JP2022036586A - モデル学習システム及びサーバ - Google Patents
モデル学習システム及びサーバ Download PDFInfo
- Publication number
- JP2022036586A JP2022036586A JP2020140878A JP2020140878A JP2022036586A JP 2022036586 A JP2022036586 A JP 2022036586A JP 2020140878 A JP2020140878 A JP 2020140878A JP 2020140878 A JP2020140878 A JP 2020140878A JP 2022036586 A JP2022036586 A JP 2022036586A
- Authority
- JP
- Japan
- Prior art keywords
- learning
- vehicle
- model
- server
- vehicles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012549 training Methods 0.000 claims abstract description 37
- 238000004364 calculation method Methods 0.000 claims description 2
- 238000012545 processing Methods 0.000 description 16
- 238000000034 method Methods 0.000 description 15
- 238000004891 communication Methods 0.000 description 13
- 238000002485 combustion reaction Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 7
- 230000004913 activation Effects 0.000 description 4
- 238000004590 computer program Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 3
- 238000013527 convolutional neural network Methods 0.000 description 3
- 238000013135 deep learning Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 238000013473 artificial intelligence Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000003062 neural network model Methods 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000012876 topography Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000029305 taxis Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
- G06F18/2137—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on criteria of topology preservation, e.g. multidimensional scaling or self-organising maps
- G06F18/21375—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on criteria of topology preservation, e.g. multidimensional scaling or self-organising maps involving differential geometry, e.g. embedding of pattern manifold
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/217—Validation; Performance evaluation; Active pattern learning techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/87—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using selection of the recognition techniques, e.g. of a classifier in a multiple classifier system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/40—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
- H04W4/46—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Physics & Mathematics (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Multimedia (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Databases & Information Systems (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Traffic Control Systems (AREA)
- Information Transfer Between Computers (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
2 車両(一の車両、他の車両)
100 モデル学習システム
Claims (7)
- サーバと、前記サーバと通信可能に構成された複数の車両と、を備えるモデル学習システムであって、
前記サーバは、
前記複数の車両のうちの一の車両において使用される学習モデルであって所定領域内で取得された訓練データセットに基づいて学習が行われる学習モデルの学習前後の相違度合いを表すモデル間差分値が所定値以上であったときは、前記所定領域内に存在する前記複数の車両のうちの他の車両に対して、前記他の車両において使用される学習モデルの再学習を指示する、
モデル学習システム。 - 前記モデル間差分値は、学習前後の各学習モデルに所定の入力パラメータを入力したときに各学習モデルから出力される各出力パラメータの差分値、又は前記差分値に基づいて算出される値である、
請求項1に記載のモデル学習システム。 - 前記モデル間差分値は、学習前後の各学習モデルの各ノードの重み又はバイアスの差分値、又は前記差分値に基づいて算出される値である、
請求項1に記載のモデル学習システム。 - 前記一の車両は、
所定期間内に前記所定領域内で取得された訓練データセットが所定量以上になったときに、学習モデルの学習を実施して前記モデル間差分値を算出し、その算出結果に応じた情報を前記サーバに送信する、
請求項1から請求項3までのいずれか1項に記載のモデル学習システム。 - 前記他の車両は、
前記サーバから学習モデルの再学習を指示されたときは、前記他の車両の使用地域が前記所定領域内であれば、前記他の車両において使用される学習モデルの再学習を行う、
請求項1から請求項4までのいずれか1項に記載のモデル学習システム。 - 前記所定領域は、前記一の車両の使用地域である、
請求項1から請求項5までのいずれか1項に記載のモデル学習システム。 - 複数の車両と通信可能に構成されたサーバであって、
前記複数の車両のうちの一の車両において使用される学習モデルであって所定領域内で取得された訓練データセットに基づいて学習が行われる学習モデルの学習前後の相違度合いを表すモデル間差分値が所定値以上であったときは、前記所定領域内に存在する前記複数の車両のうちの他の車両に対して、前記他の車両において使用される学習モデルの再学習を指示する、
サーバ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020140878A JP6939963B1 (ja) | 2020-08-24 | 2020-08-24 | モデル学習システム及びサーバ |
DE102021118606.4A DE102021118606A1 (de) | 2020-08-24 | 2021-07-19 | Modelllernsystem, Modelllernverfahren und Server |
US17/405,515 US20220058522A1 (en) | 2020-08-24 | 2021-08-18 | Model learning system, model learning method, and server |
CN202110949057.6A CN114091681A (zh) | 2020-08-24 | 2021-08-18 | 模型学习系统及服务器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020140878A JP6939963B1 (ja) | 2020-08-24 | 2020-08-24 | モデル学習システム及びサーバ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6939963B1 JP6939963B1 (ja) | 2021-09-22 |
JP2022036586A true JP2022036586A (ja) | 2022-03-08 |
Family
ID=78028271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020140878A Active JP6939963B1 (ja) | 2020-08-24 | 2020-08-24 | モデル学習システム及びサーバ |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220058522A1 (ja) |
JP (1) | JP6939963B1 (ja) |
CN (1) | CN114091681A (ja) |
DE (1) | DE102021118606A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11423647B2 (en) * | 2018-05-07 | 2022-08-23 | Nec Corporation | Identification system, model re-learning method and program |
CN115306573B (zh) * | 2022-08-29 | 2024-07-05 | 联合汽车电子有限公司 | 油路自学习方法、装置、终端及服务器 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003328732A (ja) * | 2002-05-15 | 2003-11-19 | Caterpillar Inc | 仮想センサを使用するNOx排出制御システム |
JP2019183698A (ja) * | 2018-04-05 | 2019-10-24 | トヨタ自動車株式会社 | 車載電子制御ユニット |
JP2020071611A (ja) * | 2018-10-30 | 2020-05-07 | トヨタ自動車株式会社 | 機械学習装置 |
JP2021032116A (ja) * | 2019-08-22 | 2021-03-01 | トヨタ自動車株式会社 | 車両用制御装置、車両用学習システム、および車両用学習装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9632502B1 (en) * | 2015-11-04 | 2017-04-25 | Zoox, Inc. | Machine-learning systems and techniques to optimize teleoperation and/or planner decisions |
US20200033869A1 (en) * | 2018-07-27 | 2020-01-30 | GM Global Technology Operations LLC | Systems, methods and controllers that implement autonomous driver agents and a policy server for serving policies to autonomous driver agents for controlling an autonomous vehicle |
US20200116515A1 (en) * | 2018-10-16 | 2020-04-16 | Uatc, Llc | Autonomous Vehicle Capability and Operational Domain Evaluation and Selection for Improved Computational Resource Usage |
-
2020
- 2020-08-24 JP JP2020140878A patent/JP6939963B1/ja active Active
-
2021
- 2021-07-19 DE DE102021118606.4A patent/DE102021118606A1/de active Pending
- 2021-08-18 US US17/405,515 patent/US20220058522A1/en not_active Abandoned
- 2021-08-18 CN CN202110949057.6A patent/CN114091681A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003328732A (ja) * | 2002-05-15 | 2003-11-19 | Caterpillar Inc | 仮想センサを使用するNOx排出制御システム |
JP2019183698A (ja) * | 2018-04-05 | 2019-10-24 | トヨタ自動車株式会社 | 車載電子制御ユニット |
JP2020071611A (ja) * | 2018-10-30 | 2020-05-07 | トヨタ自動車株式会社 | 機械学習装置 |
JP2021032116A (ja) * | 2019-08-22 | 2021-03-01 | トヨタ自動車株式会社 | 車両用制御装置、車両用学習システム、および車両用学習装置 |
Also Published As
Publication number | Publication date |
---|---|
CN114091681A (zh) | 2022-02-25 |
US20220058522A1 (en) | 2022-02-24 |
DE102021118606A1 (de) | 2022-02-24 |
JP6939963B1 (ja) | 2021-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7040571B2 (ja) | 学習装置及びモデル学習システム | |
JP6939963B1 (ja) | モデル学習システム及びサーバ | |
JP6741057B2 (ja) | 内燃機関の制御システム、電子制御ユニット、サーバ及び内燃機関の制御方法 | |
CN113830097B (zh) | 车辆、模型学习系统以及服务器 | |
CN113392573A (zh) | 用于创建经训练的人工神经网络的方法、用于预测车辆排放数据的方法和确定校准值的方法 | |
JP7040589B1 (ja) | 機械学習方法及び機械学習システム | |
US11675999B2 (en) | Machine learning device | |
JP6935837B1 (ja) | 機械学習装置及び機械学習システム | |
JP6791347B1 (ja) | モデル診断装置及びモデル診断システム | |
JP7276298B2 (ja) | モデル学習システム、車両の制御装置及びモデル学習方法 | |
CN115496177A (zh) | 分布式系统的校准 | |
JP6962435B1 (ja) | 機械学習装置 | |
JP7056794B1 (ja) | モデル学習システム及びモデル学習装置 | |
US20220155083A1 (en) | Systems and methods for range estimations for electrified transit vehicles | |
JP2022173803A (ja) | 学習モデルのパラメータの値の授受装置及び授受システム | |
JP2022035222A (ja) | 機械学習装置 | |
Shakya et al. | Research Article Internet of Things-Based Intelligent Ontology Model for Safety Purpose Using Wireless Networks | |
JP2022079938A (ja) | 機械学習システム | |
JP2022007079A (ja) | 車両 | |
JP2022076257A (ja) | 機械学習システム、車両及びサーバ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210625 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20210625 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210803 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210816 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6939963 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |