmol)およびトルエン(50mL)の混合液に、濃硫酸(0.13 g, 1.3 mmol)を室温で加えた。ディーン・スターク装置を用いて生成する水を除去しながら4時間還流した後、温度を室温に戻し、溶媒を留去した後、得られたオイルをシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=4:1)にて精製し、薄い黄色のオイルの化合物15(6.9 g)を96%の収率で得た。
1) Synthesis of hexyl 4-benzoylbutyrate (compound 15)
Concentrated sulfuric acid (0.13 g, 1.3 mmol) was added to a mixture of 4-benzoylbutyric acid (compound 14) (5.0 g, 26.0 mmol), n-hexanol (3.46 g, 33.8 mmol) and toluene (50 mL) at room temperature. . The mixture was refluxed for 4 hours while removing water generated using a Dean-Stark apparatus, then the temperature was returned to room temperature, the solvent was distilled off, and the obtained oil was subjected to silica gel column chromatography (hexane / ethyl acetate = 4: Purification in 1) afforded pale yellow oil compound 15 (6.9 g) in 96% yield.

2)4-ベンゾイル酪酸ヘキシルp-トシルヒドラゾン(化合物17)の合成
化合物15 (5.77 g, 20.88 mmol)とメタノール(15 mL)の混合液に、p-トルエンスルホニルヒドラジド(化合物16) (3.50 g, 18.79 mmol)を室温で加えた。4時間還流した後、温度を室温に戻し、溶媒を留去した。得られた無色オイル状の生成物にヘキサンを加えることで白色固体になった。固体をろ過した後、ヘキサンで洗浄し白色固体の化合物17(7.5 g)を90%の収率で得た。
2) Synthesis of hexyl 4-benzoylbutyrate p-tosylhydrazone (compound 17) To a mixture of compound 15 (5.77 g, 20.88 mmol) and methanol (15 mL), p-toluenesulfonyl hydrazide (compound 16) (3.50 g, 18.79 mmol) was added at room temperature. After refluxing for 4 hours, the temperature was returned to room temperature and the solvent was distilled off. Hexane was added to the obtained colorless oily product to form a white solid. The solid was filtered and then washed with hexane to obtain Compound 17 (7.5 g) as a white solid in a yield of 90%.

3)[6,6]フェニルC61酪酸ヘキシルエステル([6,6]PCBH)の合成
化合物17(2.04 g, 4.59 mmol)とピリジン(34 mL)の混合液に、ナトリウムメトキシド(0.26 mg, 4.78 mmol)を室温で加えた。混合液を室温で10分間攪拌した後、その混合液にo-ジクロロベンゼン(210 mL)とフラーレン(3.00 g)の混合液を室温で加えた。得られた混合液を65℃で18時間攪拌した後、150 mLの有機溶媒を留去した。残りの溶液をシリカゲル(PSQ100B)カラムクロマトグラフィー(トルエン)にて精製し、[5,6]フェニルC61酪酸ヘキシルエステル([5,6]PCBH)を得た。
精製した[5,6]PCBHにo-ジクロロベンゼン(50 mL)を加え、混合液を16時間還流した。温度を室温に戻した後、混合液をシリカゲル(PSQ100B)カラムクロマトグラフィー(トルエン)にて精製した。精製後、溶媒を留去し、50 mL程度の溶媒を残した後、メタノール(150 m)を加えた。得られた固体をメンブレンでろ過し、黒い茶色の固体の[6,6]PCBH(フラーレン誘導体)(1.2 g)を収率29%で得た。
3) Synthesis of [6,6] phenyl C 61 butyric acid hexyl ester ([6,6] PCBH) To a mixture of compound 17 (2.04 g, 4.59 mmol) and pyridine (34 mL), sodium methoxide (0.26 mg, 4.78 mmol) was added at room temperature. The mixture was stirred at room temperature for 10 minutes, and then a mixture of o-dichlorobenzene (210 mL) and fullerene (3.00 g) was added to the mixture at room temperature. The resulting mixture was stirred at 65 ° C. for 18 hours, and then 150 mL of the organic solvent was distilled off. The remaining solution was purified by silica gel (PSQ100B) column chromatography (toluene) to obtain [5,6] phenyl C 61 butyric acid hexyl ester ([5,6] PCBH).
O-Dichlorobenzene (50 mL) was added to purified [5,6] PCBH, and the mixture was refluxed for 16 hours. After returning the temperature to room temperature, the mixture was purified by silica gel (PSQ100B) column chromatography (toluene). After purification, the solvent was distilled off, leaving about 50 mL of solvent, and then methanol (150 m) was added. The obtained solid was filtered through a membrane to obtain [6,6] PCBH (fullerene derivative) (1.2 g) as a black brown solid in a yield of 29%.

<光電変換素子の作製>
前記方法で得られたP1をドナー材料として、上記フラーレン誘導体を、アクセプター材料として、それぞれの材料を用いて、ドナー材料とアクセプター材料の組成比1:1、濃度1wt%でトルエンに溶解し、DA(ドナー・アクセプター)混合溶液を作成した。さらに、添加剤としてDIO(1,8-シ゛ヨート゛オクタン)1vol%を添加して最適化した。
一方、図1に示すように太陽電池の基板である、ITO(光透過性導電層2)が成膜されたガラス基板1(10Ω)を切断し、超音波洗浄を行った後、120℃で30分間乾燥させた。
上記ガラス基板1にドナーバッファ層3であるPEDOT-PSS( [ポリ(3,4-エチレンジオキシチオフェン)−ポリ(スチレンスルフォネート)])を塗布した後、この基板にDA混合溶液をスピンコーターで製膜してDA混合層4(ドナー材料とアクセプター材料の混合層)を成膜した(3000rpmで15秒)。なお、PEDOT-PSSを塗布する際には基板の上にある有機物を除去するためフォトクリーナ(紫外線:192nm)で5分間照射した後、PEDOT-PSS溶液を0.2μmのフィルターを通してスピンコーターで製膜した後150℃で10分間乾燥させてドナーバッファ層3を成膜した。
DA混合溶液を製膜後に100℃で15分間ベーク処理を行った。その後、マスクを付け電子バッファ層5材料であるLiF層(約1nm)を真空蒸着した後、電極であるAl(約100nm)を蒸着した。この時の、デバイスの構造はITOガラス/PEDOT-PSS/DA混合層/LiF/Alである。
<Production of photoelectric conversion element>
P1 obtained by the above method was used as a donor material, and the above fullerene derivative was used as an acceptor material, and the respective materials were used. The donor material and the acceptor material were dissolved in toluene at a composition ratio of 1: 1 and a concentration of 1 wt%. A (donor-acceptor) mixed solution was prepared. In addition, 1vol% of DIO (1,8-dioctane) was added as an additive and optimized.
On the other hand, as shown in FIG. 1, a glass substrate 1 (10Ω) on which ITO (light transmissive conductive layer 2), which is a substrate of a solar cell, is cut and subjected to ultrasonic cleaning, and then at 120 ° C. Dry for 30 minutes.
After applying PEDOT-PSS ([poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonate)]), which is the donor buffer layer 3, to the glass substrate 1, spin a DA mixed solution on this substrate. A DA mixed layer 4 (a mixed layer of donor material and acceptor material) was formed by coating with a coater (15 seconds at 3000 rpm). In addition, when applying PEDOT-PSS, after removing the organic matter on the substrate by irradiating with a photo cleaner (ultraviolet light: 192 nm) for 5 minutes, the PEDOT-PSS solution is formed on a spin coater through a 0.2 μm filter. Then, it was dried at 150 ° C. for 10 minutes to form a donor buffer layer 3.
After the DA mixed solution was formed into a film, it was baked at 100 ° C. for 15 minutes. Thereafter, a LiF layer (about 1 nm) which is a material of the electronic buffer layer 5 was vacuum-deposited with a mask, and then Al (about 100 nm) as an electrode was evaporated. At this time, the structure of the device is ITO glass / PEDOT-PSS / DA mixed layer / LiF / Al.

<試験例2>
変換効率の測定
、Si簡易標準セルを用い、光量を補正した後、IV測定器(ソースメータ)により、100mW/cm2(AM1.5G)の条件で特性評価を行った。また、評価は不活性雰囲気中で行った。
次に上記評価結果を示す。図8のIV曲線から、Jsc=6.03mA/cm2、Voc=0.83V、FF=0.56で変換効率2.83%が得られたことが確認された。
従って、上記DA混合層4は優れた電荷輸送能を有することがわかる。
<Test Example 2>
Measurement of conversion efficiency After using a Si simple standard cell to correct the amount of light, an IV measurement device (source meter) was used to evaluate characteristics under the condition of 100 mW / cm 2 (AM1.5G). The evaluation was performed in an inert atmosphere.
Next, the above evaluation results are shown. From the IV curve in FIG. 8, it was confirmed that a conversion efficiency of 2.83% was obtained at Jsc = 6.03 mA / cm 2 , Voc = 0.83 V, and FF = 0.56.
Therefore, it can be seen that the DA mixed layer 4 has an excellent charge transport ability.

本発明の重合体は、広範囲の光を吸収し、優れた電荷輸送能を有し、且つ高い熱安定性を有する。従って、本発明によれば、優れた光電変換効率と耐久性を有する光電変換素子、並びにこれを用いた太陽電池、および光スイッチング装置、センサなどの光電変換装置を提供できる。   The polymer of the present invention absorbs a wide range of light, has an excellent charge transport ability, and has high thermal stability. Therefore, according to the present invention, it is possible to provide a photoelectric conversion device having excellent photoelectric conversion efficiency and durability, a solar cell using the photoelectric conversion device, and a photoelectric conversion device such as an optical switching device and a sensor.

1・・・ガラス基板
2・・・光透過性導電層
3・・・ドナーバッファ層
4・・・DA混合層
5・・・電子バッファ層
DESCRIPTION OF SYMBOLS 1 ... Glass substrate 2 ... Light-transmitting conductive layer 3 ... Donor buffer layer 4 ... DA mixed layer 5 ... Electronic buffer layer

Claims (9)

下記式(1)
Figure 2011187541
(式(1)中、R1およびR2は、それぞれ独立に、水素原子または置換基を有していてもよい炭素数1〜20の炭化水素基を示し、R3およびR4は、それぞれ独立に、水素原子、置換基を有していてもよい炭素数1〜20の炭化水素基、カルボキシル基、アルコキシカルボニル基またはアルケニルオキシカルボニル基を示し、R5およびR6は、それぞれ独立に置換基を有していてもよい炭素数1〜30の炭化水素基を示す。)
で表される構造単位を有する重合体。
Following formula (1)
Figure 2011187541
(In Formula (1), R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, and R 3 and R 4 are each represented by Independently represents a hydrogen atom, an optionally substituted hydrocarbon group having 1 to 20 carbon atoms, a carboxyl group, an alkoxycarbonyl group or an alkenyloxycarbonyl group, wherein R 5 and R 6 are each independently substituted; (The C1-C30 hydrocarbon group which may have a group is shown.)
The polymer which has a structural unit represented by these.
1対の電極の間に、請求項1記載の重合体を含有する固体層を有することを特徴とする光電変換素子。   A photoelectric conversion element comprising a solid layer containing the polymer according to claim 1 between a pair of electrodes. 前記固体層が、さらにフラーレンまたはフラーレン誘導体を含有する請求項2に記載の光電変換素子。   The photoelectric conversion element according to claim 2, wherein the solid layer further contains fullerene or a fullerene derivative. 請求項2または3に記載の光電変換素子を有することを特徴とする太陽電池。   A solar cell comprising the photoelectric conversion element according to claim 2. 下記式(2)
Figure 2011187541
(式(2)中、R1、R2、R7およびR8は、それぞれ独立に、水素原子または置換基を有していてもよい炭素数1〜20の炭化水素基を示す。)
で表される化合物と、下記式(3)
Figure 2011187541
(式(3)中、R3およびR4は、それぞれ独立に、水素原子、置換基を有していてもよい炭素数1〜20の炭化水素基、カルボキシル基、アルコキシカルボニル基またはアルケニルオキシカルボニル基を示し、R5およびR6は、それぞれ独立に、置換基を有していてもよい炭素数1〜30の炭化水素基を示し、X1およびX2はそれぞれ独立にハロゲン原子を示す。)
で表される化合物とを反応させる工程を含む請求項1に記載の重合体の製造方法。
Following formula (2)
Figure 2011187541
(In formula (2), R 1 , R 2 , R 7 and R 8 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent.)
And a compound represented by the following formula (3)
Figure 2011187541
(In Formula (3), R 3 and R 4 are each independently a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, a carboxyl group, an alkoxycarbonyl group or an alkenyloxycarbonyl. R 5 and R 6 each independently represent an optionally substituted hydrocarbon group having 1 to 30 carbon atoms, and X 1 and X 2 each independently represent a halogen atom. )
The manufacturing method of the polymer of Claim 1 including the process with which the compound represented by these is made to react.
下記式(8)
Figure 2011187541
(式(8)中、R5およびR6は、それぞれ独立に置換基を有していてもよい炭素数1〜30の炭化水素基を示し、X1およびX2はそれぞれ独立にハロゲン原子を示す。)
で表される化合物。
Following formula (8)
Figure 2011187541
(In Formula (8), R 5 and R 6 each independently represent a hydrocarbon group having 1 to 30 carbon atoms which may have a substituent, and X 1 and X 2 each independently represent a halogen atom. Show.)
A compound represented by
下記式(7)
Figure 2011187541
(式(7)中、R5は置換基を有していてもよい炭素数1〜30の炭化水素基を示し、X1はハロゲン原子を示す。)
で表される化合物を遷移金属触媒存在下で二量化させることを特徴とする請求項6に記載の化合物の製造方法。
Following formula (7)
Figure 2011187541
(In Formula (7), R 5 represents an optionally substituted hydrocarbon group having 1 to 30 carbon atoms, and X 1 represents a halogen atom.)
The compound represented by this is dimerized in the presence of a transition metal catalyst.
下記式(7)
Figure 2011187541
(式(7)中、R5は置換基を有していてもよい炭素数1〜30の炭化水素基を示し、X1はハロゲン原子を示す。)
で表される化合物。
Following formula (7)
Figure 2011187541
(In Formula (7), R 5 represents an optionally substituted hydrocarbon group having 1 to 30 carbon atoms, and X 1 represents a halogen atom.)
A compound represented by
下記式(9)
Figure 2011187541
(式(9)中、X1はハロゲン原子を示す。)
で表される化合物と、下記式(6)
Figure 2011187541
(式(6)中、R5は置換基を有していてもよい炭素数1〜30の炭化水素基を示す。)
で表される化合物とを反応させることを特徴とする請求項8記載の化合物の製造方法。
Following formula (9)
Figure 2011187541
(In formula (9), X 1 represents a halogen atom.)
And a compound represented by the following formula (6)
Figure 2011187541
(In the formula (6), R 5 represents a hydrocarbon group having 1 to 30 carbon atoms which may have a substituent.)
A method for producing a compound according to claim 8, wherein the compound represented by the formula is reacted.
JP2010049128A 2010-03-05 2010-03-05 New polymer and photoelectric conversion element using the same Pending JP2011187541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010049128A JP2011187541A (en) 2010-03-05 2010-03-05 New polymer and photoelectric conversion element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010049128A JP2011187541A (en) 2010-03-05 2010-03-05 New polymer and photoelectric conversion element using the same

Publications (1)

Publication Number Publication Date
JP2011187541A true JP2011187541A (en) 2011-09-22

Family

ID=44793528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010049128A Pending JP2011187541A (en) 2010-03-05 2010-03-05 New polymer and photoelectric conversion element using the same

Country Status (1)

Country Link
JP (1) JP2011187541A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014528016A (en) * 2011-09-28 2014-10-23 メルク パテント ゲーエムベーハー Conjugated polymer
JP2016111220A (en) * 2014-12-08 2016-06-20 国立大学法人信州大学 Photoelectric conversion element, method of manufacturing photoelectric conversion layer in photoelectric conversion element, solar cell, and electronic apparatus
KR101960614B1 (en) * 2017-11-08 2019-03-20 고려대학교 산학협력단 Conjugated Polymers containing 3-methylene thiophene carboxylate and benzodithiophene and the organic solar cells using them
KR20200131174A (en) * 2019-05-13 2020-11-23 건국대학교 산학협력단 Method for manufacturing hetero cyclic compounds for electron acceptor, polymers for electron donor based on the hetero cyclic compounds, and organic semiconductor device comprising the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014528016A (en) * 2011-09-28 2014-10-23 メルク パテント ゲーエムベーハー Conjugated polymer
US9590178B2 (en) 2011-09-28 2017-03-07 Merck Patent Gmbh Conjugated polymers
JP2016111220A (en) * 2014-12-08 2016-06-20 国立大学法人信州大学 Photoelectric conversion element, method of manufacturing photoelectric conversion layer in photoelectric conversion element, solar cell, and electronic apparatus
KR101960614B1 (en) * 2017-11-08 2019-03-20 고려대학교 산학협력단 Conjugated Polymers containing 3-methylene thiophene carboxylate and benzodithiophene and the organic solar cells using them
KR20200131174A (en) * 2019-05-13 2020-11-23 건국대학교 산학협력단 Method for manufacturing hetero cyclic compounds for electron acceptor, polymers for electron donor based on the hetero cyclic compounds, and organic semiconductor device comprising the same
KR102331647B1 (en) * 2019-05-13 2021-11-30 건국대학교 산학협력단 Method for manufacturing hetero cyclic compounds for electron acceptor, polymers for electron donor based on the hetero cyclic compounds, and organic semiconductor device comprising the same

Similar Documents

Publication Publication Date Title
JP7195546B2 (en) fullerene derivative and n-type semiconductor material
JP2011246503A (en) Novel polymer and intermediate thereof
Dong et al. [1, 2, 5] Thiadiazolo [3, 4-f] benzotriazole based narrow band gap conjugated polymers with photocurrent response up to 1.1 μm
JP2017206479A (en) Organic material and photoelectric conversion element
Su et al. Significantly increasing open-circuit voltage of the benzo [1, 2-b: 4, 5-b′] dithiophene-alt-5, 8-dithienyl-quinoxaline copolymers based PSCs by appending dioctyloxy chains at 6, 7-positions of quinoxaline
Xiao et al. Thiazolyl substituted benzodithiophene copolymers: synthesis, properties and photovoltaic applications
Tamilavan et al. Benzodithiophene-based polymers containing novel electron accepting selenophene-incorporated pyrrolo [3, 4-c] pyrrole-1, 3-dione units for highly efficient thin film transistors and polymer solar cells
Sun et al. Improved bulk-heterojunction polymer solar cell performance through optimization of the linker groupin donor–acceptor conjugated polymer
CN111533886A (en) Donor-receptor type polymer containing fused ring unit based on quinoxalinebenzotriazole and preparation method and application thereof
JP2011187541A (en) New polymer and photoelectric conversion element using the same
JP6043493B2 (en) SQUARYLIUM COMPOUND, THIN FILM CONTAINING THE SAME, AND ORGANIC THIN FILM SOLAR CELL
Fan et al. Benzodithiophene-based two-dimensional polymers with extended conjugated thienyltriphenylamine substituents for high-efficiency polymer solar cells
JP2018095692A (en) Conjugated polymer compound containing novel sulfanyl-substituted dithienylthienopyrazine derivative structure as monomer segment, method for producing the same and photoelectric conversion element using the same
KR20150027344A (en) organinc semiconductor compound and organic solar cell having them
JP2015010173A (en) Polymer and solar battery using the same
JP6016891B2 (en) ORGANIC SEMICONDUCTOR COMPOUND, PROCESS FOR PRODUCING THE SAME, AND ORGANIC SEMICONDUCTOR DEVICE USING THE SAME
JP5730031B2 (en) Fullerene derivative and photoelectric conversion element using the same
JP7029721B2 (en) Compounds, organic semiconductor materials, organic semiconductor devices, organic solar cells and organic transistors
Cui et al. Fluorine functionalized asymmetric indo [2, 3-b] quinoxaline framework based DA copolymer for fullerene polymer solar cells
Lu et al. Benzo [1, 2-b: 4, 5-b′] dithiophene-fumaronitrile-based DA type copolymers with different π-bridges: Synthesis, characterization and photovoltaic properties
JP6199992B2 (en) Polymer compound, organic photoelectric conversion element, and method for producing the element
JP2017043590A (en) Novel compound, novel polymer and use thereof
JP2013095813A (en) Polymer compound and photoelectric conversion element using the same
KR101317912B1 (en) Polymer with phenanthrothiadiazole thereof and photovoltaic device using same
JP2017119805A (en) Method for producing conjugated polymer having specific thienothiophene-benzodithiophene as unit segment