JP2022037503A - Electrolytic device - Google Patents

Electrolytic device Download PDF

Info

Publication number
JP2022037503A
JP2022037503A JP2020141678A JP2020141678A JP2022037503A JP 2022037503 A JP2022037503 A JP 2022037503A JP 2020141678 A JP2020141678 A JP 2020141678A JP 2020141678 A JP2020141678 A JP 2020141678A JP 2022037503 A JP2022037503 A JP 2022037503A
Authority
JP
Japan
Prior art keywords
spacer
electrode
axis direction
anode
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020141678A
Other languages
Japanese (ja)
Other versions
JP6828212B1 (en
Inventor
宏幸 高波
Hiroyuki Takanami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd
Original Assignee
Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd filed Critical Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd
Priority to JP2020141678A priority Critical patent/JP6828212B1/en
Application granted granted Critical
Publication of JP6828212B1 publication Critical patent/JP6828212B1/en
Priority to KR1020237007170A priority patent/KR102559708B1/en
Priority to MX2023001968A priority patent/MX2023001968A/en
Priority to CN202180052325.2A priority patent/CN116096943B/en
Priority to PCT/JP2021/029808 priority patent/WO2022044850A1/en
Priority to TW110130673A priority patent/TWI762407B/en
Publication of JP2022037503A publication Critical patent/JP2022037503A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/63Holders for electrodes; Positioning of the electrodes

Abstract

To provide an electrolytic device capable of suppressing deposition of a scale and the like, and being downsized.SOLUTION: An electrolytic device comprises: an outer cylinder 2 including an introduction port 3 and an exhaust port 4 on a side surface 2a of a cylinder; a plurality of anode plates connected to a first base in an equidistant manner and arranged adjacent to one opening of the introduction port 3 and the exhaust port 4; a plurality of cathode plates connected to a second base in the equidistant manner and arranged adjacent to the other opening of the introduction port 3 and the exhaust port 4; and a plurality of insulative anode-side spacers 20 arranged between all of the plurality of anode plates or a plurality of insulative cathode-side spacers 30 arranged between all of the plurality of cathode plates. The one opening is located outside in a radial direction from a space formed between the plurality of anode plates or the plurality of cathode plates. The anode-side spacer 20 or the cathode-side spacer 30 includes an inclined surface inclined to a central axis of the outer cylinder 2, and guides a flow of a liquid to be processed toward a central axis direction from the one opening or toward the one opening from the central axis direction.SELECTED DRAWING: Figure 2

Description

本発明は、海水、塩水、水、または有機合成用の液体などの被処理液を電気分解する電解装置に関する。 The present invention relates to an electrolytic device that electrolyzes a liquid to be treated such as seawater, salt water, water, or a liquid for organic synthesis.

海水、塩水、水、有機合成用の溶液など、用途に応じてさまざまな液体(被処理液)を電気分解(以下、「電解」という)する装置を電解装置という。電解装置は、被処理液を電解する電解槽と、電解槽に被処理液を導入する導入口と、電解後の被処理液を電解槽から排出する排出口とを備える。電解装置は、鉛直方向に立てて配置される縦型の電解装置(以下、「縦型電解装置」という)と、水平方向に寝かせ又は傾けて配置される横型の電解装置(以下、「横型電解装置」という)とに大別される。電解槽には、被処理液を電解する複数の電極板(バイポーラ式またはモノポーラ式)が収納される。
従来、縦型電解装置及び横型電解装置のいずれにおいても、スケール等の付着物が電解槽内に堆積しないように工夫がなされてきた。
A device that electrolyzes (hereinafter referred to as "electrolysis") various liquids (solutions to be treated) such as seawater, salt water, water, and solutions for organic synthesis is called an electrolytic device. The electrolyzer includes an electrolytic cell that electrolyzes the liquid to be treated, an introduction port that introduces the liquid to be treated into the electrolytic cell, and an discharge port that discharges the liquid to be treated after electrolysis from the electrolytic cell. The electrolyzers are a vertical electrolyzer arranged upright in the vertical direction (hereinafter referred to as "vertical electrolyzer") and a horizontal electrolyzer arranged horizontally laid down or tilted (hereinafter referred to as "horizontal electrolyzer"). It is roughly divided into "devices"). A plurality of electrode plates (bipolar type or monopolar type) for electrolyzing the liquid to be treated are housed in the electrolytic cell.
Conventionally, in both the vertical electrolyzer and the horizontal electrolyzer, measures have been taken to prevent deposits such as scales from accumulating in the electrolytic cell.

例えば、特許文献1の縦型電解装置では、ガスリフト効果を利用することによって、スケール等の付着物の堆積を防止している。特許文献2の縦型電解装置では、電極板が収納された電解槽と連結した別の槽に整流板を配置して、電解槽の壁面近傍の流速を増加させることで、当該付着物の堆積を防止している。また、特許文献3の横型電解装置では、電解槽を傾斜して設置し、電解槽の内部を流れる被処理液が上昇流となるようにすることで、当該付着物の堆積を防止している。 For example, in the vertical electrolyzer of Patent Document 1, the accumulation of deposits such as scale is prevented by utilizing the gas lift effect. In the vertical electrolyzer of Patent Document 2, a straightening vane is arranged in another tank connected to the electrolytic cell in which the electrode plate is housed, and the flow velocity near the wall surface of the electrolytic cell is increased to deposit the deposits. Is prevented. Further, in the horizontal electrolyzer of Patent Document 3, the electrolytic cell is installed at an angle so that the liquid to be treated flowing inside the electrolytic cell becomes an ascending flow to prevent the deposit of the deposit. ..

特開昭50-79484号公報Japanese Unexamined Patent Publication No. 50-79484 実開昭61-43266号公報Jitsukaisho 61-43266 Gazette 実開平3-30265号公報Jitsukaihei No. 3-30265 Gazette

しかしながら、特許文献1の縦型電解装置のように、電解槽の長さ方向(縦型電解装置の場合は高さ方向)に対して垂直方向、すなわち、電解槽の側面に導入口及び排出口が設けられた電解槽では、ガスリフト効果を利用した場合でも、導入口または排出口に対向する電解槽の壁面近傍で被処理液の流速が遅くなるため、当該壁面近傍にスケール等の付着物が堆積しやすい。
そこで、特許文献1の縦型電解装置に、特許文献2のような整流板を設けることで、特許文献3の横型電解装置と同様に、当該付着物の堆積防止の効果を改善することができる。しかし、特許文献2においては電極板が収納された電解槽とは別の槽に整流板が配置されることから、電解装置が大型化する。
当該大型化を回避するために、電解槽の内部に整流板を配置することが考えられる。しかし、複数の電極板は互いに密集して配置された電極モジュールとして電解槽に収納されるため、当該電極モジュールと離間して整流板を配置すると、電解槽を従前より大きくせざるを得ず、結局、電解装置の大型化が回避できない。
However, like the vertical electrolyzer of Patent Document 1, the introduction port and the discharge port are perpendicular to the length direction of the electrolytic cell (in the case of the vertical electrolyzer, the height direction), that is, on the side surface of the electrolytic cell. In the electrolytic cell provided with, even when the gas lift effect is used, the flow velocity of the liquid to be treated becomes slow near the wall surface of the electrolytic cell facing the introduction port or the discharge port, so that deposits such as scales are formed near the wall surface. Easy to deposit.
Therefore, by providing the rectifying plate as in Patent Document 2 in the vertical electrolyzer of Patent Document 1, it is possible to improve the effect of preventing the deposition of the deposits as in the horizontal electrolyzer of Patent Document 3. .. However, in Patent Document 2, since the rectifying plate is arranged in a tank different from the electrolytic cell in which the electrode plate is housed, the size of the electrolytic cell becomes large.
In order to avoid the increase in size, it is conceivable to arrange a straightening vane inside the electrolytic cell. However, since the plurality of electrode plates are housed in the electrolytic cell as electrode modules closely arranged with each other, if the rectifying plates are arranged apart from the electrode modules, the electrolytic cell has to be made larger than before. After all, it is unavoidable to increase the size of the electrolytic cell.

本発明は、上述した課題に鑑み案出されたものであって、円筒形状の電解槽の側面に導入口及び排出口が配置された縦型電解装置または横型電解装置において、スケール等の付着物の堆積を抑制し、且つ、小型化が可能な電解装置を提供することを目的とする。 The present invention has been devised in view of the above-mentioned problems, and in a vertical electrolyzer or a horizontal electrolyzer in which an introduction port and a discharge port are arranged on the side surface of a cylindrical electrolytic cell, deposits such as scales are attached. It is an object of the present invention to provide an electrolytic apparatus capable of suppressing the accumulation of an electrolytic cell and reducing the size.

本発明の電解装置は、円筒形状に形成され、被処理液の導入口と排出口とが中心軸方向に互いに離隔してそれぞれ側面に配置された外筒と、金属製且つ板状の第一極性ベースに等間隔で接続されて前記外筒の内部で前記中心軸方向に延在し、且つ、前記導入口及び前記排出口のうちの一方の開口の近傍に配置された第一極性の複数の第一電極板と、金属製且つ板状の第二極性ベースに等間隔で接続されて前記外筒の内部で前記中心軸方向に延在し、且つ、前記導入口及び前記排出口のうちの他方の開口の近傍に配置された第二極性の複数の第二電極板と、前記複数の第一電極板の全ての間に配置された絶縁性の複数の第一電極側スペーサを有する。前記一方の開口は、前記複数の第一電極板の間に形成される隙間から前記外筒の径方向外側に位置し、前記複数の第一電極側スペーサは、前記中心軸方向から傾斜した傾斜面を備え、前記一方の開口から前記中心軸方向に向けて、または、前記中心軸方向から前記一方の開口に向けて、前記被処理液の流れを誘導する。 The electrolyzer of the present invention is formed in a cylindrical shape, and has an outer cylinder in which an inlet and an outlet for the liquid to be treated are separated from each other in the central axis direction and arranged on the side surfaces thereof, and a metal and plate-shaped first. A plurality of first polarities connected to a polar base at equal intervals, extending in the central axis direction inside the outer cylinder, and arranged in the vicinity of one of the openings of the inlet and the outlet. Is connected to the first electrode plate of No. 1 and a metal and plate-shaped second polar base at equal intervals, extends in the central axis direction inside the outer cylinder, and is out of the introduction port and the discharge port. It has a plurality of second electrode plates of secondary polarity arranged in the vicinity of the other opening of the above, and a plurality of insulating first electrode side spacers arranged between all of the plurality of first electrode plates. The one opening is located radially outside the outer cylinder from a gap formed between the plurality of first electrode plates, and the plurality of first electrode side spacers have an inclined surface inclined from the central axis direction. The flow of the liquid to be treated is guided from the one opening toward the central axis or from the central axis toward the one opening.

本発明の電解装置によれば、第一電極側スペーサが、隣り合う第一電極板同士が接触することを防ぐ絶縁性のスペーサとしての本来の機能に加え、被処理液の流れを誘導する整流板としての機能を兼ね備える。従って、電解装置を小型化でき、且つ、スケール等の付着物の堆積を抑制できる。 According to the electrolytic device of the present invention, in addition to the original function of the spacer on the first electrode side as an insulating spacer that prevents adjacent first electrode plates from coming into contact with each other, rectification that induces the flow of the liquid to be treated. It also functions as a board. Therefore, the size of the electrolytic apparatus can be reduced, and the accumulation of deposits such as scale can be suppressed.

実施形態に係る電解装置(バイポーラ式)を示す部分断面図である。It is a partial cross-sectional view which shows the electrolytic apparatus (bipolar type) which concerns on embodiment. 図1のA-A矢視断面図である。FIG. 1 is a cross-sectional view taken along the line AA of FIG. 図1の電解装置の一部を分解して示す斜視図である。It is a perspective view which shows a part of the electrolytic apparatus of FIG. 1 by disassembling. 図1の電解装置の電極モジュールの構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the electrode module of the electrolytic apparatus of FIG. スペーサを説明するための断面図である。It is sectional drawing for demonstrating a spacer. (a)は第一スペーサのXZ平面図であり、(b)は隣り合う二つの陽極板または陰極板の間に配置される第一スペーサをZ方向から見た図であり、(c)及び(d)は積層された複数の陽極板の両端に設けられる第一スペーサをZ方向から見た図である。(A) is an XZ plan view of the first spacer, (b) is a view of the first spacer arranged between two adjacent anode plates or cathode plates from the Z direction, and (c) and (d). ) Is a view of the first spacers provided at both ends of the plurality of laminated anode plates as viewed from the Z direction. 第二スペーサを分解して示す図である。It is a figure which shows by disassembling the second spacer. 変形例に係る電解装置(モノポーラ式)の電極モジュールの構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the electrode module of the electrolytic apparatus (monopolar type) which concerns on a modification.

以下、図1乃至図8を参照して、実施形態及び変形例の電解装置について説明する。以下に示す実施形態及び変形例はあくまでも例示に過ぎず、明示しない種々の変形や技術の適用を排除する意図はない。
実施形態及び変形例で示す各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができる。また、当該各構成は、本発明の必須の構成要件を除き、必要に応じて取捨選択することができ、あるいは適宜組み合わせることができる。
Hereinafter, the electrolytic device of the embodiment and the modified example will be described with reference to FIGS. 1 to 8. The embodiments and modifications shown below are merely examples, and there is no intention of excluding the application of various modifications and techniques that are not specified.
Each configuration shown in the embodiment and the modified example can be variously modified and implemented without departing from the purpose thereof. In addition, each of the above configurations can be selected as necessary or combined as appropriate, except for the essential constituent requirements of the present invention.

実施形態及び変形例の電解装置では、電解槽に円筒形状の外筒を使用する。そして、被処理液を外筒の内部に導入する導入口と、電解した被処理液を外筒の内部から排出する排出口とが、当該外筒の側面に配置される。具体的には、導入口と排出口は、外筒の中心軸の方向(以下、「中心軸方向」または「電解槽の長さ方向」という)に互いに離隔して配置され、且つ、中心軸方向に対して実質的に垂直の方向(すなわち、外筒の側面)に配置される。 In the electrolyzer of the embodiment and the modified example, a cylindrical outer cylinder is used for the electrolytic cell. An introduction port for introducing the liquid to be treated into the inside of the outer cylinder and a discharge port for discharging the electrolyzed liquid to be treated from the inside of the outer cylinder are arranged on the side surface of the outer cylinder. Specifically, the introduction port and the discharge port are arranged apart from each other in the direction of the central axis of the outer cylinder (hereinafter referred to as "central axis direction" or "length direction of the electrolytic cell"), and the central axis. It is arranged in a direction substantially perpendicular to the direction (that is, the side surface of the outer cylinder).

実施形態及び変形例の電解装置は、外筒の中心軸が実質的に鉛直方向となる縦型であってもよいし、外筒の中心軸が実質的に水平方向となる横型であってもよい。
なお、ここでいう「実質的に鉛直方向」とは、鉛直方向だけでなく、水平方向から45度以上傾いた方向を含む。また、「実質的に水平方向」とは、水平方向だけでなく、水平方向から45度未満傾いた方向を含む。縦型、横型のいずれの電解槽においても、電解槽の内部を流れる被処理液が上昇流となるよう設計されるのが望ましい。
The electrolyzer of the embodiment and the modified example may be a vertical type in which the central axis of the outer cylinder is substantially in the vertical direction, or may be a horizontal type in which the central axis of the outer cylinder is substantially in the horizontal direction. good.
The term "substantially vertical direction" as used herein includes not only the vertical direction but also a direction inclined by 45 degrees or more from the horizontal direction. Further, the "substantially horizontal direction" includes not only the horizontal direction but also a direction inclined by less than 45 degrees from the horizontal direction. In both the vertical type and the horizontal type electrolytic cell, it is desirable that the liquid to be treated flowing inside the electrolytic cell is designed to be an upward flow.

まず、以下に、図1乃至図7を用いて実施形態の電解装置を説明する。実施形態では、一例として、バイポーラ式横型電解装置を示す。その後、図8を用いて変形例の電解装置を説明する。変形例では、一例として、モノポーラ式横型電解装置を示す。
なお、図においては、説明の簡便のため、適宜、X軸、Y軸、Z軸による直交座標系を用いて説明する。また、図1乃至図5においては、それぞれ適宜簡略化して作図しているため、各々の図において電極板(陽極板、陰極板、バイポーラ式電極板)の枚数が異なるなど軽微な相違点があるが、いずれも同一の電解装置の説明を行うための図である。
First, the electrolyzer of the embodiment will be described below with reference to FIGS. 1 to 7. In the embodiment, a bipolar horizontal electrolyzer is shown as an example. After that, the electrolytic apparatus of the modified example will be described with reference to FIG. In the modified example, a monopolar horizontal electrolyzer is shown as an example.
In the figure, for the sake of simplicity of explanation, an orthogonal coordinate system with an X-axis, a Y-axis, and a Z-axis will be appropriately described. Further, in FIGS. 1 to 5, since the drawings are simplified as appropriate, there are minor differences such as the number of electrode plates (anode plate, cathode plate, bipolar electrode plate) being different in each of the drawings. However, it is a figure for demonstrating the same electrolytic apparatus.

[1.実施形態の電解装置1の全体構成]
図1及び図2に示すように、本実施形態の電解装置1は、円筒形状に形成された電解槽の外筒2の中心軸がX軸に一致するように配置されたバイポーラ式横型電解装置である。X軸は水平方向(鉛直方向に垂直な方向)に配置されてもよいが、後述の排出口4が導入口3よりも上方になるよう、水平方向から所定角度(例えば、5度程度)傾けて配置されるのが望ましい。
外筒2の側面2aには、X軸方向に互いに離隔した二つの開口が設けられる。図中左側の開口は、電解後の被処理液を外筒2から排出するための排出口4であり、図中右側の開口は、被処理液を外筒2内に導入するための導入口3である。なお、図2の破線矢印は被処理液の流れを示す。
ここでは、導入口3と排出口4とが外筒2の周方向に互いに180度ずれて配置される例を示す。具体的には、導入口3がZ軸のマイナス(-)方向を向いて開口し、排出口4がZ軸のプラス(+)方向を向いて開口している。Z軸は、外筒2の中心軸(X軸)に垂直である。
なお、電解槽は、外筒2と、外筒2の両端を密閉する後述のフランジ15N及び15Pとを含んで構成される。
[1. Overall configuration of the electrolyzer 1 of the embodiment]
As shown in FIGS. 1 and 2, the electrolyzer 1 of the present embodiment is a bipolar horizontal electrolyzer arranged so that the central axis of the outer cylinder 2 of the electrolytic cell formed in a cylindrical shape coincides with the X axis. Is. The X-axis may be arranged in the horizontal direction (direction perpendicular to the vertical direction), but is tilted by a predetermined angle (for example, about 5 degrees) from the horizontal direction so that the discharge port 4 described later is above the introduction port 3. It is desirable to be placed.
The side surface 2a of the outer cylinder 2 is provided with two openings separated from each other in the X-axis direction. The opening on the left side in the figure is a discharge port 4 for discharging the liquid to be treated from the outer cylinder 2, and the opening on the right side in the figure is an introduction port for introducing the liquid to be treated into the outer cylinder 2. It is 3. The broken line arrow in FIG. 2 indicates the flow of the liquid to be treated.
Here, an example is shown in which the introduction port 3 and the discharge port 4 are arranged 180 degrees apart from each other in the circumferential direction of the outer cylinder 2. Specifically, the introduction port 3 opens toward the minus (−) direction of the Z axis, and the discharge port 4 opens toward the plus (+) direction of the Z axis. The Z axis is perpendicular to the central axis (X axis) of the outer cylinder 2.
The electrolytic cell is configured to include an outer cylinder 2 and flanges 15N and 15P described later that seal both ends of the outer cylinder 2.

電解装置1は、金属製の陽極通電板11Pに、金属製の第一ベース13Pを介して、電気的に接続された複数の陽極板12Pと、金属製の陰極通電板11Nに、金属製の第二ベース13Nを介して、電気的に接続された複数の陰極板12Nとを有する。
陽極板12P及び陰極板12Nは、いずれもXZ平面において矩形であり、外筒2の内部でX軸方向に延在し、X軸及びZ軸の双方に直交するY軸方向に等間隔で、それぞれ積層(並設)される。陽極板12Pは、導入口3及び排出口4のうちの一方の開口(ここでは、排出口4)の近傍に配置され、陰極板12Nは、導入口3及び排出口4のうちの他方の開口(ここでは、導入口3)の近傍に配置される。
The electrolytic device 1 is made of metal to a plurality of anode plates 12P electrically connected to a metal anode current-carrying plate 11P via a metal first base 13P, and to a metal cathode current-carrying plate 11N. It has a plurality of cathode plates 12N electrically connected via a second base 13N.
Both the anode plate 12P and the cathode plate 12N are rectangular in the XZ plane, extend in the X-axis direction inside the outer cylinder 2, and are equidistant in the Y-axis direction orthogonal to both the X-axis and the Z-axis. Each is laminated (parallel). The anode plate 12P is arranged in the vicinity of one opening (here, the discharge port 4) of the introduction port 3 and the discharge port 4, and the cathode plate 12N is the other opening of the introduction port 3 and the discharge port 4. (Here, it is arranged in the vicinity of the introduction port 3).

電解装置1では、L型に屈曲形成された陽極通電板11Pと、陽極通電板11Pが固定されるYZ平面において矩形の第一ベース13Pと、第一ベース13Pに固定される複数の陽極板12Pとによって、陽極通電ブロック10Pが構成される。
同様に、L型に屈曲形成された陰極通電板11Nと、陰極通電板11Nが固定されるYZ平面において矩形の第二ベース13Nと、第二ベース13Nに固定される複数の陰極板12Nとによって、陰極通電ブロック10Nが構成される。
なお、第一ベース13Pと第二ベース13Nには、後述のとおり、外筒2の両端を密閉するフランジ15N、15Pに、それぞれを固定するための溶植ボルト53が、各々の四隅に予め設置されている。
陽極通電ブロック10P及び陰極通電ブロック10Nは、外筒2の両端にそれぞれ取り付けられる。ここでは、外筒2の両端のうち、排出口4側の端部に陽極通電ブロック10Pが配置され、導入口3側の端部に陰極通電ブロック10Nが配置される。
In the electrolyzer 1, the anode energizing plate 11P bent and formed in an L shape, the first base 13P rectangular in the YZ plane to which the anode energizing plate 11P is fixed, and the plurality of anode plates 12P fixed to the first base 13P. The anode energization block 10P is configured by the above.
Similarly, an L-shaped bent cathode energizing plate 11N, a rectangular second base 13N in the YZ plane to which the cathode energizing plate 11N is fixed, and a plurality of cathode plates 12N fixed to the second base 13N are used. , Cathode energization block 10N is configured.
As will be described later, on the first base 13P and the second base 13N, welding bolts 53 for fixing the flanges 15N and 15P that seal both ends of the outer cylinder 2 are installed in advance at the four corners of each. Has been done.
The anode energization block 10P and the cathode energization block 10N are attached to both ends of the outer cylinder 2, respectively. Here, of both ends of the outer cylinder 2, the anode energization block 10P is arranged at the end on the discharge port 4 side, and the cathode energization block 10N is arranged at the end on the introduction port 3 side.

図1~図3に示すように、外筒2の内部には、電極モジュール5とこれを支持する電極支持枠50とが配置される。電極モジュール5は、図4に示すように、第一ベース13Pに接続された陽極板12P及び第二ベース13Nに接続された陰極板12Nを含み、複数の矩形状の電極板40が積層されて四角柱形状に形成されたものである。
なお、図4では、電極モジュール5のうち、陽極通電板11P、陰極通電板11Nを省略するとともに、理解容易のため各構成を簡略化した図としており、後述するスペーサ20、30のY軸方向の長さを実際よりも大きく表現している。また、先述のとおり、図1、図3、図4とも、それぞれ簡略化した図としており、各々の図で電極板の枚数が異なるなど軽微な相違点があるが、いずれも同一の電解装置1の説明を行うための図である。電極モジュール5に配置される電極板の枚数は、設計に応じて、数十枚から数百枚に設定される。
図4では、各電極板(12P、12N、40)において、陽極性となる箇所を薄いドット模様で示し、陰極性となる箇所を濃いドット模様で示す。
As shown in FIGS. 1 to 3, an electrode module 5 and an electrode support frame 50 for supporting the electrode module 5 are arranged inside the outer cylinder 2. As shown in FIG. 4, the electrode module 5 includes an anode plate 12P connected to the first base 13P and a cathode plate 12N connected to the second base 13N, and a plurality of rectangular electrode plates 40 are laminated. It is formed in the shape of a square column.
In FIG. 4, the anode energizing plate 11P and the cathode energizing plate 11N are omitted from the electrode module 5, and each configuration is simplified for easy understanding. The spacers 20 and 30 described later are shown in the Y-axis direction. The length of is expressed larger than it actually is. Further, as described above, FIGS. 1, 3, and 4 are simplified views, and there are minor differences such as a difference in the number of electrode plates in each figure, but all of them are the same electrolytic device 1. It is a figure for demonstrating. The number of electrode plates arranged in the electrode module 5 is set to several tens to several hundreds depending on the design.
In FIG. 4, in each electrode plate (12P, 12N, 40), the anodic portion is shown by a light dot pattern, and the cathodic portion is shown by a dark dot pattern.

ここでは、電解装置1はバイポーラ式の電解装置であるため、電極板40は、バイポーラ式の電極板である。すなわち、一枚の電極板40に陽極性の陽極部40Pと陰極性の陰極部40Nの両方が形成される。後述する変形例のように、モノポーラ式の電解装置とする場合には、1枚の電極板に陽極性のみまたは陰極性のみが現れるモノポーラ式の電極板を使用する。バイポーラ式、モノポーラ式のいずれの電極板であっても、陽極性の箇所と陰極性の箇所とが交互に向かい合って積層の方向(Y軸方向)に対向配置される。
図1に示すように、電解装置1で被処理液の電解を行う際、電極モジュール5は、陽極通電板11P及び陰極通電板11Nを介して電源装置6に電気的に接続される。具体的には、陽極通電板11Pに電源装置6の正電位(プラス電位)が印加され、陰極通電板11Nに負電位(マイナス電位)が印加されることで、電極モジュール5の各電極板(12P、12N、40)に陽極性または陰極性のうちの所定の極性が現れる。具体的には、陽極板12Pは陽極性となり、陰極板12Nは陰極性となる。また、電極板40の半分は陽極性の陽極部40Pとなり、他の半分は陰極性の陰極部40Nとなる。
Here, since the electrolytic device 1 is a bipolar type electrolytic device, the electrode plate 40 is a bipolar type electrode plate. That is, both the anodic anode portion 40P and the cathodic cathode portion 40N are formed on one electrode plate 40. In the case of a monopolar type electrolyzer as in the modification described later, a monopolar type electrode plate in which only the anodic property or the cathodic property appears on one electrode plate is used. In both the bipolar type and the monopolar type electrode plates, the anodic parts and the cathodic parts are alternately arranged to face each other in the direction of stacking (Y-axis direction).
As shown in FIG. 1, when electrolyzing the liquid to be processed by the electrolyzer 1, the electrode module 5 is electrically connected to the power supply device 6 via the anode energizing plate 11P and the cathode energizing plate 11N. Specifically, the positive potential (positive potential) of the power supply device 6 is applied to the anode energizing plate 11P, and the negative potential (negative potential) is applied to the cathode energizing plate 11N, so that each electrode plate of the electrode module 5 ( A predetermined polarity of anodic or cathodic appears in 12P, 12N, 40). Specifically, the anode plate 12P is anodic, and the cathode plate 12N is cathodic. Further, half of the electrode plate 40 is an anodic anode portion 40P, and the other half is a cathodic cathode portion 40N.

電極支持枠50は、図3に示すように、積層の方向(Y軸方向)で電極モジュール5を挟み込む一対の第一支持枠51と、X軸及び積層の方向の双方に垂直な方向(すなわち、Z軸方向)で一対の第一支持枠51を挟み込んで第一支持枠51と固定される一対の第二支持枠52とを有する。
一対の第一支持枠51は、積層の方向(Y軸方向)に延びる複数のボルト43(図4の破線)によって、陽極板12P、陰極板12N、電極板40を挟んだ状態で、互いに固定される。一対の第二支持枠52は、第一支持枠51の端面(XY平面)に当接し、螺子44(図5参照)によって第一支持枠51に固定される。このように、電極支持枠50は、四角柱形状の電極モジュール5を四方から押さえることで、電極モジュール5を支え、電極モジュール5の変形を防止する。
As shown in FIG. 3, the electrode support frame 50 has a pair of first support frames 51 that sandwich the electrode module 5 in the stacking direction (Y-axis direction), and a direction perpendicular to both the X-axis and the stacking direction (that is,). , Z-axis direction), and has a pair of second support frames 52 that are fixed to the first support frame 51 by sandwiching the pair of first support frames 51.
The pair of first support frames 51 are fixed to each other with the anode plate 12P, the cathode plate 12N, and the electrode plate 40 sandwiched by a plurality of bolts 43 (broken line in FIG. 4) extending in the stacking direction (Y-axis direction). Will be done. The pair of second support frames 52 abut on the end surface (XY plane) of the first support frame 51 and are fixed to the first support frame 51 by screws 44 (see FIG. 5). In this way, the electrode support frame 50 supports the electrode module 5 by pressing the square pillar-shaped electrode module 5 from all sides, and prevents the electrode module 5 from being deformed.

各第一支持枠51は、電極モジュール5のX軸方向の長さに対応する矩形状の第一板部51aと、第一板部51aに一体形成され、X軸方向に所定間隔で配置された複数の第一鍔部51bとを備える。
第二支持枠52は、電極モジュール5のX軸方向の長さに対応する矩形状の第二板部52aと、第二板部52aに一体形成され、X軸方向に所定間隔で配置された複数の第二鍔部52bとを備える。
第一支持枠51及び第二支持枠52が互いに固定された状態では、図2に示すように、第一鍔部51bと第二鍔部52bとが組み合わされて、外筒2の内径と略同一またはやや小さい外径を持つ円形の鍔部50bが形成される。
電極支持枠50の鍔部50bが外筒2の内周面に略接触して配置されることで、外筒2の内部での電極モジュール5の「がたつき」を防止することができる。
また、電極支持枠50の鍔部50bが外筒2の内周面と電極支持枠50との間の隙間を実質的に封じるので、電極支持枠50で囲まれた内部、すなわち電極モジュール5に被処理液を確実に導入でき、効果的に電解を行うことができる。
Each of the first support frames 51 is integrally formed with the rectangular first plate portion 51a corresponding to the length of the electrode module 5 in the X-axis direction and the first plate portion 51a, and is arranged at predetermined intervals in the X-axis direction. It is provided with a plurality of first flange portions 51b.
The second support frame 52 is integrally formed with the rectangular second plate portion 52a corresponding to the length of the electrode module 5 in the X-axis direction and the second plate portion 52a, and is arranged at predetermined intervals in the X-axis direction. A plurality of second flange portions 52b are provided.
In a state where the first support frame 51 and the second support frame 52 are fixed to each other, as shown in FIG. 2, the first flange portion 51b and the second flange portion 52b are combined, and the inner diameter of the outer cylinder 2 is abbreviated. A circular flange portion 50b having the same or slightly smaller outer diameter is formed.
By arranging the flange portion 50b of the electrode support frame 50 in substantially contact with the inner peripheral surface of the outer cylinder 2, it is possible to prevent "rattling" of the electrode module 5 inside the outer cylinder 2.
Further, since the flange portion 50b of the electrode support frame 50 substantially closes the gap between the inner peripheral surface of the outer cylinder 2 and the electrode support frame 50, the inside surrounded by the electrode support frame 50, that is, the electrode module 5 The liquid to be treated can be reliably introduced, and electrolysis can be effectively performed.

なお、ここでは、図2または図3に示すように、一対の第二支持枠52のうち、上方の第二支持枠52には、排出口4に対応する位置に開口52cが設けられ、下方の第二支持枠52には、導入口3に対応する位置に開口52dが設けられる。ただし、外筒2に配置される導入口3と排出口4の位置に応じて、一対の第二支持枠52のうち、一方の第二支持枠52のみに開口52c及び開口52dが形成される場合もありうる。例えば、導入口3と排出口4とが外筒2の周方向で見て同位置に配置される場合、一対の第二支持枠52のうち、一方の第二支持枠52のみに開口52c及び開口52dが形成される。 Here, as shown in FIG. 2 or FIG. 3, of the pair of second support frames 52, the upper second support frame 52 is provided with an opening 52c at a position corresponding to the discharge port 4, and is provided below. The second support frame 52 is provided with an opening 52d at a position corresponding to the introduction port 3. However, the openings 52c and 52d are formed only in one of the second support frames 52 of the pair of second support frames 52, depending on the positions of the introduction port 3 and the discharge port 4 arranged in the outer cylinder 2. In some cases. For example, when the introduction port 3 and the discharge port 4 are arranged at the same position when viewed in the circumferential direction of the outer cylinder 2, only one of the second support frames 52 of the pair of the second support frames 52 has the opening 52c and the opening 52c. The opening 52d is formed.

図3に示すように、陽極通電ブロック10P及び陰極通電ブロック10Nを含む電極モジュール5は、電極支持枠50で固縛された後、外筒2の内部に挿入される。
そして、外筒2の一端面には外筒2と内径が略同径の円環形状のガスケット16が配置される。また、第一ベース13Pと外形が略同形で、中央に矩形の開口が形成され、且つ、当該開口の四つの角部近傍にそれぞれ貫通孔18が形成された矩形のガスケット17が配置される。
また、中央にガスケット17の開口と略同形の矩形の開口15aが形成されたフランジ15Pが配置される。フランジ15Pの開口15aの四つの角部近傍にはそれぞれ貫通孔15bが設けられている。
As shown in FIG. 3, the electrode module 5 including the anode energization block 10P and the cathode energization block 10N is firmly bound by the electrode support frame 50 and then inserted into the outer cylinder 2.
An annular gasket 16 having an inner diameter substantially the same as that of the outer cylinder 2 is arranged on one end surface of the outer cylinder 2. Further, a rectangular gasket 17 having substantially the same outer shape as the first base 13P, having a rectangular opening formed in the center, and having through holes 18 formed in the vicinity of the four corners of the opening is arranged.
Further, a flange 15P having a rectangular opening 15a having substantially the same shape as the opening of the gasket 17 is arranged in the center. Through holes 15b are provided in the vicinity of the four corners of the opening 15a of the flange 15P.

ガスケット17に形成された四つの貫通孔18の位置と、フランジ15Pに形成された四つの貫通孔15bの位置は、第一ベース13Pに設けられた四つの溶植ボルト53の位置にそれぞれ対応している。
そこで、まず、第一ベース13Pの四つの溶植ボルト53の各々にガスケット17の四つの貫通孔18がそれぞれ挿通され、その後、四つの溶植ボルト53の各々にフランジ15Pの四つの貫通孔15bがそれぞれ挿通される。そして、図示しないナットが溶植ボルト53に嵌め込まれ、第一ベース13Pとフランジ15Pとが、ガスケット17を挟み込んで気密に固定される。
そして、次に、フランジ15Pと外筒2とが、ガスケット16を挟み込んで、図示しないボルトとナットとで気密に固定される。
The positions of the four through holes 18 formed in the gasket 17 and the positions of the four through holes 15b formed in the flange 15P correspond to the positions of the four welding bolts 53 provided in the first base 13P, respectively. ing.
Therefore, first, the four through holes 18 of the gasket 17 are inserted into each of the four welding bolts 53 of the first base 13P, and then the four through holes 15b of the flange 15P are inserted into each of the four welding bolts 53. Are inserted respectively. Then, a nut (not shown) is fitted into the welding bolt 53, and the first base 13P and the flange 15P are hermetically fixed by sandwiching the gasket 17.
Next, the flange 15P and the outer cylinder 2 sandwich the gasket 16 and are airtightly fixed by bolts and nuts (not shown).

外筒2の一端には、陽極通電板11Pを保護するため、陽極通電板11Pを覆う陽極端子箱14Pがフランジ15Pに固定される。
なお、第一ベース13Pと第二ベース13Nは同様の形状、また、フランジ15Pとフランジ15Nは同一形状である。従って、外筒2の他端面においても同様に、第二ベース13Nとフランジ15N、並びに、フランジ15Nと外筒2が、それぞれ図示しないガスケット(ガスケット16、17に対応)を挟み込んで気密に固定される。また、陰極通電板11Nを保護するため、陰極通電板11Nを覆う陰極端子箱14Nがフランジ15Nに固定される。
At one end of the outer cylinder 2, an anode terminal box 14P covering the anode energizing plate 11P is fixed to the flange 15P in order to protect the anode energizing plate 11P.
The first base 13P and the second base 13N have the same shape, and the flange 15P and the flange 15N have the same shape. Therefore, similarly, on the other end surface of the outer cylinder 2, the second base 13N and the flange 15N, and the flange 15N and the outer cylinder 2 are hermetically fixed by sandwiching a gasket (corresponding to gaskets 16 and 17) (not shown). To. Further, in order to protect the cathode energizing plate 11N, the cathode terminal box 14N covering the cathode energizing plate 11N is fixed to the flange 15N.

[2.電解装置1のスペーサ構成]
図4に示すように、複数の陽極板12Pの数は偶数である。従って、電解装置1は、陽極側スペーサ20として、複数の陽極板12Pのうち隣り合う二つの陽極板12Pの全ての間に配置される陽極側第一スペーサ21と、複数の陽極板12Pのうち両端に位置する陽極板12Pとそれに最も近接する第一板部51aとの間に、それぞれ陽極側第一スペーサ21A、21Bとを備える。また、電解装置1は、陽極側スペーサ20として、陽極板12Pの内部(例えば、中央部)に形成された貫通孔を介して、この貫通孔を両側から挟んで嵌合することで一体化される陽極側第二スペーサ22を備える。
陽極側第一スペーサ21、21A、21Bは、陽極板12Pの第一ベース13P側の端部にそれぞれ配置されて、この端部における二つの陽極板12Pの間、または、この端部における陽極板12Pと第一板部51aとの間のY軸方向かつZ軸方向の隙間を実質的に全て塞ぐ。
また、陽極側第二スペーサ22は、陽極側第二スペーサ22が固定された陽極板12Pと、当該陽極板12Pに隣り合う二つの電極板40との間のY軸方向の隙間を実質的に全て塞ぐ。ただし、後述するとおり、XZ平面において、陽極側第二スペーサ22の寸法は陽極板12Pの寸法より小さいため、陽極側第二スペーサ22が固定される陽極板12Pとそれに隣り合う二つの電極板40との間の隙間をX軸方向から見たとき、陽極側第二スペーサ22のない箇所の隙間(陽極側第二スペーサ22のZ軸方向の両端近傍)は塞がれておらず、被処理液が流れることができる。
[2. Spacer configuration of electrolyzer 1]
As shown in FIG. 4, the number of the plurality of anode plates 12P is an even number. Therefore, the electrolytic device 1 has, as the anode-side spacer 20, the anode-side first spacer 21 arranged between all of the two adjacent anode plates 12P among the plurality of anode plates 12P, and among the plurality of anode plates 12P. An anode-side first spacers 21A and 21B are provided between the anode plates 12P located at both ends and the first plate portion 51a closest to the anode plates 12P, respectively. Further, the electrolytic device 1 is integrated as the anode side spacer 20 by sandwiching and fitting the through holes from both sides through the through holes formed inside the anode plate 12P (for example, the central portion). The anode side second spacer 22 is provided.
The anode-side first spacers 21, 21A, and 21B are arranged at the ends of the anode plate 12P on the first base 13P side, respectively, and are located between the two anode plates 12P at this end, or the anode plates at this end. Substantially all the gaps in the Y-axis direction and the Z-axis direction between the 12P and the first plate portion 51a are closed.
Further, the anode-side second spacer 22 substantially has a gap in the Y-axis direction between the anode plate 12P to which the anode-side second spacer 22 is fixed and the two electrode plates 40 adjacent to the anode plate 12P. Block everything. However, as will be described later, in the XZ plane, the dimension of the anode side second spacer 22 is smaller than the dimension of the anode plate 12P, so that the anode plate 12P to which the anode side second spacer 22 is fixed and the two electrode plates 40 adjacent to the anode plate 12P are fixed. When the gap between the anode side and the second spacer 22 is viewed from the X-axis direction, the gap (near both ends of the anode side second spacer 22 in the Z-axis direction) is not closed and is to be processed. The liquid can flow.

一方、複数の陰極板12Nの数は奇数である。従って、電解装置1は、陰極側スペーサ30として、隣り合う二つの陰極板12Nの第二ベース13N側の端部に配置されて、この端部における当該二つの陰極板12Nの全ての間のY軸方向かつZ軸方向の隙間を実質的に全て塞ぐ陰極側第一スペーサ31と、当該二つの陰極板12Nの間に配置される電極板40の内部(例えば、陽極部)に形成された貫通孔を介して、この貫通孔を両側から挟んで嵌合することで一体化される陰極側第二スペーサ32とを備える。
陰極側第二スペーサ32は、陰極側第二スペーサ32が固定された電極板40と、当該電極板40に隣り合う二つの陰極板12Nとの間のY軸方向の隙間を実質的に全て塞ぐ。ただし、後述するとおり、XZ平面において、陰極側第二スペーサ32の寸法は電極板40の寸法より小さいため、陰極側第二スペーサ32が固定される電極板40とそれに隣り合う二つの陰極板12Nとの間の隙間をX軸方向から見たとき、陰極側第二スペーサ32のない箇所の隙間(陰極側第二スペーサ32のZ軸方向の両端近傍)は塞がれておらず、被処理液が流れることができる。
On the other hand, the number of the plurality of cathode plates 12N is an odd number. Therefore, the electrolytic device 1 is arranged as the cathode side spacer 30 at the end of the two adjacent cathode plates 12N on the second base 13N side, and Y between all of the two cathode plates 12N at this end. A penetration formed inside (for example, an anode portion) of a cathode-side first spacer 31 that closes substantially all the gaps in the axial and Z-axis directions and an electrode plate 40 arranged between the two cathode plates 12N. It is provided with a cathode-side second spacer 32 that is integrated by sandwiching and fitting the through hole from both sides through the hole.
The cathode-side second spacer 32 closes substantially all the gap in the Y-axis direction between the electrode plate 40 to which the cathode-side second spacer 32 is fixed and the two cathode plates 12N adjacent to the electrode plate 40. .. However, as will be described later, since the dimension of the cathode side second spacer 32 is smaller than the dimension of the electrode plate 40 in the XZ plane, the electrode plate 40 to which the cathode side second spacer 32 is fixed and the two cathode plates 12N adjacent to the electrode plate 40 are fixed. When the gap between the cathode side and the second spacer 32 is viewed from the X-axis direction, the gap between the cathode side second spacer 32 and the portion without the cathode side second spacer 32 (near both ends of the cathode side second spacer 32 in the Z axis direction) is not closed and is to be processed. The liquid can flow.

なお、先述の「隙間を実質的に全て塞ぐ」とは、隣り合う二つの電極板の間、または、電極板と電極支持枠50との間の隙間を完全に塞ぐことのほか、当該隙間に微小な空間が残留した状態で塞ぐことも包含する概念である。「隙間を実質的に全て塞ぐ」ので、いずれのスペーサも、被処理液を滑らかに誘導することができる。
陽極側スペーサ20は、隣り合う二つの陽極板12Pと接して配置されてもよく、また、陰極側スペーサ30は、隣り合う二つの陰極板12Nと接して配置されてもよい。
陽極側スペーサ20及び陰極側スペーサ30は、絶縁性の高い材料(例えば、ゴムやプラスチック樹脂)で形成される。
The above-mentioned "closes substantially all the gaps" means that the gap between two adjacent electrode plates or the gap between the electrode plates and the electrode support frame 50 is completely closed, and the gap is very small. It is a concept that also includes closing the space in a state where it remains. Since "substantially all the gaps are closed", any spacer can smoothly guide the liquid to be treated.
The anode-side spacer 20 may be arranged in contact with two adjacent anode plates 12P, and the cathode-side spacer 30 may be arranged in contact with two adjacent cathode plates 12N.
The anode-side spacer 20 and the cathode-side spacer 30 are made of a highly insulating material (for example, rubber or plastic resin).

複数の陽極側スペーサ20は、外筒2の中心軸(X軸)に対して傾斜した傾斜面を備えており、一方の開口(例えば、導入口3)からX軸方向に向けて、または、X軸方向から一方の開口(例えば、排出口4)に向けて、被処理液の流れを誘導する。つまり、陽極側スペーサ20は、隣り合う二つの陽極板12Pが互いに接触して電気的に短絡しないようにする本来の機能に加え、整流板としての機能を持つ。
上記「一方の開口」が排出口4である場合、陽極側スペーサ20は、図2に破線矢印で示すように、X軸方向から排出口4に向けて、被処理液の流れを誘導する。排出口4は、複数の陽極板12Pの間に形成される隙間から径方向外側に位置する。図2では、陽極側スペーサ20によって被処理液の流れ方向が略90度変更した先に、排出口4が位置する。
The plurality of anode-side spacers 20 have an inclined surface inclined with respect to the central axis (X-axis) of the outer cylinder 2, and may be directed toward the X-axis from one opening (for example, the introduction port 3) or. The flow of the liquid to be treated is guided from the X-axis direction toward one opening (for example, the discharge port 4). That is, the anode-side spacer 20 has a function as a straightening vane in addition to the original function of preventing two adjacent anode plates 12P from contacting each other and electrically short-circuiting.
When the "one opening" is the discharge port 4, the anode-side spacer 20 guides the flow of the liquid to be treated from the X-axis direction toward the discharge port 4, as shown by the broken line arrow in FIG. The discharge port 4 is located radially outward from the gap formed between the plurality of anode plates 12P. In FIG. 2, the discharge port 4 is located before the flow direction of the liquid to be treated is changed by approximately 90 degrees by the anode-side spacer 20.

複数の陰極側スペーサ30は、外筒2の中心軸(X軸)に対して傾斜した傾斜面を備えており、X軸方向から他方の開口(例えば、排出口4)に向けて、または、他方の開口(例えば、導入口3)からX軸方向に向けて、被処理液の流れを誘導する。つまり、陰極側スペーサ30も、隣り合う二つの陰極板12Nが互いに接触して電気的に短絡しないようにする本来の機能に加え、整流板としての機能を持つ。
上記「他方の開口」が導入口3である場合、陰極側スペーサ30は、図2に破線矢印で示すように、導入口3からX軸方向に向けて、被処理液の流れを誘導する。導入口3は、複数の陰極板12Nの間に形成される隙間から径方向外側に位置する。図2では、導入口3から導入された被処理液の流れ方向が、陰極側スペーサ30によって略90度変更される。
The plurality of cathode-side spacers 30 have an inclined surface inclined with respect to the central axis (X-axis) of the outer cylinder 2 from the X-axis direction toward the other opening (for example, the discharge port 4) or. The flow of the liquid to be treated is guided from the other opening (for example, the introduction port 3) toward the X-axis direction. That is, the cathode side spacer 30 also has a function as a rectifying plate in addition to the original function of preventing two adjacent cathode plates 12N from contacting each other and electrically short-circuiting.
When the "other opening" is the introduction port 3, the cathode side spacer 30 guides the flow of the liquid to be treated from the introduction port 3 in the X-axis direction as shown by the broken line arrow in FIG. The introduction port 3 is located radially outward from the gap formed between the plurality of cathode plates 12N. In FIG. 2, the flow direction of the liquid to be treated introduced from the introduction port 3 is changed by approximately 90 degrees by the cathode side spacer 30.

電解装置1では、導入口3と排出口4とが外筒2の周方向に180度ずれて設けられていることから、陰極側スペーサ30の傾斜面と陽極側スペーサ20の傾斜面は、中心軸(X軸)に対し約45度の角度で傾斜している。 In the electrolytic device 1, since the introduction port 3 and the discharge port 4 are provided so as to be offset by 180 degrees in the circumferential direction of the outer cylinder 2, the inclined surface of the cathode side spacer 30 and the inclined surface of the anode side spacer 20 are centered. It is tilted at an angle of about 45 degrees with respect to the axis (X axis).

では、陽極側スペーサ20の陽極側第一スペーサ21、21A、21B、及び、陰極側スペーサ30の陰極側第一スペーサ31の形状につき、詳述する。これらは、図2、図4に示すように互いの配置は異なるものの、図6(a)のXZ平面をY軸方向から視た図に示すように、いずれも同一の形状である。
図6(a)に示すように、陽極側第一スペーサ21、21A、21B、及び、陰極側第一スペーサ31は、Y軸方向から視て、陽極板12Pまたは陰極板12NのZ軸方向の長さと同等の寸法を持つ矩形部分と、当該矩形部分における一つの角からX軸方向に突出した略直角三角形部分とを備える。略直角三角形部分の直角の箇所は、矩形部分の角に接続しており、矩形部分と略直角三角形部分は一体形成されている。
略直角三角形部分の斜辺に相当する傾斜面231は、陽極側スペーサ20及び陰極側スペーサ30の傾斜面の一つとなる。なお、当該傾斜面231は、ここでは直線状の傾斜面としているが、より滑らかに被処理液の流れを誘導するため、上記矩形部分に向かって窪んだ円弧状の傾斜面としてもよい。
Then, the shapes of the anode-side first spacers 21, 21A, 21B of the anode-side spacer 20 and the cathode-side first spacer 31 of the cathode-side spacer 30 will be described in detail. Although they are arranged differently from each other as shown in FIGS. 2 and 4, they all have the same shape as shown in the view of the XZ plane of FIG. 6A when viewed from the Y-axis direction.
As shown in FIG. 6A, the anode-side first spacers 21, 21A, 21B and the cathode-side first spacer 31 are in the Z-axis direction of the anode plate 12P or the cathode plate 12N when viewed from the Y-axis direction. It includes a rectangular portion having a dimension equivalent to the length, and a substantially right triangle portion protruding from one corner in the rectangular portion in the X-axis direction. The right-angled portion of the substantially right-angled triangular portion is connected to the corner of the rectangular portion, and the rectangular portion and the substantially right-angled triangular portion are integrally formed.
The inclined surface 231 corresponding to the hypotenuse of the substantially right triangle portion is one of the inclined surfaces of the anode side spacer 20 and the cathode side spacer 30. Although the inclined surface 231 is a linear inclined surface here, it may be an arc-shaped inclined surface recessed toward the rectangular portion in order to induce the flow of the liquid to be treated more smoothly.

図6(a)に示すように、陽極側第一スペーサ21、21A、21B、及び、陰極側スペーサ30の陰極側第一スペーサ31の矩形部分には、Z軸方向に離隔した複数の貫通孔232が形成される。ここでは、一例として、これらのスペーサに、2つの貫通孔232が形成される。
陽極板12P及び陰極板12Nには、これらスペーサの各貫通孔232に対応する位置に貫通孔(図示略)が形成される。そして、これらスペーサは、当該貫通孔232に対応する数mm径の貫通ボルト(図示略)で対応する電極板とともに一対の第一板部51aに固縛される。
As shown in FIG. 6A, a plurality of through holes separated in the Z-axis direction are formed in the rectangular portions of the anode-side first spacers 21, 21A, 21B, and the cathode-side first spacer 31 of the cathode-side spacer 30. 232 is formed. Here, as an example, two through holes 232 are formed in these spacers.
Through holes (not shown) are formed in the anode plate 12P and the cathode plate 12N at positions corresponding to the through holes 232 of these spacers. Then, these spacers are fixed to the pair of first plate portions 51a together with the corresponding electrode plates by the through bolts (not shown) having a diameter of several mm corresponding to the through holes 232.

図6(b)に示すように、陽極側第一スペーサ21と陰極側第一スペーサ31の略直角三角形部分におけるY軸方向の中央部には、Z軸方向に貫通した凹状の切欠部233が形成される。陽極側第一スペーサ21の切欠部233は、隣り合う二つの陽極板12Pの間に配置される電極板40の陰極部40Nを挟んで固定する。また、陰極側第一スペーサ31の切欠部233は、隣り合う二つの陰極板12Nの間に配置される電極板40の陽極部40Pを挟んで固定する。 As shown in FIG. 6B, a concave notch 233 penetrating in the Z-axis direction is provided at the center of the substantially right triangle portion of the anode-side first spacer 21 and the cathode-side first spacer 31 in the Y-axis direction. It is formed. The notch 233 of the anode-side first spacer 21 is fixed by sandwiching the cathode portion 40N of the electrode plate 40 arranged between the two adjacent anode plates 12P. Further, the notch 233 of the cathode side first spacer 31 is fixed by sandwiching the anode portion 40P of the electrode plate 40 arranged between the two adjacent cathode plates 12N.

図6(c)に示すように、陽極側第一スペーサ21AのXY平面における右上方の端部には、Y軸方向に凹んだ段状部234が形成される。電極モジュール5で積層方向の両端に位置する電極板40の片方、例えば、図4で最も上方に位置する電極板40の陰極部40Nが、陽極側第一スペーサ21Aの段状部234の凹みに配置される。そして、陽極側第一スペーサ21Aの段状部234と第一板部51aとで、電極板40の陰極部40Nを挟んで固定する。
また、図6(d)に示すように、陽極側第一スペーサ21BのXY平面における右下方の端部には、Y軸方向に凹んだ段状部235が形成される。電極モジュール5で積層方向の両端に位置する電極板40の片方、例えば、図4で最も下方に位置する電極板40の陰極部40Nが、陽極側第一スペーサ21Bの段状部235の凹みに配置される。そして、陽極側第一スペーサ21Bの段状部235と第一板部51aとで、電極板40の陰極部40Nを挟んで固定する。
As shown in FIG. 6 (c), a stepped portion 234 recessed in the Y-axis direction is formed at the upper right end portion of the anode-side first spacer 21A in the XY plane. One of the electrode plates 40 located at both ends of the electrode module 5 in the stacking direction, for example, the cathode portion 40N of the electrode plate 40 located at the uppermost position in FIG. 4 is recessed in the stepped portion 234 of the anode-side first spacer 21A. Be placed. Then, the cathode portion 40N of the electrode plate 40 is sandwiched and fixed between the stepped portion 234 of the anode-side first spacer 21A and the first plate portion 51a.
Further, as shown in FIG. 6D, a stepped portion 235 recessed in the Y-axis direction is formed at the lower right end portion of the anode-side first spacer 21B in the XY plane. One of the electrode plates 40 located at both ends of the electrode module 5 in the stacking direction, for example, the cathode portion 40N of the electrode plate 40 located at the lowermost position in FIG. 4 is recessed in the stepped portion 235 of the anode-side first spacer 21B. Be placed. Then, the cathode portion 40N of the electrode plate 40 is sandwiched and fixed between the stepped portion 235 of the anode-side first spacer 21B and the first plate portion 51a.

次に、陽極側スペーサ20の陽極側第二スペーサ22、及び、陰極側スペーサ30の陰極側第二スペーサ32の形状につき、詳述する。これらは、図2、図4に示すように互いの配置は異なるものの、図7にそれぞれの分解図を示すように、いずれも同一の形状である。これら第二スペーサ22、32の長さは、陽極板12Pまたは陰極板12NのZ軸方向の長さよりも短く、当該Z軸方向の長さの約半分程度の寸法が望ましい。
陽極側第二スペーサ22は、両端に凸部236を備えた板状のスペーサ片22Aと両端に直径が数mmの凹部237を備えた板状のスペーサ片22Bとで構成される。図7に示すように、スペーサ片22Bの凹部237は、スペーサ片22Bの板状の箇所から突出している。そして、具体的には、スペーサ片22Aの2つの凸部236とスペーサ片22Bの2つの凹部237とが互いに嵌合される(リベット止めされる)ことで一体となり、長方形状(または直線状)且つ板状の陽極側第二スペーサ22が形成される。
陰極側第二スペーサ32は、両端に凸部236を備えた板状のスペーサ片32Aと、両端に直径が数mmの凹部237を備えた板状のスペーサ片32Bとで構成される。図7に示すように、スペーサ片32Bの凹部237は、スペーサ片32Bの板状の箇所から突出している。そして、具体的には、スペーサ片32Aの2つの凸部236とスペーサ片32Bの2つの凹部237とが互いに嵌合される(リベット止めされる)ことで一体となり、長方形状(または直線状)且つ板状の陰極側第二スペーサ32が形成される。
Next, the shapes of the anode-side second spacer 22 of the anode-side spacer 20 and the cathode-side second spacer 32 of the cathode-side spacer 30 will be described in detail. Although they are arranged differently from each other as shown in FIGS. 2 and 4, they all have the same shape as shown in the exploded views of FIGS. 7. The length of these second spacers 22 and 32 is shorter than the length of the anode plate 12P or the cathode plate 12N in the Z-axis direction, and it is desirable that the dimensions are about half of the length in the Z-axis direction.
The anode-side second spacer 22 is composed of a plate-shaped spacer piece 22A having convex portions 236 at both ends and a plate-shaped spacer piece 22B having concave portions 237 having a diameter of several mm at both ends. As shown in FIG. 7, the recess 237 of the spacer piece 22B protrudes from the plate-shaped portion of the spacer piece 22B. Specifically, the two convex portions 236 of the spacer piece 22A and the two concave portions 237 of the spacer piece 22B are fitted (rivet-fastened) to each other to be integrated into a rectangular shape (or a linear shape). Moreover, a plate-shaped second spacer 22 on the anode side is formed.
The cathode-side second spacer 32 is composed of a plate-shaped spacer piece 32A having convex portions 236 at both ends and a plate-shaped spacer piece 32B having concave portions 237 having a diameter of several mm at both ends. As shown in FIG. 7, the recess 237 of the spacer piece 32B protrudes from the plate-shaped portion of the spacer piece 32B. Specifically, the two convex portions 236 of the spacer piece 32A and the two concave portions 237 of the spacer piece 32B are fitted (rivet-fastened) to each other to be integrated into a rectangular shape (or a linear shape). Moreover, a plate-shaped second spacer 32 on the cathode side is formed.

陽極側第二スペーサ22は、陽極板12Pの内部に形成された2つの貫通孔(図示せず。ただし、凹部237と同等の微小な貫通孔)に、陽極板12Pの一方の面からスペーサ片22Bの2つの凹部237を挿通させ、陽極板12Pの他方の面からスペーサ片22Aの2つの凸部236を対応する当該凹部237に嵌合させることで、陽極板12Pに固定される。
図5に示すように、陽極側第二スペーサ22は、その中心が外筒2のZ軸方向の中央であって、且つ、当該中心が、開口52cのX軸方向の中心と同等の位置に配置される。
図5の白抜き矢印は被処理液の流れの一例を示すが、被処理液がX軸に沿って流れた際、X軸方向(中心軸方向)から傾斜した傾斜面、すなわち、陽極側第一スペーサ21の傾斜面231と陽極側第二スペーサ22の傾斜面238とにより、排出口4に向けて被処理液の流れを効果的に誘導する。なお、当該傾斜面238は、ここでは直線状の形状としているが、より滑らかに被処理液の流れを誘導するため、排出口4に向かって窪んだ円弧状の形状としてもよい。
すなわち、陽極側第二スペーサ22は、被処理液の流れを分流して陽極側第一スペーサ21に直接的に衝突する被処理液の流れを減じ、且つ、陽極側第一スペーサ21が整流した被処理液の流れが阻害されるのを防止するため、陽極側第一スペーサ21と陽極側第二スペーサ22の2つのスペーサが陽極板12P近傍に配置されることで、陽極側第一スペーサ21のみが配置される場合に比べ、陽極板12P近傍におけるスケール等の付着物の堆積をより効果的に抑制できる。
なお、設計に応じて、陽極側スペーサ20として、陽極側第二スペーサ22を配置せず、陽極側第一スペーサ21のみを配置する構成としてもよい。
The second spacer 22 on the anode side is a spacer piece from one surface of the anode plate 12P in two through holes (not shown, but a small through hole equivalent to the recess 237) formed inside the anode plate 12P. The two concave portions 237 of the 22B are inserted through, and the two convex portions 236 of the spacer piece 22A are fitted into the corresponding concave portions 237 from the other surface of the anode plate 12P, thereby being fixed to the anode plate 12P.
As shown in FIG. 5, the center of the anode-side second spacer 22 is the center of the outer cylinder 2 in the Z-axis direction, and the center is at a position equivalent to the center of the opening 52c in the X-axis direction. Be placed.
The white arrow in FIG. 5 shows an example of the flow of the liquid to be treated. When the liquid to be treated flows along the X axis, the inclined surface inclined from the X-axis direction (central axis direction), that is, the anode side first. The inclined surface 231 of the spacer 21 and the inclined surface 238 of the second spacer 22 on the anode side effectively guide the flow of the liquid to be treated toward the discharge port 4. Although the inclined surface 238 has a linear shape here, it may have an arc shape recessed toward the discharge port 4 in order to guide the flow of the liquid to be treated more smoothly.
That is, the anode-side second spacer 22 divides the flow of the liquid to be treated to reduce the flow of the liquid to be treated that directly collides with the anode-side first spacer 21, and the anode-side first spacer 21 rectifies the flow. In order to prevent the flow of the liquid to be treated from being obstructed, the two spacers, the anode-side first spacer 21 and the anode-side second spacer 22, are arranged in the vicinity of the anode plate 12P, so that the anode-side first spacer 21 It is possible to more effectively suppress the accumulation of deposits such as scale in the vicinity of the anode plate 12P as compared with the case where only the anode plate 12P is arranged.
Depending on the design, the anode-side spacer 20 may be configured such that the anode-side second spacer 22 is not arranged and only the anode-side first spacer 21 is arranged.

陰極側第二スペーサ32は、隣り合う二つの陰極板12Nの間に配置される電極板40の内部に形成された2つの貫通孔(図示せず。ただし、凹部237と同等の微小な貫通孔)に、当該電極板40の一方の面からスペーサ片32Bの2つの凹部237を挿通させ、当該電極板40の他方の面からスペーサ片32Aの2つの凸部236を対応する当該凹部237に嵌合させることで、当該電極板40に固定される。
図2に示すように、陰極側第二スペーサ32は、その中心が外筒2のZ軸方向の中央であって、且つ、当該中心が、開口52dのX軸方向の中心と同等の位置に配置される。
被処理液が導入口3から導入された際、X軸方向(中心軸方向)から傾斜した傾斜面、すなわち、陰極側第一スペーサ31の傾斜面231と陰極側第二スペーサ32の傾斜面238とにより、X軸方向に向けて被処理液の流れを効果的に誘導する。なお、当該傾斜面238は、ここでは直線状の形状としているが、より滑らかに被処理液の流れを誘導するため、マイナス(-)X軸方向に向かって窪んだ円弧状の形状としてもよい。 すなわち、陰極側第二スペーサ32は、被処理液の流れを分流して陰極側第一スペーサ31に直接的に衝突する被処理液の流れを減じ、且つ、陰極側第一スペーサ31が整流した被処理液の流れが阻害されるのを防止するため、陰極側第一スペーサ31と陰極側第二スペーサ32の2つのスペーサが陰極板12N近傍に配置されることで、陰極側第一スペーサ31のみが配置される場合に比べ、陰極板12N近傍におけるスケール等の付着物の堆積をより効果的に抑制できる。
なお、設計に応じて、陰極側スペーサ30として、陰極側第二スペーサ32を配置せず、陰極側第一スペーサ31のみを配置する構成としてもよい。
The second spacer 32 on the cathode side has two through holes formed inside the electrode plate 40 arranged between two adjacent cathode plates 12N (not shown, but a small through hole equivalent to the recess 237). ), The two concave portions 237 of the spacer piece 32B are inserted from one surface of the electrode plate 40, and the two convex portions 236 of the spacer piece 32A are fitted into the corresponding concave portions 237 from the other surface of the electrode plate 40. By matching, it is fixed to the electrode plate 40.
As shown in FIG. 2, the center of the cathode-side second spacer 32 is the center of the outer cylinder 2 in the Z-axis direction, and the center is at a position equivalent to the center of the opening 52d in the X-axis direction. Be placed.
When the liquid to be treated is introduced from the introduction port 3, an inclined surface inclined from the X-axis direction (central axis direction), that is, an inclined surface 231 of the cathode side first spacer 31 and an inclined surface 238 of the cathode side second spacer 32. Therefore, the flow of the liquid to be treated is effectively guided in the X-axis direction. Although the inclined surface 238 has a linear shape here, it may have an arc shape recessed in the minus (-) X-axis direction in order to induce the flow of the liquid to be treated more smoothly. .. That is, the cathode-side second spacer 32 divides the flow of the liquid to be treated to reduce the flow of the liquid to be treated that directly collides with the cathode-side first spacer 31, and the cathode-side first spacer 31 is rectified. In order to prevent the flow of the liquid to be treated from being obstructed, two spacers, the cathode side first spacer 31 and the cathode side second spacer 32, are arranged in the vicinity of the cathode plate 12N, so that the cathode side first spacer 31 It is possible to more effectively suppress the accumulation of deposits such as scale in the vicinity of the cathode plate 12N as compared with the case where only the cathode plate is arranged.
Depending on the design, the cathode side spacer 30 may be configured such that the cathode side second spacer 32 is not arranged and only the cathode side first spacer 31 is arranged.

なお、電解装置1は、図4に二点鎖線で示すように、複数のバイポーラ式電極板40が互いに接触しないように、複数の球状またはY軸方向に細長いラグビーボール状の絶縁性のスペーサ33を備えてもよい。スペーサ33のXZ平面における寸法は、電極板40のXZ平面における寸法に比べ、できるだけ小さいことが望ましい。先述のように、図4では、理解容易のため簡略化した図を示す都合上、スペーサ33のY軸方向の長さが実際よりも大きく表現されている。
スペーサ33は、陽極側第二スペーサ22及び陰極側第二スペーサ32と同様、両端に凸部を備えた半球状または半ラグビーボール状のスペーサ片と、両端に直径が数mmの凹部(陽極側第二スペーサ22及び陰極側第二スペーサ32と同様、突出している)を備えた半球状または半ラグビーボール状のスペーサ片とで構成される。
スペーサ33は、電極板40の内部に形成された2つの貫通孔(図示せず。ただし、当該凹部と同等の微小な貫通孔)に、電極板40の一方の面から一方のスペーサ片の2つの凹部を挿通させ、電極板40の他方の面から他方のスペーサ片の2つの凸部を対応する当該凹部に嵌合させることで、電極板40に固定される。
なお、スペーサ33は、ボルト43に貫通される中空円柱状の形状としてもよい。この場合、スペーサ33は、電極板40の陽極部40PとY軸方向に向かい合う陰極部40Nに挟まれ、ボルト43で締結され固定される。
As shown by the alternate long and short dash line in FIG. 4, the electrolytic device 1 has a plurality of spherical or rugby ball-shaped insulating spacers 33 elongated in the Y-axis direction so that the plurality of bipolar electrode plates 40 do not come into contact with each other. May be provided. It is desirable that the dimensions of the spacer 33 in the XZ plane are as small as possible compared to the dimensions of the electrode plate 40 in the XZ plane. As described above, in FIG. 4, the length of the spacer 33 in the Y-axis direction is expressed larger than the actual length for the convenience of showing a simplified diagram for easy understanding.
Similar to the anode side second spacer 22 and the cathode side second spacer 32, the spacer 33 is a hemispherical or semi-rugby ball-shaped spacer piece having protrusions at both ends, and recesses having a diameter of several mm at both ends (anode side). It is composed of a hemispherical or semi-rugby ball-shaped spacer piece provided with a second spacer 22 and a second spacer 32 on the cathode side (similar to the second spacer 32 on the cathode side).
The spacer 33 is formed in two through holes (not shown, but a small through hole equivalent to the recess) formed inside the electrode plate 40 from one surface of the electrode plate 40 to two of the spacer pieces. It is fixed to the electrode plate 40 by inserting the two concave portions and fitting the two convex portions of the other spacer piece from the other surface of the electrode plate 40 into the corresponding concave portions.
The spacer 33 may have a hollow columnar shape that penetrates the bolt 43. In this case, the spacer 33 is sandwiched between the anode portion 40P of the electrode plate 40 and the cathode portion 40N facing the Y-axis direction, and is fastened and fixed by bolts 43.

[3.電解装置1の使用例]
本実施形態の電解装置1では、陽極側スペーサ20及び陰極側スペーサ30が、積層される電極板同士の接触を防止する絶縁性スペーサとしての機能に加え、スケール等の付着物の堆積を効果的に抑制する整流板としての機能を併せ持つ。従って、電解装置1は、小型化が可能であり、且つ、メンテナンスの頻度を低減することができるので長期運転が可能である。
電解装置1は、被処理液の種類によって、電解により生成する生成物が異なるが、例えば、被処理液を海水や塩水とした場合には、生成物は次亜塩素酸ナトリウム(次亜塩素酸ソーダ)となる。
従って、小型化可能かつ長期運転が可能な電解装置1は、本年、世界的に流行している新型コロナウイルスの消毒に有効な次亜塩素酸ナトリウム生成装置として有用である。
一般的に、市販されている次亜塩素酸ナトリウムは、水で希釈して消毒液として使用するため、不便である。しかし、電解装置1によれば、人体に影響の少ない安全な濃度且つ薬効のある濃度として厚生労働省が推奨する濃度(0.05%、500mg/L)の次亜塩素酸ナトリウムを直接的に生成することができる。すなわち、電解装置1が生成する次亜塩素酸ナトリウムは、水による希釈が不要となるので、新型コロナウイルスに限らず、その他のウイルスや細菌などの消毒のため、多量にプラントや公道に散布する場合、特に有用である。
[3. Example of use of electrolyzer 1]
In the electrolytic device 1 of the present embodiment, the anode-side spacer 20 and the cathode-side spacer 30 function as an insulating spacer for preventing contact between the laminated electrode plates, and also effectively deposit deposits such as scales. It also has a function as a rectifying plate that suppresses. Therefore, the electrolytic device 1 can be miniaturized and the frequency of maintenance can be reduced, so that long-term operation is possible.
The product produced by electrolysis of the electrolytic device 1 differs depending on the type of the liquid to be treated. For example, when the liquid to be treated is seawater or salt water, the product is sodium hypochlorite (hypochlorous acid). Soda).
Therefore, the electrolyzer 1 that can be miniaturized and can be operated for a long period of time is useful as a sodium hypochlorite producing device that is effective for disinfecting the new coronavirus that is prevalent worldwide this year.
Generally, commercially available sodium hypochlorite is inconvenient because it is diluted with water and used as a disinfectant. However, according to the electrolytic device 1, sodium hypochlorite at a concentration (0.05%, 500 mg / L) recommended by the Ministry of Health, Labor and Welfare as a safe concentration with little effect on the human body and a medicinal effect is directly produced. can do. That is, the sodium hypochlorite produced by the electrolytic device 1 does not need to be diluted with water, so that it is sprayed in large quantities on plants and public roads to disinfect not only the new coronavirus but also other viruses and bacteria. Especially useful if.

電解装置1による次亜塩素酸ナトリウムの生成原理を示す。被処理液は、海水または塩水である。
陽極 : 2Cl → Cl2+2e
陰極 : 2H2O+2e → 2OH+H2
2Na+2OH → 2NaOH
陽極(陽極板12P、電極板40の陽極部40P)で発生した塩素(Cl2)は、陰極(陰極板12N、電極板40の陰極部40N)で発生した水酸化ナトリウム(NaOH)と電解槽内で以下のように反応して、次亜塩素酸ナトリウム(NaClO)を生成する。
Cl2+2NaOH → NaClO+NaCl+H2O
The principle of producing sodium hypochlorite by the electrolyzer 1 is shown. The liquid to be treated is seawater or salt water.
Anode: 2Cl → Cl 2 + 2e
Cathode: 2H 2 O + 2e → 2OH + H 2
2Na + + 2OH → 2NaOH
Chlorine (Cl 2 ) generated at the anode (anode plate 12P, anode portion 40P of the electrode plate 40) is sodium hydroxide (NaOH) generated at the cathode (cathode plate 12N, cathode portion 40N of the electrode plate 40) and an electrolytic cell. The reaction is as follows to produce sodium hypochlorite (NaClO).
Cl 2 + 2NaOH → NaClO + NaCl + H 2 O

電解装置1は、例えば、電流密度を5A/dm2(アンペア/平方デシメートル)に設定し、安価な夜間電力を用いて約12時間電解することで、被処理液に含まれる低濃度の塩素イオン(100mg/L~2000mg/L)を全て、新型コロナウイルス対策で厚生労働省推奨の濃度(0.05%、500mg/L)且つ約1トンの次亜塩素酸ナトリウム(100mg/L~2000mg/L)に変換することができる。
従って、例えば、電解装置1を小型トラックの荷台に設置し、消毒液散布予定日の前日の夜間に電解装置1を運転すれば、当該予定日当日の日中に、広いスペースである焼却炉のプラットフォームや公道等に、厚生労働省推奨の濃度の次亜塩素酸ナトリウム消毒液を散布できる。
The electrolyzer 1 sets, for example, a current density of 5 A / dm 2 (ampere / sq. Decimeter) and electrolyzes for about 12 hours using inexpensive nighttime power to obtain a low concentration of chlorine contained in the liquid to be treated. All ions (100mg / L-2000mg / L) are at the concentration recommended by the Ministry of Health, Labor and Welfare (0.05%, 500mg / L) for the new corona virus countermeasures, and about 1 ton of sodium hypochlorite (100mg / L-2000mg / L). Can be converted to L).
Therefore, for example, if the electrolytic device 1 is installed on the loading platform of a light truck and the electrolytic device 1 is operated at night on the day before the scheduled disinfectant spraying day, the incinerator, which is a large space, can be operated during the day on the scheduled day. Sodium hypochlorite disinfectant at the concentration recommended by the Ministry of Health, Labor and Welfare can be sprayed on platforms and public roads.

[4.変形例]
図8に、実施形態の電解装置1の電極モジュール5を、モノポーラ式とした場合の電極モジュール5′を示す。図8は、図4に対応する模式図である。図8に示すモノポーラ式の電極モジュール5′は、図4に示すバイポーラ式の電極モジュール5に配置される電極板40が存在しない点が大きく異なる。
図8では、図4と同様、陽極の部分を薄いドット模様で示し、陰極の部分を濃いドット模様で示す。
また、図8では、図4と同一の構成については同一番号を付し、効果を含め、説明を省略する。
[4. Modification example]
FIG. 8 shows an electrode module 5'when the electrode module 5 of the electrolytic device 1 of the embodiment is a monopolar type. FIG. 8 is a schematic diagram corresponding to FIG. The monopolar electrode module 5'shown in FIG. 8 is largely different in that the electrode plate 40 arranged in the bipolar electrode module 5 shown in FIG. 4 does not exist.
In FIG. 8, as in FIG. 4, the anode portion is shown by a light dot pattern, and the cathode portion is shown by a dark dot pattern.
Further, in FIG. 8, the same configuration as in FIG. 4 is assigned the same number, and the description including the effect is omitted.

モノポーラ式の電極モジュール5′では、複数の陰極板12Nのうち、隣り合う二つの陰極板12Nの間に陽極板12Pが配置される。従って、陰極側第一スペーサ31の切欠部233は、陽極板12Pを挟んで固定する。
また、陽極側第一スペーサ21の切欠部233は、陰極板12Nを挟んで固定する。
さらに、モノポーラ式の電極モジュール5′では、バイポーラ式の電極モジュール5の電極板40が存在しないので、陰極側第二スペーサ32は、隣り合う二つの陰極板12Nの間に配置される陽極板12Pの内部に形成された2つの貫通孔(図示せず。ただし、凹部237と同等の微小な貫通孔)に、当該陽極板12Pの一方の面からスペーサ片32Bの2つの凹部237を挿通させ、当該陽極板12Pの他方の面からスペーサ片32Aの2つの凸部236を対応する当該凹部237に嵌合させることで、当該陽極板12Pに固定される。すなわち、陽極板12Pには、陽極側第二スペーサ22と陰極側第二スペーサ32が固定される。
In the monopolar electrode module 5', the anode plate 12P is arranged between two adjacent cathode plates 12N among the plurality of cathode plates 12N. Therefore, the notch 233 of the cathode side first spacer 31 is fixed by sandwiching the anode plate 12P.
Further, the notch 233 of the first spacer 21 on the anode side is fixed by sandwiching the cathode plate 12N.
Further, in the monopolar type electrode module 5', since the electrode plate 40 of the bipolar type electrode module 5 does not exist, the cathode side second spacer 32 is an anode plate 12P arranged between two adjacent cathode plates 12N. The two recesses 237 of the spacer piece 32B are inserted from one surface of the anode plate 12P into the two through holes (not shown, but a minute through hole equivalent to the recess 237) formed inside the anode plate 12P. The two convex portions 236 of the spacer piece 32A are fixed to the anode plate 12P by fitting the two convex portions 236 of the spacer piece 32A into the corresponding concave portions 237 from the other surface of the anode plate 12P. That is, the anode-side second spacer 22 and the cathode-side second spacer 32 are fixed to the anode plate 12P.

また、電極モジュール5と同様に、電極モジュール5′にスペーサ33を配置してもよい。ただし、スペーサ33は、陽極板12Pに固定される。具体的には、陽極板12Pの内部(例えば、中央部)に形成された2つの貫通孔(図示せず)に、陽極板12Pの一方の面からスペーサ33の一方のスペーサ片の2つの凹部を挿通させ、当該陽極板12Pの他方の面からスペーサ33の他方のスペーサ片の2つの凸部を対応する当該凹部に嵌合させることで、陽極板12Pに固定される。 Further, similarly to the electrode module 5, the spacer 33 may be arranged in the electrode module 5'. However, the spacer 33 is fixed to the anode plate 12P. Specifically, in the two through holes (not shown) formed inside the anode plate 12P (for example, the central portion), two recesses of one spacer piece of the spacer 33 from one surface of the anode plate 12P. Is inserted and the two convex portions of the other spacer piece of the spacer 33 are fitted into the corresponding concave portions from the other surface of the anode plate 12P, thereby being fixed to the anode plate 12P.

以上のとおり、本実施形態及び変形例の電解装置では、導入口3と排出口4の近傍に、それぞれ陰極側スペーサ30と陽極側スペーサ20が設けられる。しかし、設計に応じて、導入口3と排出口4のいずれか一方のみに、陽極側スペーサ20または陰極側スペーサ30のいずれか一方のみを配置してもよい。
例えば、本実施形態及び変形例の電解装置において、陽極側スペーサ20のみを配置して、排出口4近傍で被処理液の流れを整流してもよいし、陰極側スペーサ30のみを配置して、導入口3近傍で被処理液の流れを整流してもよい。
As described above, in the electrolytic apparatus of the present embodiment and the modified example, the cathode side spacer 30 and the anode side spacer 20 are provided in the vicinity of the introduction port 3 and the discharge port 4, respectively. However, depending on the design, only one of the anode-side spacer 20 and the cathode-side spacer 30 may be arranged in only one of the introduction port 3 and the discharge port 4.
For example, in the electrolytic device of the present embodiment and the modified example, only the anode side spacer 20 may be arranged to rectify the flow of the liquid to be treated in the vicinity of the discharge port 4, or only the cathode side spacer 30 may be arranged. , The flow of the liquid to be treated may be rectified in the vicinity of the introduction port 3.

また、本実施形態及び変形例の電解装置は、導入口3近傍に陰極通電ブロック10Nが設けられ、排出口4近傍に陽極通電ブロック10Pが設けられているが、導入口3近傍に陽極通電ブロック10Pが設けられ、排出口4近傍に陰極通電ブロック10Nが設けられてもよい。この場合にも、陽極通電板11Pに電源装置6の正電位(プラス電位)が印加され、陰極通電板11Nに負電位(マイナス電位)が印加される。そして、この場合に、陽極側スペーサ20は、一方の開口(導入口3)から中心軸方向(X軸方向)に向けて、被処理液の流れを誘導し、陰極側スペーサ30は、中心軸方向(X軸方向)から他方の開口(排出口4)に向けて、被処理液の流れを誘導することになる。 Further, in the electrolytic device of the present embodiment and the modified example, the cathode energization block 10N is provided in the vicinity of the introduction port 3, and the anode energization block 10P is provided in the vicinity of the discharge port 4, but the anode energization block is provided in the vicinity of the introduction port 3. 10P may be provided, and a cathode energizing block 10N may be provided in the vicinity of the discharge port 4. Also in this case, the positive potential (positive potential) of the power supply device 6 is applied to the anode energizing plate 11P, and the negative potential (minus potential) is applied to the cathode energizing plate 11N. Then, in this case, the anode-side spacer 20 guides the flow of the liquid to be treated from one opening (introduction port 3) toward the central axis direction (X-axis direction), and the cathode-side spacer 30 is the central axis. The flow of the liquid to be treated is guided from the direction (X-axis direction) toward the other opening (discharge port 4).

従って、特許請求の範囲においては、第一極性の第一電極板は、陽極性の陽極板または陰極性の陰極板のいずれか一方を意味する。また、第二極性の第二電極板は、第一極性の第一電極板とは逆の極性の電極板を意味する。従って、第一極性の第一電極板が、陽極性の陽極板の場合には、第二極性の第二電極板は陰極性の陰極板であり、第一極性ベースは実施形態または変形例における第一ベース、第二極性ベースは実施形態または変形例における第二ベース、第一電極側スペーサと第二電極側スペーサはそれぞれ実施形態または変形例における陽極側スペーサと陰極側スペーサを意味する。また、第一極性の第一電極板が、陰極性の陰極板である場合には、第二極性の第二電極板は陽極性の陽極板であり、第一極性ベースは上記第二ベース、第二極性ベースは上記第一ベース、第一電極側スペーサと第二電極側スペーサはそれぞれ実施形態または変形例における陰極側スペーサと陽極側スペーサを意味する。 Therefore, in the claims, the first electrode plate of the first polarity means either an anodic anode plate or a cathodic cathode plate. Further, the second electrode plate having the second polarity means an electrode plate having the opposite polarity to the first electrode plate having the first polarity. Therefore, when the first electrode plate of the first polarity is an anodic anode plate, the second electrode plate of the second polarity is a cathodic cathode plate, and the first polarity base is an embodiment or a modification. The first base and the second polar base mean the second base in the embodiment or the modified example, and the first electrode side spacer and the second electrode side spacer mean the anode side spacer and the cathode side spacer in the embodiment or the modified example, respectively. When the first electrode plate of the first polarity is a cathode plate, the second electrode plate of the second polarity is an anode plate, and the first polarity base is the second base. The second polar base means the first base, and the first electrode side spacer and the second electrode side spacer mean the cathode side spacer and the anode side spacer in the embodiment or the modified example, respectively.

1 電解装置
2 外筒
2a 側面
3 導入口
4 排出口
5、5′ 電極モジュール
6 電源装置
10P 陽極通電ブロック
10N 陰極通電ブロック
11P 陽極通電板
11N 陰極通電板
12P 陽極板
12N 陰極板
13P 第一ベース
13N 第二ベース
14P 陽極端子箱
14N 陰極端子箱
15a 開口
15b 貫通孔
15N、15P フランジ
16 ガスケット
17 ガスケット
18 貫通孔
20 陽極側スペーサ
21、21A、21B 陽極側第一スペーサ
22 陽極側第二スペーサ
22A スペーサ片
22B スペーサ片
30 陰極側スペーサ
31 陰極側第一スペーサ
32 陰極側第二スペーサ
32A スペーサ片
32B スペーサ片
33 球形スペーサ
40 電極板
40P 陽極部(陽極性の部位)
40N 陰極部(陰極性の部位)
43 ボルト
44 ネジ(螺子)
50 電極支持枠
50b 円形の鍔部
51 第一支持枠
51a 第一板部
51b 第一鍔部
52 第二支持枠
52a 第二板部
52b 第二鍔部
52c 開口
52d 開口
53 溶植ボルト
231 傾斜面
232 貫通孔
233 切欠部
234 段状部
235 段状部
236 凸部
237 凹部
238 傾斜面
1 Electrolytic device 2 Outer cylinder 2a Side surface 3 Inlet port 4 Discharge port 5, 5'Electrode module 6 Power supply device 10P Anode energization block 10N Catabol energization block 11P Anode energization plate 11N Cathode energization plate 12P Anode plate 12N Cathode plate 13P First base 13N 2nd base 14P anode terminal box 14N cathode terminal box 15a opening 15b through hole 15N, 15P flange 16 gasket 17 gasket 18 through hole 20 anode side spacer 21, 21A, 21B anode side first spacer 22 anode side second spacer 22A spacer piece 22B spacer piece 30 cathode side spacer 31 cathode side first spacer 32 cathode side second spacer 32A spacer piece 32B spacer piece 33 spherical spacer 40 electrode plate 40P anode part (anodic part)
40N Cathodic part (cathodic part)
43 bolts 44 screws (screws)
50 Electrode support frame 50b Circular flange 51 1 First support frame 51a First plate 51b First flange 52 Second support frame 52a Second plate 52b Second flange 52c Open 52d Open 53 Welding bolt 231 Inclined surface 232 Through hole 233 Notch 234 Stepped part 235 Stepped part 236 Convex part 237 Concave part 238 Inclined surface

本発明の電解装置は、円筒形状に形成され、被処理液の導入口と排出口とが中心軸方向に互いに離隔してそれぞれ側面に配置された外筒と、前記中心軸方向と直交する積層方向に等間隔で、金属製且つ板状の第一極性ベースに接続されて前記外筒の内部で前記中心軸方向に延在し、且つ、前記導入口及び前記排出口のうちの一方の開口の近傍に配置された第一極性の複数の第一電極板と、前記積層方向に等間隔で、金属製且つ板状の第二極性ベースに接続されて前記外筒の内部で前記中心軸方向に延在し、且つ、前記導入口及び前記排出口のうちの他方の開口の近傍に配置された第二極性の複数の第二電極板と、前記複数の第一電極板の全ての間に配置された絶縁性の複数の第一電極側スペーサを有する。前記一方の開口は、前記外筒の径方向外側において、前記複数の第一電極板の間に形成される前記積層方向の隙間から前記中心軸方向及び前記積層方向に直交する方向に位置し、前記他方の開口は、前記外筒の径方向外側において、前記複数の第二電極板の間に形成される前記積層方向の隙間から前記中心軸方向及び前記積層方向に直交する方向に位置し、前記複数の第一電極側スペーサは、前記中心軸方向から傾斜した傾斜面を備え、前記一方の開口から前記中心軸方向に向けて、または、前記中心軸方向から前記一方の開口に向けて、前記被処理液の流れを誘導するものであり、前記第一電極側スペーサは、隣り合う二つの前記第一電極板の端部に配置されて前記端部における前記二つの第一電極板の間の隙間を実質的に全て塞ぎ、且つ、前記二つの第一電極板の間に位置する第二極性の電極板を挟んで固定する第一スペーサを備えるThe electrolyzer of the present invention is formed in a cylindrical shape, and has an outer cylinder in which an inlet and an outlet for a liquid to be treated are separated from each other in the central axis direction and arranged on the side surfaces thereof, and a laminate orthogonal to the central axis direction. Connected to a metal and plate-shaped primary polarity base at equal intervals in the direction , it extends in the central axis direction inside the outer cylinder, and one of the inlet and the outlet is opened. It is connected to a plurality of first electrode plates of the first polarity arranged in the vicinity of the outer cylinder and a metal and plate-shaped second polarity base at equal intervals in the stacking direction, and inside the outer cylinder in the direction of the central axis. Between all of the plurality of second electrode plates of the second polarity and the plurality of second electrode plates of the second polarity arranged in the vicinity of the other opening of the introduction port and the discharge port. It has a plurality of insulating first electrode side spacers arranged. The one opening is located on the radial outer side of the outer cylinder in the direction orthogonal to the central axis direction and the stacking direction from the gap in the stacking direction formed between the plurality of first electrode plates, and the other . The opening is located on the radial outer side of the outer cylinder in the direction orthogonal to the central axis direction and the stacking direction from the gap in the stacking direction formed between the plurality of second electrode plates, and the plurality of first electrodes are located . The one-electrode side spacer has an inclined surface inclined from the central axis direction, and the liquid to be treated is directed from the one opening toward the central axis direction or from the central axis direction toward the one opening. The first electrode side spacer is arranged at the ends of two adjacent first electrode plates and substantially creates a gap between the two first electrode plates at the ends. It is provided with a first spacer that closes all of them and sandwiches and fixes a second polarity electrode plate located between the two first electrode plates .

Claims (5)

円筒形状に形成され、被処理液の導入口と排出口とが中心軸方向に互いに離隔してそれぞれ側面に配置された外筒と、
金属製且つ板状の第一極性ベースに等間隔で接続されて前記外筒の内部で前記中心軸方向に延在し、且つ、前記導入口及び前記排出口のうちの一方の開口の近傍に配置された第一極性の複数の第一電極板と、
金属製且つ板状の第二極性ベースに等間隔で接続されて前記外筒の内部で前記中心軸方向に延在し、且つ、前記導入口及び前記排出口のうちの他方の開口の近傍に配置された第二極性の複数の第二電極板と、
前記複数の第一電極板の全ての間に配置された絶縁性の複数の第一電極側スペーサと
を有し、
前記一方の開口は、前記複数の第一電極板の間に形成される隙間から前記外筒の径方向外側に位置し、
前記複数の第一電極側スペーサは、前記中心軸方向から傾斜した傾斜面を備え、前記一方の開口から前記中心軸方向に向けて、または、前記中心軸方向から前記一方の開口に向けて、前記被処理液の流れを誘導する電解装置。
An outer cylinder formed in a cylindrical shape and having an inlet and an outlet for the liquid to be treated separated from each other in the central axis direction and arranged on the side surfaces thereof.
It is connected to a metal and plate-shaped primary polarity base at equal intervals, extends in the central axis direction inside the outer cylinder, and is near one of the openings of the inlet and the outlet. Multiple first electrode plates of the first polarity arranged, and
It is connected to a metal and plate-shaped second polar base at equal intervals, extends in the central axis direction inside the outer cylinder, and is in the vicinity of the other opening of the introduction port and the discharge port. Multiple second electrode plates of the second polarity arranged, and
It has a plurality of insulating first electrode side spacers arranged between all of the plurality of first electrode plates.
The one opening is located radially outside the outer cylinder from the gap formed between the plurality of first electrode plates.
The plurality of first electrode-side spacers have an inclined surface inclined from the central axis direction, and from the one opening toward the central axis direction, or from the central axis direction toward the one opening. An electrolytic device that guides the flow of the liquid to be treated.
前記第一電極側スペーサは、隣り合う二つの前記第一電極板の端部に配置されて当該端部における前記隙間を実質的に全て塞ぎ、且つ、前記二つの第一電極板の間に位置する第二極性の電極板を挟んで固定する第一スペーサを備える請求項1に記載の電解装置。 The first electrode side spacer is arranged at the end portions of the two adjacent first electrode plates, substantially completely closes the gap at the end portions, and is located between the two first electrode plates. The electrolyzer according to claim 1, further comprising a first spacer that sandwiches and fixes a bipolar electrode plate. 前記第一電極側スペーサは、前記第一電極板または前記第二極性の電極板に形成された貫通孔を介して、前記貫通孔を両側から挟んで嵌合することで一体化され、前記被処理液の流れを分流する第二スペーサをさらに備える請求項2に記載の電解装置。 The first electrode side spacer is integrated by sandwiching and fitting the through hole from both sides via a through hole formed in the first electrode plate or the second polar electrode plate, and is integrated. The electrolyzer according to claim 2, further comprising a second spacer for dividing the flow of the treatment liquid. 前記複数の第二電極板の全ての間に配置された絶縁性の複数の第二電極側スペーサをさらに有し、
前記一方の開口は、前記排出口であり、
前記他方の開口は、前記導入口であり、且つ、前記複数の第二電極板の間に形成される隙間から前記外筒の径方向外側に位置し、
前記複数の第二電極側スペーサは、前記中心軸方向から傾斜した傾斜面を備え、前記導入口から前記中心軸方向に向けて前記被処理液の流れを誘導し、
前記第一スペーサ及び前記第二スペーサは、前記中心軸方向から前記排出口に向けて、前記被処理液の流れを誘導する請求項3に記載の電解装置。
Further having a plurality of insulating second electrode side spacers arranged between all of the plurality of second electrode plates.
The one opening is the outlet.
The other opening is the introduction port and is located radially outside the outer cylinder from the gap formed between the plurality of second electrode plates.
The plurality of second electrode side spacers are provided with an inclined surface inclined from the central axis direction, and guide the flow of the liquid to be treated from the introduction port toward the central axis direction.
The electrolyzer according to claim 3, wherein the first spacer and the second spacer guide the flow of the liquid to be treated from the central axis direction toward the discharge port.
前記第一電極板及び前記第二電極板を含み、複数の電極板が積層されて四角柱形状に形成され、前記積層の方向が前記中心軸方向に対し直交して配置される電極モジュールと、
前記積層の方向で前記電極モジュールを挟み込む一対の第一支持枠と、
前記中心軸方向及び前記積層の方向の双方に垂直な方向で前記一対の第一支持枠を挟み込んで前記第一支持枠と固定される一対の第二支持枠と
をさらに有し、
前記第一支持枠は、
前記電極モジュールの前記中心軸方向の長さに対応する矩形状の第一板部と、
前記第一板部に一体形成され、前記中心軸方向に所定間隔で配置された複数の第一鍔部とを備え、
前記第二支持枠は、
前記電極モジュールの前記中心軸方向の長さに対応する矩形状の第二板部と、
前記第二板部に一体形成され、前記中心軸方向に前記所定間隔で配置された複数の第二鍔部とを備え、
前記第一支持枠及び前記第二支持枠が固定された状態では、前記第一鍔部と前記第二鍔部とが組み合わされて前記外筒の内径と略同一またはやや小さい外径を持つ円形の鍔部が形成される請求項1から請求項4のいずれか一項に記載の電解装置。
An electrode module including the first electrode plate and the second electrode plate, in which a plurality of electrode plates are laminated to form a quadrangular prism shape, and the direction of the stacking is orthogonal to the central axis direction.
A pair of first support frames that sandwich the electrode module in the stacking direction, and
Further having a pair of second support frames fixed to the first support frame by sandwiching the pair of first support frames in a direction perpendicular to both the central axis direction and the stacking direction.
The first support frame is
A rectangular first plate portion corresponding to the length of the electrode module in the central axis direction,
It is provided with a plurality of first flange portions integrally formed with the first plate portion and arranged at predetermined intervals in the central axis direction.
The second support frame is
A rectangular second plate portion corresponding to the length of the electrode module in the central axis direction,
It is provided with a plurality of second flange portions integrally formed with the second plate portion and arranged at the predetermined intervals in the central axis direction.
In a state where the first support frame and the second support frame are fixed, the first flange portion and the second flange portion are combined to form a circle having an outer diameter substantially the same as or slightly smaller than the inner diameter of the outer cylinder. The electrolyzer according to any one of claims 1 to 4, wherein the flange portion of the above is formed.
JP2020141678A 2020-08-25 2020-08-25 Electrolyzer Active JP6828212B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020141678A JP6828212B1 (en) 2020-08-25 2020-08-25 Electrolyzer
KR1020237007170A KR102559708B1 (en) 2020-08-25 2021-08-13 Electrolytic apparatus
MX2023001968A MX2023001968A (en) 2020-08-25 2021-08-13 Electrolytic device.
CN202180052325.2A CN116096943B (en) 2020-08-25 2021-08-13 electrolysis device
PCT/JP2021/029808 WO2022044850A1 (en) 2020-08-25 2021-08-13 Electrolytic device
TW110130673A TWI762407B (en) 2020-08-25 2021-08-19 Electrolysis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020141678A JP6828212B1 (en) 2020-08-25 2020-08-25 Electrolyzer

Publications (2)

Publication Number Publication Date
JP6828212B1 JP6828212B1 (en) 2021-02-10
JP2022037503A true JP2022037503A (en) 2022-03-09

Family

ID=74529656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020141678A Active JP6828212B1 (en) 2020-08-25 2020-08-25 Electrolyzer

Country Status (6)

Country Link
JP (1) JP6828212B1 (en)
KR (1) KR102559708B1 (en)
CN (1) CN116096943B (en)
MX (1) MX2023001968A (en)
TW (1) TWI762407B (en)
WO (1) WO2022044850A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6828212B1 (en) * 2020-08-25 2021-02-10 三菱重工環境・化学エンジニアリング株式会社 Electrolyzer
JP6845975B1 (en) * 2021-01-14 2021-03-24 三菱重工環境・化学エンジニアリング株式会社 Electrolytic system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145372A (en) * 1974-05-15 1975-11-21
US4372827A (en) * 1980-11-10 1983-02-08 Panclor S.A. Novel horizontal diaphragmless electrolyzer
JPS60113372U (en) * 1984-01-06 1985-07-31 三菱重工業株式会社 seawater electrolyzer
JPH10102274A (en) * 1996-10-02 1998-04-21 Mitsubishi Heavy Ind Ltd Bipolar seawater electrolytic cell
JP2012111990A (en) * 2010-11-22 2012-06-14 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Apparatus, system and method for electrolyzing seawater
JP2013202487A (en) * 2012-03-28 2013-10-07 Daikin Industries Ltd Electrolysis apparatus and temperature control water supply machine including the same
WO2014171383A1 (en) * 2013-04-15 2014-10-23 有限会社ターナープロセス Device and method for reducing ion concentration in aqueous liquid held in system, and apparatus equipped with said device
JP2016029204A (en) * 2014-07-25 2016-03-03 シャープ株式会社 Electrolytic apparatus
JP2017113678A (en) * 2015-12-22 2017-06-29 シャープ株式会社 Electrolytic water generator
WO2020075337A1 (en) * 2018-11-16 2020-04-16 三菱重工環境・化学エンジニアリング株式会社 Vertical electrolytic device
JP2020117759A (en) * 2019-01-23 2020-08-06 三菱重工環境・化学エンジニアリング株式会社 Monopolar electrolytic apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1003156B (en) 1973-10-30 1976-06-10 Oronzio De Nora Impianti ELECTROLYZER FOR THE PRODUCTION OF OXYGENATED CHLORINE COMPOUNDS FROM ALKALINE CHLORIDE SOLUTIONS
IT8222441V0 (en) * 1982-07-19 1982-07-19 Somet Soc Mec Tessile PRESENTER OF THE WEFT FOR WEAVING FRAMES WITH MAGNETIC STORAGE OF THE SELECTION OF THE PRESENTATION NEEDLES AND MECHANICAL OPERATION OF THE NEEDLES.
JPH0330265A (en) 1989-06-27 1991-02-08 Agency Of Ind Science & Technol Method of anisotropic junction of superconducting ceramic
JPH08319594A (en) * 1995-05-19 1996-12-03 Uootaa Design Kenkyusho:Kk Electrolytic cell
KR101070710B1 (en) * 2009-07-21 2011-10-07 주식회사 욱영전해씨스템 eletrolytic cell for sea water
KR100999586B1 (en) 2010-01-22 2010-12-08 주식회사 대승 Bi-polar type high efficiency electrolyser
KR101481327B1 (en) 2013-10-22 2015-01-12 현대중공업 주식회사 Bipolar type electrolysis reactor
CN203904464U (en) * 2014-06-11 2014-10-29 北京首位能源科技有限公司 Expandable combined type multipolar electrolytic tank
JP6828212B1 (en) * 2020-08-25 2021-02-10 三菱重工環境・化学エンジニアリング株式会社 Electrolyzer
JP6845975B1 (en) * 2021-01-14 2021-03-24 三菱重工環境・化学エンジニアリング株式会社 Electrolytic system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145372A (en) * 1974-05-15 1975-11-21
US4372827A (en) * 1980-11-10 1983-02-08 Panclor S.A. Novel horizontal diaphragmless electrolyzer
JPS60113372U (en) * 1984-01-06 1985-07-31 三菱重工業株式会社 seawater electrolyzer
JPH10102274A (en) * 1996-10-02 1998-04-21 Mitsubishi Heavy Ind Ltd Bipolar seawater electrolytic cell
JP2012111990A (en) * 2010-11-22 2012-06-14 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Apparatus, system and method for electrolyzing seawater
JP2013202487A (en) * 2012-03-28 2013-10-07 Daikin Industries Ltd Electrolysis apparatus and temperature control water supply machine including the same
WO2014171383A1 (en) * 2013-04-15 2014-10-23 有限会社ターナープロセス Device and method for reducing ion concentration in aqueous liquid held in system, and apparatus equipped with said device
JP2016029204A (en) * 2014-07-25 2016-03-03 シャープ株式会社 Electrolytic apparatus
JP2017113678A (en) * 2015-12-22 2017-06-29 シャープ株式会社 Electrolytic water generator
WO2020075337A1 (en) * 2018-11-16 2020-04-16 三菱重工環境・化学エンジニアリング株式会社 Vertical electrolytic device
JP2020117759A (en) * 2019-01-23 2020-08-06 三菱重工環境・化学エンジニアリング株式会社 Monopolar electrolytic apparatus

Also Published As

Publication number Publication date
CN116096943B (en) 2023-10-03
TWI762407B (en) 2022-04-21
KR102559708B1 (en) 2023-07-25
TW202212636A (en) 2022-04-01
KR20230037679A (en) 2023-03-16
MX2023001968A (en) 2023-02-23
JP6828212B1 (en) 2021-02-10
CN116096943A (en) 2023-05-09
WO2022044850A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
WO2022044850A1 (en) Electrolytic device
WO2022154025A1 (en) Electrolysis system
JP5781490B2 (en) High pressure water electrolyzer
CN104418409A (en) Strongly-alkaline (acidic) electrolytic water generation device
TW201522715A (en) Electrolytic cell equipped with concentric electrode pairs
CN110484928B (en) Vertical sodium hypochlorite electrolytic cell
BR0010411B1 (en) electrode structure, bipolar unit, bipolar press filter electrolyzer, module, modular bipolar electrolyzer, process for electrolysis of an alkali metal halide, methods for producing a bipolar press filter electrolyzer and a modular bipolar electrolyzer, electrode assembly for use with an electrode structure, current carrier for use with an electrode structure, and method for recovering an electrode structure.
JP2021518254A (en) Electrolytic cell with bipolar electrode for wastewater treatment
US20160333488A1 (en) Anode for ion exchange membrane electrolysis vessel, and ion exchange membrane electrolysis vessel using same
KR102495514B1 (en) Electrolysis device with improved HOCl production efficiency
KR20150097104A (en) Electrolytic bath for acid water
KR200391265Y1 (en) apparatus of generation oxygen/hydrogen gas
KR100803966B1 (en) Apparatus of generation oxygen/hydrogen gas
WO2017104203A1 (en) Device for generating hydrogen peroxide
KR102014483B1 (en) Electrolyzer for producing slight acidic hypochlorous acid water apparatus for producing slight acidic hypochlorous acid water with the same
RU2614450C1 (en) Electrochemical module cell for treatment of electrolyte solutions
JP2008501864A (en) ELECTROLYTIC CELL ELECTRIC CIRCUIT HAVING BIPOLAR ELECTRODE AND ELECTROLYSIS DEVICE HAVING BIPOLAR ELECTRODE
KR102008987B1 (en) Electrolyzer for producing slight acidic hypochlorous acid water apparatus for producing slight acidic hypochlorous acid water with the same
JP2006198562A (en) Electrode device and electrolytic cell
JP5253483B2 (en) Electrolyzer
KR102586800B1 (en) Chamber-type sterilizing device
KR101908693B1 (en) non membrane type hydrogen water generating module and apparatus include the module
RU214599U1 (en) Flow electrolyzer
CN211546681U (en) Double-layer diaphragm-free type electrolytic device
KR200493174Y1 (en) Electrolyzed ion water generator using a diaphram electrolyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200901

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200901

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210120

R150 Certificate of patent or registration of utility model

Ref document number: 6828212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150