JP2011246503A - Novel polymer and intermediate thereof - Google Patents

Novel polymer and intermediate thereof Download PDF

Info

Publication number
JP2011246503A
JP2011246503A JP2010117611A JP2010117611A JP2011246503A JP 2011246503 A JP2011246503 A JP 2011246503A JP 2010117611 A JP2010117611 A JP 2010117611A JP 2010117611 A JP2010117611 A JP 2010117611A JP 2011246503 A JP2011246503 A JP 2011246503A
Authority
JP
Japan
Prior art keywords
substituted
group
compound
carbon atoms
unsubstituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010117611A
Other languages
Japanese (ja)
Inventor
Kwang-Hoi Lee
廣會 李
Kazuhide Morino
一英 森野
Atsushi Sudo
篤 須藤
Takeshi Endo
剛 遠藤
Hojin Lee
ホジン イ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2010117611A priority Critical patent/JP2011246503A/en
Publication of JP2011246503A publication Critical patent/JP2011246503A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel polymer having excellent charge transport ability useful as a photoelectric conversion element or a charge transport material of a solar cell, an intermediate thereof, and a photoelectric conversion element and a solar cell using the novel polymer.SOLUTION: The polymer has a structural unit represented by formula (1), wherein Rand Rare each independently a hydrogen atom etc., and Ris thiophene.

Description

本発明は、新規重合体及びその中間体、並びに当該新規重合体を用いた光電変換素子及び太陽電池に関する。   The present invention relates to a novel polymer, an intermediate thereof, and a photoelectric conversion element and a solar cell using the novel polymer.

光電変換材料とは、光電効果を利用して光エネルギーを電気エネルギーに変換することが可能な材料である。光電変換材料では、光が照射されるとその材料内の原子に束縛されていた電子が光エネルギーにより自由に動けるようになり、これによって自由電子と自由電子の抜け孔(正孔)が発生して、これら自由電子と正孔とが効率良く分離し、連続的に電気エネルギーを取り出すことが可能になる。   A photoelectric conversion material is a material that can convert light energy into electrical energy using the photoelectric effect. In photoelectric conversion materials, when light is irradiated, electrons bound to atoms in the material can move freely by light energy, and free electrons and free electron holes (holes) are generated. Thus, these free electrons and holes are efficiently separated, and electric energy can be continuously taken out.

光電変換材料は、このような特性を利用して、種々の用途に応用されているが、その一つとして、太陽電池がある。このような太陽電池としては、低コストで製造すること等を目的とした、色素増感型太陽電池、導電性高分子を用いた固体型太陽電池等が挙げられる。   Photoelectric conversion materials are applied to various uses by utilizing such characteristics, and one of them is a solar cell. Examples of such a solar cell include a dye-sensitized solar cell and a solid solar cell using a conductive polymer for the purpose of manufacturing at low cost.

色素増感型太陽電池は、例えば、色素を吸着させた半導体電極及び対極と、これら電極間に挟持された電解質層から主に構成されており、半導体電極に光が照射されるとこの電極側で電子が発生し、発生した電子が電気回路を通って対極に移動し、対極に移動した電子が電解質中をイオンとして移動して半導体電極に戻り、これが繰り返されて電気エネルギーを取り出すことができるものである。   A dye-sensitized solar cell is mainly composed of, for example, a semiconductor electrode and a counter electrode on which a dye is adsorbed, and an electrolyte layer sandwiched between these electrodes. When the semiconductor electrode is irradiated with light, the electrode side The generated electrons move to the counter electrode through the electric circuit, and the electrons moved to the counter electrode move as ions in the electrolyte and return to the semiconductor electrode, which can be repeated to extract electric energy. Is.

しかしながら、この色素増感型太陽電池で用いられている半導体は、酸化チタンなどの光酸化触媒を使用しており、色素がこれにより分解されたり、あるいは併用される電解質は主として電解液が用いられているため、電解液を十分に保持できず、作用電極と対極のすき間から電解液が漏れ出したり、揮発したりしてしまうという問題がある。また、電解液の漏れを防止するには、装置構成が複雑になるという問題がある。   However, the semiconductor used in this dye-sensitized solar cell uses a photo-oxidation catalyst such as titanium oxide, and the electrolyte is mainly used as the electrolyte that is decomposed or used together. Therefore, there is a problem that the electrolytic solution cannot be sufficiently retained, and the electrolytic solution leaks or volatilizes from the gap between the working electrode and the counter electrode. Moreover, there is a problem that the apparatus configuration is complicated in order to prevent leakage of the electrolytic solution.

一方、導電性高分子を用いた固体型太陽電池としては、例えば、特定の複素環高分子とフラーレン誘導体を電荷輸送材料として用いた光電変換素子が報告されている(特許文献1及び2)。   On the other hand, as solid-state solar cells using conductive polymers, for example, photoelectric conversion elements using specific heterocyclic polymers and fullerene derivatives as charge transport materials have been reported (Patent Documents 1 and 2).

特開2005−116617号公報JP 2005-116617 A 特開2006−278682号公報JP 2006-278682 A

近年、光電変換素子や太陽電池の電荷輸送材料として、更に有用な重合体の開発が望まれている。
したがって、本発明は、光電変換素子や太陽電池の電荷輸送材料として有用な新規重合体及びその中間体、並びに当該新規重合体を用いた光電変換素子及び太陽電池を提供することを課題とする。
In recent years, development of a polymer more useful as a charge transport material for photoelectric conversion elements and solar cells has been desired.
Therefore, this invention makes it a subject to provide the novel polymer useful as a charge transport material of a photoelectric conversion element or a solar cell, its intermediate body, and the photoelectric conversion element and solar cell using the said novel polymer.

そこで、本発明者らは、上記課題を解決すべく鋭意検討した結果、4位と8位にエーテル結合を有するベンゾジチオフェン誘導体と、特定の置換基を導入した、チオフェン誘導体又はチエノチオフェン誘導体とが結合した構造を繰り返し単位として有する新規重合体が、光電変換素子及び太陽電池の電荷輸送材料として有用であることを見出し、本発明を完成した。   Therefore, as a result of intensive studies to solve the above problems, the present inventors have obtained a benzodithiophene derivative having an ether bond at the 4-position and the 8-position, and a thiophene derivative or thienothiophene derivative into which a specific substituent has been introduced. The present inventors have found that a novel polymer having a structure in which is bonded as a repeating unit is useful as a charge transport material for a photoelectric conversion element and a solar cell, and has completed the present invention.

すなわち、1)本発明は、下記式(1)   That is, 1) The present invention provides the following formula (1)

Figure 2011246503
Figure 2011246503

〔式(1)中、R1及びR2は、それぞれ独立に、水素原子又は置換若しくは非置換の炭素数1〜20の炭化水素基を示し、R3は、下記式(2) [In Formula (1), R < 1 > and R < 2 > show a hydrogen atom or a substituted or unsubstituted C1-C20 hydrocarbon group each independently, and R < 3 > is following formula (2).

Figure 2011246503
Figure 2011246503

(式(2)中、R4は、水素原子、シアノ基、置換若しくは非置換の炭素数2〜20のアルコキシカルボニル基、置換若しくは非置換の炭素数1〜20のアルコキシ基、又は置換若しくは非置換の炭素数1〜30の炭化水素基を示し、R5は、水素原子、又は置換若しくは非置換の炭素数1〜30の炭化水素基を示し、*は結合手を示す。)
で表される基、又は下記式(3)
(In formula (2), R 4 represents a hydrogen atom, a cyano group, a substituted or unsubstituted alkoxycarbonyl group having 2 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, or a substituted or non-substituted group. A substituted C1-C30 hydrocarbon group is shown, R < 5 > shows a hydrogen atom or a substituted or unsubstituted C1-C30 hydrocarbon group, and * shows a bond.)
Or a group represented by the following formula (3)

Figure 2011246503
Figure 2011246503

(式(3)中、R4、R5及び*は、前記と同義である。)
で表される基を示す。〕
で表される構造単位を有する重合体(以下、重合体(1)ともいう)を提供するものである。
(In the formula (3), R 4 , R 5 and * are as defined above.)
The group represented by these is shown. ]
The polymer (henceforth a polymer (1)) which has a structural unit represented by these is provided.

また、2)本発明は、1対の電極の間に、重合体(1)を含有する固体層を有することを特徴とする光電変換素子を提供するものである。   Moreover, 2) this invention provides the photoelectric conversion element characterized by having a solid layer containing a polymer (1) between a pair of electrodes.

更に、3)本発明は、下記式(10)   Furthermore, 3) the present invention provides the following formula (10)

Figure 2011246503
Figure 2011246503

(式(10)中、R6及びR7は、それぞれ独立に、水素原子又は置換若しくは非置換の炭素数1〜20の炭化水素基を示し、R1及びR2は前記と同義である。)
で表される化合物と、下記式(8)
(In the formula (10), R 6 and R 7 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, R 1 and R 2 are as defined above. )
And a compound represented by the following formula (8)

Figure 2011246503
Figure 2011246503

(式(8)中、X1及びX2それぞれ独立にハロゲン原子を示し、R4及びR5は前記と同義である。)
で表される化合物(以下、化合物(8)ともいう)又は下記式(9)
(In formula (8), X 1 and X 2 each independently represent a halogen atom, and R 4 and R 5 are as defined above.)
Or a compound represented by the following formula (9):

Figure 2011246503
Figure 2011246503

(式(9)中、R4、R5、X1及びX2は、前記と同義である。)
で表される化合物(以下、化合物(9)ともいう)とを反応させる工程を含む請求項1又は2に記載の重合体の製造方法を提供するものである。
(In formula (9), R 4 , R 5 , X 1 and X 2 are as defined above.)
The manufacturing method of the polymer of Claim 1 or 2 including the process with which the compound (henceforth a compound (9)) represented by these is made to react is provided.

更に、4)本発明は、化合物(8)を提供するものである。   Furthermore, 4) this invention provides a compound (8).

更に、5)本発明は、化合物(9)を提供するものである。   Furthermore, 5) this invention provides a compound (9).

本発明の重合体は、広範囲の光を吸収し、電荷輸送能及び優れた熱安定性を有する。したがって、本発明の重合体は、光電変換素子及び太陽電池の電荷輸送材料として有用である。   The polymer of the present invention absorbs a wide range of light and has charge transport ability and excellent thermal stability. Therefore, the polymer of the present invention is useful as a charge transport material for photoelectric conversion elements and solar cells.

本発明の光電変換素子の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the photoelectric conversion element of this invention. 化合物10の1H−NMRスペクトルを示す図である。 1 is a diagram showing a 1 H-NMR spectrum of compound 10. FIG. 重合体P1の1H−NMRスペクトルを示す図である。It is a figure which shows the < 1 > H-NMR spectrum of the polymer P1. 化合物14の1H−NMRスペクトルを示す図である。 1 is a diagram showing a 1 H-NMR spectrum of compound 14. FIG. 重合体P2の1H−NMRスペクトルを示す図である。It is a figure which shows the < 1 > H-NMR spectrum of the polymer P2. 化合物25の1H−NMRスペクトルを示す図である。 1 is a diagram showing a 1 H-NMR spectrum of compound 25. FIG. 化合物26の1H−NMRスペクトルを示す図である。2 is a diagram showing a 1 H-NMR spectrum of compound 26. FIG. 化合物28の1H−NMRスペクトルを示す図である。3 is a diagram showing a 1 H-NMR spectrum of compound 28. FIG. 重合体P3の1H−NMRスペクトルを示す図である。It is a figure which shows the < 1 > H-NMR spectrum of the polymer P3. 重合体P1のUV−visスペクトルを示す図である。It is a figure which shows the UV-vis spectrum of the polymer P1. 重合体P2のUV−visスペクトルを示す図である。It is a figure which shows the UV-vis spectrum of the polymer P2. 重合体P3のUV−visスペクトルを示す図である。It is a figure which shows the UV-vis spectrum of the polymer P3. 重合体P1のTGA曲線を示す図である。It is a figure which shows the TGA curve of the polymer P1. 重合体P2のTGA曲線を示す図である。It is a figure which shows the TGA curve of the polymer P2. 重合体P3のTGA曲線を示す図である。It is a figure which shows the TGA curve of the polymer P3. 重合体P2を用いたデバイスのIV曲線を示す図である。It is a figure which shows the IV curve of the device using the polymer P2.

まず、本明細書で使用する記号の定義について説明する。
1及びR2は、それぞれ独立に、水素原子又は置換若しくは非置換の炭素数1〜20の炭化水素基を示す。中でも、電荷輸送能、熱安定性、光吸収、溶解性、及び相溶性の点から、置換又は非置換の炭素数1〜20の炭化水素基が好ましい。当該「炭化水素基」は、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基を包含する概念であるが、電荷輸送能、熱安定性、光吸収、溶解性、及び相溶性の点から、脂肪族炭化水素基が好ましい。なお、当該炭化水素基は分子内に不飽和結合を有していてもよい。
First, definitions of symbols used in this specification will be described.
R 1 and R 2 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms. Among these, a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms is preferable from the viewpoints of charge transport ability, thermal stability, light absorption, solubility, and compatibility. The “hydrocarbon group” is a concept including an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group, but has a charge transporting ability, thermal stability, light absorption, solubility, and phase. From the viewpoint of solubility, an aliphatic hydrocarbon group is preferred. Note that the hydrocarbon group may have an unsaturated bond in the molecule.

上記脂肪族炭化水素基の炭素数は、1〜20であるが、電荷輸送能、熱安定性、光吸収、溶解性、及び相溶性の点から、3〜18が好ましく、4〜16がより好ましく、5〜12が特に好ましい。なお、当該脂肪族炭化水素基は、直鎖状でも分岐鎖状でもよい。具体的には、アルキル基、アルケニル基、アルキニル基が挙げられるが、電荷輸送能、熱安定性、光吸収、溶解性、及び相溶性の点から、アルキル基が好ましい。具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、2−エチルへキシル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ヘキサデシル基等が挙げられる。中でも、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、2−エチルへキシル基、n−ノニル基、n−デシル基が好ましい。   The aliphatic hydrocarbon group has 1 to 20 carbon atoms, preferably 3 to 18 and more preferably 4 to 16 in terms of charge transportability, thermal stability, light absorption, solubility, and compatibility. 5 to 12 is preferable and particularly preferable. The aliphatic hydrocarbon group may be linear or branched. Specific examples include an alkyl group, an alkenyl group, and an alkynyl group, and an alkyl group is preferable from the viewpoint of charge transport ability, thermal stability, light absorption, solubility, and compatibility. Specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, n-heptyl group Group, n-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-hexadecyl group, etc. Can be mentioned. Among these, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group and n-decyl group are preferable.

また、上記「炭素数1〜20の炭化水素基」に置換しうる基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、シクロヘキシルオキシ基等の炭素数1〜12のアルコキシ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;シアノ基;アミノ基;オキソ基;tert−ブチルカルボニル基等の炭素数2〜10のアルカノイル基;メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基等が挙げられる。これら置換基の位置及び数は任意であり、置換基を2以上有する場合、当該置換基は同一でも異なっていてもよい。   Examples of the group that can be substituted with the “hydrocarbon group having 1 to 20 carbon atoms” include alkoxy groups having 1 to 12 carbon atoms such as a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a cyclohexyloxy group; Halogen atoms such as fluorine atom, chlorine atom, bromine atom, iodine atom; cyano group; amino group; oxo group; alkanoyl group having 2 to 10 carbon atoms such as tert-butylcarbonyl group; methoxycarbonyl group, ethoxycarbonyl group, etc. An alkoxycarbonyl group etc. are mentioned. The position and number of these substituents are arbitrary, and when having two or more substituents, the substituents may be the same or different.

また、R3は、下記式(2) R 3 represents the following formula (2)

Figure 2011246503
Figure 2011246503

(式(2)中、R4は、水素原子、シアノ基、置換若しくは非置換の炭素数2〜20のアルコキシカルボニル基、置換若しくは非置換の炭素数1〜20のアルコキシ基、又は置換若しくは非置換の炭素数1〜30の炭化水素基を示し、R5は、水素原子、又は置換若しくは非置換の炭素数1〜30の炭化水素基を示し、*は結合手を示す。)
で表される基、又は下記式(3)
(In formula (2), R 4 represents a hydrogen atom, a cyano group, a substituted or unsubstituted alkoxycarbonyl group having 2 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, or a substituted or non-substituted group. A substituted C1-C30 hydrocarbon group is shown, R < 5 > shows a hydrogen atom or a substituted or unsubstituted C1-C30 hydrocarbon group, and * shows a bond.)
Or a group represented by the following formula (3)

Figure 2011246503
Figure 2011246503

(式(3)中、R4、R5及び*は、前記と同義である。)
で表される基を示す。
(In the formula (3), R 4 , R 5 and * are as defined above.)
The group represented by these is shown.

なお、上記式(3)で表される基としては、熱安定性及び光吸収の点から、下記式(4)   In addition, as group represented by the said Formula (3), from the point of thermal stability and light absorption, following formula (4)

Figure 2011246503
Figure 2011246503

(式(4)中、R4、R5及び*は、前記と同義である。)
で表される基が好ましい。
(In the formula (4), R 4 , R 5 and * are as defined above.)
The group represented by these is preferable.

4は、水素原子、シアノ基、置換若しくは非置換の炭素数2〜20のアルコキシカルボニル基、置換若しくは非置換の炭素数1〜20のアルコキシ基、又は置換若しくは非置換の炭素数1〜30の炭化水素基を示す。中でも、電荷輸送能、熱安定性、光吸収、溶解性、及び相溶性の点から、シアノ基、置換若しくは非置換の炭素数2〜20のアルコキシカルボニル基が好ましく、置換若しくは非置換の炭素数2〜20のアルコキシカルボニル基がより好ましい。当該アルコキシカルボニル基の炭素数は、2〜20であるが、電荷輸送能、熱安定性、光吸収、溶解性、及び相溶性の点から、3〜16が好ましく、4〜14がより好ましく、5〜12が特に好ましい。なお、当該アルコキシカルボニル基中のアルキル基部分は、直鎖状、分岐鎖状、及び環状のいずれであってもよい。
具体的には、メトキシカルボニル基、エトキシカルボニル基、n−プロポキシカルボニル基、イソプロポキシカルボニル基、n−ブトキシカルボニル基、イソブトキシカルボニル基、sec−ブトキシカルボニル基、tert−ブトキシカルボニル基、n−ペンチルオキシカルボニル基、n−ヘキシルオキシカルボニル基、n−へプチルオキシカルボニル基、n−オクチルオキシカルボニル基等が挙げられる。中でも、n−ペンチルオキシカルボニル基、n−ヘキシルオキシカルボニル基、n−へプチルオキシカルボニル基、n−オクチルオキシカルボニル基が好ましい。
R 4 is a hydrogen atom, a cyano group, a substituted or unsubstituted alkoxycarbonyl group having 2 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, or a substituted or unsubstituted carbon group having 1 to 30 carbon atoms. Represents a hydrocarbon group. Among these, from the viewpoint of charge transportability, thermal stability, light absorption, solubility, and compatibility, a cyano group, a substituted or unsubstituted alkoxycarbonyl group having 2 to 20 carbon atoms is preferable, and a substituted or unsubstituted carbon number. 2-20 alkoxycarbonyl groups are more preferred. The alkoxycarbonyl group has 2 to 20 carbon atoms, preferably 3 to 16, more preferably 4 to 14 from the viewpoint of charge transport ability, thermal stability, light absorption, solubility, and compatibility. 5 to 12 is particularly preferable. In addition, the alkyl group part in the alkoxycarbonyl group may be linear, branched, or cyclic.
Specifically, methoxycarbonyl group, ethoxycarbonyl group, n-propoxycarbonyl group, isopropoxycarbonyl group, n-butoxycarbonyl group, isobutoxycarbonyl group, sec-butoxycarbonyl group, tert-butoxycarbonyl group, n-pentyl Examples thereof include an oxycarbonyl group, an n-hexyloxycarbonyl group, an n-heptyloxycarbonyl group, and an n-octyloxycarbonyl group. Among these, an n-pentyloxycarbonyl group, an n-hexyloxycarbonyl group, an n-heptyloxycarbonyl group, and an n-octyloxycarbonyl group are preferable.

5は、水素原子、又は置換若しくは非置換の炭素数1〜30の炭化水素基を示すが、電荷輸送能、熱安定性、光吸収、溶解性、及び相溶性の点から、置換若しくは非置換の炭素数1〜30の炭化水素基が好ましい。当該「炭化水素基」は、R1と同様のものが挙げられるが、脂肪族炭化水素基が好ましい。また、脂肪族炭化水素基の炭素数は、1〜30であるが、電荷輸送能、熱安定性、光吸収、溶解性、及び相溶性の点から、1〜26が好ましく、3〜20がより好ましく、4〜16が更に好ましく、5〜14が特に好ましい。中でも、5〜10が特に好ましい。 R 5 represents a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, but is substituted or non-substituted from the viewpoint of charge transport ability, thermal stability, light absorption, solubility, and compatibility. A substituted hydrocarbon group having 1 to 30 carbon atoms is preferred. Examples of the “hydrocarbon group” include those similar to R 1 , but an aliphatic hydrocarbon group is preferable. Moreover, although carbon number of an aliphatic hydrocarbon group is 1-30, 1-26 are preferable from the point of charge transport ability, thermal stability, light absorption, solubility, and compatibility, and 3-20 are. More preferably, 4-16 are still more preferable, and 5-14 are especially preferable. Among these, 5 to 10 is particularly preferable.

なお、R4及びR5において、炭素数2〜20のアルコキシカルボニル基、炭素数1〜20のアルコキシ基及び炭素数1〜30の炭化水素基に置換しうる基としては、R1と同様のものが挙げられる。 In R 4 and R 5 , the group that can be substituted with an alkoxycarbonyl group having 2 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and a hydrocarbon group having 1 to 30 carbon atoms is the same as R 1 . Things.

また、R3、R4及びR5の組合せとしては、電荷輸送能、熱安定性、光吸収、溶解性、及び相溶性の点から、下記(i)〜(iii)
(i)R3が式(2)で表される基であり、R4がシアノ基であり、R5が置換又は非置換の炭素数1〜30の炭化水素基である組合せ;
(ii)R3が式(2)で表される基であり、R4が置換又は非置換の炭素数2〜20のアルコキシカルボニル基であり、R5が置換又は非置換の炭素数1〜30の炭化水素基である組合せ;
(iii)R3が式(3)で表される基であり、R4がシアノ基であり、R5が置換又は非置換の炭素数1〜30の炭化水素基である組合せ;
の組合せが好ましい。
中でも、R3が式(2)で表される基であり、R4が置換又は非置換の炭素数2〜20のアルコキシカルボニル基であり、R5が置換又は非置換の炭素数1〜30の炭化水素基である組合せが特に好ましい。
The combination of R 3 , R 4 and R 5 includes the following (i) to (iii) from the viewpoint of charge transport ability, thermal stability, light absorption, solubility, and compatibility.
(I) A combination in which R 3 is a group represented by formula (2), R 4 is a cyano group, and R 5 is a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms;
(Ii) R 3 is a group represented by the formula (2), R 4 is a substituted or unsubstituted alkoxycarbonyl group having 2 to 20 carbon atoms, and R 5 is a substituted or unsubstituted carbon number 1 to 1. A combination which is 30 hydrocarbon groups;
(Iii) A combination in which R 3 is a group represented by formula (3), R 4 is a cyano group, and R 5 is a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms;
The combination of is preferable.
Among them, R 3 is a group represented by the formula (2), R 4 is a substituted or unsubstituted alkoxycarbonyl group having 2 to 20 carbon atoms, and R 5 is a substituted or unsubstituted carbon number of 1 to 30. A combination of the following hydrocarbon groups is particularly preferred.

次に、本発明の製造方法について説明する。
本発明の重合体(1)は、次の反応に従い製造できる。すなわち、下記式(5)で表される化合物と、式(6)で表されるチオフェンカルバルデヒド誘導体又は式(7)で表されるチエノチオフェンカルバルデヒド誘導体とを反応させ、化合物(8)又は(9)を得(工程1)、当該化合物(8)又は(9)と、式(10)で表されるベンゾジチオフェン誘導体とを、遷移金属触媒の存在下でスティルカップリングさせることにより(工程2)、重合体(1)を製造できる。なお、本発明の製造方法においては、上記化合物(5)〜(7)を単独で用いてもよく、2種以上を混合して用いてもよい。
Next, the manufacturing method of this invention is demonstrated.
The polymer (1) of the present invention can be produced according to the following reaction. That is, the compound represented by the following formula (5) is reacted with the thiophene carbaldehyde derivative represented by the formula (6) or the thienothiophene carbaldehyde derivative represented by the formula (7) to obtain the compound (8) or (9) is obtained (Step 1), and the compound (8) or (9) and the benzodithiophene derivative represented by the formula (10) are Still coupled in the presence of a transition metal catalyst ( Step 2), the polymer (1) can be produced. In addition, in the manufacturing method of this invention, the said compounds (5)-(7) may be used independently, and 2 or more types may be mixed and used for them.

Figure 2011246503
Figure 2011246503

(式中、R6及びR7は、それぞれ独立に、水素原子又は置換若しくは非置換の炭素数1〜20の炭化水素基を示し、X1及びX2はそれぞれ独立にハロゲン原子を示し、R1〜R5は、前記と同義である。) Wherein R 6 and R 7 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, X 1 and X 2 each independently represent a halogen atom, and R 1 to R 5 are as defined above.)

6及びR7としては、上記R1と同様のものが挙げられる。なお、R6及びR7における炭化水素基の炭素数は、1〜20であるが、反応効率の点から、1〜10が好ましく、1〜6がより好ましく、1〜4が特に好ましい。好適な具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、n−ヘキシル基が好ましく、メチル基が特に好ましい。
また、X1及びX2としては、臭素原子、塩素原子、ヨウ素原子、フッ素原子等が挙げられる。中でも、反応効率の点から、臭素原子、ヨウ素原子が好ましく、臭素原子が特に好ましい。
Examples of R 6 and R 7 include the same as R 1 described above. In addition, although carbon number of the hydrocarbon group in R < 6 > and R < 7 > is 1-20, 1-10 are preferable from the point of reaction efficiency, 1-6 are more preferable, and 1-4 are especially preferable. Preferable specific examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group and n-hexyl group. A methyl group is particularly preferred.
Examples of X 1 and X 2 include a bromine atom, a chlorine atom, an iodine atom, and a fluorine atom. Among these, from the viewpoint of reaction efficiency, a bromine atom and an iodine atom are preferable, and a bromine atom is particularly preferable.

以下、工程1について説明する。
工程1において、化合物(6)又は(7)の使用量は、化合物(5)に対し、0.5〜2モル当量程度が好ましい。
Hereinafter, step 1 will be described.
In step 1, the amount of compound (6) or (7) used is preferably about 0.5 to 2 molar equivalents relative to compound (5).

工程1は、触媒存在下及び非存在下のいずれでも行うことができるが、触媒存在下で行うのが好ましい。当該触媒としては、ピペリジン、トリフェニルホスフィン、エチレンジアミン等の塩基が挙げられる。中でも、反応効率の点から、ピペリジンが好ましい。触媒の使用量は、化合物(5)1mgに対して、1×10-8〜0.1mL程度であるが、0.0001〜0.1mLが好ましい。 Step 1 can be performed in the presence or absence of a catalyst, but is preferably performed in the presence of a catalyst. Examples of the catalyst include bases such as piperidine, triphenylphosphine, and ethylenediamine. Of these, piperidine is preferable from the viewpoint of reaction efficiency. Although the usage-amount of a catalyst is about 1 * 10 < -8 > -0.1mL with respect to 1 mg of compounds (5), 0.0001-0.1mL is preferable.

また、本工程は、溶媒存在下及び非存在下のいずれでも行うことができるが、溶媒存在下で行うのが好ましい。当該溶媒としては、反応効率の点から、エタノール、1−ブタノール、1ープロパノール等のアルコール系溶媒;トルエン、ベンゼン、キシレン等の芳香族炭化水素;アセトニトリル等のニトリル系溶媒;これらの混合溶媒が好ましい。中でも、エタノール、トルエン、アセトニトリルが特に好ましい。溶媒の使用量は、化合物(5)1mgに対して、1×10-5〜0.1mL程度であるが、0.0001〜0.1mLが好ましい。 In addition, this step can be performed in the presence or absence of a solvent, but is preferably performed in the presence of a solvent. The solvent is preferably an alcohol solvent such as ethanol, 1-butanol or 1-propanol; an aromatic hydrocarbon such as toluene, benzene or xylene; a nitrile solvent such as acetonitrile; or a mixed solvent thereof. . Of these, ethanol, toluene, and acetonitrile are particularly preferable. Although the usage-amount of a solvent is about 1 * 10 < -5 > -0.1mL with respect to 1 mg of compounds (5), 0.0001-0.1mL is preferable.

工程1の反応時間としては、30分〜48時間が好ましい。また、反応温度としては、室温〜200℃が好ましい。   As reaction time of the process 1, 30 minutes-48 hours are preferable. The reaction temperature is preferably room temperature to 200 ° C.

なお、上記工程1により得られる化合物(8)及び(9)は、新規化合物である。   In addition, the compounds (8) and (9) obtained by the said process 1 are novel compounds.

また、化合物(6)及び(7)の製造方法を、化合物(7)を例に挙げて説明する。すなわち、化合物(11)を、二クロム酸ピリジニウム等の酸化剤により酸化させ、化合物(12)を得、次いでNBS等のハロゲン化剤によりハロゲン化させることにより、化合物(7)を製造できる。   In addition, the production methods of the compounds (6) and (7) will be described by taking the compound (7) as an example. That is, compound (11) can be produced by oxidizing compound (11) with an oxidizing agent such as pyridinium dichromate to obtain compound (12) and then halogenating with a halogenating agent such as NBS.

Figure 2011246503
Figure 2011246503

(式中、X1及びX2は、前記と同義である。) (In the formula, X 1 and X 2 are as defined above.)

以下、工程2について説明する。
工程2において、化合物(8)又は(9)の使用量は、化合物(10)に対し、0.8〜1.5モル当量程度が好ましい。
また、本工程に用いる遷移金属触媒としては、パラジウム、パラジウム化合物、ニッケル、ニッケル化合物、コバルト、コバルト化合物、鉄、鉄化合物が挙げられる。中でも、パラジウム、パラジウム化合物が好ましい。
上記パラジウム化合物としては、例えば、塩化パラジウム、臭化パラジウム、酸化パラジウム、硫化パラジウム、二硫化パラジウム、二塩化パラジウム、二テルル化パラジウム、水酸化パラジウム(II)、セレン化パラジウム、Pd(PPh3)4、Pd(PhCN)2Cl2、PdCl2[PPh3]2、PdCl2(CH3CN)2、[Pd(CH3CN)4][BF4]2、[Pd(C2H5CN)4][BF4]2、パラジウムアセチルアセトナート、酢酸パラジウム等が挙げられる。中でも、反応効率の点から、Pd(PPh3)4が特に好ましい。また、遷移金属触媒の使用量は、化合物(10)に対し、0.001〜1モル当量が好ましい。
Hereinafter, step 2 will be described.
In step 2, the amount of compound (8) or (9) used is preferably about 0.8 to 1.5 molar equivalents relative to compound (10).
Moreover, as a transition metal catalyst used for this process, palladium, a palladium compound, nickel, a nickel compound, cobalt, a cobalt compound, iron, and an iron compound are mentioned. Of these, palladium and palladium compounds are preferred.
Examples of the palladium compound include palladium chloride, palladium bromide, palladium oxide, palladium sulfide, palladium disulfide, palladium dichloride, palladium ditelluride, palladium hydroxide (II), palladium selenide, Pd (PPh 3 ). 4 , Pd (PhCN) 2 Cl 2 , PdCl 2 [PPh 3 ] 2 , PdCl 2 (CH 3 CN) 2 , [Pd (CH 3 CN) 4 ] [BF 4 ] 2 , [Pd (C 2 H 5 CN ) 4 ] [BF 4 ] 2 , palladium acetylacetonate, palladium acetate and the like. Among these, Pd (PPh 3 ) 4 is particularly preferable from the viewpoint of reaction efficiency. Moreover, the usage-amount of a transition metal catalyst has a preferable 0.001-1 molar equivalent with respect to a compound (10).

工程2は、溶媒存在下及び非存在下のいずれでも行うことができるが、溶媒存在下で行うのが好ましい。当該溶媒としては、トルエン、ベンゼン、キシレン等の芳香族炭化水素;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒;THF等のエーテル系溶媒;これらの混合溶媒等が挙げられる。溶媒の使用量は、化合物(10)1mgに対して、0.0001〜0.1mL程度である。
工程2の反応時間としては、30分〜12時間が好ましい。反応温度としては、30〜250℃が好ましく、30〜150℃がより好ましい。
Step 2 can be performed in the presence or absence of a solvent, but is preferably performed in the presence of a solvent. Examples of the solvent include aromatic hydrocarbons such as toluene, benzene, and xylene; amide solvents such as dimethylformamide and dimethylacetamide; ether solvents such as THF; and mixed solvents thereof. The usage-amount of a solvent is about 0.0001-0.1mL with respect to 1 mg of compounds (10).
As reaction time of the process 2, 30 minutes-12 hours are preferable. As reaction temperature, 30-250 degreeC is preferable and 30-150 degreeC is more preferable.

上記工程2は、円滑なスティルカップリング促進の点から、不活性ガス雰囲気下で行うことが好ましい。不活性ガスは、特に限定されないが、例えば、アルゴンガス、窒素ガス、ヘリウムガス等が挙げられる。   The step 2 is preferably performed in an inert gas atmosphere from the viewpoint of smooth still coupling promotion. The inert gas is not particularly limited, and examples thereof include argon gas, nitrogen gas, and helium gas.

上記工程1及び2において、各反応生成物は、必要に応じて、ろ過、洗浄、乾燥、再結晶、濃縮、再沈殿、遠心分離、各種溶媒による抽出、中和、クロマトグラフィー等の通常の手段を適宜組み合わせて、反応系から、単離、精製することで、分離することができる。また、工程1により得られる化合物については、単離せずに次の反応に付すこともできる。
なお、上記スティルカップリングにより得られる重合体(1)は新規な共役ポリマーであり、簡便かつ効率よく製造できる。また、下記実施例に示すように、重合体(1)は、広範囲の光を吸収し、優れた電荷輸送能及び優れた熱安定性を有する。したがって、重合体(1)は、光電変換素子、太陽電池、並びに光スイッチング装置及びセンサ等の光電変換装置等の電荷輸送材料として有用である。
In the above steps 1 and 2, each reaction product is subjected to usual means such as filtration, washing, drying, recrystallization, concentration, reprecipitation, centrifugation, extraction with various solvents, neutralization, chromatography and the like as necessary. Can be separated from the reaction system by appropriate combination and isolation and purification. In addition, the compound obtained in Step 1 can be subjected to the next reaction without isolation.
The polymer (1) obtained by the Stille coupling is a novel conjugated polymer and can be produced simply and efficiently. In addition, as shown in the following examples, the polymer (1) absorbs a wide range of light, and has excellent charge transport ability and excellent thermal stability. Therefore, the polymer (1) is useful as a charge transport material for photoelectric conversion elements such as photoelectric conversion elements, solar cells, and optical switching devices and sensors.

また、重合体(1)の重量平均分子量(Mw)としては、2×104〜5×105が好ましく、3×104〜45×104がより好ましく、4×104〜4×105が特に好ましい。また、Mw/Mnとしては、1〜4が好ましく、1.2〜3.5がより好ましい。 Further, the weight average molecular weight (Mw) of the polymer (1) is preferably 2 × 10 4 to 5 × 10 5, more preferably 3 × 10 4 to 45 × 10 4 , and 4 × 10 4 to 4 × 10. 5 is particularly preferred. Moreover, as Mw / Mn, 1-4 are preferable and 1.2-3.5 are more preferable.

以下、本発明の光電変換素子について説明する。
本発明において、「光電変換素子」としては、電気エネルギーを光に変換する素子、光を電気エネルギーに変換する素子が挙げられるが、光を電気エネルギーに変換する素子が好ましい。また、光電変換素子は、1対の電極を有する光電変換素子であり、作用電極と当該作用電極と対をなす対極とを有する光電変換素子が好ましく、作用電極、当該作用電極と対をなす対極及び固体層を有する光電変換素子がより好ましく、作用電極と当該作用電極と対をなす対極とを有し、かつ当該作用電極と対極との間に固体層を有する光電変換素子が特に好ましい。本発明重合体を含有する固体層は、電荷輸送層であるのが好ましく、光電変換層であるのがより好ましい。
Hereinafter, the photoelectric conversion element of the present invention will be described.
In the present invention, examples of the “photoelectric conversion element” include an element that converts electric energy into light and an element that converts light into electric energy, and an element that converts light into electric energy is preferable. In addition, the photoelectric conversion element is a photoelectric conversion element having a pair of electrodes, and a photoelectric conversion element having a working electrode and a counter electrode that forms a pair with the working electrode is preferable, and the working electrode and the counter electrode that forms a pair with the working electrode. And a photoelectric conversion element having a solid layer is more preferable, and a photoelectric conversion element having a working electrode and a counter electrode paired with the working electrode and having a solid layer between the working electrode and the counter electrode is particularly preferable. The solid layer containing the polymer of the present invention is preferably a charge transport layer, and more preferably a photoelectric conversion layer.

本発明の光電変換素子において、固体層は重合体(1)を含有する。当該重合体(1)の含有量は、固体層全体に対して20〜60質量%が好ましく、25〜55質量%がより好ましく、30〜50質量%が特に好ましい。
また、当該固体層には、光電変換効率の点から、フラーレン、フラーレン誘導体、カーボンナノチューブ等を含有せしめるのが好ましい。中でも、フラーレン誘導体を含有せしめるのが特に好ましい。
なお、上記フラーレンとしては、安定性、安全性の点から、C60フラーレン、C70フラーレン又はこれらの混合体が好ましい。
当該フラーレン誘導体とは、電荷輸送性を示し、フラーレンに種々の官能基を導入したものをいい、C60フラーレン誘導体、C70フラーレン誘導体が好ましい。なお、これらを1種又は2種用いてもよい。上記導入する官能基としては、溶解性及びエネルギーレベルの最適化の点から、エステル基、イミノ基、アルキル基、アラルキル基、チオフェニル基が好ましい。なお、当該官能基は、フェニル基、アルコキシカルボニル基等の置換基を更に有していてもよい。
In the photoelectric conversion element of the present invention, the solid layer contains the polymer (1). 20-60 mass% is preferable with respect to the whole solid layer, as for content of the said polymer (1), 25-55 mass% is more preferable, and 30-50 mass% is especially preferable.
In addition, the solid layer preferably contains fullerene, a fullerene derivative, a carbon nanotube, or the like from the viewpoint of photoelectric conversion efficiency. Among them, it is particularly preferable to include a fullerene derivative.
The fullerene is preferably C60 fullerene, C70 fullerene or a mixture thereof from the viewpoint of stability and safety.
The fullerene derivative refers to a substance having a charge transport property and having various functional groups introduced into fullerene, and a C60 fullerene derivative and a C70 fullerene derivative are preferable. In addition, you may use these 1 type or 2 types. The functional group to be introduced is preferably an ester group, an imino group, an alkyl group, an aralkyl group, or a thiophenyl group from the viewpoint of optimization of solubility and energy level. The functional group may further have a substituent such as a phenyl group or an alkoxycarbonyl group.

フラーレン誘導体の具体例としては、例えば、[6,6]フェニルC61酪酸ヘキシルエステル等が挙げられる。
フラーレン又はフラーレン誘導体を含有せしめる場合、当該フラーレン又はフラーレン誘導体の含有量は、固体層全体に対して40〜80質量%が好ましく、45〜80質量%がより好ましく、50〜80質量%が特に好ましい。また、フラーレン又はフラーレン誘導体を含有せしめる場合、重合体(1)とフラーレン又はフラーレン誘導体との含有比は、フラーレン又はフラーレン誘導体1質量部に対して、重合体(1)を0.25〜1.2質量部含有するのが好ましく、0.25〜1質量部含有するのが特に好ましい。
なお、上記フラーレン誘導体は、付加反応、置換反応、ラジカル反応、環化付加反応などの公知の方法により製造できる。
Specific examples of the fullerene derivative include [6,6] phenyl C61 butyric acid hexyl ester.
When the fullerene or fullerene derivative is contained, the content of the fullerene or fullerene derivative is preferably 40 to 80% by mass, more preferably 45 to 80% by mass, and particularly preferably 50 to 80% by mass with respect to the entire solid layer. . Moreover, when fullerene or a fullerene derivative is contained, the content ratio of the polymer (1) and the fullerene or fullerene derivative is 0.25 to 1 with respect to 1 part by mass of the fullerene or fullerene derivative. It is preferable to contain 2 mass parts, and it is especially preferable to contain 0.25-1 mass parts.
In addition, the said fullerene derivative can be manufactured by well-known methods, such as addition reaction, substitution reaction, radical reaction, and cycloaddition reaction.

また、固体層は、1,8−ジヨードオクタン等の添加剤を含有していてもよい。   The solid layer may contain an additive such as 1,8-diiodooctane.

なお、固体層の厚さとしては、0.1〜5000nmが好ましく、1〜1000nmがより好ましく、1〜500nmが特に好ましい。また、当該固体層の製膜方法は、特に限定されないが、スピンコーターにより1000〜5000rpm程度の回転で製膜するのが好ましい。   In addition, as thickness of a solid layer, 0.1-5000 nm is preferable, 1-1000 nm is more preferable, and 1-500 nm is especially preferable. Moreover, the film forming method of the solid layer is not particularly limited, but it is preferable to form the film at a rotation of about 1000 to 5000 rpm with a spin coater.

また、前記作用電極は透明膜と光透過性導電層を有するのが好ましい。当該透明膜は、ガラス基板等でよく、光透過性導電層としては、例えば、ITO、酸化スズ、酸化亜鉛などの透明導電膜が好ましい。
また、前記対極としては、アルミニウム電極等が好ましい。
The working electrode preferably has a transparent film and a light transmissive conductive layer. The transparent film may be a glass substrate or the like, and as the light transmissive conductive layer, for example, a transparent conductive film such as ITO, tin oxide, or zinc oxide is preferable.
The counter electrode is preferably an aluminum electrode.

なお、本発明の光電変換素子は、前記作用電極と固体層との間に、ポリ(3,4-エチレンジオキシチオフェン)−ポリ(スチレンスルフォネート)等を含むドナーバッファ層を有していてもよく、対極と固体層との間に、フッ化リチウム等を含む電子バッファ層を有していてもよい。   The photoelectric conversion element of the present invention has a donor buffer layer containing poly (3,4-ethylenedioxythiophene) -poly (styrene sulfonate) or the like between the working electrode and the solid layer. Alternatively, an electronic buffer layer containing lithium fluoride or the like may be provided between the counter electrode and the solid layer.

下記実施例に示すとおり、本発明の光電変換素子は、優れた光電変換効率と耐久性を有する。したがって、本発明の光電変換素子は、太陽電池、及び光スイッチング装置、センサなどの光電変換装置等の原料として有用である。   As shown in the following examples, the photoelectric conversion element of the present invention has excellent photoelectric conversion efficiency and durability. Therefore, the photoelectric conversion element of the present invention is useful as a raw material for photovoltaic devices such as solar cells, optical switching devices, and sensors.

以下、本発明の実施例を詳細に説明するが、本発明はこれら実施例の記載に限定されるものではない。   Examples of the present invention will be described in detail below, but the present invention is not limited to the description of these examples.

<参考例1> ベンゾジチオフェン誘導体の合成(1)
下記の合成経路に従い、3-チオフェンカルボン酸(化合物1)を原料として、2,6-ビス(トリメチルスタンニル)-4,8-ビス(2-エチルヘキシルオキシ)ベンゾ[1,2-b:4,5-b']ジチオフェン(化合物13)を合成した。
Reference Example 1 Synthesis of benzodithiophene derivative (1)
According to the following synthesis route, using 3-thiophenecarboxylic acid (compound 1) as a raw material, 2,6-bis (trimethylstannyl) -4,8-bis (2-ethylhexyloxy) benzo [1,2-b: 4 , 5-b '] dithiophene (compound 13) was synthesized.

Figure 2011246503
Figure 2011246503

1)チオフェン-3-カルボン酸クロリド(化合物2)の合成
化合物1(5.00 g, 39.0 mmol)とジクロロメタン(10 mL)の溶液に、0℃でオキサリルクロリド(9.9 g, 78.0 mmol)を加えた。18時間室温で攪拌した後、減圧で溶媒を留去し白色固体の化合物2を得た。得られた化合物2は精製せず次の反応に用いた。
1) Synthesis of thiophene-3-carboxylic acid chloride (compound 2) To a solution of compound 1 (5.00 g, 39.0 mmol) and dichloromethane (10 mL) was added oxalyl chloride (9.9 g, 78.0 mmol) at 0 ° C. After stirring at room temperature for 18 hours, the solvent was distilled off under reduced pressure to obtain Compound 2 as a white solid. The obtained compound 2 was used in the next reaction without purification.

2)チオフェン-3-カルボン酸ジエチルアミン(化合物3)の合成
0℃で、上記反応により得た化合物2と12 mLのジクロロメタンを混合し、この溶液を、ジエチルアミン(5.7g, 78.0 mmol)とジクロロメタン(12 mL)の溶液に加えた。次いで、この混合溶液を室温で1時間攪拌した後、ジクロロメタン(100 mL)に注いだ。これを水(50 mL)で3回洗浄した後、有機相を分離し、これを硫酸マグネシウムで乾燥した。溶媒を留去した後、蒸留にて精製し無色オイル状の化合物3(4.9 g)を69%の収率で得た。
2) Synthesis of thiophene-3-carboxylic acid diethylamine (compound 3)
At 0 ° C., compound 2 obtained by the above reaction was mixed with 12 mL of dichloromethane, and this solution was added to a solution of diethylamine (5.7 g, 78.0 mmol) and dichloromethane (12 mL). Then, the mixed solution was stirred at room temperature for 1 hour and then poured into dichloromethane (100 mL). After washing this with water (50 mL) three times, the organic phase was separated and dried over magnesium sulfate. After the solvent was distilled off, the residue was purified by distillation to obtain colorless oily compound 3 (4.9 g) in a yield of 69%.

3)ベンゾ[1,2-b:4,5-b']ジチオフェン-4,8-ジオン(化合物4)の合成
化合物3(4.05 g, 22.10 mmol)とTHF(20 mL)を混合し、この溶液に、0℃でn-BuLi (14.1mL, 23.2 mmol) (1.65 M ヘキサン溶液)を加えた。温度を上げ室温で30分間攪拌した後、氷水に注いだ。得られた固体の生成物をろ過した後、水、メタノール、ヘキサンで洗浄し、黄色い固体の化合物4(1.93 g)を79%の収率で得た。
3) Synthesis of benzo [1,2-b: 4,5-b '] dithiophene-4,8-dione (compound 4) Compound 3 (4.05 g, 22.10 mmol) and THF (20 mL) were mixed together. N-BuLi (14.1 mL, 23.2 mmol) (1.65 M hexane solution) was added to the solution at 0 ° C. The temperature was raised and the mixture was stirred at room temperature for 30 minutes and then poured into ice water. The obtained solid product was filtered and washed with water, methanol and hexane to obtain yellow solid compound 4 (1.93 g) in a yield of 79%.

4)p-トルエンスルフォン酸2-エチルヘキシル(化合物5)の合成
2-エチル-1-ヘキサノール(5.69 g, 43.7 mmol)とピリジン(50 mL)の溶液にp-トルエンスルホニルクロリド(10.0 g, 52.5 mmol)を0℃で加えた。室温で3時間攪拌した後、水(300 mL)に注ぎエチルエーテルで抽出した。有機相を硫酸マグネシウムで乾燥した後、溶液を留去した。オイル状の残存物をシリカゲルカラムクロマトグラフィー(ヘキサン:ジエチルエーテル=1:1)で精製し無色オイル状の化合物5(10.5 g)を84%の収率で得た。
4) Synthesis of 2-ethylhexyl p-toluenesulfonate (compound 5)
To a solution of 2-ethyl-1-hexanol (5.69 g, 43.7 mmol) and pyridine (50 mL) was added p-toluenesulfonyl chloride (10.0 g, 52.5 mmol) at 0 ° C. The mixture was stirred at room temperature for 3 hours, poured into water (300 mL) and extracted with ethyl ether. After drying the organic phase with magnesium sulfate, the solution was distilled off. The oily residue was purified by silica gel column chromatography (hexane: diethyl ether = 1: 1) to obtain colorless oily compound 5 (10.5 g) in a yield of 84%.

5)4,8-ビス(2-エチルヘキシルオキシ)ベンゾ[1,2-b:4,5-b']ジチオフェン(化合物6)の合成
化合物4(2.00 g, 9.08 mmol)と亜鉛粉(1.31 g, 19.98 mmol)の混合物に、エタノール(8mL) と20%水酸化ナトリウム水溶液(30 mL)を加えた。2時間還流した後、化合物5 (8.01g, 28.15 mmol)を加え、更に14時間還流した。温度を下げ不溶物はろ過により除去した。
このろ液に水(150 mL)を加え薄めた後、クロロホルム(50 mL)で3回抽出した。この有機相を硫酸マグネシウムで乾燥した後、溶媒を留去しシリカゲルカラムクロマトグラフィー(クロロホルム:ヘキサン=1:5)により精製し、無色オイル状の化合物6(1.72 g)を42%の収率で得た。
5) Synthesis of 4,8-bis (2-ethylhexyloxy) benzo [1,2-b: 4,5-b '] dithiophene (Compound 6) Compound 4 (2.00 g, 9.08 mmol) and zinc powder (1.31 g , 19.98 mmol) was added ethanol (8 mL) and 20% aqueous sodium hydroxide (30 mL). After refluxing for 2 hours, Compound 5 (8.01 g, 28.15 mmol) was added, and the mixture was further refluxed for 14 hours. The temperature was lowered and insoluble matters were removed by filtration.
The filtrate was diluted with water (150 mL) and extracted three times with chloroform (50 mL). After drying this organic phase with magnesium sulfate, the solvent was distilled off and the residue was purified by silica gel column chromatography (chloroform: hexane = 1: 5) to give colorless oily compound 6 (1.72 g) in a yield of 42%. Obtained.

6)2,6-ビス(トリメチルスタンニル)-4,8-ビス(2-エチルヘキシルオキシ)ベンゾ[1,2-b:4,5-b']ジチオフェン(化合物13)の合成
化合物6(1.50 g, 3.36mmol)とTHF(30mL)の混合液に、-80℃でn-BuLi (3.5 mL, 8.39 mmol) (1.57 Mヘキサン溶液)を加えた。-80℃で30分攪拌し後、室温で30分攪拌した。再び-80℃まで温度を下げTHF( 5mL)に溶かした。クロロトリメチルスズ(2.01 g, 10.09 mmol)を加えた。室温で18時間攪拌した後、水を加えた。ヘキサンで抽出し有機相は硫酸マグネシウムで乾燥した。溶媒を留去した後、得られた固体をイソプロパノールで再結晶を行い無色固体の化合物13(1.52 g)を 59%収率で得た。
6) Synthesis of 2,6-bis (trimethylstannyl) -4,8-bis (2-ethylhexyloxy) benzo [1,2-b: 4,5-b '] dithiophene (Compound 13) Compound 6 (1.50 g, 3.36 mmol) and THF (30 mL) were added n-BuLi (3.5 mL, 8.39 mmol) (1.57 M hexane solution) at -80 ° C. The mixture was stirred at -80 ° C for 30 minutes and then stirred at room temperature for 30 minutes. The temperature was lowered again to −80 ° C. and dissolved in THF (5 mL). Chlorotrimethyltin (2.01 g, 10.09 mmol) was added. After stirring for 18 hours at room temperature, water was added. Extracted with hexane and the organic phase was dried over magnesium sulfate. After the solvent was distilled off, the obtained solid was recrystallized from isopropanol to obtain colorless solid compound 13 (1.52 g) in 59% yield.

<実施例1> 2-シアノ-3-(2,5-ジブロモチオフェン-3-イル)アクリル酸ドデシル(ジハロチオフェンエステル誘導体)の合成
下記の合成経路に従い、シアノ酢酸(化合物7)を原料として、2-シアノ-3-(2,5-ジブロモチオフェン-3-イル)アクリル酸ドデシル(化合物10)を合成した。
<Example 1> Synthesis of 2-cyano-3- (2,5-dibromothiophen-3-yl) dodecyl acrylate (dihalothiophene ester derivative) According to the following synthesis route, using cyanoacetic acid (compound 7) as a raw material , Dodecyl 2-cyano-3- (2,5-dibromothiophen-3-yl) acrylate (compound 10) was synthesized.

Figure 2011246503
Figure 2011246503

Figure 2011246503
Figure 2011246503

1)シアノ酢酸ドデシル(化合物8)の合成
シアノ酢酸(化合物7, 5 g, 58.78 mmol)、トルエン(70mL)及びn−ドデカノール(10.95 g, 58.78 mmol)の混合液に硫酸(0.1 mL)を加え、ディーンスターク装置を用いて水を除去しながら24時間還流した。溶媒を留去した後、シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=4:1)にて精製し無色液体状の化合物8(10.5 g)を収率71%で得た。
1) Synthesis of dodecyl cyanoacetate (compound 8) Sulfuric acid (0.1 mL) was added to a mixture of cyanoacetic acid (compound 7, 5 g, 58.78 mmol), toluene (70 mL) and n-dodecanol (10.95 g, 58.78 mmol). The mixture was refluxed for 24 hours while removing water using a Dean-Stark apparatus. After the solvent was distilled off, purification by silica gel column chromatography (ethyl acetate: hexane = 4: 1) gave colorless liquid compound 8 (10.5 g) in a yield of 71%.

2)2-シアノ-3-(2,5-ジブロモチオフェン-3-イル)アクリル酸ドデシルの合成(化合物10)の合成
2,5-ジブロモ-3-チオフェンカルバルデヒド(化合物9, 1 g, 3.7 mmol)、シアノ酢酸ドデシル(化合物8 ,0.95 g, 3.7mmol)、ピぺリジン(5 μL)及びエタノール(10 mL)の混合液を1時間還流した後、室温まで温度を下げ、析出した固体をろ過した。得られた固体を冷たいメタノールで洗浄し黄色固体状の化合物10(1.37 g)を収率73%で得た。以下に得られた化合物10の1H-NMR (400MHz, CDCl3)測定結果を示す(図2)。
2) Synthesis of dodecyl 2-cyano-3- (2,5-dibromothiophen-3-yl) acrylate (Compound 10)
2,5-dibromo-3-thiophenecarbaldehyde (compound 9, 1 g, 3.7 mmol), dodecyl cyanoacetate (compound 8, 0.95 g, 3.7 mmol), piperidine (5 μL) and ethanol (10 mL) After the mixture was refluxed for 1 hour, the temperature was lowered to room temperature, and the precipitated solid was filtered. The obtained solid was washed with cold methanol to obtain Compound 10 (1.37 g) as a yellow solid in a yield of 73%. The 1 H-NMR (400 MHz, CDCl 3 ) measurement result of the obtained compound 10 is shown below (FIG. 2).

1H-NMR (CDCl3): δ (ppm) 0.88 (t, J = 6.8 Hz, -CH3, 3H),1.26-1.43 (m, -CH2-, 12H), 1.72-1.80 (m, -CH2-, 2H), 4.32 (t, J = 6.8 Hz, -OCH2-, 2H), 8.02 (s, th-H, 1H), 8.16 (s, >C=CH-, 1H) 1 H-NMR (CDCl 3 ): δ (ppm) 0.88 (t, J = 6.8 Hz, -CH 3 , 3H), 1.26-1.43 (m, -CH 2- , 12H), 1.72-1.80 (m,- CH 2- , 2H), 4.32 (t, J = 6.8 Hz, -OCH 2- , 2H), 8.02 (s, th-H, 1H), 8.16 (s,> C = CH-, 1H)

<実施例2> 重合体P1の合成
下記の合成経路に従い、化合物13を原料として重合体P1を合成した。
Example 2 Synthesis of Polymer P1 Polymer P1 was synthesized from compound 13 as a raw material according to the following synthesis route.

Figure 2011246503
Figure 2011246503

化合物13(386 mg, 0.50 mmol)、化合物10(253 mg, 0.50 mmol) 及びPd(PPh3)4 (25 mg, 0.016 mmol)を混合し、この混合物を10分間真空中で乾燥した後、トルエン(8 mL)とN,N-ジメチルホルムアミド(DMF ,2 mL)を加えた。次いで、この混合溶液を10分間アルゴンガスでバブリングした後、アルゴン雰囲気下120℃で7時間攪拌した。その後、温度を室温まで戻し、ヘキサンで再沈殿し沈澱物をろ過した。得られた固形物をTHFに溶かしカラムクロマトグラフィー(PSQ100B, THF)にて精製した。有機溶媒を留去し、ヘキサン(400 mL)を加え、得られた固形物をメンブレンろ過し茶色固体の重合体P1(0.30 g)を75%収率で得た。以下に得られた重合体P1の1H-NMR (400MHz, CDCl3)測定結果を示す(図3)。 Compound 13 (386 mg, 0.50 mmol), Compound 10 (253 mg, 0.50 mmol) and Pd (PPh 3 ) 4 (25 mg, 0.016 mmol) were mixed, and the mixture was dried in vacuo for 10 minutes. (8 mL) and N, N-dimethylformamide (DMF, 2 mL) were added. Next, this mixed solution was bubbled with argon gas for 10 minutes, and then stirred at 120 ° C. for 7 hours under an argon atmosphere. Thereafter, the temperature was returned to room temperature, reprecipitated with hexane, and the precipitate was filtered. The obtained solid was dissolved in THF and purified by column chromatography (PSQ100B, THF). The organic solvent was distilled off, hexane (400 mL) was added, and the resulting solid was filtered with a membrane to obtain a brown solid polymer P1 (0.30 g) in a 75% yield. The 1 H-NMR (400 MHz, CDCl 3 ) measurement result of the obtained polymer P1 is shown below (FIG. 3).

1H-NMR (CDCl3): δ (ppm) 0.91-1.88 (m, -CH2- and -CH3, 53H), 4.17-4.42 (br, -OCH2-, 6H), 7.33-8.58 (m, th-H and >C=CH-, 3H) 1 H-NMR (CDCl 3 ): δ (ppm) 0.91-1.88 (m, -CH 2 -and -CH 3 , 53H), 4.17-4.42 (br, -OCH 2- , 6H), 7.33-8.58 (m , th-H and> C = CH-, 3H)

<実施例3> 2-(2,5-ジブロモチオフェン-3-イルメチレン)-マロン酸ジヘキシル(ジハロチオフェンエステル誘導体)の合成
下記の合成経路に従い、マロン酸(化合物11)を原料として、2-(2,5-ジブロモ-チオフェン-3-イルメチレン)-マロン酸ジヘキシルの合成(化合物14)を合成した。
Example 3 Synthesis of 2- (2,5-dibromothiophen-3-ylmethylene) -dihexyl malonate (dihalothiophene ester derivative) According to the following synthesis route, using malonic acid (compound 11) as a raw material, 2- Synthesis of (2,5-dibromo-thiophen-3-ylmethylene) -dihexyl malonate (compound 14) was synthesized.

Figure 2011246503
Figure 2011246503

Figure 2011246503
Figure 2011246503

1)マロン酸ジヘキシル(化合物12)の合成
マロン酸(化合物11, 5 g, 48 mmol)、ヘキサノール(10.3 g, 100.8mmol)及びトルエン(50 mL)の混合液に硫酸(0.1 mL)を加え、ディーンスターク装置を用いて水を除去しながら18時間還流した。溶媒を留去した後、シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=4:1)にて精製し、無色液体状の化合物12(11.2 g)を収率86%で得た。
1) Synthesis of dihexyl malonate (compound 12) Sulfuric acid (0.1 mL) was added to a mixture of malonic acid (compound 11, 5 g, 48 mmol), hexanol (10.3 g, 100.8 mmol) and toluene (50 mL). The mixture was refluxed for 18 hours while removing water using a Dean-Stark apparatus. After the solvent was distilled off, the residue was purified by silica gel column chromatography (ethyl acetate: hexane = 4: 1) to obtain colorless liquid compound 12 (11.2 g) in a yield of 86%.

2)2-(2,5-ジブロモ-チオフェン-3-イルメチレン)-マロン酸ジヘキシル(化合物14)の合成
2,5-ジブロモ-3-チオフェンカルバルデヒド(化合物9, 1 g, 3.7 mmol)、マロン酸ジヘキシル(化合物12, 1.01 g, 3.7 mmol)、ピぺリジン(0.1 mL)及びトルエン(10 mL)の混合液を16時間還流した後、室温まで温度を下げ、有機溶媒を留去した。得られたオイル状の混合物をシリカゲルカラムクロマトグラフィー(クロロホルム:ヘキサン=1:3)にて精製し、無色オイル状の化合物14(1.3 g)を収率65%で得た。以下に得られた化合物14の1H-NMR (400MHz, CDCl3)測定結果を示す(図4)。
2) Synthesis of 2- (2,5-dibromo-thiophen-3-ylmethylene) -dihexyl malonate (compound 14)
2,5-dibromo-3-thiophenecarbaldehyde (compound 9, 1 g, 3.7 mmol), dihexyl malonate (compound 12, 1.01 g, 3.7 mmol), piperidine (0.1 mL) and toluene (10 mL) After the mixture was refluxed for 16 hours, the temperature was lowered to room temperature and the organic solvent was distilled off. The resulting oily mixture was purified by silica gel column chromatography (chloroform: hexane = 1: 3) to obtain colorless oily compound 14 (1.3 g) in a yield of 65%. The 1 H-NMR (400 MHz, CDCl 3 ) measurement result of the obtained compound 14 is shown below (FIG. 4).

1H-NMR (CDCl3): δ (ppm) 0.87-0.92 (m, -CH3, 6H), 1.25-1.44 (m, -CH2-, 12H), 1.66-1.74 (m, -CH2-, 4H), 4.24 (t, J=6.6 Hz, -OCH2-, 2H), 4.29 (t, J=6.8 Hz, -OCH2-, 2H), 7.02 (s, th-H, 1H), 7.59 (s, >C=CH-, 1H) 1 H-NMR (CDCl 3 ): δ (ppm) 0.87-0.92 (m, -CH 3 , 6H), 1.25-1.44 (m, -CH 2- , 12H), 1.66-1.74 (m, -CH 2- , 4H), 4.24 (t, J = 6.6 Hz, -OCH 2- , 2H), 4.29 (t, J = 6.8 Hz, -OCH 2- , 2H), 7.02 (s, th-H, 1H), 7.59 (s,> C = CH-, 1H)

<参考例2> ベンゾジチオフェン誘導体の合成(2)
下記の合成経路に従い、3-チオフェンカルボン酸(化合物1)を原料として、2,6-ビス(トリメチルスタンニル)-4,8-ビス(オクチルオキシ)ベンゾ[1,2-b:4,5-b']ジチオフェン(化合物17)を合成した。
Reference Example 2 Synthesis of benzodithiophene derivative (2)
According to the following synthesis route, using 3-thiophenecarboxylic acid (compound 1) as a raw material, 2,6-bis (trimethylstannyl) -4,8-bis (octyloxy) benzo [1,2-b: 4,5 -b '] dithiophene (compound 17) was synthesized.

Figure 2011246503
Figure 2011246503

1)4,8-ビス(オクチルオキシ)ベンゾ[1,2-b:4,5-b']ジチオフェン(化合物16)の合成
上記の参考例1と同様にして得たベンゾ[1,2-b:4,5-b']ジチオフェン-4,8-ジオン(化合物4,1.00 g, 4.54 mmol)と亜鉛粉(0.65 g, 9.98 mmol)の混合物に、エタノール(4mL) と20%水酸化ナトリウム水溶液(15 mL)を加えた。2時間還流した後、化合物15 (8.01g, 28.15 mmol)を加え、更に14時間還流した。温度を下げ、不溶物をろ過により除去した。このろ液に水(150 mL)を加え薄めた後、クロロホルム(50 mL)で3回抽出した。この有機相を硫酸マグネシウムで乾燥した後、溶媒を留去しシリカゲルカラムクロマトグラフィー(クロロホルム:ヘキサン=1:5)により精製し、無色固体状の化合物16(1.2 g)を59%の収率で得た。
1) Synthesis of 4,8-bis (octyloxy) benzo [1,2-b: 4,5-b ′] dithiophene (Compound 16) Benzo [1,2-obtained in the same manner as in Reference Example 1 above. b: 4,5-b '] dithiophene-4,8-dione (compound 4,1.00 g, 4.54 mmol) and zinc powder (0.65 g, 9.98 mmol) in ethanol (4 mL) and 20% sodium hydroxide Aqueous solution (15 mL) was added. After refluxing for 2 hours, Compound 15 (8.01 g, 28.15 mmol) was added, and the mixture was further refluxed for 14 hours. The temperature was lowered and insolubles were removed by filtration. The filtrate was diluted with water (150 mL) and extracted three times with chloroform (50 mL). After drying this organic phase over magnesium sulfate, the solvent was distilled off and the residue was purified by silica gel column chromatography (chloroform: hexane = 1: 5) to give colorless solid compound 16 (1.2 g) in 59% yield. Obtained.

2)2,6-ビス(トリメチルスタンニル)-4,8-ビス(オクチルオキシ)ベンゾ[1,2-b:4,5-b']ジチオフェン(化合物17)の合成
化合物16(1.00 g, 2.24mmol)とTHF(30mL)の混合液に、-80℃でn-BuLi (3.60 mL, 8.40 mmol) (1.57 Mヘキサン溶液)を加えた。-80℃で30分攪拌し後、室温で30分攪拌した。再び-80℃まで温度を下げTHF( 5mL)に溶かした。クロロトリメチルスズ(1.34 g, 6.72 mmol)を加えた。室温で18時間攪拌した後、水を加えた。ヘキサンで抽出し有機相を硫酸マグネシウムで乾燥した。溶媒を留去した後、得られた固体をイソプロパノールで再結晶を行い無色固体の化合物17(1.13 g)を 71%収率で得た。
2) Synthesis of 2,6-bis (trimethylstannyl) -4,8-bis (octyloxy) benzo [1,2-b: 4,5-b '] dithiophene (Compound 17) Compound 16 (1.00 g, N-BuLi (3.60 mL, 8.40 mmol) (1.57 M hexane solution) was added to a mixture of 2.24 mmol) and THF (30 mL) at -80 ° C. The mixture was stirred at -80 ° C for 30 minutes and then stirred at room temperature for 30 minutes. The temperature was lowered again to −80 ° C. and dissolved in THF (5 mL). Chlorotrimethyltin (1.34 g, 6.72 mmol) was added. After stirring for 18 hours at room temperature, water was added. Extracted with hexane and the organic phase was dried over magnesium sulfate. After the solvent was distilled off, the resulting solid was recrystallized from isopropanol to obtain colorless solid compound 17 (1.13 g) in a 71% yield.

<実施例4> 重合体P2の合成
下記の合成経路に従い、化合物17を原料として重合体P2を合成した。
Example 4 Synthesis of Polymer P2 Polymer P2 was synthesized from compound 17 as a raw material according to the following synthesis route.

Figure 2011246503
Figure 2011246503

化合物17(386 mg, 0.50 mmol)、化合物14(269 mg, 0.50 mmol) 及びPd(PPh3)4 (25 mg, 0.016 mmol)を混合し、この混合物を10分間真空中で乾燥した後、トルエン(8 mL)とDMF(2mL)を加えた。混合溶液を10分間アルゴンガスでバブリングした後、アルゴン雰囲気下120℃で7時間攪拌した。その後、温度を室温まで戻し、メタノールで再沈殿し沈澱物をろ過した。固形物をクロロホルムに溶かしカラムクロマトグラフィー(PSQ100B, クロロホルム)にて精製した。有機溶媒を留去した後、トルエン(30 mL)を加え固体を溶かし、メタノール(400 mL)で再沈殿した。得られた固形物をメンブレンろ過し茶色固体の重合体P2(0.38 g)を94%収率で得た。以下に得られた重合体P2の1H-NMR (400MHz, CDCl3)測定結果を示す(図5)。 Compound 17 (386 mg, 0.50 mmol), Compound 14 (269 mg, 0.50 mmol) and Pd (PPh 3 ) 4 (25 mg, 0.016 mmol) were mixed, and the mixture was dried in vacuo for 10 minutes. (8 mL) and DMF (2 mL) were added. The mixed solution was bubbled with argon gas for 10 minutes, and then stirred at 120 ° C. for 7 hours under an argon atmosphere. Thereafter, the temperature was returned to room temperature, reprecipitated with methanol, and the precipitate was filtered. The solid was dissolved in chloroform and purified by column chromatography (PSQ100B, chloroform). After distilling off the organic solvent, toluene (30 mL) was added to dissolve the solid, and reprecipitated with methanol (400 mL). The obtained solid was filtered with a membrane to obtain a brown solid polymer P2 (0.38 g) in 94% yield. The results of 1 H-NMR (400 MHz, CDCl 3 ) measurement of the polymer P2 obtained are shown below (FIG. 5).

1H-NMR (CDCl3): δ (ppm) 0.81-0.90 (m, -CH3, 12H), 1.29-1.79 (m, -CH2-, 36H), 1.94 (br, -CH2-, 4H), 4.27 (t, J = 6.4 Hz, -OCH2-, 2H) 4.48 (br, -OCH2-, 6H), 7.42 (s, th-H, 1H), 7.56 (s, th-H, 2H), 8.03 (s, >C=CH-, 1H) 1 H-NMR (CDCl 3 ): δ (ppm) 0.81-0.90 (m, -CH 3 , 12H), 1.29-1.79 (m, -CH 2- , 36H), 1.94 (br, -CH 2- , 4H ), 4.27 (t, J = 6.4 Hz, -OCH 2- , 2H) 4.48 (br, -OCH 2- , 6H), 7.42 (s, th-H, 1H), 7.56 (s, th-H, 2H ), 8.03 (s,> C = CH-, 1H)

<実施例5> 2-シアノ-3-(4,6-ジブロモチエノ[3,4-b]チオフェン-2-イル)アクリル酸ドデシルの合成
下記の合成経路に従い、2-チオフェンカルバルアルデヒド(化合物18)を原料として、2-シアノ-3-(4,6-ジブロモチエノ[3,4-b]チオフェン-2-イル)アクリル酸ドデシル(化合物28)を合成した。
Example 5 Synthesis of 2-cyano-3- (4,6-dibromothieno [3,4-b] thiophen-2-yl) dodecyl acrylate According to the following synthetic route, 2-thiophenecarbalaldehyde (compound 18) ) Was used as a raw material to synthesize dodecyl 2-cyano-3- (4,6-dibromothieno [3,4-b] thiophen-2-yl) acrylate (compound 28).

Figure 2011246503
Figure 2011246503

1)チオフェン-2-カルボン酸メチル(化合物19)の合成
2-チオフェンカルバルアルデヒド(化合物18, 10.00 g, 78.03 mmol)とメタノール(40 mL)の混合液に硫酸(0.5 mL)を加え、16時間還流した後、溶媒を留去した。残存物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=5:1)にて精製し、無色液体状の化合物19 (9.5 g)を収率86%で得た。
1) Synthesis of methyl thiophene-2-carboxylate (Compound 19)
Sulfuric acid (0.5 mL) was added to a mixture of 2-thiophenecarbivalaldehyde (Compound 18, 10.00 g, 78.03 mmol) and methanol (40 mL), and the mixture was refluxed for 16 hours, and then the solvent was distilled off. The residue was purified by silica gel column chromatography (ethyl acetate: hexane = 5: 1) to obtain colorless liquid compound 19 (9.5 g) in a yield of 86%.

2)4,5-ビスクロロメチルチオフェン−2−カルボン酸メチル(化合物20)の合成
化合物19(4.0 g, 28.1 mmol)とクロロメチルメチルエーテル(11.3 g, 140.1 mmol)の混合液に0℃で四塩化スズ(SnCl4)(13.2 g, 50.6 mmol)を加えた後、2時間室温で攪拌した。その後、溶液を氷水に注ぎ、30分間攪拌した。得られた固形物をろ過し、水で洗浄することで薄い黄色固体の化合物20 (5.4 g)を収率81%で得た。
2) Synthesis of methyl 4,5-bischloromethylthiophene-2-carboxylate (compound 20) To a mixture of compound 19 (4.0 g, 28.1 mmol) and chloromethyl methyl ether (11.3 g, 140.1 mmol) at 0 ° C After adding tin tetrachloride (SnCl 4 ) (13.2 g, 50.6 mmol), the mixture was stirred at room temperature for 2 hours. The solution was then poured into ice water and stirred for 30 minutes. The obtained solid was filtered and washed with water to obtain a light yellow solid compound 20 (5.4 g) in a yield of 81%.

3)4,6-ジヒドロ-チエノ[3,4-b]チオフェン-2-カルボン酸メチル(化合物21)の合成
化合物20(4.8 g, 20.0 mmol)とメタノール(200 mL)の混合液に、メタノール(80 mL)に溶かした硫化ナトリウム九水和物(Na2S・9H2O)(5.28 g, 22.0 mmol)の混合液を加えた。30分還流した後、室温まで温度を戻し、固形物をろ過で除去した。ろ液を留去した後、クロロホルム(300 mL)を加えた。この溶液を硫酸マグネシウムで乾燥した後、溶媒を留去し固形物を得た。この固形物をシリカゲルカラムクロマトグラフィー(ジクロロメタン:ヘキサン=2:3)にて精製し無色固体状の化合物21(1.70 g)を収率42%で得た。
3) Synthesis of methyl 4,6-dihydro-thieno [3,4-b] thiophene-2-carboxylate (Compound 21) To a mixture of Compound 20 (4.8 g, 20.0 mmol) and methanol (200 mL), methanol was added. A mixture of sodium sulfide nonahydrate (Na 2 S · 9H 2 O) (5.28 g, 22.0 mmol) dissolved in (80 mL) was added. After refluxing for 30 minutes, the temperature was returned to room temperature, and the solid matter was removed by filtration. After the filtrate was distilled off, chloroform (300 mL) was added. After drying this solution with magnesium sulfate, the solvent was distilled off to obtain a solid. The solid was purified by silica gel column chromatography (dichloromethane: hexane = 2: 3) to obtain colorless solid compound 21 (1.70 g) in a yield of 42%.

4)チエノ[3,4-b]チオフェン-2-カルボン酸メチル(化合物23)の合成
化合物21(0.50 g, 2.50 mmol)と酢酸エチル(5 mL)の混合液に、酢酸エチル(3 mL)に溶かしたメタクロロ過安息香酸(mCPBA)(0.43 g, 2.50 mmol)を0℃で加えた。0℃で10分攪拌した後、溶媒を留去し白色固体状の化合物22を得た。化合物22を精製せず、それに無水酢酸(4 mL)を加え1時間攪拌した。残存無水酢酸を留去した後、残存物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:10)にて精製し、無色固体状の化合物23(0.45 g)を収率90%で得た。
4) Synthesis of methyl thieno [3,4-b] thiophene-2-carboxylate (compound 23) To a mixture of compound 21 (0.50 g, 2.50 mmol) and ethyl acetate (5 mL), ethyl acetate (3 mL) Metachloroperbenzoic acid (mCPBA) (0.43 g, 2.50 mmol) dissolved in was added at 0 ° C. After stirring at 0 ° C. for 10 minutes, the solvent was distilled off to obtain Compound 22 as a white solid. Compound 22 was not purified and acetic anhydride (4 mL) was added thereto and stirred for 1 hour. After the residual acetic anhydride was distilled off, the residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 10) to obtain colorless solid compound 23 (0.45 g) in a yield of 90%.

5)チオフェン[3,4-b]チオフェン-2-カルバルアルデヒド(化合物25)の合成
化合物23(1.4 g, 7.06 mmol)とTHF(50 mL)の混合液に、水素化リチウムアルミニウム(LiAlH4) (0.54 mmol, 14.12 mmol)を0℃で加え、室温で3時間攪拌した。反応終了後、混合液を水に注ぎ加水分解した後、酢酸エチルで抽出した。有機相を硫酸マグネシウムで乾燥した後、溶媒を留去し化合物24を得た。化合物24を精製せずジクロロメタン(30 mL)に溶かした後、二クロム酸ピリジニウム(pyridium dichromate, PDC)(1.70 g, 4.52 mmol)を加え室温で7時間攪拌した。その後、溶媒を留去し得られた残存物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:10)にて精製し黄色固体状の化合物25(0.65g)を収率55%で得た。以下に得られた化合物25の1H-NMR (400MHz, CDCl3)測定結果を示す(図6)。
5) Synthesis of thiophene [3,4-b] thiophene-2-carbaldehyde (compound 25) To a mixture of compound 23 (1.4 g, 7.06 mmol) and THF (50 mL), lithium aluminum hydride (LiAlH 4 ) (0.54 mmol, 14.12 mmol) was added at 0 ° C., and the mixture was stirred at room temperature for 3 hours. After completion of the reaction, the mixture was poured into water for hydrolysis, and extracted with ethyl acetate. After drying the organic phase with magnesium sulfate, the solvent was distilled off to obtain Compound 24. Compound 24 was not purified but was dissolved in dichloromethane (30 mL), pyridinium dichromate (PDC) (1.70 g, 4.52 mmol) was added, and the mixture was stirred at room temperature for 7 hours. Thereafter, the solvent was distilled off, and the resulting residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 10) to obtain yellow solid compound 25 (0.65 g) in a yield of 55%. The 1 H-NMR (400 MHz, CDCl 3 ) measurement result of the obtained compound 25 is shown below (FIG. 6).

1H-NMR (CDCl3): δ (ppm) 7.33 (dd,J=2.6 and 1.2 Hz, th-H, 1H),7.68 (d, J = 1.2 Hz, th-H, 1H), 7.77 (d, J = 2.6 Hz, th-H, 1H), 10.01 (s, -CHO, 1H) 1 H-NMR (CDCl 3 ): δ (ppm) 7.33 (dd, J = 2.6 and 1.2 Hz, th-H, 1H), 7.68 (d, J = 1.2 Hz, th-H, 1H), 7.77 (d , J = 2.6 Hz, th-H, 1H), 10.01 (s, -CHO, 1H)

6)4,6-ジブロモチエノ[3,4-b]チオフェン-2-カルバルアルデヒド(化合物26)の合成
化合物25(0.24 g, 1.43 mmol)とクロロホルム(5 mL)の混合液に、N-ブロモスクシンイミド(NBS) (0.56 g, 3.14mmol)を加え、室温で2時間攪拌した。その後、クロロホルム(30 mL)を加え薄めた後、5% 水酸化ナトリウム水溶液(20 mL)と水(20 mL)で、それぞれ2回洗浄した。有機相を硫酸マグネシウムで乾燥した後、溶媒を留去し黄色固体状の化合物26(0.31 g)を収率66%で得た。以下に得られた化合物26の1H-NMR (400MHz, CDCl3)測定結果を示す(図7)。
6) Synthesis of 4,6-dibromothieno [3,4-b] thiophene-2-carbaldehyde (compound 26) To a mixture of compound 25 (0.24 g, 1.43 mmol) and chloroform (5 mL), N-bromo Succinimide (NBS) (0.56 g, 3.14 mmol) was added and stirred at room temperature for 2 hours. Thereafter, chloroform (30 mL) was added to dilute, and the mixture was washed twice with 5% aqueous sodium hydroxide solution (20 mL) and water (20 mL). The organic phase was dried over magnesium sulfate, and then the solvent was distilled off to obtain Compound 26 (0.31 g) as a yellow solid in a yield of 66%. The 1 H-NMR (400 MHz, CDCl 3 ) measurement result of the obtained compound 26 is shown below (FIG. 7).

1H-NMR (CDCl3): δ (ppm) 7.53 (s, th-H, 1H),9.97 (s, -CHO, 1H) 1 H-NMR (CDCl 3 ): δ (ppm) 7.53 (s, th-H, 1H), 9.97 (s, -CHO, 1H)

7)2-シアノ-3-(4,6-ジブロモチエノ[3,4-b]チオフェン-2-イル)アクリル酸ドデシル(化合物28)の合成
化合物27(100 mg, 0.31 mmol)、化合物26 (93 mg, 0.38 mmol)及びアセトニトリル(3mL)の混合液にピぺリジン(5 μL)を加え、5時間還流した後、溶媒を留去し固形物を得た。その固形物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:3)にて精製し茶色固体状の化合物28(0.12g)を収率69%で得た。以下に得られた化合物28の1H-NMR (400MHz, CDCl3)測定結果を示す(図8)。
7) Synthesis of 2-cyano-3- (4,6-dibromothieno [3,4-b] thiophen-2-yl) dodecyl acrylate (Compound 28) Compound 27 (100 mg, 0.31 mmol), Compound 26 (93 mg, 0.38 mmol) and acetonitrile (3 mL) were added with piperidine (5 μL) and refluxed for 5 hours, and then the solvent was distilled off to obtain a solid. The solid was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 3) to obtain brown solid compound 28 (0.12 g) in a yield of 69%. The 1 H-NMR (400 MHz, CDCl 3 ) measurement result of the obtained compound 28 is shown below (FIG. 8).

1H-NMR (CDCl3): δ (ppm) 0.88 (t, J = 6.8 Hz, -CH3, 3H),1.26-1.43 (m, -CH2-, 18H), 1.72-1.77 (m, -CH2-, 2H), 4.31 (t, J = 6.6 Hz, -OCH2-, 2H), 7.41 (s, th-H, 1H), 8.24 (s, >C=CH-, 1H) 1 H-NMR (CDCl 3 ): δ (ppm) 0.88 (t, J = 6.8 Hz, -CH 3 , 3H), 1.26-1.43 (m, -CH 2- , 18H), 1.72-1.77 (m,- CH 2- , 2H), 4.31 (t, J = 6.6 Hz, -OCH 2- , 2H), 7.41 (s, th-H, 1H), 8.24 (s,> C = CH-, 1H)

<実施例6> 2-シアノ-3-(5-ブロモ-2-ヨウドチオフェン-3-イル)アクリル酸ヘキシル(化合物30)の合成
下記の合成経路に従い、化合物29を原料として2-シアノ-3-(5-ブロモ-2-ヨウドチオフェン-3-イル)アクリル酸ヘキシル(化合物30)を合成した。
Example 6 Synthesis of 2-cyano-3- (5-bromo-2-iodothiophen-3-yl) hexyl acrylate (Compound 30) According to the following synthetic route, 2-cyano-3 -(5-Bromo-2-iodothiophen-3-yl) acrylic acid hexyl (compound 30) was synthesized.

Figure 2011246503
Figure 2011246503

5-ブロモ-2-ヨード-3-チオフェンカルバルデヒド (化合物29,100 mg, 0.32 mmol)、シアノ酢酸ヘキシルエステル (69 g, 0.41 mmol)、ピぺリジン (2 μL)及びエタノール(3 mL)の混合液を2時間還流した後、室温まで温度を下げ、析出した固体をろ過した。得られた固体を冷たいメタノールで洗浄し薄い黄色固体状の化合物30 (110 mg)を収率73%で得た。以下に得られた化合物30の1H-NMR (400MHz, CDCl3)測定結果を示す。 5-bromo-2-iodo-3-thiophenecarbaldehyde (compound 29, 100 mg, 0.32 mmol), cyanoacetic acid hexyl ester (69 g, 0.41 mmol), piperidine (2 μL) and ethanol (3 mL) After the mixture was refluxed for 2 hours, the temperature was lowered to room temperature, and the precipitated solid was filtered. The obtained solid was washed with cold methanol to obtain Compound 30 (110 mg) as a pale yellow solid in a yield of 73%. The 1 H-NMR (400 MHz, CDCl 3 ) measurement results of Compound 30 obtained are shown below.

1H-NMR (CDCl3): δ (ppm) 0.91 (t, J=7.2 Hz, -CH3, 3H),1.32-1.35 (m, -CH2-, 4H), 1.41-1.45 (m, -CH2-, 2H), 1.73-1.80 (m, -CH2-, 2H), 4.32 (t, J=6.6 Hz, -OCH2-, 2H), 7.95 (s, th-H, 1H), 8.03 (s, >C=CH-, 1H) 1 H-NMR (CDCl 3 ): δ (ppm) 0.91 (t, J = 7.2 Hz, -CH 3 , 3H), 1.32-1.35 (m, -CH 2- , 4H), 1.41-1.45 (m,- CH 2- , 2H), 1.73-1.80 (m, -CH 2- , 2H), 4.32 (t, J = 6.6 Hz, -OCH 2- , 2H), 7.95 (s, th-H, 1H), 8.03 (s,> C = CH-, 1H)

<実施例7> 2-シアノ-3-(2,5-ジブロモ-チオフェン-3-イル)アクリル酸(化合物31)の合成
下記の反応式に従い2,5-ジブロモ-3-チオフェンカルバルデヒド(化合物9)を原料として2-シアノ-3-(2,5-ジブロモ-チオフェン-3-イル)アクリル酸(化合物31)を合成した。
Example 7 Synthesis of 2-cyano-3- (2,5-dibromo-thiophen-3-yl) acrylic acid (Compound 31) 2,5-Dibromo-3-thiophenecarbaldehyde (Compound) according to the following reaction formula 2-Cyano-3- (2,5-dibromo-thiophen-3-yl) acrylic acid (Compound 31) was synthesized using 9) as a raw material.

Figure 2011246503
Figure 2011246503

2,5-ジブロモ-3-チオフェンカルバルデヒド(化合物9,1.50 g,5.56 mmol)、シアノ酢酸(0.568 g, 6.67 mmol)、ピぺリジン(5 μL)及びアセトニトリル(50 mL)の混合液を18時間還流した後、室温まで温度を下げ、析出した固体をろ過した。得られた固体をエタノールと水の混合溶媒を用いて再結晶で精製し黄色い固体状の化合物31(1.10g)を収率59%で得た。以下に得られた化合物31の1H-NMR (400MHz, CDCl3)測定結果を示す。 A mixture of 2,5-dibromo-3-thiophenecarbaldehyde (compound 9, 1.50 g, 5.56 mmol), cyanoacetic acid (0.568 g, 6.67 mmol), piperidine (5 μL) and acetonitrile (50 mL) After refluxing for a time, the temperature was lowered to room temperature, and the precipitated solid was filtered. The obtained solid was purified by recrystallization using a mixed solvent of ethanol and water to obtain Compound 31 (1.10 g) as a yellow solid in a yield of 59%. The results of 1 H-NMR (400 MHz, CDCl 3 ) measurement of the obtained compound 31 are shown below.

1H-NMR (DMSO-d6): δ (ppm) 7.75 (s, th-H, 1H),7.97 (s, >C=CH-, 1H), 14.67 (br, COOH, 1H) 1 H-NMR (DMSO-d 6 ): δ (ppm) 7.75 (s, th-H, 1H), 7.97 (s,> C = CH-, 1H), 14.67 (br, COOH, 1H)

<実施例8> 2-シアノ-3-(2,5-ジブロモチオフェン-3-イル)アクリル酸ヘキシル(化合物33)の合成
下記の合成経路に従い、シアノ酢酸(化合物7)を原料として、2-シアノ-3-(2,5-ジブロモチオフェン-3-イル)アクリル酸ヘキシル(化合物33)を合成した。
<Example 8> Synthesis of hexyl 2-cyano-3- (2,5-dibromothiophen-3-yl) acrylate (Compound 33) According to the following synthesis route, Cyano-3- (2,5-dibromothiophen-3-yl) acrylic acid hexyl (compound 33) was synthesized.

Figure 2011246503
Figure 2011246503

Figure 2011246503
Figure 2011246503

1)シアノ酢酸ヘキシル(化合物32)の合成
シアノ酢酸(化合物7,5.00 g,58.8 mmol)、トルエン(70 mL)及びn-ヘキサノール(7.81 g, 76.4 mmol)の混合液に硫酸(0.06 mL)を加え、ディーンスターク装置を用いて水を除去しながら4時間還流した。溶媒を留去した後、シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=4:1)にて精製し無色液体状の化合物 32(5.9 g)を収率59%で得た。
1) Synthesis of hexyl cyanoacetate (compound 32) Sulfuric acid (0.06 mL) was added to a mixture of cyanoacetic acid (compound 7,5.00 g, 58.8 mmol), toluene (70 mL) and n-hexanol (7.81 g, 76.4 mmol). In addition, the mixture was refluxed for 4 hours while removing water using a Dean-Stark apparatus. After the solvent was distilled off, the residue was purified by silica gel column chromatography (ethyl acetate: hexane = 4: 1) to obtain colorless liquid compound 32 (5.9 g) in a yield of 59%.

2)2-シアノ-3-(2,5-ジブロモチオフェン-3-イル)アクリル酸ヘキシル(化合物33)の合成
2,5-ジブロモ-3-チオフェンカルバルデヒド (化合物9,1.00 g, 3.70 mmol)、シアノ酢酸ヘキシルエステル(化合物32,0.63 g, 3.70 mmol)、 ピぺリジン (5 μL)及びエタノール(10 mL)の混合液を2時間還流した後、室温まで温度を下げ、析出した固体をろ過した。得られた固体を冷たいメタノールで洗浄し薄い黄色固体状の化合物33(1.3 g)を収率81%で得た。
2) Synthesis of hexyl 2-cyano-3- (2,5-dibromothiophen-3-yl) acrylate (compound 33)
2,5-Dibromo-3-thiophenecarbaldehyde (Compound 9,1.00 g, 3.70 mmol), Cyanoacetic acid hexyl ester (Compound 32, 0.63 g, 3.70 mmol), Piperidine (5 μL) and Ethanol (10 mL) After the mixture was refluxed for 2 hours, the temperature was lowered to room temperature, and the precipitated solid was filtered. The obtained solid was washed with cold methanol to obtain Compound 33 (1.3 g) as a pale yellow solid in a yield of 81%.

1H NMR (DMSO-d6): δ (ppm) 7.75 (s, th-H, 1H),7.97 (s, C=CH-, 1H), 14.67 (br, COOH, 1H) 1 H NMR (DMSO-d 6 ): δ (ppm) 7.75 (s, th-H, 1H), 7.97 (s, C = CH-, 1H), 14.67 (br, COOH, 1H)

<実施例9> 重合体P3の合成
下記の合成経路に従い、化合物28を原料として、重合体P3を合成した。
<Example 9> Synthesis of polymer P3 Polymer P3 was synthesized from compound 28 as a raw material according to the following synthesis route.

Figure 2011246503
Figure 2011246503

化合物13(386 mg, 0.50 mmol)、化合物28(281 mg, 0.50 mmol) 及びPd(PPh3)4 (25 mg, 0.016 mmol)を混合し、この混合物を10分間真空中で乾燥した後、トルエン(8 mL)とDMF(2mL)を加えた。混合溶液を10分間アルゴンガスでバブリングした後、アルゴン雰囲気下120℃で3時間攪拌した。その後、温度を室温まで戻し、ヘキサンで再沈殿し沈澱物をろ過した。固形物をクロロホルムに溶かしシリカゲルカラムクロマトグラフィー(クロロホルム)にて精製した。有機溶媒を留去した後、ヘキサンを加え得られた固形物をメンブレンろ過し黒い固体のP3(295 mg)を53%収率で得た。以下に得られた重合体P3の1H-NMR (400MHz, CDCl3)測定結果を示す(図9)。 Compound 13 (386 mg, 0.50 mmol), compound 28 (281 mg, 0.50 mmol) and Pd (PPh 3 ) 4 (25 mg, 0.016 mmol) were mixed, and the mixture was dried in vacuo for 10 minutes. (8 mL) and DMF (2 mL) were added. The mixed solution was bubbled with argon gas for 10 minutes, and then stirred at 120 ° C. for 3 hours under an argon atmosphere. Thereafter, the temperature was returned to room temperature, reprecipitated with hexane, and the precipitate was filtered. The solid was dissolved in chloroform and purified by silica gel column chromatography (chloroform). After distilling off the organic solvent, hexane was added and the resulting solid was membrane filtered to obtain black solid P3 (295 mg) in 53% yield. The 1 H-NMR (400 MHz, CDCl 3 ) measurement result of the obtained polymer P3 is shown below (FIG. 9).

1H-NMR (CDCl3): δ (ppm) 0.95-1.88 (m, -CH3 and -CH3, 53H),3,80-4.55 (br, -OCH2-, 6H), 6.78-8.21 (br, th-H and >C=CH-, 3H) 1 H-NMR (CDCl 3 ): δ (ppm) 0.95-1.88 (m, -CH 3 and -CH 3 , 53H), 3,80-4.55 (br, -OCH 2- , 6H), 6.78-8.21 ( br, th-H and> C = CH-, 3H)

<試験例1>
1)分子量測定
重合体P1〜P3について、重量平均分子量と分子量分布を測定した。GPC(ゲルパーミエーションクロマトグラフィー:溶媒THF)HLC−8320GPC(東ソー株式会社製)を用いたポリマーの分子量測定結果、P1がMw288,000(Mw/Mn:2.32)、P2がMw333,000(Mw/Mn:3.44)、P3がMw46,600(Mw/Mn:1.87)を示した。測定値は、ポリスチレン換算によるものである。
2)UV-vis測定
重合体P1〜P3の1×10-5Mクロロホルム溶液をそれぞれ調製した(P1溶液、P2溶液、P3溶液)。
また、P1〜P3の10mg/mL濃度のクロロホルム溶液をそれぞれ調製し、これらをガラス基板上に垂らした後、共和理研(株)製スピンコーター(MODEL K-359S-1)(1000 rpmで10秒、3000rpmで60秒)を用いて製膜した(P1薄膜、P2薄膜、P3薄膜)。
P1溶液〜P3溶液、P1薄膜〜P3薄膜それぞれについて、JASCO V570スペクトルメーターで、UV-vis測定を行った。P1のUV-visスペクトルを図10に、P2のUV-visスペクトルを図11に、P3のUV-visスペクトルを図12に、それぞれ示す。
溶液中での最大吸収はP1が545nm、P2が476nm、P3が711nmに観測された。また、薄膜での最大吸収はP1が551nm、P2が524nm、P3が735nmに観測された。
P1は、P2と比較して27 nmの長波長シフトが見られた。すなわち、UV-vis測定の結果、溶液と薄膜いずれも、P1のほうがP2よりも長波長側で最大吸収が観測された。
また、P3はP1及びP2と比較して、溶液と薄膜のいずれにおいても、長波長側での最大吸収が観測された。
UV-vis測定の結果から、ポリマー側鎖の置換基を変えることによる光の吸収波長をコントロールが可能であることが分かった。そして、この結果は、シアノ基の代わりにアルキルエステルに置き換えるとポリマーの共役長が短くなることを示唆している。
<Test Example 1>
1) Molecular weight measurement The weight average molecular weight and molecular weight distribution were measured about the polymers P1-P3. Polymer molecular weight measurement results using GPC (gel permeation chromatography: solvent THF) HLC-8320GPC (manufactured by Tosoh Corporation), P1 is Mw288,000 (Mw / Mn: 2.32), P2 is Mw333,000 (Mw / Mn: 3.44) and P3 showed Mw46,600 (Mw / Mn: 1.87). The measured value is based on polystyrene.
2) UV-vis measurement 1 × 10 −5 M chloroform solutions of the polymers P1 to P3 were respectively prepared (P1 solution, P2 solution, P3 solution).
In addition, 10 mg / mL concentration chloroform solutions of P1 to P3 were prepared, and after hanging them on a glass substrate, Kyowa Riken Co., Ltd. spin coater (MODEL K-359S-1) (1000 rpm for 10 seconds) For 60 seconds at 3000 rpm) (P1 thin film, P2 thin film, P3 thin film).
Each of P1 solution to P3 solution and P1 thin film to P3 thin film was subjected to UV-vis measurement with JASCO V570 spectrum meter. The UV-vis spectrum of P1 is shown in FIG. 10, the UV-vis spectrum of P2 is shown in FIG. 11, and the UV-vis spectrum of P3 is shown in FIG.
The maximum absorption in the solution was observed at P1 of 545 nm, P2 of 476 nm, and P3 of 711 nm. The maximum absorption in the thin film was observed at P1 of 551 nm, P2 of 524 nm, and P3 of 735 nm.
P1 showed a 27 nm long wavelength shift compared to P2. That is, as a result of UV-vis measurement, maximum absorption was observed for P1 on the longer wavelength side than P2 for both the solution and the thin film.
In addition, as for P3, the maximum absorption on the long wavelength side was observed in both the solution and the thin film as compared with P1 and P2.
From the results of UV-vis measurement, it was found that the absorption wavelength of light can be controlled by changing the substituent on the polymer side chain. This result suggests that the conjugation length of the polymer is shortened when an alkyl ester is substituted for the cyano group.

3)熱分解測定
上記のP1〜P3について、それぞれTGAにより熱分解測定を行った。熱分解測定は、セイコーインスツルメント社製TG-DTA6200により、アルミパンを用いて、150mL/minの窒素気流中10℃/minで昇温させて測定した。
TGAによる熱分解測定結果、全ポリマーとも200℃まで熱分解せず安定であることがわかった。
5%分解温度はP1が280℃、P2が327℃、P3が315℃に観測された。また、10%分解温度はP1が312℃、P2が340℃、P3が334℃に観測された。すなわち、P2がP1及びP3より高い熱安定を示した。
P1のTGA曲線を図13に、P2のTGA曲線を図14に、P3のTGA曲線を図15に、それぞれ示す。また、表1にこれらの結果を示す。
3) Thermal decomposition measurement About said P1-P3, the thermal decomposition measurement was performed by TGA, respectively. Pyrolysis measurement was performed by using a TG-DTA6200 manufactured by Seiko Instruments Inc. and using an aluminum pan to raise the temperature in a nitrogen stream of 150 mL / min at 10 ° C./min.
As a result of thermal decomposition measurement by TGA, it was found that all polymers were stable without being thermally decomposed up to 200 ° C.
The 5% decomposition temperature was observed at 280 ° C for P1, 327 ° C for P2, and 315 ° C for P3. The 10% decomposition temperature was observed at 312 ° C for P1, 340 ° C for P2, and 334 ° C for P3. That is, P2 showed higher thermal stability than P1 and P3.
FIG. 13 shows the TGA curve for P1, FIG. 14 shows the TGA curve for P2, and FIG. 15 shows the TGA curve for P3. Table 1 shows these results.

Figure 2011246503
Figure 2011246503

<参考例3> フラーレン誘導体の合成
下記の合成経路に従い、4-ベンゾイル酪酸(化合物37)を原料として、[6,6]フェニルC61酪酸ヘキシルエステル([6,6]PCBH、フラーレン誘導体)を合成した。
Reference Example 3 Synthesis of Fullerene Derivative According to the following synthesis route, [6,6] phenyl C61 butyric acid hexyl ester ([6,6] PCBH, fullerene derivative) was synthesized using 4-benzoylbutyric acid (Compound 37) as a raw material. did.

Figure 2011246503
Figure 2011246503

1)4-ベンゾイル酪酸ヘキシル(化合物35)の合成
4-ベンゾイル酪酸(化合物34)(5.0 g, 26.0 mmol)、n-ヘキサノール(3.46 g, 33.8 mmol)及びトルエン(50mL)の混合液に、濃硫酸(0.13 g, 1.3 mmol)を室温で加えた。ディーン・スターク装置を用いて生成する水を除去しながら4時間還流した後、温度を室温に戻し、溶媒を留去した後、得られたオイルをシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=4:1)にて精製し、薄い黄色のオイルの化合物35(6.9 g)を96%の収率で得た。
1) Synthesis of hexyl 4-benzoylbutyrate (Compound 35)
Concentrated sulfuric acid (0.13 g, 1.3 mmol) was added to a mixture of 4-benzoylbutyric acid (compound 34) (5.0 g, 26.0 mmol), n-hexanol (3.46 g, 33.8 mmol) and toluene (50 mL) at room temperature. . The mixture was refluxed for 4 hours while removing water produced using a Dean-Stark apparatus, then the temperature was returned to room temperature, the solvent was distilled off, and the resulting oil was subjected to silica gel column chromatography (hexane: ethyl acetate = 4: Purification in 1) yielded a pale yellow oil compound 35 (6.9 g) in 96% yield.

2)4-ベンゾイル酪酸ヘキシルp-トシルヒドラゾン(化合物37)の合成
化合物35 (5.77 g, 20.88 mmol)とメタノール(15 mL)の混合液に、p-トルエンスルホニルヒドラジド(化合物36) (3.50 g, 18.79 mmol)を室温で加えた。4時間還流した後、温度を室温に戻し、溶媒を留去した。得られた無色オイル状の生成物にヘキサンを加えることで白色固体になった。固体をろ過した後、ヘキサンで洗浄し白色固体の化合物37(7.5 g)を87%の収率で得た。
2) Synthesis of hexyl 4-benzoylbutyrate p-tosylhydrazone (compound 37) To a mixture of compound 35 (5.77 g, 20.88 mmol) and methanol (15 mL), p-toluenesulfonyl hydrazide (compound 36) (3.50 g, 18.79 mmol) was added at room temperature. After refluxing for 4 hours, the temperature was returned to room temperature and the solvent was distilled off. Hexane was added to the obtained colorless oily product to form a white solid. The solid was filtered and then washed with hexane to obtain Compound 37 (7.5 g) as a white solid in a yield of 87%.

3)[6,6]フェニルC61酪酸ヘキシルエステル([6,6]PCBH)の合成
化合物37(2.04g,4.59mmol)とピリジン(34mL)の混合液に、ナトリウムメトキシド(0.26mg,4.78mmol)を室温で加えた。混合液を室温で10分間攪拌した後、その混合液にo-ジクロロベンゼン(210 mL)とフラーレン(3.00 g)の混合液を室温で加えた。得られた混合液を65℃で18時間攪拌した後、150 mLの有機溶媒を留去した。残りの溶液をシリカゲル(PSQ100B)カラムクロマトグラフィー(トルエン)にて精製し、[5,6]フェニルC61酪酸ヘキシルエステル([5,6]PCBH)を得た。
精製した[5,6]PCBHにo-ジクロロベンゼン(50 mL)を加え、混合液を16時間還流した。温度を室温に戻した後、混合液をシリカゲル(PSQ100B)カラムクロマトグラフィー(トルエン)にて精製した。精製後、溶媒を留去し、50 mL程度の溶媒を残した後、メタノール(150 m)を加えた。得られた固体をメンブレンろ過し、黒い茶色の固体の[6,6]PCBH(フラーレン誘導体)(1.2 g)を収率29%で得た。
3) Synthesis of [6,6] phenyl C61 butyric acid hexyl ester ([6,6] PCBH) To a mixture of compound 37 (2.04 g, 4.59 mmol) and pyridine (34 mL), sodium methoxide (0.26 mg, 4.78 mmol) ) Was added at room temperature. The mixture was stirred at room temperature for 10 minutes, and then a mixture of o-dichlorobenzene (210 mL) and fullerene (3.00 g) was added to the mixture at room temperature. The resulting mixture was stirred at 65 ° C. for 18 hours, and then 150 mL of the organic solvent was distilled off. The remaining solution was purified by silica gel (PSQ100B) column chromatography (toluene) to obtain [5,6] phenyl C61 butyric acid hexyl ester ([5,6] PCBH).
O-Dichlorobenzene (50 mL) was added to purified [5,6] PCBH, and the mixture was refluxed for 16 hours. After returning the temperature to room temperature, the mixture was purified by silica gel (PSQ100B) column chromatography (toluene). After purification, the solvent was distilled off, leaving about 50 mL of solvent, and then methanol (150 m) was added. The obtained solid was subjected to membrane filtration to obtain [6,6] PCBH (fullerene derivative) (1.2 g) as a black brown solid in a yield of 29%.

<実施例10> 光電変換素子の作製
前記方法で得られたP2をドナー材料として、上記[6,6]PCBH(フラーレン誘導体)をアクセプター材料として、それぞれ用いて、ドナー材料とアクセプター材料の組成比1:1、濃度1wt%でトルエンに溶解し、DA(ドナー・アクセプター)混合溶液を調製した。更に、添加剤としてDIO(1,8-ジヨードオクタン)1vol%を添加して最適化した。
図1を参照しつつ、光電変換素子の作製手段を説明する。先ず、ITO(光透過性導電層2)が成膜されたガラス基板1(10Ω)を切断し、超音波洗浄を行った後、120℃で30分間乾燥させた。PEDOT-PSSを塗布する前に、基板1上の有機物を除去するために、フォトクリーナ(紫外線:192nm)で5分間照射した。
次に、ドナーバッファ層3の形成に用いるPEDOT-PSS([ポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルフォネート)])PEDOT-PSS溶液を、0.2μmのフィルターを通してスピンコーターで塗布した後、150℃で10分間乾燥させてドナーバッファ層3を成膜した。ドナーバッファ層3を成膜した基板1上に、DA混合溶液をスピンコーターで塗布して(3000rpmで15秒)、100℃で15分間ベーク処理を行い、DA混合層4(ドナー材料とアクセプター材料の混合層)を成膜した。
その後、マスクを付け電子バッファ層5であるLiF層(約1nm)を真空蒸着した後、電極であるAl(約100nm)を蒸着した。このようにして、デバイスの構造はITOガラス/PEDOT-PSS/DA混合層/LiF/Al構造を有する光電変換素子を得た。
<Example 10> Production of photoelectric conversion element Using P2 obtained by the above method as a donor material and the above [6,6] PCBH (fullerene derivative) as an acceptor material, respectively, the composition ratio of the donor material and the acceptor material It was dissolved in toluene at 1: 1 and a concentration of 1 wt% to prepare a DA (donor-acceptor) mixed solution. Furthermore, 1vol% of DIO (1,8-diiodooctane) was added as an additive and optimized.
A method for manufacturing a photoelectric conversion element will be described with reference to FIG. First, a glass substrate 1 (10Ω) on which ITO (light-transmissive conductive layer 2) was formed was cut, subjected to ultrasonic cleaning, and then dried at 120 ° C. for 30 minutes. Before applying PEDOT-PSS, irradiation with a photo cleaner (ultraviolet light: 192 nm) was performed for 5 minutes in order to remove organic substances on the substrate 1.
Next, the PEDOT-PSS ([poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonate)]) PEDOT-PSS solution used for forming the donor buffer layer 3 was passed through a 0.2 μm filter with a spin coater. After that, the donor buffer layer 3 was formed by drying at 150 ° C. for 10 minutes. On the substrate 1 on which the donor buffer layer 3 is formed, the DA mixed solution is applied with a spin coater (15 seconds at 3000 rpm) and baked at 100 ° C. for 15 minutes, and the DA mixed layer 4 (donor material and acceptor material) A mixed layer) was formed.
Thereafter, a LiF layer (about 1 nm) as the electron buffer layer 5 was vacuum deposited by attaching a mask, and then Al (about 100 nm) as an electrode was deposited. Thus, a photoelectric conversion element having a device structure of ITO glass / PEDOT-PSS / DA mixed layer / LiF / Al structure was obtained.

<試験例2> 変換効率の測定
Si簡易標準セルを用い、光量を補正した後、IV測定器(ソースメータ)により、100mW/cm2(AM1.5G)の条件で特性評価を行った。また、評価は不活性雰囲気中で行った。
次に上記評価結果を示す。図16のIV曲線から、Jsc=5.76mA/cm2、Voc=0.76V、FF=0.43で変換効率1.90%が得られたことが確認された。
したがって、上記DA混合層4は優れた電荷輸送能を有することがわかった。
<Test Example 2> Measurement of conversion efficiency
After correcting the amount of light using a Si standard cell, characteristics were evaluated with an IV measuring device (source meter) under the condition of 100 mW / cm 2 (AM1.5G). The evaluation was performed in an inert atmosphere.
Next, the above evaluation results are shown. From the IV curve in FIG. 16, it was confirmed that a conversion efficiency of 1.90% was obtained at Jsc = 5.76 mA / cm 2 , Voc = 0.76 V, and FF = 0.43.
Therefore, it was found that the DA mixed layer 4 has an excellent charge transport capability.

本発明の重合体は、広範囲の光を吸収し、優れた電荷輸送能を有し、且つ高い熱安定性を有する。したがって、本発明によれば、優れた光電変換効率と耐久性を有する光電変換素子、並びにこれを用いた太陽電池、及び光スイッチング装置、センサなどの光電変換装置を提供できる。   The polymer of the present invention absorbs a wide range of light, has an excellent charge transport ability, and has high thermal stability. Therefore, according to the present invention, it is possible to provide a photoelectric conversion device having excellent photoelectric conversion efficiency and durability, a solar cell using the photoelectric conversion device, and a photoelectric conversion device such as an optical switching device and a sensor.

1・・・ガラス基板(透明膜)
2・・・光透過性導電層
3・・・ドナーバッファ層
4・・・DA混合層(固体層)
5・・・電子バッファ層
1 ... Glass substrate (transparent film)
2 ... Light-transmissive conductive layer 3 ... Donor buffer layer 4 ... DA mixed layer (solid layer)
5 ... Electronic buffer layer

Claims (10)

下記式(1)
Figure 2011246503
〔式(1)中、R1及びR2は、それぞれ独立に、水素原子又は置換若しくは非置換の炭素数1〜20の炭化水素基を示し、R3は、下記式(2)
Figure 2011246503
(式(2)中、R4は、水素原子、シアノ基、置換若しくは非置換の炭素数2〜20のアルコキシカルボニル基、置換若しくは非置換の炭素数1〜20のアルコキシ基、又は置換若しくは非置換の炭素数1〜30の炭化水素基を示し、R5は、水素原子、又は置換若しくは非置換の炭素数1〜30の炭化水素基を示し、*は結合手を示す。)
で表される基、又は下記式(3)
Figure 2011246503
(式(3)中、R4、R5及び*は、前記と同義である。)
で表される基を示す。〕
で表される構造単位を有する重合体。
Following formula (1)
Figure 2011246503
[In Formula (1), R < 1 > and R < 2 > show a hydrogen atom or a substituted or unsubstituted C1-C20 hydrocarbon group each independently, and R < 3 > is following formula (2).
Figure 2011246503
(In formula (2), R 4 represents a hydrogen atom, a cyano group, a substituted or unsubstituted alkoxycarbonyl group having 2 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, or a substituted or non-substituted group. A substituted C1-C30 hydrocarbon group is shown, R < 5 > shows a hydrogen atom or a substituted or unsubstituted C1-C30 hydrocarbon group, and * shows a bond.)
Or a group represented by the following formula (3)
Figure 2011246503
(In the formula (3), R 4 , R 5 and * are as defined above.)
The group represented by these is shown. ]
The polymer which has a structural unit represented by these.
1及びR2が、それぞれ独立に、置換若しくは非置換の炭素数1〜20のアルキル基であり、R4が、シアノ基、又は置換若しくは非置換の炭素数2〜20のアルコキシカルボニル基であり、R5が、置換若しくは非置換の炭素数1〜30のアルキル基である請求項1に記載の重合体。 R 1 and R 2 are each independently a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, and R 4 is a cyano group or a substituted or unsubstituted alkoxycarbonyl group having 2 to 20 carbon atoms. The polymer according to claim 1, wherein R 5 is a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms. 1対の電極の間に、請求項1又は2に記載の重合体を含有する固体層を有することを特徴とする光電変換素子。   It has a solid layer containing the polymer of Claim 1 or 2 between a pair of electrodes, The photoelectric conversion element characterized by the above-mentioned. 前記固体層が、更にフラーレン又はフラーレン誘導体を含有する請求項2に記載の光電変換素子。   The photoelectric conversion element according to claim 2, wherein the solid layer further contains fullerene or a fullerene derivative. 請求項3又は4に記載の光電変換素子を有することを特徴とする太陽電池。   A solar cell comprising the photoelectric conversion element according to claim 3. 下記式(10)
Figure 2011246503
(式(10)中、R1、R2、R6及びR7は、それぞれ独立に、水素原子又は置換若しくは非置換の炭素数1〜20の炭化水素基を示す。)
で表される化合物と、下記式(8)
Figure 2011246503
(式(8)中、R4は、水素原子、シアノ基、置換若しくは非置換の炭素数2〜20のアルコキシカルボニル基、置換若しくは非置換の炭素数1〜20のアルコキシ基、又は置換若しくは非置換の炭素数1〜30の炭化水素基を示し、R5は、水素原子、又は置換若しくは非置換の炭素数1〜30の炭化水素基を示し、X1及びX2それぞれ独立にハロゲン原子を示す。)
で表される化合物又は下記式(9)
Figure 2011246503
(式(9)中、R4、R5、X1及びX2は、前記と同義である。)
で表される化合物とを反応させる工程を含む請求項1又は2に記載の重合体の製造方法。
Following formula (10)
Figure 2011246503
(In formula (10), R 1 , R 2 , R 6 and R 7 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms.)
And a compound represented by the following formula (8)
Figure 2011246503
(In formula (8), R 4 represents a hydrogen atom, a cyano group, a substituted or unsubstituted alkoxycarbonyl group having 2 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, or a substituted or non-substituted group. A substituted hydrocarbon group having 1 to 30 carbon atoms, R 5 represents a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, and each of X 1 and X 2 independently represents a halogen atom; Show.)
Or a compound represented by the following formula (9)
Figure 2011246503
(In formula (9), R 4 , R 5 , X 1 and X 2 are as defined above.)
The manufacturing method of the polymer of Claim 1 or 2 including the process with which the compound represented by these is made to react.
下記式(8)
Figure 2011246503
(式(8)中、R4は、水素原子、シアノ基、置換若しくは非置換の炭素数2〜20のアルコキシカルボニル基、置換若しくは非置換の炭素数1〜20のアルコキシ基、又は置換若しくは非置換の炭素数1〜30の炭化水素基を示し、R5は、水素原子、又は置換若しくは非置換の炭素数1〜30の炭化水素基を示し、X1及びX2はそれぞれ独立にハロゲン原子を示す。)
で表される化合物。
Following formula (8)
Figure 2011246503
(In formula (8), R 4 represents a hydrogen atom, a cyano group, a substituted or unsubstituted alkoxycarbonyl group having 2 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, or a substituted or non-substituted group. A substituted hydrocarbon group having 1 to 30 carbon atoms, R 5 represents a hydrogen atom, or a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, and X 1 and X 2 are each independently a halogen atom; Is shown.)
A compound represented by
下記式(5)
Figure 2011246503
(式(5)中、R4は、水素原子、シアノ基、置換若しくは非置換の炭素数2〜20のアルコキシカルボニル基、置換若しくは非置換の炭素数1〜20のアルコキシ基、又は置換若しくは非置換の炭素数1〜30の炭化水素基を示し、R5は、水素原子、又は置換若しくは非置換の炭素数1〜30の炭化水素基を示す。)
で表される化合物と、下記式(6)
Figure 2011246503
(式(6)中、X1及びX2はそれぞれ独立にハロゲン原子を示す。)
で表される化合物とを反応させることを特徴とする請求項7に記載の化合物の製造方法。
Following formula (5)
Figure 2011246503
(In the formula (5), R 4 represents a hydrogen atom, a cyano group, a substituted or unsubstituted alkoxycarbonyl group having 2 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, or a substituted or non-substituted group. A substituted C1-C30 hydrocarbon group is shown, R < 5 > shows a hydrogen atom or a substituted or unsubstituted C1-C30 hydrocarbon group.)
And a compound represented by the following formula (6)
Figure 2011246503
(In formula (6), X 1 and X 2 each independently represent a halogen atom.)
The method for producing a compound according to claim 7, wherein the compound is reacted with the compound represented by the formula:
下記式(9)
Figure 2011246503
(式(9)中、R4は、水素原子、シアノ基、置換若しくは非置換の炭素数2〜20のアルコキシカルボニル基、置換若しくは非置換の炭素数1〜20のアルコキシ基、又は置換若しくは非置換の炭素数1〜30の炭化水素基を示し、R5は、水素原子、又は置換若しくは非置換の炭素数1〜30の炭化水素基を示し、X1及びX2はそれぞれ独立にハロゲン原子を示す。)
で表される化合物。
Following formula (9)
Figure 2011246503
(In the formula (9), R 4 represents a hydrogen atom, a cyano group, a substituted or unsubstituted alkoxycarbonyl group having 2 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, or a substituted or non-substituted group. A substituted hydrocarbon group having 1 to 30 carbon atoms, R 5 represents a hydrogen atom, or a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, and X 1 and X 2 are each independently a halogen atom; Is shown.)
A compound represented by
下記式(5)
Figure 2011246503
(式(5)中、R4は、水素原子、シアノ基、置換若しくは非置換の炭素数2〜20のアルコキシカルボニル基、置換若しくは非置換の炭素数1〜20のアルコキシ基、又は置換若しくは非置換の炭素数1〜30の炭化水素基を示し、R5は、水素原子、又は置換若しくは非置換の炭素数1〜30の炭化水素基を示す。)
で表される化合物と、下記式(7)
Figure 2011246503
(式(7)中、X1及びX2はそれぞれ独立にハロゲン原子を示す。)
で表される化合物とを反応させることを特徴とする請求項9に記載の化合物の製造方法。
Following formula (5)
Figure 2011246503
(In the formula (5), R 4 represents a hydrogen atom, a cyano group, a substituted or unsubstituted alkoxycarbonyl group having 2 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, or a substituted or non-substituted group. A substituted C1-C30 hydrocarbon group is shown, R < 5 > shows a hydrogen atom or a substituted or unsubstituted C1-C30 hydrocarbon group.)
And a compound represented by the following formula (7)
Figure 2011246503
(In formula (7), X 1 and X 2 each independently represent a halogen atom.)
The method for producing a compound according to claim 9, wherein the compound represented by the formula is reacted.
JP2010117611A 2010-05-21 2010-05-21 Novel polymer and intermediate thereof Pending JP2011246503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010117611A JP2011246503A (en) 2010-05-21 2010-05-21 Novel polymer and intermediate thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010117611A JP2011246503A (en) 2010-05-21 2010-05-21 Novel polymer and intermediate thereof

Publications (1)

Publication Number Publication Date
JP2011246503A true JP2011246503A (en) 2011-12-08

Family

ID=45412189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010117611A Pending JP2011246503A (en) 2010-05-21 2010-05-21 Novel polymer and intermediate thereof

Country Status (1)

Country Link
JP (1) JP2011246503A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213201A (en) * 2012-03-08 2013-10-17 Waseda Univ Benzodithiophene quinone polymer, charge storage material, electrode active material, electrode and battery
CN103946266A (en) * 2012-02-06 2014-07-23 Lg化学株式会社 Polymer and organic solar cell including the same
CN104093706A (en) * 2011-12-30 2014-10-08 克莱蒙费朗国立高等化工学校 Pain relief compounds
JP2014531493A (en) * 2011-09-23 2014-11-27 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Difluorobenzotriazolyl solar cell polymer material and methods for its preparation and use
CN106317070A (en) * 2015-07-03 2017-01-11 中国科学院化学研究所 Fused-heterocycle compound and preparation method thereof
CN109575243A (en) * 2018-11-07 2019-04-05 王勇 Conjugated polymer of the alkoxyl phenyl containing meta position and its preparation method and application
KR101947055B1 (en) * 2018-02-08 2019-05-02 울산과학기술원 PREPARING METHOD OF PBDTTT (poly(benzo[1,2-b:4,5-b′]dithiophene-co-thieno[3,4-b]thiophene)) BASED POLYMER
JP2019532146A (en) * 2017-03-06 2019-11-07 エルジー・ケム・リミテッド Polymer and organic solar cell including the same
CN110628002A (en) * 2019-10-13 2019-12-31 湖州师范学院 Conjugated polymer with strong electron-withdrawing group monothiophene as acceptor unit
US20210384435A1 (en) * 2020-06-08 2021-12-09 University Of Waterloo Polymer semiconductors containing acrylyl or acrylyl-like side chain and their devices

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014531493A (en) * 2011-09-23 2014-11-27 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Difluorobenzotriazolyl solar cell polymer material and methods for its preparation and use
CN104093706A (en) * 2011-12-30 2014-10-08 克莱蒙费朗国立高等化工学校 Pain relief compounds
US10214476B2 (en) 2011-12-30 2019-02-26 Ecole Nationale Superieure De Chimie De Clermont Ferrand Pain relief compounds
CN103946266A (en) * 2012-02-06 2014-07-23 Lg化学株式会社 Polymer and organic solar cell including the same
JP2013213201A (en) * 2012-03-08 2013-10-17 Waseda Univ Benzodithiophene quinone polymer, charge storage material, electrode active material, electrode and battery
CN106317070A (en) * 2015-07-03 2017-01-11 中国科学院化学研究所 Fused-heterocycle compound and preparation method thereof
JP2019532146A (en) * 2017-03-06 2019-11-07 エルジー・ケム・リミテッド Polymer and organic solar cell including the same
KR101947055B1 (en) * 2018-02-08 2019-05-02 울산과학기술원 PREPARING METHOD OF PBDTTT (poly(benzo[1,2-b:4,5-b′]dithiophene-co-thieno[3,4-b]thiophene)) BASED POLYMER
CN109575243A (en) * 2018-11-07 2019-04-05 王勇 Conjugated polymer of the alkoxyl phenyl containing meta position and its preparation method and application
CN110628002A (en) * 2019-10-13 2019-12-31 湖州师范学院 Conjugated polymer with strong electron-withdrawing group monothiophene as acceptor unit
US20210384435A1 (en) * 2020-06-08 2021-12-09 University Of Waterloo Polymer semiconductors containing acrylyl or acrylyl-like side chain and their devices
US11930694B2 (en) * 2020-06-08 2024-03-12 University Of Waterloo Polymer semiconductors containing acrylyl or acrylyl-like side chain and their devices

Similar Documents

Publication Publication Date Title
JP2011246503A (en) Novel polymer and intermediate thereof
Cui et al. Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution
Blouin et al. A low-bandgap poly (2, 7-carbazole) derivative for use in high-performance solar cells
Gao et al. The regulation of π-bridge of indacenodithiophene-based donor-π-acceptor conjugated polymers toward efficient polymer solar cells
Kim et al. Low-bandgap poly (4H-cyclopenta [def] phenanthrene) derivatives with 4, 7-dithienyl-2, 1, 3-benzothiadiazole unit for photovoltaic cells
KR101545429B1 (en) Semiconducting polymers
WO2012133794A1 (en) Block copolymer and photoelectric conversion element
Dong et al. [1, 2, 5] Thiadiazolo [3, 4-f] benzotriazole based narrow band gap conjugated polymers with photocurrent response up to 1.1 μm
Busireddy et al. Dithienopyrrole-benzodithiophene based donor materials for small molecular BHJSCs: Impact of side chain and annealing treatment on their photovoltaic properties
Sun et al. Improved bulk-heterojunction polymer solar cell performance through optimization of the linker groupin donor–acceptor conjugated polymer
JP2017206479A (en) Organic material and photoelectric conversion element
KR102439270B1 (en) Novel polymer and organic electronic device using them
Tamilavan et al. Benzodithiophene-based polymers containing novel electron accepting selenophene-incorporated pyrrolo [3, 4-c] pyrrole-1, 3-dione units for highly efficient thin film transistors and polymer solar cells
Medlej et al. Effect of spacer insertion in a commonly used dithienosilole/benzothiadiazole-based low band gap copolymer for polymer solar cells
EP2927259B1 (en) Benzodithiophene based copolymer containing thiophene pyrroledione units and preparing method and applications thereof
Nazim et al. Asymmetric, efficient π-conjugated organic semiconducting chromophore for bulk-heterojunction organic photovoltaics
Gao et al. Efficient polymer solar cells based on poly (thieno [2, 3-f] benzofuran-co-thienopyrroledione) with a high open circuit voltage exceeding 1 V
JP6247581B2 (en) Polymer compound and electronic device using the same
Zhang et al. Designing a thiophene-fused quinoxaline unit to build D–A copolymers for non-fullerene organic solar cells
Kang et al. Asymmetric indenothiophene-based nonfullerene acceptors for binary-and ternary-blend polymer solar cells
Li et al. A comparative study of diketopyrrolopyrrole and isoindigo based polymers for organic photovoltaic applications
Jeong et al. 6-(2-Thienyl)-4H-thieno [3, 2-b] indole based conjugated polymers with low bandgaps for organic solar cells
Yang et al. Low-cost donors based on a dicarboxylic ester side-chain substituted thieno [3, 2b] thiophene unit for efficient polymer solar cells
Sun et al. The effect of the length of alkyl side-chains on the molecular aggregation and photovoltaic performance of the isoindigo-based polymers
He et al. Two new fluorinated copolymers based on thieno [2, 3-f] benzofuran for efficient polymer solar cells