JP2022036051A - Water recovery system, device, control method, and program - Google Patents

Water recovery system, device, control method, and program Download PDF

Info

Publication number
JP2022036051A
JP2022036051A JP2021133739A JP2021133739A JP2022036051A JP 2022036051 A JP2022036051 A JP 2022036051A JP 2021133739 A JP2021133739 A JP 2021133739A JP 2021133739 A JP2021133739 A JP 2021133739A JP 2022036051 A JP2022036051 A JP 2022036051A
Authority
JP
Japan
Prior art keywords
water
recovery
recovered
recovery device
water tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021133739A
Other languages
Japanese (ja)
Other versions
JP7239651B2 (en
Inventor
和彦 佐藤
Kazuhiko Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Publication of JP2022036051A publication Critical patent/JP2022036051A/en
Application granted granted Critical
Publication of JP7239651B2 publication Critical patent/JP7239651B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chimneys And Flues (AREA)

Abstract

To eliminate the need for makeup water to a water recovery device, or to suppress an amount of the makeup water, even at a high air temperature.SOLUTION: A water recovery system includes: a water recovery device for condensing water contained in exhaust gas of a gas turbine; a cooler for cooling the water recovered by the water recovery device; a recovered water tank for storing the water recovered by the water recovery device; a sensor for detecting a water level of the recovered water tank or a state quantity varying in relation to the water level; and a device which increases, in controlling condensation efficiency in the water recovery device, the condensation efficiency in the water recovery device when a water level drop in the recovered water tank is detected on the basis of an output of the sensor, and decreases the condensation efficiency in the water recovery device when a water level rise in the recovered water tank is detected.SELECTED DRAWING: Figure 2

Description

本発明は、ガスタービンの排気ガスから水を回収する水回収システムに関する。 The present invention relates to a water recovery system that recovers water from the exhaust gas of a gas turbine.

ガスタービンプラントには、ガスタービンの排気ガスを冷却する水回収システムが備わったものがある。水回収システムで回収された水は、例えば再びガスタービンに投入されたり、水回収システムで冷媒として使用されたりする(特許文献1等参照)。 Some gas turbine plants are equipped with a water recovery system that cools the exhaust gas of the gas turbine. The water recovered by the water recovery system is, for example, put into the gas turbine again or used as a refrigerant in the water recovery system (see Patent Document 1 and the like).

特開2017-31862号公報Japanese Unexamined Patent Publication No. 2017-18662

水回収システムにおいては、排気ガスを散水により冷却し排気ガス中の水を回収するところ、高気温時には散水温度が上昇するため、例えば冬季に比べて夏季は排気ガスからの水の回収効率が低下する。ガスタービンへの水の投入量に比べて回収量が減少し、水回収システムにバッファとして備わっている回収水タンクの水位が下限値を下回ると、系外から水を補給しなければならない。しかし、乾燥地等の水資源の乏しい地域では必要量の補給水が確保できるとは限らない。 In the water recovery system, the exhaust gas is cooled by sprinkling and the water in the exhaust gas is recovered. However, since the sprinkling temperature rises at high temperatures, the efficiency of recovering water from the exhaust gas is lower in summer than in winter, for example. do. When the amount of recovered water is smaller than the amount of water input to the gas turbine and the water level of the recovered water tank provided as a buffer in the water recovery system falls below the lower limit, water must be replenished from outside the system. However, it is not always possible to secure the required amount of make-up water in areas where water resources are scarce, such as dry areas.

本発明は、回収水タンクの水位を適切にするための水回収システム、装置、制御方法及びプログラムを提供することを目的とする。 It is an object of the present invention to provide a water recovery system, an apparatus, a control method and a program for adjusting the water level of the recovery water tank.

上記目的を達成するために、本発明は、ガスタービンの排気ガスを散水により冷却し前記排気ガスに含まれる水を凝縮させる水回収装置と、前記水回収装置で回収した水を前記水回収装置から抜き出して前記水回収装置に供給する循環水配管と、前記循環水配管に設けられて前記水回収装置で回収した水を冷却する冷却器と、前記水回収装置で回収した水を貯留する回収水タンクと、前記循環水配管から分岐して前記回収水タンクに接続する回収水配管と、前記回収水タンクの水位又は水位に関係して変動する状態量を検出するセンサと、前記水回収装置における凝縮効率を制御するに当たり、前記センサの出力を基に前記回収水タンクの水位低下が検知された場合は前記水回収装置における凝縮効率を上げ、前記回収水タンクの水位上昇が検知された場合は前記水回収装置における凝縮効率を下げることを定める装置とを備えた水回収システムを提供する。 In order to achieve the above object, the present invention has a water recovery device that cools the exhaust gas of a gas turbine by sprinkling water to condense the water contained in the exhaust gas, and the water recovery device that collects the water recovered by the water recovery device. A circulating water pipe that is extracted from the water and supplied to the water recovery device, a cooler that is provided in the circulating water pipe to cool the water recovered by the water recovery device, and a recovery that stores the water recovered by the water recovery device. A water tank, a recovered water pipe that branches from the circulating water pipe and is connected to the recovered water tank, a sensor that detects the water level of the recovered water tank or a state amount that fluctuates in relation to the water level, and the water recovery device. When a decrease in the water level of the recovered water tank is detected based on the output of the sensor, the concentration efficiency of the water recovery device is increased, and an increase in the water level of the recovered water tank is detected. Provided a water recovery system including a device for reducing the concentration efficiency in the water recovery device.

本発明によれば、回収水タンクの水位を適切にすることができる。 According to the present invention, the water level of the reclaimed water tank can be adjusted appropriately.

本発明の第1実施形態に係る水回収システムの概略図Schematic diagram of the water recovery system according to the first embodiment of the present invention. 本発明の第1実施形態に係る水回収システムに備えられた制御装置による冷却器の制御手順を表すフローチャートA flowchart showing a control procedure of a cooler by a control device provided in the water recovery system according to the first embodiment of the present invention. 本発明の第2実施形態に係る水回収システムに備えられた制御装置による冷却器の制御手順を表すフローチャートA flowchart showing a control procedure of a cooler by a control device provided in the water recovery system according to the second embodiment of the present invention. 水回収装置における散水温度と水回収システムによる水回収率との関係を示した概念図Conceptual diagram showing the relationship between the sprinkling temperature in the water recovery device and the water recovery rate by the water recovery system. 本発明の第3実施形態に係る水回収システムに備えられた制御装置による流量調節弁の制御手順を表すフローチャートA flowchart showing a control procedure of a flow rate control valve by a control device provided in the water recovery system according to the third embodiment of the present invention. 本発明の第4実施形態に係る水回収システムの要部の概略図Schematic diagram of the main part of the water recovery system according to the 4th embodiment of the present invention. 本発明の第4実施形態に係る水回収システムに備えられた制御装置による流量調節弁及び加熱調節弁の制御手順を表すフローチャートA flowchart showing a control procedure of a flow rate control valve and a heating control valve by a control device provided in the water recovery system according to the fourth embodiment of the present invention. 本発明の第5実施形態に係る水回収システムの概略図Schematic diagram of the water recovery system according to the fifth embodiment of the present invention.

以下に図面を用いて本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
-水回収システム-
図1は本発明の第1実施形態に係る水回収システムの概略図である。図1に示した水回収システムはガスタービンXの排気ガスを水冷(散水により冷却)し排気ガスに含まれる水を凝縮させて回収し、回収水をガスタービンXに再び供給する循環システムである。ガスタービンXは、例えば湿分利用ガスタービン発電プラントを構成するガスタービンである。水回収システムで回収した水は、例えばガスタービンXの燃焼器に燃料又は圧縮空気と共に注入されたり、ガスタービンXの圧縮機の吸気に注入されたりする。湿分利用ガスタービン発電プラントにつては、例えば特開2017-31862号公報に記載されている。本実施形態の水回収システムは、水回収装置10、回収水タンク20、冷却器30、センサS1-S3及び制御装置40を含んで構成されている。
(First Embodiment)
-Water recovery system-
FIG. 1 is a schematic view of a water recovery system according to the first embodiment of the present invention. The water recovery system shown in FIG. 1 is a circulation system in which the exhaust gas of the gas turbine X is water-cooled (cooled by sprinkling), the water contained in the exhaust gas is condensed and recovered, and the recovered water is supplied to the gas turbine X again. .. The gas turbine X is, for example, a gas turbine constituting a moisture utilization gas turbine power plant. The water recovered by the water recovery system is, for example, injected into the combustor of the gas turbine X together with fuel or compressed air, or is injected into the intake air of the compressor of the gas turbine X. A gas turbine power plant using moisture is described in, for example, Japanese Patent Application Laid-Open No. 2017-31862. The water recovery system of the present embodiment includes a water recovery device 10, a recovery water tank 20, a cooler 30, sensors S1-S3, and a control device 40.

-水回収装置-
水回収装置10は、ガスタービンXの排気ガスを散水により冷却し、ガスタービンの排気ガスに含まれる水を凝縮させる装置である。水回収装置10は上端部が煙突状になった縦に延びる筒形のボディ10aに充填物10bを内蔵しており、ボディ10aの内部空間が充填物10bにより上下に隔てられている。ボディ10aには、この充填物10bよりも下側の位置にガスタービンからの排気ガスを導く排気管P0が接続されている。また、ボディ10aの内部において充填物10bの上方には散水ノズル10cが設置されている。この散水ノズル10cから充填物10bに散水され、排気管P0からボディ10aに導入された排気ガスが充填物10bを通過する際に充填物10bに付着した水に接触する。水に触れた排気ガスは温度を下げる。これにより排気ガス中の水分が凝縮して落下し、ボディ10aの下部に貯留される。また、水分を回収された排気ガスはボディ10aの上端から排出される。
-Water recovery device-
The water recovery device 10 is a device that cools the exhaust gas of the gas turbine X by sprinkling water and condenses the water contained in the exhaust gas of the gas turbine. In the water recovery device 10, the filler 10b is built in a vertically extending tubular body 10a having a chimney-shaped upper end, and the internal space of the body 10a is vertically separated by the filler 10b. An exhaust pipe P0 for guiding the exhaust gas from the gas turbine is connected to the body 10a at a position below the filling 10b. Further, a watering nozzle 10c is installed above the filler 10b inside the body 10a. Water is sprinkled from the watering nozzle 10c to the filling material 10b, and the exhaust gas introduced into the body 10a from the exhaust pipe P0 comes into contact with the water adhering to the filling material 10b as it passes through the filling material 10b. Exhaust gas that comes in contact with water lowers the temperature. As a result, the water in the exhaust gas is condensed and dropped, and is stored in the lower part of the body 10a. Further, the exhaust gas from which the water has been recovered is discharged from the upper end of the body 10a.

なお、ボディ10aの下部には循環水配管P1が接続している。循環水配管P1は散水ノズル10cに接続している。また、循環水配管P1には循環ポンプ11が設けられている。回収装置10で回収された水は、循環ポンプ11によってボディ10aから吸い出され、循環水配管P1を通って散水ノズル10cに導かれ、散水ノズル10cから散布されて再び水回収装置10に供給される。 A circulating water pipe P1 is connected to the lower part of the body 10a. The circulating water pipe P1 is connected to the watering nozzle 10c. Further, a circulation pump 11 is provided in the circulating water pipe P1. The water recovered by the recovery device 10 is sucked out from the body 10a by the circulation pump 11, guided to the watering nozzle 10c through the circulating water pipe P1, sprayed from the watering nozzle 10c, and supplied to the water recovery device 10 again. To.

また、水循環水配管P1には流量調節弁V1が設置されており、循環水配管P1を流れる回収水の流量、ひいては水回収装置10における散水流量が流量調節弁V1で調節できるようになっている。流量調節弁V1の開度を上げて散水ノズル10cからの散水流量を増加させることにより、水回収装置10における凝縮効率を上げることができる。反対に流量調節弁V1の開度を下げて散水ノズル10cからの散水流量を減少させることにより、水回収装置10における凝縮効率を下げることができる。回収水の循環流量の調節に迅速な応答性は要求されないため、流量調節弁V1を駆動(開度を調整)するアクチュエータには電動機を用いることができるが、他の駆動方式のアクチュエータを用いても良い。 Further, a flow rate control valve V1 is installed in the water circulation water pipe P1, and the flow rate of the recovered water flowing through the circulation water pipe P1 and the sprinkling flow rate in the water recovery device 10 can be adjusted by the flow rate control valve V1. .. By increasing the opening degree of the flow rate control valve V1 to increase the water flow rate from the watering nozzle 10c, the condensation efficiency in the water recovery device 10 can be improved. On the contrary, by lowering the opening degree of the flow rate control valve V1 to reduce the water flow rate from the watering nozzle 10c, the condensation efficiency in the water recovery device 10 can be lowered. Since rapid responsiveness is not required to adjust the circulating flow rate of the recovered water, an electric motor can be used as the actuator for driving (adjusting the opening degree) the flow rate control valve V1, but an actuator of another drive method is used. Is also good.

-冷却器-
冷却器30は水回収装置10で回収した水を冷却する装置であり、循環水配管P1の途中に設けられている。この冷却器30は、水回収装置10における凝縮効率を調整し回収水タンク20の水位を調節する目的で、センサ(本実施形態では水位計S1)の出力を基に冷却力(例えばラジエータファンの風量)が制御される。ガスタービンXや水回収システムを設置する土地における気温変動等による水の回収効率は季節や時間帯で変動するため、悪条件となる高気温時でも所定の凝縮効率が確保できるように冷却器30の最大冷却力が決定される。
-Cooler-
The cooler 30 is a device for cooling the water recovered by the water recovery device 10, and is provided in the middle of the circulating water pipe P1. The cooler 30 has a cooling force (for example, a radiator fan) based on the output of a sensor (water level gauge S1 in this embodiment) for the purpose of adjusting the condensation efficiency in the water recovery device 10 and adjusting the water level of the recovery water tank 20. Air volume) is controlled. Since the water recovery efficiency due to temperature fluctuations in the land where the gas turbine X and the water recovery system are installed fluctuates depending on the season and time zone, the cooler 30 can secure a predetermined condensation efficiency even at high temperatures, which are adverse conditions. Maximum cooling power is determined.

冷却器30にはラジエータやチラーを用いることができるが、本実施形態では冷却器30をラジエータとする。ラジエータには少なくとも1つのファン(不図示)が備わっており、回収水を導入した配管をファンによる冷却風で冷却することにより回収水を冷却する。ファンによる冷却風で冷却した冷媒との熱交換で回収水を導入した配管を冷却することによって回収水を冷却する構成とすることもできる。いずれの場合も冷却器30の冷却力はファンを制御することで調整可能である。 A radiator or a chiller can be used for the cooler 30, but in the present embodiment, the cooler 30 is used as a radiator. The radiator is equipped with at least one fan (not shown), and the recovered water is cooled by cooling the pipe into which the recovered water is introduced with the cooling air from the fan. It is also possible to cool the recovered water by cooling the pipe into which the recovered water is introduced by heat exchange with the refrigerant cooled by the cooling air by the fan. In either case, the cooling power of the cooler 30 can be adjusted by controlling the fan.

ファンの制御方式には、ファンの回転数を制御する方式やファンの駆動台数を制御する方式が例示できる。ファンの回転数を制御する場合、ファンの回転数を上げることで冷却力が上がり、ファンの回転数を下げることで冷却力が下がる。回転数制御の場合、冷却器30が備えるファンは1つでも良いし複数でも良い。複数のファンの回転数を制御する場合、全てのファンの回転数が同調して増減するようにすれば足りる。一方、駆動するファンの数を制御する場合、ファンの駆動台数を増やすことで冷却力が上がり、駆動台数を減らすことで冷却力が下がる。この場合には、冷却器30に備わったファンの台数は複数である必要がある。ファンの駆動台数を制御する場合、各ファンの駆動時の回転数は一定とすれば足りる。但し、ファンの回転数制御と駆動台数の制御を組み合わせた方式とすることもできる。 Examples of the fan control method include a method of controlling the rotation speed of the fan and a method of controlling the number of driven fans. When controlling the rotation speed of a fan, increasing the rotation speed of the fan increases the cooling power, and decreasing the rotation speed of the fan lowers the cooling power. In the case of rotation speed control, the cooler 30 may have one fan or a plurality of fans. When controlling the rotation speeds of a plurality of fans, it is sufficient to increase or decrease the rotation speeds of all the fans in synchronization. On the other hand, when controlling the number of driven fans, the cooling power is increased by increasing the number of driven fans, and the cooling power is decreased by reducing the number of driven fans. In this case, the number of fans provided in the cooler 30 needs to be a plurality. When controlling the number of driven fans, it is sufficient to keep the rotation speed of each fan at the time of driving constant. However, it is also possible to use a method that combines the control of the rotation speed of the fan and the control of the number of drives.

上記のように冷却器30による冷却力を上げることで、散水温度を下げて水回収装置10における凝縮効率を上げることができる。反対に冷却器30による冷却力を下げることで、散水温度を上げて水回収装置10における凝縮効率を下げることができる。 By increasing the cooling power of the cooler 30 as described above, the watering temperature can be lowered and the condensation efficiency in the water recovery device 10 can be increased. On the contrary, by lowering the cooling power of the cooler 30, the sprinkling temperature can be raised and the condensation efficiency in the water recovery device 10 can be lowered.

-回収水タンク-
回収水タンク20は、水回収装置10で回収された水を貯留する貯水タンクであり、気温変動による回収水量の変動を吸収しガスタービンXへの水の供給量を安定化させるバッファとして機能する。回収水タンク20のタンク容量及び設定水位(設定値Da)は、ガスタービンX及び水回収システムを設置する土地における回収水量の変動幅で決まる。回収水量の変動幅は気温の変動幅等で変わるので、その土地の季節や時間帯の気温変動等を考慮して回収水タンク20の容量や設定水位が決定される。
-Reclaimed water tank-
The recovered water tank 20 is a water storage tank for storing the water recovered by the water recovery device 10, and functions as a buffer that absorbs fluctuations in the recovered water amount due to temperature fluctuations and stabilizes the water supply amount to the gas turbine X. .. The tank capacity and the set water level (set value Da) of the recovered water tank 20 are determined by the fluctuation range of the recovered water amount in the land where the gas turbine X and the water recovery system are installed. Since the fluctuation range of the recovered water amount changes depending on the fluctuation range of the temperature and the like, the capacity and the set water level of the recovered water tank 20 are determined in consideration of the temperature fluctuation and the like in the season and time zone of the land.

この回収水タンク20には循環水配管P1から分岐した回収水配管P2が接続しており、循環水配管P1を流れる回収水の一部が回収水配管P2を経由して回収水タンク20に導かれる。回収水タンク20の下部にはガスタービンXに繋がる給水配管P3が接続している。この給水配管P3には送水ポンプ21が設けられている。回収水タンク20に一時貯留された回収水は、送水ポンプ21によって回収水タンク20から吸い出され、給水配管P3を通ってガスタービンXに供給される。なお、回収水配管P2には水位調節弁V2が設置されており、水回収水タンク20や水回収装置10の回収水の水位が水位調節弁V2で調節できるようになっている。 A recovered water pipe P2 branched from the circulating water pipe P1 is connected to the recovered water tank 20, and a part of the recovered water flowing through the circulating water pipe P1 is guided to the recovered water tank 20 via the recovered water pipe P2. Be taken. A water supply pipe P3 connected to the gas turbine X is connected to the lower part of the recovery water tank 20. A water pump 21 is provided in the water supply pipe P3. The recovered water temporarily stored in the recovered water tank 20 is sucked out from the recovered water tank 20 by the water pump 21, and is supplied to the gas turbine X through the water supply pipe P3. A water level control valve V2 is installed in the recovery water pipe P2, and the water level of the recovered water in the water recovery water tank 20 and the water recovery device 10 can be adjusted by the water level control valve V2.

-センサ-
本実施形態の水回収システムは、回収水タンク20の水位又は水位に関係して変動する状態量を検出するセンサが設けられている。例えば水位計S1や温度計S2である。水位計S1は回収水タンク20に設置されている。この水位計S1は、回収水タンク20の水位そのものを検出するものでも良いし、水位が既定以上であることを検出するものでも良い。温度計S2は循環水配管P1に設けられており、循環水配管P1を循環する回収水の水温を計測する。循環水配管P1を流れる回収水の水温と回収水タンク20の水位との間には、図3を用いて後で説明する通り一定の相関があるため、回収水タンク20の水位に関係して変動する状態量を検出するセンサとしてこの温度計S2も例示できる。温度計S2は、循環水配管P1における冷却器30の上流側に設置することもできるが、本実施形態では散水温度をより直接的に計測することができる冷却器30の下流側に設置してある。なお、本実施形態では水回収装置10にも水位計S3が設置されている。
-Sensor-
The water recovery system of the present embodiment is provided with a sensor that detects the water level of the recovery water tank 20 or a state amount that fluctuates in relation to the water level. For example, a water level gauge S1 and a thermometer S2. The water level gauge S1 is installed in the reclaimed water tank 20. The water level gauge S1 may detect the water level of the recovered water tank 20 itself, or may detect that the water level is equal to or higher than the default value. The thermometer S2 is provided in the circulating water pipe P1 and measures the water temperature of the recovered water circulating in the circulating water pipe P1. Since there is a certain correlation between the water temperature of the recovered water flowing through the circulating water pipe P1 and the water level of the recovered water tank 20 as will be described later with reference to FIG. 3, it is related to the water level of the recovered water tank 20. The thermometer S2 can also be exemplified as a sensor for detecting a fluctuating state amount. The thermometer S2 can be installed on the upstream side of the cooler 30 in the circulating water pipe P1, but in the present embodiment, it is installed on the downstream side of the cooler 30 that can measure the sprinkling temperature more directly. be. In this embodiment, the water level gauge S3 is also installed in the water recovery device 10.

-制御装置-
制御装置40はRAMやROM等のメモリやCPU等の演算装置を備えたコンピュータであり、例えばROMに格納されたプログラムに従って水回収システムの動作を制御する装置である。この制御装置40は水位計S1、温度計S2及び水位計S3の各出力(検出信号)D1-D3を入力し、これら信号に応じて冷却器30、流量調節弁V1及び水位調節弁V2等の各機器に指令信号C1-C3を出力し各機器の動作を制御する機能を持つ。
-Control device-
The control device 40 is a computer equipped with a memory such as RAM and ROM and an arithmetic unit such as a CPU, and is a device that controls the operation of the water recovery system according to, for example, a program stored in the ROM. The control device 40 inputs the outputs (detection signals) D1-D3 of the water level gauge S1, the thermometer S2, and the water level gauge S3, and responds to these signals by the cooler 30, the flow control valve V1, the water level control valve V2, and the like. It has a function to output command signals C1-C3 to each device and control the operation of each device.

一例として、制御装置40は、水位計S3の出力に応じて水位調節弁V2の開度を制御し、水回収装置10における回収水の水位を一定範囲に保つ機能を持つ。具体的には、本実施形態の制御装置40は、水位計S1の出力(回収水タンク20の水位)が設定値(又は設定範囲の上限値)を超えたら水位調節弁V2の開度を下げ、回収水タンク20への給水を減らして回収水タンク20の水位を下げる。反対に、制御装置40は水位計S1の出力が設定値(又は設定範囲の下限値)以下になったら水位調節弁V2の開度を上げ、回収水タンク20への給水を増やして回収水タンク20の水位を上げる。 As an example, the control device 40 has a function of controlling the opening degree of the water level control valve V2 according to the output of the water level gauge S3 and keeping the water level of the recovered water in the water recovery device 10 within a certain range. Specifically, the control device 40 of the present embodiment lowers the opening degree of the water level control valve V2 when the output of the water level gauge S1 (water level of the recovered water tank 20) exceeds the set value (or the upper limit of the set range). , The water supply to the recovery water tank 20 is reduced to lower the water level of the recovery water tank 20. On the contrary, when the output of the water level gauge S1 becomes equal to or less than the set value (or the lower limit of the set range), the control device 40 increases the opening degree of the water level control valve V2 and increases the water supply to the recovery water tank 20 to increase the recovery water tank. Raise the water level of 20.

他の例として、制御装置40は、温度計S2の出力に応じて流量調節弁V1を制御し、循環水流量(水回収装置10における散水流量)を調整する機能を持つ。制御装置40は、例えば温度計S2の出力(回収水の温度)が設定値(又は設定範囲の上限値)を超えたら流量調節弁V1の開度を上げて散水流量を増やし、水回収装置10のボディ10aの内部温度を下げて凝縮効率を上昇させる。反対に、制御装置40は、温度計S2の出力(回収水の温度)が設定値(又は設定範囲の下限値)以下になったら流量調節弁V1の開度を下げて散水流量を減らし、水回収装置10のボディ10aの内部温度を上げて凝縮効率を低下させる。 As another example, the control device 40 has a function of controlling the flow rate control valve V1 according to the output of the thermometer S2 and adjusting the circulating water flow rate (sprinkling flow rate in the water recovery device 10). For example, when the output (temperature of the recovered water) of the thermometer S2 exceeds the set value (or the upper limit of the set range), the control device 40 increases the opening degree of the flow rate control valve V1 to increase the sprinkling flow rate, and the water recovery device 10 The internal temperature of the body 10a is lowered to increase the condensation efficiency. On the contrary, when the output (temperature of the recovered water) of the thermometer S2 becomes equal to or less than the set value (or the lower limit of the set range), the control device 40 lowers the opening degree of the flow control valve V1 to reduce the sprinkling flow rate and water. The internal temperature of the body 10a of the recovery device 10 is raised to reduce the condensation efficiency.

そして、本実施形態の制御装置40は、センサ(本例では水位計S1)の出力に応じて冷却器30による冷却力を制御する機能を持つ。制御装置40は、センサ(本実施形態では水位計S1)の出力を基に回収水タンク20の水位低下が検知された場合は水回収装置10における凝縮効率を上げ、回収水タンク20の水位上昇が検知された場合は水回収装置10における凝縮効率を下げる。本実施形態の場合、制御装置40は、水位計S1により検出された回収水タンク20の水位が設定値(設定範囲の下限値としても良い)以下である場合、ラジエータのファンの回転数を上げる(又はファンの駆動台数を増やす)ことで冷却器30の冷却力を上げる。反対に、制御装置40は、水位計S1により検出された回収水タンク20の水位が設定値(設定範囲の上限値としても良い)より大きい場合、ラジエータのファンの回転数を下げる(又はファンの駆動台数を減らす)ことで冷却器30の冷却力を下げる。 The control device 40 of the present embodiment has a function of controlling the cooling force of the cooler 30 according to the output of the sensor (water level gauge S1 in this example). When the control device 40 detects a decrease in the water level of the recovered water tank 20 based on the output of the sensor (water level gauge S1 in the present embodiment), the control device 40 raises the condensation efficiency in the water recovery device 10 and raises the water level of the recovered water tank 20. If is detected, the condensation efficiency in the water recovery device 10 is lowered. In the case of the present embodiment, the control device 40 increases the rotation speed of the radiator fan when the water level of the recovered water tank 20 detected by the water level gauge S1 is equal to or lower than the set value (which may be the lower limit of the set range). (Or increase the number of driven fans) to increase the cooling power of the cooler 30. On the contrary, when the water level of the recovered water tank 20 detected by the water level gauge S1 is higher than the set value (which may be the upper limit of the set range), the control device 40 lowers the rotation speed of the fan of the radiator (or of the fan). By reducing the number of drives), the cooling power of the cooler 30 is reduced.

-冷却器の制御-
図2は制御装置40による冷却器30の制御手順を表すフローチャートである。制御装置40は、ガスタービンXの運転中、図2の制御を設定のサイクルタイム(例えば0.1s)で繰り返し実行する。図2で説明する冷却器30の制御は、前述した流量調節弁V1及び水位調節弁V2の制御の少なくとも一方を前提として実行する構成としても良いし、流量調節弁V1及び水位調節弁V2の双方の制御を停止した状態で実行する構成としても良い。いずれにしても流量調節弁V1及び水位調節弁V2の制御とは独立して、水位計S1の出力に応じて冷却器30が制御される。
-Cool control-
FIG. 2 is a flowchart showing a control procedure of the cooler 30 by the control device 40. The control device 40 repeatedly executes the control of FIG. 2 at a set cycle time (for example, 0.1 s) while the gas turbine X is in operation. The control of the cooler 30 described with reference to FIG. 2 may be executed on the premise of at least one of the control of the flow rate control valve V1 and the water level control valve V2 described above, or both the flow rate control valve V1 and the water level control valve V2. It may be configured to execute in a state where the control of is stopped. In any case, the cooler 30 is controlled according to the output of the water level gauge S1 independently of the control of the flow rate control valve V1 and the water level control valve V2.

図2の制御を開始すると、制御装置40は、水位計S1の出力(検出信号)D1を入力し(ステップS11)、例えばROMに記録された設定値Daと比較して出力D1が設定値Da以下であるか否かを判定する(ステップS12)。D1≦Daであれば、制御装置40は冷却器30の冷却力を上げ、ステップS11に手順を戻す(ステップS13)。前述した通り、制御装置40は、冷却器30に指令信号C1を出力し、ラジエータのファンの回転数を上げる又はラジエータの駆動台数を増やす等して冷却器30の冷却力を上げる。反対にD1>Daであれば、制御装置40は冷却器30の冷却力を下げ、ステップS11に手順を戻す(ステップS14)。前述した通り、制御装置40は、冷却器30に指令信号C1を出力し、ラジエータのファンの回転数を下げる又はラジエータの駆動台数を減らす等して冷却器30の冷却力を下げる。 When the control of FIG. 2 is started, the control device 40 inputs the output (detection signal) D1 of the water level gauge S1 (step S11), and the output D1 is the set value Da as compared with the set value Da recorded in the ROM, for example. It is determined whether or not it is as follows (step S12). If D1 ≦ Da, the control device 40 increases the cooling power of the cooler 30 and returns the procedure to step S11 (step S13). As described above, the control device 40 outputs a command signal C1 to the cooler 30, and increases the cooling power of the cooler 30 by increasing the rotation speed of the fan of the radiator or increasing the number of driven radiators. On the contrary, if D1> Da, the control device 40 reduces the cooling power of the cooler 30 and returns the procedure to step S11 (step S14). As described above, the control device 40 outputs a command signal C1 to the cooler 30, and lowers the cooling power of the cooler 30 by lowering the rotation speed of the fan of the radiator or reducing the number of driven radiators.

なお、ステップS13,S14で冷却器30の冷却力を上げ下げする際、ステップS13又はステップS14の手順の度にラジエータファンの回転数を現状の値に対して設定回転数ずつ上げ下げすることが例示できる。その他、ラジエータファンの回転数として冷却力増大用と減少用の2つの値を決めておき、D1≦Daの場合はステップS13でファンの回転数を増大用の一定値にし、D1>Daの場合はステップS14でファンの回転数を減少用の一定値にする例も挙げられる。ファンの駆動台数を調整する場合も同様である。例えば設定台数ずつファンの駆動台数をステップS13又はステップS14の手順の度に増減させる例も挙げられるし、ラジエータファンの駆動台数として冷却力の増大時と減少時とでそれぞれ一律の駆動台数を決めておく例も挙げられる。 When the cooling power of the cooler 30 is increased or decreased in steps S13 and S14, it can be exemplified that the rotation speed of the radiator fan is increased or decreased by the set rotation speed with respect to the current value in each procedure of step S13 or step S14. .. In addition, two values for increasing and decreasing the cooling power are determined as the rotation speed of the radiator fan, and when D1 ≤ Da, the rotation speed of the fan is set to a constant value for increasing in step S13, and when D1> Da. Is also an example in which the rotation speed of the fan is set to a constant value for reduction in step S14. The same applies when adjusting the number of driven fans. For example, there is an example in which the number of fan drives is increased or decreased for each set number of fans in each step of step S13 or step S14, and the number of radiator fans to be driven is determined uniformly when the cooling power increases and decreases. There is also an example to keep.

-効果-
(1)例えば低気温時に散水温度の低下により水回収装置10における凝縮効率が上昇すると、回収水タンク20に供給される回収水量がガスタービンXへの送水量を超え、回収水タンク20の水位が過度に上昇し得る。流量調節弁V1や水位調節弁V2を制御する場合、これらの弁制御により水回収装置10における凝縮効率や回収水タンク20の水位の調整が図られるが、これら弁制御をした上でも条件によっては回収水タンク20の水位が過度に上昇し得る。回収水タンク20の水位が許容値を超えて上昇すると、回収水タンク20に貯留した回収水を一部捨てなければならない。
-effect-
(1) For example, when the condensation efficiency in the water recovery device 10 increases due to a decrease in the sprinkling temperature at a low temperature, the amount of recovered water supplied to the recovered water tank 20 exceeds the amount of water sent to the gas turbine X, and the water level of the recovered water tank 20. Can rise excessively. When controlling the flow control valve V1 and the water level control valve V2, the condensation efficiency in the water recovery device 10 and the water level of the recovery water tank 20 can be adjusted by controlling these valves, but even after controlling these valves, depending on the conditions. The water level of the recovery water tank 20 may rise excessively. When the water level of the reclaimed water tank 20 rises beyond the permissible value, a part of the reclaimed water stored in the reclaimed water tank 20 must be discarded.

それに対し、本実施形態では、水位計S1の出力D1が設定値Daを超えると、制御装置40により冷却器30の冷却力が下げられる。冷却器30の冷却力が低下すると水回収装置10における凝縮効率が低下し、回収水タンク20に供給される回収水量がガスタービンXへの送水量を下回り、回収水タンク20の水位が低下する。 On the other hand, in the present embodiment, when the output D1 of the water level gauge S1 exceeds the set value Da, the cooling power of the cooler 30 is reduced by the control device 40. When the cooling power of the cooler 30 decreases, the condensation efficiency in the water recovery device 10 decreases, the amount of recovered water supplied to the recovered water tank 20 falls below the amount of water sent to the gas turbine X, and the water level of the recovered water tank 20 drops. ..

反対に、高気温時に散水温度の上昇により水回収装置10における凝縮効率が低下すると、回収水タンク20に供給される回収水量がガスタービンXへの送水量を下回り、回収水タンク20の水位が低下する。流量調節弁V1や水位調節弁V2を制御する場合でも、条件によっては回収水タンク20の水位が過度に低下し得る。回収水タンク20の水位が許容値を超えて低下すると、回収水タンク20や循環水配管P1に外部から水を補給しなければならない。 On the contrary, when the condensation efficiency in the water recovery device 10 decreases due to the rise in the sprinkling temperature at high temperature, the amount of recovered water supplied to the recovered water tank 20 falls below the amount of water sent to the gas turbine X, and the water level of the recovered water tank 20 rises. descend. Even when the flow rate control valve V1 or the water level control valve V2 is controlled, the water level of the recovery water tank 20 may drop excessively depending on the conditions. When the water level of the recovery water tank 20 drops beyond the permissible value, water must be replenished from the outside to the recovery water tank 20 and the circulating water pipe P1.

それに対し、本実施形態では、水位計S1の出力D1が設定値Da以下になると、制御装置40により冷却器30の冷却力が上げられる。冷却器30の冷却力が上昇すると水回収装置10における凝縮効率が上昇し、回収水タンク20に供給される回収水量がガスタービンXへの送水量を超え、回収水タンク20の水位が上昇する。 On the other hand, in the present embodiment, when the output D1 of the water level gauge S1 becomes equal to or less than the set value Da, the cooling power of the cooler 30 is increased by the control device 40. When the cooling power of the cooler 30 increases, the condensation efficiency in the water recovery device 10 increases, the amount of recovered water supplied to the recovered water tank 20 exceeds the amount of water sent to the gas turbine X, and the water level of the recovered water tank 20 rises. ..

このように、本実施形態によれば、高気温時にガスタービンの排気ガスからの水の回収効率が低下しても、冷却器30の冷却力を上げることで回収水タンク20の水位を保つことができる。これにより、高気温時でも系外(ガスタービンXや水回収システムの外部)からの補給水を要しない又は補給水量を抑えることができる。また、低気温時に回収水量が過多になる傾向があっても、冷却器30の冷却力を下げて回収水タンク20の水位が適正に保たれるので、回収水を無駄に捨てる必要もなくなる。 As described above, according to the present embodiment, even if the efficiency of recovering water from the exhaust gas of the gas turbine decreases at high temperature, the water level of the recovered water tank 20 is maintained by increasing the cooling power of the cooler 30. Can be done. As a result, supplementary water from outside the system (outside the gas turbine X or the water recovery system) is not required or the amount of supplementary water can be suppressed even at high temperatures. Further, even if the amount of recovered water tends to be excessive when the temperature is low, the cooling power of the cooler 30 is lowered to keep the water level of the recovered water tank 20 at an appropriate level, so that it is not necessary to waste the recovered water.

(2)本実施形態では回収水タンク20の水位計S1の出力、つまり回収水タンク20の現実の水位の増減を冷却器30の制御の基礎とするので、回収水タンク20の水位を直接的に制御できるメリットがある。 (2) In the present embodiment, the output of the water level gauge S1 of the reclaimed water tank 20, that is, the increase / decrease of the actual water level of the reclaimed water tank 20 is used as the basis for controlling the cooler 30, so that the water level of the reclaimed water tank 20 is directly used. There is a merit that it can be controlled.

(3)また、冷却器30を制御して積極的に散水温度を制御することで、水回収装置10における凝縮効率を効率的に調整することができる。 (3) Further, by controlling the cooler 30 and positively controlling the sprinkling temperature, the condensation efficiency in the water recovery device 10 can be efficiently adjusted.

(第2実施形態)
図3は本発明の第2実施形態に係る水回収システムに備えられた制御装置による冷却器の制御手順を表すフローチャートである。図3は第1実施形態の図2に対応している。本実施形態が第1実施形態お相違する点は、水回収装置10における凝縮効率を制御して回収水タンク20の水位を保つに当たり、制御装置40が水位計S1ではなく循環水配管P1に設けた温度計S2の出力に応じて冷却器30を制御する点である。
(Second Embodiment)
FIG. 3 is a flowchart showing a control procedure of a cooler by a control device provided in the water recovery system according to the second embodiment of the present invention. FIG. 3 corresponds to FIG. 2 of the first embodiment. The difference between this embodiment and the first embodiment is that the control device 40 is provided in the circulating water pipe P1 instead of the water level gauge S1 in controlling the condensation efficiency in the water recovery device 10 to maintain the water level of the recovered water tank 20. This is a point in which the cooler 30 is controlled according to the output of the thermometer S2.

制御装置40は、ガスタービンXの運転中、図3の制御を設定のサイクルタイム(例えば0.1s)で繰り返し実行する。図3で説明する冷却器30の制御は、第1実施形態の図2の制御と同じく、流量調節弁V1及び水位調節弁V2の制御の少なくとも一方と合わせて実行しても良いし、流量調節弁V1及び水位調節弁V2の双方の制御を停止した状態で実行しても良い。いずれにしても流量調節弁V1及び水位調節弁V2の制御とは独立して、センサ(本例では温度計S2)の出力に応じて冷却器30が制御される。 The control device 40 repeatedly executes the control of FIG. 3 at a set cycle time (for example, 0.1 s) while the gas turbine X is in operation. The control of the cooler 30 described with reference to FIG. 3 may be executed in combination with at least one of the control of the flow rate control valve V1 and the water level control valve V2, as in the control of FIG. 2 of the first embodiment, or the flow rate control. The control of both the valve V1 and the water level control valve V2 may be stopped. In any case, the cooler 30 is controlled according to the output of the sensor (thermometer S2 in this example) independently of the control of the flow rate control valve V1 and the water level control valve V2.

図3の制御を開始すると、制御装置40は、温度計S2の出力(検出信号)D3を入力し(ステップS11’)、例えばROMに記録された設定値Dbと比較して出力D3が設定値Dbより大きいかを判定する(ステップS12)。D3>Dbであれば、制御装置40は冷却器30の冷却力を上げ、ステップS11に手順を戻す(ステップS13)。ステップS13の手順は図2のステップS13と同一である。反対にD3≦Dbであれば、制御装置40は冷却器30の冷却力を下げ、ステップS11に手順を戻す(ステップS14)。ステップS14の手順は図2のステップS14と同一である。 When the control of FIG. 3 is started, the control device 40 inputs the output (detection signal) D3 of the thermometer S2 (step S11'), and the output D3 is a set value as compared with the set value Db recorded in the ROM, for example. It is determined whether it is larger than Db (step S12). If D3> Db, the control device 40 increases the cooling power of the cooler 30 and returns the procedure to step S11 (step S13). The procedure of step S13 is the same as that of step S13 of FIG. On the contrary, if D3 ≦ Db, the control device 40 reduces the cooling power of the cooler 30 and returns the procedure to step S11 (step S14). The procedure of step S14 is the same as that of step S14 of FIG.

その他の構成は第1実施形態と同様である。 Other configurations are the same as those of the first embodiment.

図4は水回収装置10における散水温度と水回収システムによる水回収率との関係を示した概念図である。水回収システムにおける回収水の過不足は、排気ガス中の水分が凝縮する温度、排気ガスを冷却する散水の流量や温度で決まる。 FIG. 4 is a conceptual diagram showing the relationship between the watering temperature in the water recovery device 10 and the water recovery rate by the water recovery system. The excess or deficiency of the recovered water in the water recovery system is determined by the temperature at which the water in the exhaust gas condenses, and the flow rate and temperature of the sprinkling water that cools the exhaust gas.

水回収システムにおける水回収率は、回収水タンク20からガスタービンXへの送水量に対する水回収装置10における水回収量の比で定義される。水回収装置10では、排気ガス中の水分が凝縮し始める飽和温度まで排気ガスを冷却すれば回収水が得られ、飽和温度からさらに排気ガスを冷却することで回収量が増加する。この観点では、水回収率は排気ガス温度との関係で表す方が直接的であるが、ガスタービンの排気ガスは気液混合した状態にあり、液相と区別して排気ガスそのものの温度を計測することは困難である。そのため、図4では水回収率を散水温度との関係で表している。 The water recovery rate in the water recovery system is defined by the ratio of the water recovery amount in the water recovery device 10 to the water supply amount from the recovery water tank 20 to the gas turbine X. In the water recovery device 10, recovered water is obtained by cooling the exhaust gas to a saturation temperature at which the moisture in the exhaust gas begins to condense, and the recovery amount is increased by further cooling the exhaust gas from the saturation temperature. From this point of view, the water recovery rate is more directly expressed in relation to the exhaust gas temperature, but the exhaust gas of the gas turbine is in a gas-liquid mixed state, and the temperature of the exhaust gas itself is measured separately from the liquid phase. It's difficult to do. Therefore, in FIG. 4, the water recovery rate is shown in relation to the sprinkling temperature.

図4では、予め定めた一定条件下において散水温度が設定値Dbである場合に水回収率が100%になるように水回収システムが設計されている。従って散水温度が設定値Dbを超えると水回収率が100%を下回り、回収水タンク20の水位低下が推定される。反対に散水温度が設定値Dbを下回ると水回収率が100%を超え、回収水タンク20の水位上昇が推定される。 In FIG. 4, the water recovery system is designed so that the water recovery rate becomes 100% when the sprinkling temperature is the set value Db under a predetermined constant condition. Therefore, when the sprinkling temperature exceeds the set value Db, the water recovery rate falls below 100%, and it is estimated that the water level of the recovered water tank 20 drops. On the contrary, when the sprinkling temperature is lower than the set value Db, the water recovery rate exceeds 100%, and it is estimated that the water level of the recovered water tank 20 rises.

そこで、図3のように温度計S2の出力に応じて冷却器30を制御して水回収装置10における水の回収効率を調整することで、第1実施形態と同様に回収水タンク20の水位の変動を抑制できる。また、本実施形態では、散水温度の変動に応じて冷却器30を制御するため、現実に回収水タンク20の水位が変動するのに先行して水回収装置10における水の回収効率が調整され得る。そのため、第1実施形態に比べて回収水タンク20の水位の変動が抑えられる場合もある。 Therefore, as shown in FIG. 3, by controlling the cooler 30 according to the output of the thermometer S2 to adjust the water recovery efficiency in the water recovery device 10, the water level of the recovery water tank 20 is the same as in the first embodiment. Fluctuations can be suppressed. Further, in the present embodiment, since the cooler 30 is controlled according to the fluctuation of the sprinkling temperature, the water recovery efficiency in the water recovery device 10 is adjusted prior to the actual fluctuation of the water level of the recovery water tank 20. obtain. Therefore, the fluctuation of the water level of the recovered water tank 20 may be suppressed as compared with the first embodiment.

(第3実施形態)
第3実施形態は、回収水タンク20の水位を維持するために、回収水タンク20の水位の上昇又は低下が検知された場合に冷却器30ではなく流量調節弁V1を制御する例である。具体的には、制御装置40は、回収水タンク20の水位低下が検知された場合、流量調節弁V1の開度を上げて水回収装置10における散水流量を増加させ、水回収装置10における凝縮効率を上げる。反対に、回収水タンク20の水位上昇が検知された場合、制御装置40は、流量調節弁V1の開度を下げて水回収装置10における散水流量を減少させ、水回収装置10における凝縮効率を下げる。回収水タンク20の水位の上昇及び低下の判定については、第1実施形態又は第2実施形態と同様の形式を適用することができる。また、流量調節弁V1の開度を上げ下げする際、現状の値に対して設定開度ずつ上げ下げする例の他、冷却力増大用と減少用の2つの開度を決めておく例も適用できる。
(Third Embodiment)
The third embodiment is an example in which the flow rate control valve V1 is controlled instead of the cooler 30 when the rise or fall of the water level of the recovery water tank 20 is detected in order to maintain the water level of the recovery water tank 20. Specifically, when the water level drop in the recovery water tank 20 is detected, the control device 40 increases the opening degree of the flow rate control valve V1 to increase the sprinkling flow rate in the water recovery device 10, and condenses in the water recovery device 10. Increase efficiency. On the contrary, when the rise in the water level of the recovered water tank 20 is detected, the control device 40 lowers the opening degree of the flow rate control valve V1 to reduce the sprinkling flow rate in the water recovery device 10 and reduce the condensation efficiency in the water recovery device 10. Lower. As for the determination of the rise and fall of the water level of the recovered water tank 20, the same form as that of the first embodiment or the second embodiment can be applied. Further, when raising or lowering the opening degree of the flow control valve V1, in addition to the example of raising or lowering the opening degree by the set opening degree with respect to the current value, an example of determining two opening degrees for increasing or decreasing the cooling power can also be applied. ..

図5は本発明の第3実施形態に係る水回収システムに備えられた制御装置による流量調節弁の制御手順を表すフローチャートである。図5は第1実施形態の図2に対応している。この図5を用いて制御装置40による流量調節弁V1の制御について説明する。 FIG. 5 is a flowchart showing a control procedure of a flow rate control valve by a control device provided in the water recovery system according to the third embodiment of the present invention. FIG. 5 corresponds to FIG. 2 of the first embodiment. The control of the flow rate control valve V1 by the control device 40 will be described with reference to FIG.

制御装置40は、ガスタービンXの運転中、図5の制御を設定のサイクルタイム(例えば0.1s)で繰り返し実行する。水位調節弁V2や冷却器30については、図5で説明する流量調節弁V1の制御とは別に第1実施形態又は第2実施形態と同様に実行される。但し、冷却器30の制御を行わなくても図5の流量調節弁V1の制御で回収水タンク20の水位の維持が設計上可能である場合には、第1実施形態又は第2実施形態のような冷却器30の制御を実行する必要はなく、冷却器30の制御については省略しても良い。 The control device 40 repeatedly executes the control of FIG. 5 at a set cycle time (for example, 0.1 s) while the gas turbine X is in operation. The water level control valve V2 and the cooler 30 are executed in the same manner as in the first embodiment or the second embodiment, separately from the control of the flow rate control valve V1 described with reference to FIG. However, if it is possible to maintain the water level of the recovered water tank 20 by controlling the flow rate control valve V1 of FIG. 5 without controlling the cooler 30, the first embodiment or the second embodiment may be used. It is not necessary to perform such control of the cooler 30, and the control of the cooler 30 may be omitted.

図5の制御を開始すると、制御装置40は、水位計S1の出力(検出信号)D1を入力し(ステップS11)、例えばROMに記録された設定値Daと比較して出力D1が設定値Da以下であるかを判定する(ステップS12)。ステップS11,S12については第1実施形態の図2と同様であるが、第2実施形態のように温度計S2の出力に基づく判定(ステップS11’,S12’)に代えることもできる。ステップS12の判定の結果、D1≦Daであれば、制御装置40は流量調節弁V1の開度を上げ、ステップS11に手順を戻す(ステップS13’)。反対にD1>Daであれば、制御装置40は流量調節弁V1の開度を下げ、ステップS11に手順を戻す(ステップS14’)。 When the control of FIG. 5 is started, the control device 40 inputs the output (detection signal) D1 of the water level gauge S1 (step S11), and the output D1 is the set value Da as compared with the set value Da recorded in the ROM, for example. It is determined whether the following is true (step S12). Steps S11 and S12 are the same as those in FIG. 2 of the first embodiment, but can be replaced with determination based on the output of the thermometer S2 (steps S11'and S12') as in the second embodiment. If D1 ≦ Da as a result of the determination in step S12, the control device 40 increases the opening degree of the flow rate control valve V1 and returns the procedure to step S11 (step S13'). On the contrary, if D1> Da, the control device 40 lowers the opening degree of the flow rate control valve V1 and returns the procedure to step S11 (step S14').

その他の構成は第1実施形態と同様である。 Other configurations are the same as those of the first embodiment.

本実施形態においても、回収水タンク20の水位の変動に応じて水回収装置10における凝縮効率を制御して回収水タンク20の水位を保つことができる。 Also in this embodiment, it is possible to maintain the water level of the recovered water tank 20 by controlling the condensation efficiency in the water recovery device 10 according to the fluctuation of the water level of the recovered water tank 20.

(第4実施形態)
図6は本発明の第4実施形態に係る水回収システムの要部の概略図である。図6では、回収水タンク20、回収水配管P2、流量調節弁V1、水位調節弁V2、送水ポンプ21及び制御装置40は、図の簡略化のため図示省略してある。水回収装置10の充填物10bや散水ノズル10cも同様に図示省略してある。図6において図1と同様の要素には図1と同符号を付して説明を省略する。
(Fourth Embodiment)
FIG. 6 is a schematic view of a main part of the water recovery system according to the fourth embodiment of the present invention. In FIG. 6, the reclaimed water tank 20, the reclaimed water pipe P2, the flow rate control valve V1, the water level control valve V2, the water pump 21, and the control device 40 are omitted from the drawing for the sake of simplification of the figure. Similarly, the filler 10b and the watering nozzle 10c of the water recovery device 10 are not shown. In FIG. 6, the same elements as those in FIG. 1 are designated by the same reference numerals as those in FIG. 1, and the description thereof will be omitted.

本実施形態が第1実施形態と異なる点は、ガスタービンXの燃料を加熱する加熱器の加熱媒体として回収水を用い、燃料加熱器により回収水を冷却するように構成し、燃料加熱器への回収水の供給流量を調節して回収水タンク20の水位の維持を図る点である。以下に具体的構成を説明する。 The difference between this embodiment and the first embodiment is that the recovered water is used as a heating medium of the heater for heating the fuel of the gas turbine X, and the recovered water is cooled by the fuel heater to the fuel heater. The point is to maintain the water level of the recovered water tank 20 by adjusting the supply flow rate of the recovered water. The specific configuration will be described below.

本実施形態の水回収システムは、燃料加熱器50、バイパス配管P4、加熱調節弁V3、流量調節弁V4を更に備えている。燃料加熱器50は、ガスタービンX(図示しないガスタービン燃焼器)に供給する燃料を水回収装置10で回収した回収水と熱交換して加熱する熱交換器である。バイパス配管P4は循環水配管P1の循環ポンプ11と冷却器30の間の位置から分岐して燃料加熱器50に接続し、燃料加熱器50を通過して再び循環水配管P1に合流する。バイパス配管P4が循環水配管P1に合流するポイントは、バイパス配管P4が循環水配管P1から分岐するポイントと冷却器30の間である。加熱調節弁V3はバイパス配管P4の途中に設けられている。流量調節弁V4は、循環水配管P1におけるバイパス配管P4が分岐するポイントとバイパス配管P4が合流するポイントの間に位置する。バイパス配管P4が流量調節弁V4をバイパスする構成である。 The water recovery system of the present embodiment further includes a fuel heater 50, a bypass pipe P4, a heating control valve V3, and a flow rate control valve V4. The fuel heater 50 is a heat exchanger that heats the fuel supplied to the gas turbine X (gas turbine combustor (not shown) by heat exchange with the recovered water recovered by the water recovery device 10. The bypass pipe P4 branches from the position between the circulation pump 11 and the cooler 30 of the circulating water pipe P1 and connects to the fuel heater 50, passes through the fuel heater 50 and rejoins the circulating water pipe P1. The point where the bypass pipe P4 joins the circulating water pipe P1 is between the point where the bypass pipe P4 branches from the circulating water pipe P1 and the cooler 30. The heating control valve V3 is provided in the middle of the bypass pipe P4. The flow rate control valve V4 is located between the point where the bypass pipe P4 in the circulating water pipe P1 branches and the point where the bypass pipe P4 joins. The bypass pipe P4 is configured to bypass the flow rate control valve V4.

本実施形態において、制御装置40は、センサの出力を基に回収水タンク20の水位低下が検知された場合、流量調節弁V4の開度を下げつつ加熱調節弁V3の開度を上げ、燃料加熱器50への回収水の通水量を増やす。これにより回収水から燃料への熱移動量が増加し、散水温度が低下して水回収装置10における凝縮効率が上昇する。反対に、制御装置40は、センサの出力を基に回収水タンク20の水位上昇が検知された場合、流量調節弁V4の開度を上げつつ加熱調節弁の開度を下げ、燃料加熱器50への回収水の通水量を減らす。これにより回収水から燃料への熱移動量が減少し、散水温度が上昇して水回収装置10における凝縮効率が低下する。本実施形態では、このように回収水タンク20の水位の変動の抑制を図る。回収水タンク20の水位の上昇及び低下の判定については、第1実施形態又は第2実施形態と同様の形式を適用することができる。また、加熱調節弁V3や流量調節弁V4の開度を上げ下げする際、現状の値に対して設定開度ずつ上げ下げする例の他、冷却力増大用と減少用の2つの開度を決めておく例も適用できる。 In the present embodiment, when the water level drop in the recovered water tank 20 is detected based on the output of the sensor, the control device 40 raises the opening degree of the heating control valve V3 while lowering the opening degree of the flow control valve V4 to fuel. Increase the amount of recovered water flowing to the heater 50. As a result, the amount of heat transferred from the recovered water to the fuel increases, the sprinkling temperature decreases, and the condensation efficiency in the water recovery device 10 increases. On the contrary, when the water level rise of the recovered water tank 20 is detected based on the output of the sensor, the control device 40 raises the opening degree of the flow rate control valve V4 and lowers the opening degree of the heating control valve, and lowers the opening degree of the heating control valve 50. Reduce the amount of reclaimed water flowing to. As a result, the amount of heat transferred from the recovered water to the fuel is reduced, the sprinkling temperature is raised, and the condensation efficiency in the water recovery device 10 is lowered. In the present embodiment, the fluctuation of the water level of the recovered water tank 20 is suppressed in this way. As for the determination of the rise and fall of the water level of the recovered water tank 20, the same form as that of the first embodiment or the second embodiment can be applied. Further, when raising or lowering the opening degree of the heating control valve V3 or the flow rate control valve V4, in addition to the example of raising or lowering the opening degree by the set opening degree with respect to the current value, two opening degrees for increasing or decreasing the cooling power are determined. An example is also applicable.

図7は本発明の第4実施形態に係る水回収システムに備えられた制御装置による流量調節弁及び加熱調節弁の制御手順を表すフローチャートである。図7は第1実施形態の図2に対応している。この図7を用いて制御装置40による流量調節弁V1の制御について説明する。 FIG. 7 is a flowchart showing a control procedure of the flow rate control valve and the heating control valve by the control device provided in the water recovery system according to the fourth embodiment of the present invention. FIG. 7 corresponds to FIG. 2 of the first embodiment. The control of the flow rate control valve V1 by the control device 40 will be described with reference to FIG. 7.

制御装置40は、ガスタービンXの運転中、図7の制御を設定のサイクルタイム(例えば0.1s)で繰り返し実行する。流量調節弁V1や水位調節弁V2、冷却器30については、図7で説明する加熱調節弁V3及び流量調節弁V4の制御とは別に第1実施形態又は第3実施形態と同様に実行される。但し、流量調節弁V1や冷却器30の制御を行わなくても図7の加熱調節弁V3及び流量調節弁V4の制御で回収水タンク20の水位の維持が設計上可能である場合には、冷却器30及び流量調節弁V1の少なくとも一方の制御を省略することができる。 The control device 40 repeatedly executes the control of FIG. 7 at a set cycle time (for example, 0.1 s) while the gas turbine X is in operation. The flow rate control valve V1, the water level control valve V2, and the cooler 30 are executed in the same manner as in the first embodiment or the third embodiment separately from the control of the heat control valve V3 and the flow rate control valve V4 described with reference to FIG. .. However, if it is possible by design to maintain the water level of the recovered water tank 20 by controlling the heat control valve V3 and the flow rate control valve V4 of FIG. 7 without controlling the flow rate control valve V1 and the cooler 30. Control of at least one of the cooler 30 and the flow rate control valve V1 can be omitted.

図7の制御を開始すると、制御装置40は、水位計S1の出力(検出信号)D1を入力し(ステップS11)、例えばROMに記録された設定値Daと比較して出力D1が設定値Da以下であるかを判定する(ステップS12)。ステップS11,S12については第1実施形態の図2と同様であるが、第2実施形態のように温度計S2の出力に基づく判定(ステップS11’,S12’)に代えることもできる。ステップS12の判定の結果、D1≦Daであれば、制御装置40は流量調節弁V4の開度を下げて加熱調節弁V3の開度を上げ、ステップS11に手順を戻す(ステップS13”)。反対にD1>Daであれば、制御装置40は流量調節弁V4の開度を上げて加熱調節弁V3の開度を下げ、ステップS11に手順を戻す(ステップS14”)。 When the control of FIG. 7 is started, the control device 40 inputs the output (detection signal) D1 of the water level gauge S1 (step S11), and the output D1 is the set value Da as compared with the set value Da recorded in the ROM, for example. It is determined whether the following is true (step S12). Steps S11 and S12 are the same as those in FIG. 2 of the first embodiment, but can be replaced with determination based on the output of the thermometer S2 (steps S11'and S12') as in the second embodiment. If D1 ≦ Da as a result of the determination in step S12, the control device 40 lowers the opening degree of the flow rate control valve V4 to increase the opening degree of the heating control valve V3, and returns the procedure to step S11 (step S13 "). On the contrary, if D1> Da, the control device 40 increases the opening degree of the flow rate control valve V4, lowers the opening degree of the heating control valve V3, and returns the procedure to step S11 (step S14 ").

その他の構成は第1実施形態と同様である。 Other configurations are the same as those of the first embodiment.

本実施形態においても、回収水タンク20の水位の変動に応じて水回収装置10における凝縮効率を制御して回収水タンク20の水位を保つことができる。 Also in this embodiment, it is possible to maintain the water level of the recovered water tank 20 by controlling the condensation efficiency in the water recovery device 10 according to the fluctuation of the water level of the recovered water tank 20.

(第5実施形態)
図8は本発明の第5実施形態に係る水回収システムの概略図である。第5実施形態においては、他の実施形態に係る水回収システムとほぼ同様の構成を備えており、同様な構成については、同一符号を用いて詳細な説明を省略し、異なる構成に関して主に説明を行う。
(Fifth Embodiment)
FIG. 8 is a schematic view of the water recovery system according to the fifth embodiment of the present invention. The fifth embodiment has almost the same configuration as the water recovery system according to the other embodiments. For the same configuration, detailed description is omitted using the same reference numerals, and different configurations are mainly described. I do.

本実施形態の水回収システムは、情報処理装置60及び端末62を更に備えており、情報処理装置60は、送受信手段64及び制御手段66を備えている。 The water recovery system of the present embodiment further includes an information processing device 60 and a terminal 62, and the information processing device 60 includes a transmission / reception means 64 and a control means 66.

情報処理装置60は、上述した実施形態の制御装置40における制御手順の各処理を制御手段66により実行する装置であり、クラウド環境上又はVPN(Virtual Private Network)を介し、送受信手段64により制御装置40に接続し制御装置40と双方向通信可能である。 The information processing device 60 is a device that executes each process of the control procedure in the control device 40 of the above-described embodiment by the control means 66, and is a control device by the transmission / reception means 64 on the cloud environment or via a VPN (Virtual Private Network). It can be connected to 40 and can communicate bidirectionally with the control device 40.

例えば、制御装置40は、制御装置40に対して入力された水位計S1、温度計S2及び水位計S3の各出力(検出信号)D1-D3に関する情報(データ)を情報処理装置60へ送信する。 For example, the control device 40 transmits information (data) regarding each output (detection signal) D1-D3 of the water level gauge S1, the thermometer S2, and the water level gauge S3 input to the control device 40 to the information processing device 60. ..

そして、情報処理装置60は、制御装置40から送受信手段64により受信した各出力に関する情報を用い、上述した実施形態に係る制御装置40における制御手順(図2-図5、図7)と同様の手順で制御手段66により処理を実行する。 Then, the information processing apparatus 60 uses the information about each output received from the control apparatus 40 by the transmission / reception means 64, and is the same as the control procedure (FIGS. 2-FIG. 5, FIG. 7) in the control apparatus 40 according to the above-described embodiment. The process is executed by the control means 66 in the procedure.

但し、上述した実施形態では、制御装置40が冷却器30を制御することを説明したが、本実施形態では、情報処理装置60が、各出力に関する情報を用いて実行した処理結果に応じて冷却器30、流量調節弁V1及び水位調節弁V2等の各機器に指令信号C1-C3を出力するよう送受信手段64によって制御装置40へ指示に係る情報(データ)を送信し、当該指示に係る情報を受け付けた制御装置40が、各機器に指令信号C1-C3を出力することにより各機器の動作を制御する。 However, in the above-described embodiment, it has been described that the control device 40 controls the cooler 30, but in the present embodiment, the information processing device 60 cools according to the processing result executed by using the information about each output. Information (data) related to the instruction is transmitted to the control device 40 by the transmission / reception means 64 so as to output the command signal C1-C3 to each device such as the device 30, the flow control valve V1 and the water level control valve V2, and the information related to the instruction. The control device 40 that has received the above controls the operation of each device by outputting the command signals C1-C3 to each device.

なお、情報処理装置60において実行した処理結果を当該情報処理装置60と通信可能な端末62に表示し、オペレータが処理結果を参照し、制御を行う指示を各機器へ出すか否かを判断する構成をとることも可能である。 The processing result executed by the information processing apparatus 60 is displayed on the terminal 62 capable of communicating with the information processing apparatus 60, and the operator refers to the processing result and determines whether or not to issue an instruction to control to each device. It is also possible to take a configuration.

オペレータが制御を行う指示を出すと判断した場合、オペレータが端末62を操作して指示を行うと、情報処理装置60は、制御装置40に対して各機器の動作を制御するよう指示に係る情報を送受信手段64によって送信する。 When it is determined that the operator issues an instruction to control, when the operator operates the terminal 62 to give an instruction, the information processing device 60 instructs the control device 40 to control the operation of each device. Is transmitted by the transmission / reception means 64.

あるいは、オペレータは端末62から指示を行うことなく、制御装置40に対して直接指示を行うことが可能なアプリケーションを搭載した別のデバイスから各機器の制御を行うよう要求する態様でも良い。 Alternatively, the operator may request the control device 40 to control each device from another device equipped with an application capable of directly instructing the control device 40 without giving an instruction from the terminal 62.

なお、処理結果とは、例えば、上述の実施形態において説明したように各出力D1-D3がそれぞれの設定値を超えたか、あるいは各出力D1-D3がそれぞれの設定値以下であるかといった処理の結果を示す。 The processing result is, for example, whether each output D1-D3 exceeds each set value or each output D1-D3 is equal to or less than each set value as described in the above-described embodiment. The results are shown.

さらに、情報処理装置60は、端末62からの要求により各処理を実行する構成を備えても良い。 Further, the information processing apparatus 60 may be configured to execute each process in response to a request from the terminal 62.

本実施形態においても、回収水タンク20の水位の変動に応じて水回収装置10における凝縮効率を制御して回収水タンク20の水位を保つことができる。 Also in this embodiment, it is possible to maintain the water level of the recovered water tank 20 by controlling the condensation efficiency in the water recovery device 10 according to the fluctuation of the water level of the recovered water tank 20.

本発明は、上記実施形態における制御手順や処理等に関しては、制御方法、及びプログラムとしての実施態様をとることが可能である。 The present invention can take a control method and an embodiment as a program with respect to the control procedure, the process, and the like in the above embodiment.

10…水回収装置、20…回収水タンク、30…冷却器、40…制御装置、50…燃料加熱器、60…情報処理装置、62…端末、64…送受信手段、66…制御手段、P1…循環水配管、P2…回収水配管、P4…バイパス配管、S1…水位計(センサ)、S2…温度計(センサ)、V1…流量調節弁、V3…加熱調節弁、V4…流量調節弁、X…ガスタービン 10 ... water recovery device, 20 ... recovery water tank, 30 ... cooler, 40 ... control device, 50 ... fuel heater, 60 ... information processing device, 62 ... terminal, 64 ... transmission / reception means, 66 ... control means, P1 ... Circulating water pipe, P2 ... Recovery water pipe, P4 ... Bypass pipe, S1 ... Water level gauge (sensor), S2 ... Thermometer (sensor), V1 ... Flow control valve, V3 ... Heat control valve, V4 ... Flow control valve, X …gas turbine

Claims (11)

ガスタービンの排気ガスを散水により冷却し前記排気ガスに含まれる水を凝縮させる水回収装置と、
前記水回収装置で回収した水を前記水回収装置から抜き出して前記水回収装置に供給する循環水配管と、
前記循環水配管に設けられて前記水回収装置で回収した水を冷却する冷却器と、
前記水回収装置で回収した水を貯留する回収水タンクと、
前記循環水配管から分岐して前記回収水タンクに接続する回収水配管と、
前記回収水タンクの水位又は水位に関係して変動する状態量を検出するセンサと、
前記水回収装置における凝縮効率を制御するに当たり、前記センサの出力を基に前記回収水タンクの水位低下が検知された場合は前記凝縮効率を上げ、前記回収水タンクの水位上昇が検知された場合は前記凝縮効率を下げることを定める装置と
を備えたことを特徴とする水回収システム。
A water recovery device that cools the exhaust gas of a gas turbine by sprinkling and condenses the water contained in the exhaust gas.
A circulating water pipe that extracts the water recovered by the water recovery device from the water recovery device and supplies it to the water recovery device.
A cooler provided in the circulating water pipe to cool the water collected by the water recovery device, and
A recovery water tank that stores the water recovered by the water recovery device, and
A recovery water pipe that branches from the circulating water pipe and connects to the recovery water tank,
A sensor that detects the water level of the reclaimed water tank or a state amount that fluctuates in relation to the water level, and
In controlling the condensation efficiency in the water recovery device, when a decrease in the water level of the recovery water tank is detected based on the output of the sensor, the condensation efficiency is increased, and when a rise in the water level of the recovery water tank is detected. Is a water recovery system equipped with a device for reducing the condensation efficiency.
請求項1の水回収システムにおいて、
前記センサは、前記回収水タンクに設けた水位計である
ことを特徴とする水回収システム。
In the water recovery system of claim 1,
The sensor is a water recovery system characterized by being a water level gauge provided in the recovery water tank.
請求項1の水回収システムにおいて、
前記センサは、前記循環水配管に設けた温度計である
ことを特徴とする水回収システム。
In the water recovery system of claim 1,
The sensor is a water recovery system characterized by being a thermometer provided in the circulating water pipe.
請求項1の水回収システムにおいて、
前記装置は、前記回収水タンクの水位低下が検知された場合、前記冷却器による冷却力を上げて前記水回収装置における凝縮効率を上げ、前記回収水タンクの水位上昇が検知された場合、前記冷却器による冷却力を下げて前記水回収装置における凝縮効率を下げるよう定める
ことを特徴とする水回収システム。
In the water recovery system of claim 1,
When the device detects a decrease in the water level of the recovered water tank, the cooling force of the cooler is increased to increase the condensation efficiency of the water recovery device, and when a rise in the water level of the recovered water tank is detected, the apparatus said. A water recovery system characterized in that the cooling power of the cooler is reduced to lower the condensation efficiency in the water recovery device.
請求項1の水回収システムにおいて、
前記循環水配管に設けられて前記水回収装置における散水流量を調節する流量調節弁を備え、
前記装置は、前記回収水タンクの水位低下が検知された場合、前記流量調節弁の開度を上げて前記水回収装置における凝縮効率を上げ、前記回収水タンクの水位上昇が検知された場合、前記流量調節弁の開度を下げて前記水回収装置における凝縮効率を下げるよう定める
ことを特徴とする水回収システム。
In the water recovery system of claim 1,
A flow rate control valve provided in the circulating water pipe to adjust the water flow rate in the water recovery device is provided.
When the device detects a decrease in the water level of the recovered water tank, the opening degree of the flow control valve is increased to increase the condensation efficiency in the water recovery device, and when a rise in the water level of the recovered water tank is detected. A water recovery system characterized in that the opening degree of the flow control valve is lowered to lower the condensation efficiency in the water recovery device.
請求項1の水回収システムにおいて、
前記ガスタービンに供給する燃料を水と熱交換して加熱する燃料加熱器と、
前記循環水配管から分岐して前記燃料加熱器に接続するバイパス配管と、
前記循環水配管に設けた流量調節弁と、
前記バイパス配管に設けた加熱調節弁とを備え、
前記装置は、前記回収水タンクの水位低下が検知された場合、前記流量調節弁の開度を下げつつ前記加熱調節弁の開度を上げて前記水回収装置における凝縮効率を上げ、前記回収水タンクの水位上昇が検知された場合、前記流量調節弁の開度を上げつつ前記加熱調節弁の開度を下げて前記水回収装置における凝縮効率を下げるよう定める
ことを特徴とする水回収システム。
In the water recovery system of claim 1,
A fuel heater that heats the fuel supplied to the gas turbine by exchanging heat with water, and
A bypass pipe that branches from the circulating water pipe and connects to the fuel heater,
The flow rate control valve provided in the circulating water pipe and
A heating control valve provided in the bypass pipe is provided.
When the water level drop in the recovered water tank is detected, the apparatus raises the opening degree of the heating control valve while lowering the opening degree of the flow control valve to increase the condensation efficiency in the water recovery device, and the recovered water. A water recovery system characterized in that when an increase in the water level of a tank is detected, the opening degree of the flow control valve is increased and the opening degree of the heating control valve is lowered to reduce the condensation efficiency in the water recovery device.
ガスタービンの排気ガスを散水により冷却し前記排気ガスに含まれる水を凝縮させる水回収装置と、前記水回収装置で回収した水を前記水回収装置から抜き出して前記水回収装置に供給する循環水配管と、前記循環水配管に設けられて前記水回収装置で回収した水を冷却する冷却器と、前記水回収装置で回収した水を貯留する回収水タンクと、前記循環水配管から分岐して前記回収水タンクに接続する回収水配管とを含むシステムと通信可能な装置であって、
前記装置は、
前記回収水タンクの水位又は水位に関係して変動する状態量を検出するセンサの出力に関する情報を受信する送受信手段と、
前記水回収装置における凝縮効率を制御するに当たり、前記送受信手段により受信したセンサの出力に関する情報を基に前記回収水タンクの水位低下が検知された場合は前記凝縮効率を上げ、前記回収水タンクの水位上昇が検知された場合は前記凝縮効率を下げることを定める制御手段と
を備えたことを特徴とする装置。
A water recovery device that cools the exhaust gas of the gas turbine by sprinkling to condense the water contained in the exhaust gas, and circulating water that extracts the water recovered by the water recovery device from the water recovery device and supplies it to the water recovery device. A pipe, a cooler provided in the circulating water pipe to cool the water recovered by the water recovery device, a recovered water tank for storing the water recovered by the water recovery device, and a branch from the circulating water pipe. A device capable of communicating with a system including a recovered water pipe connected to the recovered water tank.
The device is
A transmission / reception means for receiving information regarding the output of a sensor that detects a water level of the recovery water tank or a state amount that fluctuates in relation to the water level.
In controlling the condensation efficiency of the water recovery device, if a drop in the water level of the recovery water tank is detected based on the information regarding the output of the sensor received by the transmission / reception means, the condensation efficiency is increased to increase the condensation efficiency of the recovery water tank. A device including a control means for determining to lower the condensation efficiency when a water level rise is detected.
ガスタービンの排気ガスを散水により冷却し前記排気ガスに含まれる水を凝縮させる水回収装置と、前記水回収装置で回収した水を前記水回収装置から抜き出して前記水回収装置に供給する循環水配管と、前記循環水配管に設けられて前記水回収装置で回収した水を冷却する冷却器と、前記水回収装置で回収した水を貯留する回収水タンクと、前記循環水配管から分岐して前記回収水タンクに接続する回収水配管とを含むシステムと通信可能な装置の制御方法であって、
前記装置は、
前記回収水タンクの水位又は水位に関係して変動する状態量を検出するセンサの出力に関する情報を受信する送受信ステップと、
前記水回収装置における凝縮効率を制御するに当たり、前記送受信ステップにより受信したセンサの出力に関する情報を基に前記回収水タンクの水位低下が検知された場合は前記凝縮効率を上げ、前記回収水タンクの水位上昇が検知された場合は前記凝縮効率を下げることを定める制御ステップと
を実行することを特徴とする装置の制御方法。
A water recovery device that cools the exhaust gas of the gas turbine by sprinkling to condense the water contained in the exhaust gas, and circulating water that extracts the water recovered by the water recovery device from the water recovery device and supplies it to the water recovery device. A pipe, a cooler provided in the circulating water pipe to cool the water recovered by the water recovery device, a recovered water tank for storing the water recovered by the water recovery device, and a branch from the circulating water pipe. It is a control method of a device capable of communicating with a system including a recovery water pipe connected to the recovery water tank.
The device is
A transmission / reception step for receiving information regarding the output of a sensor that detects a water level of the recovery water tank or a state amount that fluctuates in relation to the water level, and a transmission / reception step.
In controlling the condensation efficiency of the water recovery device, if a drop in the water level of the recovery water tank is detected based on the information regarding the output of the sensor received by the transmission / reception step, the condensation efficiency is increased to increase the condensation efficiency of the recovery water tank. A control method for an apparatus, characterized in that when a rise in water level is detected, a control step for determining to lower the condensation efficiency is executed.
ガスタービンの排気ガスを散水により冷却し前記排気ガスに含まれる水を凝縮させる水回収装置と、前記水回収装置で回収した水を前記水回収装置から抜き出して前記水回収装置に供給する循環水配管と、前記循環水配管に設けられて前記水回収装置で回収した水を冷却する冷却器と、前記水回収装置で回収した水を貯留する回収水タンクと、前記循環水配管から分岐して前記回収水タンクに接続する回収水配管とを含むシステムと通信可能な装置で読み取り実行されるプログラムであって、
コンピュータを、
前記回収水タンクの水位又は水位に関係して変動する状態量を検出するセンサの出力に関する情報を受信する送受信手段と、
前記水回収装置における凝縮効率を制御するに当たり、前記送受信手段により受信したセンサの出力に関する情報を基に前記回収水タンクの水位低下が検知された場合は前記凝縮効率を上げ、前記回収水タンクの水位上昇が検知された場合は前記凝縮効率を下げることを定める制御手段
として機能させるためのプログラム。
A water recovery device that cools the exhaust gas of the gas turbine by sprinkling to condense the water contained in the exhaust gas, and circulating water that extracts the water recovered by the water recovery device from the water recovery device and supplies it to the water recovery device. A pipe, a cooler provided in the circulating water pipe to cool the water recovered by the water recovery device, a recovered water tank for storing the water recovered by the water recovery device, and a branch from the circulating water pipe. A program that is read and executed by a device that can communicate with the system including the recovered water pipe connected to the recovered water tank.
Computer,
A transmission / reception means for receiving information regarding the output of a sensor that detects a water level of the recovery water tank or a state amount that fluctuates in relation to the water level.
In controlling the condensation efficiency of the water recovery device, if a drop in the water level of the recovery water tank is detected based on the information regarding the output of the sensor received by the transmission / reception means, the condensation efficiency is increased to increase the condensation efficiency of the recovery water tank. A program for functioning as a control means for determining to lower the condensation efficiency when a water level rise is detected.
ガスタービンの排気ガスを散水により冷却し前記排気ガスに含まれる水を凝縮させる水回収装置と、前記水回収装置で回収した水を前記水回収装置から抜き出して前記水回収装置に供給する循環水配管と、前記循環水配管に設けられて前記水回収装置で回収した水を冷却する冷却器と、前記水回収装置で回収した水を貯留する回収水タンクと、前記循環水配管から分岐して前記回収水タンクに接続する回収水配管とを含むシステムと通信可能な装置と、当該装置と通信可能な端末からなる水回収システムであって、
前記装置は、
前記端末からの要求により、前記水回収装置における凝縮効率を制御するに当たり、前記回収水タンクの水位又は水位に関係して変動する状態量を検出するセンサの出力に関する情報を基に前記回収水タンクの水位低下が検知された場合は前記凝縮効率を上げ、前記回収水タンクの水位上昇が検知された場合は前記凝縮効率を下げることを定める制御手段
を備えたことを特徴とする水回収システム。
A water recovery device that cools the exhaust gas of the gas turbine by sprinkling to condense the water contained in the exhaust gas, and circulating water that extracts the water recovered by the water recovery device from the water recovery device and supplies it to the water recovery device. A pipe, a cooler provided in the circulating water pipe to cool the water recovered by the water recovery device, a recovered water tank for storing the water recovered by the water recovery device, and a branch from the circulating water pipe. A water recovery system consisting of a device capable of communicating with a system including a recovery water pipe connected to the recovery water tank and a terminal capable of communicating with the device.
The device is
In controlling the condensation efficiency in the water recovery device in response to a request from the terminal, the recovery water tank is based on information on the output of a sensor that detects the water level of the recovery water tank or a state amount that fluctuates in relation to the water level. A water recovery system comprising a control means for increasing the condensation efficiency when a decrease in the water level is detected and decreasing the condensation efficiency when a rise in the water level of the recovery water tank is detected.
ガスタービンの排気ガスを散水により冷却し前記排気ガスに含まれる水を凝縮させる水回収装置と、前記水回収装置で回収した水を前記水回収装置から抜き出して前記水回収装置に供給する循環水配管と、前記循環水配管に設けられて前記水回収装置で回収した水を冷却する冷却器と、前記水回収装置で回収した水を貯留する回収水タンクと、前記循環水配管から分岐して前記回収水タンクに接続する回収水配管とを含むシステムと通信可能な装置と、当該装置と通信可能な端末からなる水回収システムの制御方法であって、
前記装置は、
前記端末からの要求により、前記水回収装置における凝縮効率を制御するに当たり、前記回収水タンクの水位又は水位に関係して変動する状態量を検出するセンサの出力に関する情報を基に前記回収水タンクの水位低下が検知された場合は前記凝縮効率を上げ、前記回収水タンクの水位上昇が検知された場合は前記凝縮効率を下げることを定める制御ステップ
を実行することを特徴とする水回収システムの制御方法。
A water recovery device that cools the exhaust gas of the gas turbine by sprinkling to condense the water contained in the exhaust gas, and circulating water that extracts the water recovered by the water recovery device from the water recovery device and supplies it to the water recovery device. A pipe, a cooler provided in the circulating water pipe to cool the water recovered by the water recovery device, a recovered water tank for storing the water recovered by the water recovery device, and a branch from the circulating water pipe. It is a control method of a water recovery system including a device capable of communicating with a system including a recovery water pipe connected to the recovery water tank and a terminal capable of communicating with the device.
The device is
In controlling the condensation efficiency in the water recovery device in response to a request from the terminal, the recovery water tank is based on information on the output of a sensor that detects the water level of the recovery water tank or a state amount that fluctuates in relation to the water level. The water recovery system is characterized by executing a control step for increasing the condensation efficiency when a decrease in the water level is detected and decreasing the condensation efficiency when the increase in the water level of the recovery water tank is detected. Control method.
JP2021133739A 2020-08-21 2021-08-19 Water recovery system, device, control method and program Active JP7239651B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020140367 2020-08-21
JP2020140367 2020-08-21

Publications (2)

Publication Number Publication Date
JP2022036051A true JP2022036051A (en) 2022-03-04
JP7239651B2 JP7239651B2 (en) 2023-03-14

Family

ID=80443811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021133739A Active JP7239651B2 (en) 2020-08-21 2021-08-19 Water recovery system, device, control method and program

Country Status (1)

Country Link
JP (1) JP7239651B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7433381B1 (en) 2022-08-10 2024-02-19 三菱重工業株式会社 Water recovery system, gas turbine cogeneration system, and operating method thereof
JP7471353B2 (en) 2022-08-10 2024-04-19 三菱重工業株式会社 Water recovery system, gas turbine cogeneration system, and operation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226293A (en) * 1997-04-22 2006-08-31 Hitachi Ltd Gas turbine installation
US20070227154A1 (en) * 2003-06-09 2007-10-04 Pelini Robert G System and method for producing injection-quality steam for combustion turbine power augmentation
JP2009162100A (en) * 2008-01-04 2009-07-23 Hitachi Ltd Gas turbine using high moisture content air and operating method of gas turbine using high moisture content air
JP2017015019A (en) * 2015-07-02 2017-01-19 三菱日立パワーシステムズ株式会社 Thermal power generation facility recovering moisture in exhaust gas and method for treating water recovered from thermal power generation facility
JP2017031862A (en) * 2015-07-31 2017-02-09 三菱日立パワーシステムズ株式会社 Humid air utilization gas turbine system and method for operating the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226293A (en) * 1997-04-22 2006-08-31 Hitachi Ltd Gas turbine installation
US20070227154A1 (en) * 2003-06-09 2007-10-04 Pelini Robert G System and method for producing injection-quality steam for combustion turbine power augmentation
JP2009162100A (en) * 2008-01-04 2009-07-23 Hitachi Ltd Gas turbine using high moisture content air and operating method of gas turbine using high moisture content air
JP2017015019A (en) * 2015-07-02 2017-01-19 三菱日立パワーシステムズ株式会社 Thermal power generation facility recovering moisture in exhaust gas and method for treating water recovered from thermal power generation facility
JP2017031862A (en) * 2015-07-31 2017-02-09 三菱日立パワーシステムズ株式会社 Humid air utilization gas turbine system and method for operating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7433381B1 (en) 2022-08-10 2024-02-19 三菱重工業株式会社 Water recovery system, gas turbine cogeneration system, and operating method thereof
JP7471353B2 (en) 2022-08-10 2024-04-19 三菱重工業株式会社 Water recovery system, gas turbine cogeneration system, and operation method thereof

Also Published As

Publication number Publication date
JP7239651B2 (en) 2023-03-14

Similar Documents

Publication Publication Date Title
US6536677B2 (en) Automation and control of solar air conditioning systems
CN102348945B (en) For running the control system of condenser fan
JP2022036051A (en) Water recovery system, device, control method, and program
JP5779070B2 (en) Solar energy utilization system
JP5524571B2 (en) Heat pump equipment
JP3561772B2 (en) Gas turbine intake cooling system
JP5121747B2 (en) Geothermal heat pump device
CN102741624B (en) Turborefrigerator and refrigeration system and control method thereof
CN108700347A (en) System and method for controlling refrigeration system
CN1266978A (en) Apparatus for cooling power electronic device of driving device of refragerating compressor
CN103075768A (en) Constant temperature and humidity air conditioning unit and control method
KR20130031300A (en) Thermosyphon coolers for cooling systems with cooling towers
CN102483277A (en) Method and device for heat recovery on a vapour refrigeration system
US20140129063A1 (en) Adapting an energy storage system thermal conditioning setpoint based on historical usage
JP3652974B2 (en) Primary pump heat source variable flow rate system
KR102114411B1 (en) Cooling system control method for transporting coolant to in-vehicle heat exchanger
CN107560207A (en) Screw-type water chiller and its control method
CN111342326A (en) Constant temperature device
JP4965414B2 (en) Temperature control of cathode inlet air flow for fuel cell systems
JP5088783B2 (en) Energy-saving control operation method and apparatus for vapor absorption refrigerator
US8806881B2 (en) System for controlling the thermal energy of a motor vehicle engine by adjusting the fluid actuators of said system
JP2010007956A (en) Temperature adjustment system
US6749016B2 (en) Brine temperature control apparatus using a three-way proportional valve
JPH0721362B2 (en) Waste heat recovery power generator
CN203147937U (en) Constant temperature and humidity air conditioning unit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220616

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230302

R150 Certificate of patent or registration of utility model

Ref document number: 7239651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150