JP2022035110A - High-strength and high-toughness iron-based alloy, and method for manufacturing the same - Google Patents

High-strength and high-toughness iron-based alloy, and method for manufacturing the same Download PDF

Info

Publication number
JP2022035110A
JP2022035110A JP2020139203A JP2020139203A JP2022035110A JP 2022035110 A JP2022035110 A JP 2022035110A JP 2020139203 A JP2020139203 A JP 2020139203A JP 2020139203 A JP2020139203 A JP 2020139203A JP 2022035110 A JP2022035110 A JP 2022035110A
Authority
JP
Japan
Prior art keywords
strength
based alloy
toughness
less
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020139203A
Other languages
Japanese (ja)
Inventor
卓雄 半田
Takuo Handa
伸幸 大山
Nobuyuki Oyama
好克 古野
Yoshikatsu Furuno
勝 鷲尾
Masaru Washio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chuzo Co Ltd
Original Assignee
Nippon Chuzo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chuzo Co Ltd filed Critical Nippon Chuzo Co Ltd
Priority to JP2020139203A priority Critical patent/JP2022035110A/en
Publication of JP2022035110A publication Critical patent/JP2022035110A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

To provide a high-strength and high-toughness iron-based alloy suitable for various structural components/members, particularly members for aerospace-related equipment which has a specific strength equivalent to maraging steel, in which toughness higher than that of maraging steel is obtained at -100°C, a material cost can be also reduced, and which has a high degree of freedom of a shape, and a method for manufacturing the alloy.SOLUTION: A high-strength and high-toughness iron-based alloy that contains C:0.12 to 0.3%, Si:0.15 to 0.7%, Mn:0.4 to 1.2%, P:0.015% or less, S:0.015% or less, Ni:2 to 4%, Cr:0.1 to 0.5%, and Mo:0.3 to 0.5% by mass%, in which the remainder consists of Fe and inevitable impurity, and which has a solidified structure with a dendrite secondary arm spacing of 5 μm or less.SELECTED DRAWING: Figure 2

Description

本発明は、各種構造部品・部材、特に航空宇宙関連機器用部材に適した比強度および靱性に優れた高強度高靭性鉄基合金およびその製造方法に関する。 The present invention relates to a high-strength, high-toughness iron-based alloy suitable for various structural parts / members, particularly members for aerospace-related equipment, and having excellent specific strength and toughness, and a method for producing the same.

近年、各種機器を構成する構造部材には、総重量の増加を防止するために軽量であることが求められることが多くなっている。とりわけ航空宇宙関連用部材に対してはこれが非常に重要な要求となっている。鉄鋼材料はアルミニウム合金やチタン合金に比べて比重が大きいことから、適用範囲が限定されるが、比強度がアルミニウム合金やチタン合金に匹敵するマルエージング鋼は、航空宇宙関連用部材として適用されている(例えば非特許文献1)。 In recent years, structural members constituting various devices are often required to be lightweight in order to prevent an increase in the total weight. This is a very important requirement, especially for aerospace-related materials. Since steel materials have a higher specific gravity than aluminum alloys and titanium alloys, the range of application is limited, but maraging steel, whose specific strength is comparable to that of aluminum alloys and titanium alloys, is applied as an aerospace-related member. (For example, Non-Patent Document 1).

航空宇宙関連用部材のうち外気に近い領域で用いられるものは稼働中、低温に曝されることがある。例えば高度10000mで飛行する航空機は-50℃、地球を周回する人工衛星は-100℃の環境に曝されるとされ、このような低温環境で用いられる構造部材では、低温脆化のないことが重大事故を防止するために不可欠となる。低温で脆化しないか、脆化が少ない鉄鋼材料としては、オーステナイト系ステンレス鋼(比強度130)や、ニッケル鋼(同100)があるが、比強度はアルミニウム合金やチタン合金の1/2程度である。 Aerospace-related materials used in areas close to the outside air may be exposed to low temperatures during operation. For example, an aircraft flying at an altitude of 10,000 m is said to be exposed to an environment of -50 ° C, and an artificial satellite orbiting the earth is exposed to an environment of -100 ° C. Structural members used in such a low temperature environment are not subject to low temperature embrittlement. It is indispensable to prevent serious accidents. Austenitic stainless steel (specific strength 130) and nickel steel (specific strength 100) are examples of steel materials that do not embrittle at low temperatures or are less embrittled, but their specific strength is about 1/2 that of aluminum alloys and titanium alloys. Is.

また、特許文献1や特許文献2に、高強度で靭性の高い鋳造合金が開示されているが、比強度がアルミニウム合金やチタン合金の1/2程度であり、また鋳造品の軽量化は難しいため、適用が進んでいない。 Further, although Patent Document 1 and Patent Document 2 disclose a cast alloy having high strength and high toughness, the specific strength is about 1/2 that of an aluminum alloy or a titanium alloy, and it is difficult to reduce the weight of the cast product. Therefore, the application has not progressed.

特開2008-007820Japanese Patent Application Laid-Open No. 2008-007820 特開2014-181394Japanese Unexamined Patent Publication No. 2014-181394

大同特殊鋼株式会社プレスリリース、[令和2年6月3日検索]、インターネット<URL:https://www.daido.co.jp/about/release/2017/0427_pw.html>Daido Steel Co., Ltd. Press Release, [Search on June 3, 2nd year of Reiwa], Internet <URL: https://www.daido.co.jp/about/release/2017/0427_pw.html>

本発明は、マルエージング鋼と同等の比強度を有し、-100℃においてマルエージング鋼より高い靭性が得られ、しかも材料コストを低く抑えることができ、かつ形状の自由度が高い、各種構造部品・部材、特に航空宇宙関連機器用部材に適した高強度高靭性鉄基合金およびその製造方法を提供することを課題とする。 INDUSTRIAL APPLICABILITY The present invention has various structures having a specific strength equivalent to that of maraging steel, higher toughness than maraging steel at −100 ° C., low material cost, and high degree of freedom in shape. An object of the present invention is to provide a high-strength and high-toughness iron-based alloy suitable for parts / members, particularly members for aerospace-related equipment, and a method for manufacturing the same.

本発明者らは、形状の自由度が高く、マルエージング鋼と同等の比強度を有し、かつ-100℃においてより高い靭性が得られ、しかも材料コストをマルエージング鋼より低く抑えることのできる鉄基合金を得ることを目的に、種々検討を行った。 The present inventors have a high degree of freedom in shape, have a specific strength equivalent to that of maraging steel, can obtain higher toughness at −100 ° C., and can keep the material cost lower than that of maraging steel. Various studies were conducted for the purpose of obtaining an iron-based alloy.

その結果、例えば特許文献1や特許文献2に開示されているマルエージング高に比べて高価な合金元素の含有量が少ない、特定組成の粉末を積層造形して組織を著しく微細にすることにより、従来実現できなかった高比強度と高靭性が得られることを見出した。 As a result, for example, by laminating and molding a powder having a specific composition, which has a small content of expensive alloying elements as compared with the maraging height disclosed in Patent Document 1 and Patent Document 2, the structure is remarkably made finer. We have found that high specific strength and high toughness that could not be achieved in the past can be obtained.

本発明はこれらの知見に基づいて完成されたものであり、以下の(1)~(7)を提供する。 The present invention has been completed based on these findings, and provides the following (1) to (7).

(1)質量%で、
C:0.12~0.3%、
Si:0.15~0.7%、
Mn:0.4~1.2%、
P:0.015%以下、
S:0.015%以下、
Ni:2~4%、
Cr:0.1~0.5%、
Mo:0.3~0.5%
を含有し、
残部がFeおよび不可避不純物からなり、デンドライト2次アーム間隔が5μm以下である凝固組織を有することを特徴とする高強度高靭性鉄基合金。
(1) By mass%,
C: 0.12-0.3%,
Si: 0.15 to 0.7%,
Mn: 0.4-1.2%,
P: 0.015% or less,
S: 0.015% or less,
Ni: 2-4%,
Cr: 0.1-0.5%,
Mo: 0.3-0.5%
Contains,
A high-strength, high-toughness iron-based alloy characterized by having a solidified structure in which the balance is composed of Fe and unavoidable impurities and the dendrite secondary arm spacing is 5 μm or less.

(2)質量%で、V:0.05~0.15%をさらに含有し、CおよびVの含有量が質量%で
C×0.3≦V≦C×0.6
を満足することを特徴とする上記(1)に記載の高強度高靭性鉄基合金。
(2) By mass%, V: 0.05 to 0.15% is further contained, and the content of C and V is C × 0.3 ≦ V ≦ C × 0.6 by mass%.
The high-strength, high-toughness iron-based alloy according to (1) above, which is characterized by satisfying the above.

(3)質量%で、Ca:0.01~0.05%をさらに含有し、CaおよびSの含有量が質量%で
S×2≦Ca≦S×4.5
を満足することを特徴とする上記(1)または(2)に記載の高強度高靭性鉄基合金。
(3) By mass%, Ca: 0.01 to 0.05% is further contained, and the content of Ca and S is S × 2 ≦ Ca ≦ S × 4.5 by mass%.
The high-strength, high-toughness iron-based alloy according to (1) or (2) above, which is characterized by satisfying the above.

(4)C+Si/24+Mn/6+Ni/40+Mo/4+Cr/5+V/14
で表される炭素当量の値が、質量%で0.6%以下であることを特徴とする上記(1)~(3)のいずれかに記載の高強度高靭性鉄基合金。
(4) C + Si / 24 + Mn / 6 + Ni / 40 + Mo / 4 + Cr / 5 + V / 14
The high-strength, high-toughness iron-based alloy according to any one of (1) to (3) above, wherein the value of carbon equivalent represented by (1) is 0.6% or less in mass%.

(5)比強度≧200kN・m/kg、-100℃衝撃吸収エネルギー≧60J(2mmVノッチシャルピー衝撃試験片)を同時に満足することを特徴とする上記(1)~(4)のいずれかに記載の高強度高靭性鉄基合金。 (5) The description according to any one of (1) to (4) above, which simultaneously satisfies the specific strength ≧ 200 kN ・ m / kg and the shock absorption energy ≧ 60J (2 mmV notch Charpy impact test piece) at −100 ° C. High-strength and high-toughness iron-based alloy.

(6)上記(1)~(4)のいずれかに記載の組成を有する合金素材を、レーザーまたは電子ビームによって、溶融・凝固させて積層造形することを特徴とする高強度高靭性鉄基合金の製造方法。 (6) A high-strength, high-toughness iron-based alloy characterized in that an alloy material having the composition according to any one of (1) to (4) above is melted and solidified by a laser or an electron beam to form a laminate. Manufacturing method.

(7)前記合金素材は、粉末であることを特徴とする上記(6)に記載の高強度高靭性鉄基合金の製造方法。 (7) The method for producing a high-strength, high-toughness iron-based alloy according to (6) above, wherein the alloy material is a powder.

本発明によれば、マルエージング鋼と同等の比強度を有し、-100℃においてマルエージング鋼より高い靭性が得られ、しかも材料コストを低く抑えることができ、かつ形状の自由度が高い、各種構造部品・部材、特に航空宇宙関連機器用部材に適した高強度高靭性鉄基合金およびその製造方法が提供される。 According to the present invention, it has a specific strength equivalent to that of maraging steel, has higher toughness than maraging steel at −100 ° C., can suppress material cost low, and has a high degree of freedom in shape. Provided are high-strength, high-toughness iron-based alloys suitable for various structural parts / members, particularly members for aerospace-related equipment, and methods for manufacturing the same.

本発明の実施例に用いたアトマイズ装置を示す概念図である。It is a conceptual diagram which shows the atomizing apparatus used in the Example of this invention. DASと冷却速度との関係を示す図である。It is a figure which shows the relationship between DAS and cooling rate. 本発明材のミクロ組織写真例である。This is an example of a microstructure photograph of the material of the present invention.

以下、本発明の限定理由について、化学成分および製造条件に分けて説明する。
なお、以下の説明において、特に断わらない限り成分における%表示は質量%である。
Hereinafter, the reasons for limiting the present invention will be described separately for the chemical composition and the production conditions.
In the following description, unless otherwise specified, the% representation of the components is mass%.

[化学成分]
C:0.12~0.3%
Cは強度および焼入れ性向上に有効な元素である。しかし、その含有量が0.12%未満では200kN・m/kg以上の比強度を得ることができず、また0.3%を超えると延性と靭性が低下し、製造時の割れが発生しやすくなる。したがって、C含有量を0.12~0.3%の範囲とする。
[Chemical composition]
C: 0.12 to 0.3%
C is an element effective for improving strength and hardenability. However, if the content is less than 0.12%, a specific strength of 200 kN ・ m / kg or more cannot be obtained, and if it exceeds 0.3%, ductility and toughness deteriorate, and cracks occur during manufacturing. It will be easier. Therefore, the C content is set in the range of 0.12 to 0.3%.

Si:0.15~0.7%
Siは脱酸を目的として添加する元素である。しかし、その含有量が0.15%未満では脱酸が不十分で、空孔が発生するようになり、また0.7%を超えると延性と靭性が低下する。したがって、Si含有量を0.15~0.7%とする。
Si: 0.15 to 0.7%
Si is an element added for the purpose of deoxidation. However, if the content is less than 0.15%, deoxidation is insufficient and pores are generated, and if it exceeds 0.7%, ductility and toughness are lowered. Therefore, the Si content is set to 0.15 to 0.7%.

Mn:0.4~1.2%
Mnは強度および焼入れ性向上に有効な元素であり、脱酸効果も有する。しかし、その含有量が0.4%未満ではその効果が少なく、1.2%を超えると延性と靭性が低下するとともに溶接性を劣化させる。したがって、Mn含有量を0.4~1.2%の範囲とする。
Mn: 0.4-1.2%
Mn is an element effective for improving strength and hardenability, and also has a deoxidizing effect. However, if the content is less than 0.4%, the effect is small, and if it exceeds 1.2%, the ductility and toughness are lowered and the weldability is deteriorated. Therefore, the Mn content is set in the range of 0.4 to 1.2%.

Ni:2~4%
Niは高強度と高延性および高い低温靭性を同時に得ようとする本発明において最も重要な元素である。Niは強度および焼入れ性に有効な元素であるが、同様の効果のある他の元素と異なり、延性、靭性および溶接性に及ぼす悪影響が小さい。また、Niはオーステナイト安定化作用の大きい元素であり、フェライト変態域を長時間側へ移動させ、ベイナイト変態域が拡大することにより、冷却速度の遅い厚肉部においてもフェライト析出を抑え、高い強度が得られる。しかし、Niが2%未満では200kN・m/kg以上の比強度が得られず、4%超では加熱脆化が顕著に表れるようになる。したがって、Ni含有量を2~4%の範囲とする。
Ni: 2-4%
Ni is the most important element in the present invention, which seeks to obtain high strength, high ductility and high low temperature toughness at the same time. Ni is an element that is effective for strength and hardenability, but unlike other elements that have similar effects, it has a small adverse effect on ductility, toughness and weldability. In addition, Ni is an element with a large austenite stabilizing effect, and by moving the ferrite transformation region to the long-term side and expanding the bainite transformation region, ferrite precipitation is suppressed even in thick parts where the cooling rate is slow, and high strength is achieved. Is obtained. However, when Ni is less than 2%, a specific strength of 200 kN ・ m / kg or more cannot be obtained, and when it exceeds 4%, heat embrittlement becomes noticeable. Therefore, the Ni content is set in the range of 2 to 4%.

Cr:0.1~0.5%
Crは比強度向上に有効な元素である。しかし、0.1%未満ではその効果が少なく、0.5%を超えるとその効果が得られなくなるとともに炭素当量が増加し溶接性を低下させる。したがって、Cr含有量を0.1~0.5%の範囲とする。
Cr: 0.1-0.5%
Cr is an element effective for improving the specific strength. However, if it is less than 0.1%, the effect is small, and if it exceeds 0.5%, the effect cannot be obtained and the carbon equivalent increases, which lowers the weldability. Therefore, the Cr content is set in the range of 0.1 to 0.5%.

Mo:0.3~0.5%
Moは焼入れ性を向上させるとともに焼戻し脆化を抑制するために添加する。しかし、0.3%未満ではその効果が少なく、0.5%を超えるとその効果が得られなくなるとともに炭素当量が増加し溶接性を低下させる。したがって、Mo含有量を0.3~0.5%の範囲とする。
Mo: 0.3-0.5%
Mo is added to improve hardenability and suppress tempering embrittlement. However, if it is less than 0.3%, the effect is small, and if it exceeds 0.5%, the effect cannot be obtained and the carbon equivalent increases, which lowers the weldability. Therefore, the Mo content is set in the range of 0.3 to 0.5%.

P:0.015%以下
S:0.015%以下
PおよびSは靱性に大きな影響を及ぼす元素である。それぞれ0.015%を超えて含有されると母材の靱性を著しく低下させる。したがってPおよびSの含有量を0.015%以下とする。
P: 0.015% or less S: 0.015% or less P and S are elements that have a great influence on toughness. If each is contained in excess of 0.015%, the toughness of the base metal is significantly reduced. Therefore, the content of P and S is set to 0.015% or less.

V:0.05~0.15%、C×0.3≦V≦C×0.6
VはCと結びついて炭化物を形成し、焼戻し軟化抵抗性を高めることにより、焼戻し熱処理時の比強度維持に有効な元素であり、焼戻し熱処理条件管理が容易になる他、溶接熱影響部の機械的性質の低下を防止することができるので必要に応じて添加してもよい。0.05%未満ではその効果が不十分で、0.15%超では延性と靭性が低下する。したがって、Vを添加する場合は、V含有量を0.05~0.15%の範囲とする。また、Vは、以上の範囲を満たしても、C×0.3未満では十分な比強度が得られず、C×0.6超では比強度向上効果が飽和し材料費の増大を招く。したがって、Vを添加する場合は、C×0.3≦V≦C×0.6の範囲とする。
V: 0.05 to 0.15%, C × 0.3 ≦ V ≦ C × 0.6
V is an element effective for maintaining the specific strength during tempering heat treatment by forming carbides in combination with C and increasing the tempering softening resistance. In addition to facilitating the control of tempering heat treatment conditions, the machine of the weld heat affected zone Since it is possible to prevent deterioration of the target property, it may be added as needed. Below 0.05%, the effect is inadequate, and above 0.15%, ductility and toughness decrease. Therefore, when V is added, the V content is set in the range of 0.05 to 0.15%. Further, even if V satisfies the above range, a sufficient specific strength cannot be obtained if it is less than C × 0.3, and if it exceeds C × 0.6, the effect of improving the specific strength is saturated and the material cost increases. Therefore, when V is added, the range is C × 0.3 ≦ V ≦ C × 0.6.

Ca:0.01~0.05%、S×2≦Ca≦S×4.5
CaはSと結びついて高融点硫化物を形成し、低融点のFeSやMnSが結晶粒界に生成するのを防止し、延性を向上させる効果があるため、必要に応じて添加してもよい。Sを0.015%以下含有する場合において、Ca含有量が0.01%未満ではその効果がほとんど得られず、0.05%を超えるとS含有量に対して過剰になり、単に材料費の増大を招くだけである。したがって、Caを添加する場合は、Ca含有量を0.01~0.05%の範囲とする。また、Ca含有量をS量に応じて調整することが好ましい。Ca<S×2ではCaの効果が小さく、Ca>S×4.5では効果が飽和し材料費の増大を招く。したがって、Caを添加する場合は、Ca含有量は、S×2≦Ca≦S×4.5の範囲とする。
Ca: 0.01-0.05%, S × 2 ≦ Ca ≦ S × 4.5
Ca combines with S to form a high melting point sulfide, prevents the formation of low melting point FeS and MnS at the grain boundaries, and has the effect of improving ductility. Therefore, Ca may be added as necessary. .. When S is contained in an amount of 0.015% or less, the effect is hardly obtained when the Ca content is less than 0.01%, and when it exceeds 0.05%, the effect becomes excessive with respect to the S content, and the material cost is simply increased. It only leads to an increase in. Therefore, when Ca is added, the Ca content is set in the range of 0.01 to 0.05%. Further, it is preferable to adjust the Ca content according to the S amount. When Ca <S × 2, the effect of Ca is small, and when Ca> S × 4.5, the effect is saturated and the material cost increases. Therefore, when Ca is added, the Ca content is in the range of S × 2 ≦ Ca ≦ S × 4.5.

C+Si/24+Mn/6+Ni/40+Mo/4+Cr/5+V/14≦0.6%
C+Si/24+Mn/6+Ni/40+Mo/4+Cr/5+V/14で示される炭素当量は溶接性を評価する値である。炭素当量が0.6%を超えると硬化性が大きくなるため、低温割れの発生や溶接部の延性低下などを防止するには特別な熱管理が必要になる。したがって、炭素当量は0.6%以下とすることが好ましい。なお、必要に応じて、本発明組成範囲で溶接構造用鋳鋼品(JIS G5102)鋼種と同等の炭素当量に調整することも可能である。
C + Si / 24 + Mn / 6 + Ni / 40 + Mo / 4 + Cr / 5 + V / 14 ≦ 0.6%
The carbon equivalent represented by C + Si / 24 + Mn / 6 + Ni / 40 + Mo / 4 + Cr / 5 + V / 14 is a value for evaluating weldability. When the carbon equivalent exceeds 0.6%, the curability increases, so special thermal control is required to prevent the occurrence of low-temperature cracks and the decrease in ductility of the weld. Therefore, the carbon equivalent is preferably 0.6% or less. If necessary, it is also possible to adjust the carbon equivalent to the same as that of the cast steel product for welded structure (JIS G5102) within the composition range of the present invention.

なお、上記組成を有する合金成分の残部は、Feおよび不可避不純物である。 The balance of the alloy component having the above composition is Fe and unavoidable impurities.

[凝固組織]
本発明に係る高比強度高靭性合金において、上記組成の合金をデンドライト2次アーム間隔(以下、DASと記すことがある)が5μm以下となるように凝固組織を微細化することにより、200kN・m/kg以上の比強度と60J以上の-100℃衝撃吸収エネルギーを同時に得ることができる。
[Coagulation tissue]
In the high specific strength and high toughness alloy according to the present invention, the alloy having the above composition is 200 kN. A specific strength of m / kg or more and a shock absorption energy of -100 ° C. of 60 J or more can be obtained at the same time.

その理由は、適正な組成合金を急速凝固することにより、ホール・ペッチの関係で説明される、「組織の微細化による高強度化」に加え、微細組織と合金元素のミクロ偏析軽減による靭性向上が、実現したためと考えられる。 The reason is that by rapidly solidifying an alloy with an appropriate composition, in addition to the "high strength by miniaturizing the structure" explained in the relationship of hole petch, the toughness is improved by reducing the microsegregation of the microstructure and alloying elements. However, it is thought that it was realized.

[製造条件]
上記組成を有する合金素材を、レーザーまたは電子ビームによって、溶融・凝固させて積層造形させる。これにより合金素材が溶融された後、急冷され、DAS間隔を5μm以下の微細な組織とすることができる。
[Manufacturing conditions]
An alloy material having the above composition is melted and solidified by a laser or an electron beam to form a laminated structure. As a result, the alloy material is melted and then rapidly cooled, so that the DAS interval can be made into a fine structure of 5 μm or less.

具体的には、上記範囲内の組成を有する合金素材として合金粉末を準備し、レーザーまたは電子ビームによって、溶融・凝固させて積層造形する。レーザーまたは電子ビームを用いることにより、合金の凝固時の冷却速度を3000℃/sec.以上とすることができ、DAS間隔を5μm以下の微細凝固組織の合金とすることができる。 Specifically, an alloy powder is prepared as an alloy material having a composition within the above range, and is melted and solidified by a laser or an electron beam to form a laminated structure. By using a laser or an electron beam, the cooling rate during solidification of the alloy is set to 3000 ° C./sec. The above can be achieved, and an alloy having a fine solidification structure having a DAS interval of 5 μm or less can be obtained.

一方、後掲の図2から明らかなように、本発明合金のような高融点の鉄系合金を工業的に鋳造可能な銅合金鋳型鋳造法の場合、DASを5μm以下にすることは到底できず、また、非鉄系合金を対象とするダイカスト法は、鋳造プロセスの中では最も冷却速度が大きいが、これによっても、DASを5μm以下とするには冷却速度が不十分であり、所期の特性を得ることは不可能である。 On the other hand, as is clear from FIG. 2 below, in the case of a copper alloy mold casting method capable of industrially casting a high melting point iron-based alloy such as the alloy of the present invention, the DAS can never be 5 μm or less. In addition, the die casting method for non-iron alloys has the highest cooling rate in the casting process, but even with this, the cooling rate is insufficient to reduce the DAS to 5 μm or less, which is the expected reason. It is impossible to obtain the characteristics.

以下、本発明の実施例について説明する。
表1に示す化学成分および組成の合金について試験体を作製した。表1のうちNo.1~15は本発明の範囲内である実施例、No.16~27は本発明の範囲を外れる比較例である。No.1~26の試験体は積層造形によって作製し、No.27の試験体については砂型鋳造により作製した。
Hereinafter, examples of the present invention will be described.
Specimens were prepared for alloys having the chemical components and compositions shown in Table 1. No. 1 in Table 1. Examples 1 to 15 are within the scope of the present invention, No. 16 to 27 are comparative examples outside the scope of the present invention. No. Specimens 1 to 26 were produced by laminated molding, and No. The 27 test pieces were produced by sand casting.

No.1~26の積層造形の試験体の場合には、まず、表1のNo.1~26の化学組成の合金を高周波誘導炉で溶解し、図1に示すアトマイズ装置を用いて、溶融した1700℃の金属を滴下し、ノズルから不活性ガス(本例ではアルゴンガス)を噴霧することで液滴に分断するとともに急速凝固させ、原料となる球状粉末を得た。次いで、球状粉末をふるい分けして粒径10~45μmの造形用粉末を得た。その後、レーザー式積層造形装置を用いて、出力300W、レーザー移動速度1000mm/秒、レーザー走査ピッチ0.1mm、粉末積層厚さ0.04mmの条件で造形用粉末を積層造形し、JIS G0307の図1b)に準拠した試験体を作製した。 No. In the case of the test specimens of 1 to 26 laminated molding, first, No. 1 in Table 1 is used. Alloys having chemical compositions of 1 to 26 are melted in a high-frequency induction furnace, the molten metal at 1700 ° C. is dropped using the atomizing device shown in FIG. 1, and an inert gas (argon gas in this example) is sprayed from a nozzle. By doing so, it was divided into droplets and rapidly solidified to obtain a spherical powder as a raw material. Next, the spherical powder was sieved to obtain a modeling powder having a particle size of 10 to 45 μm. Then, using a laser-type laminated molding device, the molding powder was laminated and modeled under the conditions of an output of 300 W, a laser moving speed of 1000 mm / sec, a laser scanning pitch of 0.1 mm, and a powder laminated thickness of 0.04 mm. A test piece conforming to 1b) was prepared.

No.27の砂型鋳造の試験体の場合には、No.27の合金を高周波誘導炉で溶解し、JIS G0307の図1b)に準拠した砂型に鋳造し、試験体を作製した。 No. In the case of the test piece of sand casting of No. 27, No. The alloy of 27 was melted in a high-frequency induction furnace and cast into a sand mold conforming to FIG. 1b) of JIS G0307 to prepare a test piece.

図2は、本発明試料の光学顕微鏡組織観察によって実測したDASと、以下の文献1に記載のDASと冷却速度の関係の外挿線から、試料の冷却速度を推定するもので、以下の文献2~4の情報から得られた各種鋳型の冷却速度も併記した。
R=(DAS/709)1/-0.386 ・・・(1)
R:冷却速度(℃/min.)、DAS:デンドライト2次アーム間隔(μm)
文献1:「鋳鋼の生産技術」P378、素形材センタ―
文献2:「鋳物」、第63巻(1991)第11号、P915
文献3:「鋳造工学」、第68巻(1996)第12号、P1076
文献4:「素形材」、Vol.54(2013)No.1、P13
FIG. 2 estimates the cooling rate of a sample from the DAS measured by observing the microstructure of the sample of the present invention by observing the structure of the sample with an optical microscope and the extrapolation line of the relationship between the DAS and the cooling rate described in Document 1 below. The cooling rates of various molds obtained from the information of 2 to 4 are also shown.
R = (DAS / 709) 1 / -0.386 ... (1)
R: Cooling rate (° C / min.), DAS: Dendrite secondary arm spacing (μm)
Reference 1: "Cast Steel Production Technology" P378, Raw Material Center
Reference 2: "Casting", Vol. 63 (1991) No. 11, P915
Reference 3: "Casting Engineering", Vol. 68 (1996) No. 12, P1076
Reference 4: "Shaping Material", Vol.54 (2013) No.1, P13

積層造形による試験体は造形用ベースプレートから放電ワイヤーカットで切り離した後、また、砂型鋳造による試験体は鋳型砂を取り除いた後、880℃で1時間保持した後に水冷し、600℃、2時間の焼戻し処理を行った。 The test piece by laminated molding is separated from the base plate for molding by electric discharge wire cutting, and the test piece by sand casting is held at 880 ° C. for 1 hour and then cooled with water at 600 ° C. for 2 hours after removing the mold sand. It was tempered.

これらの試験体から引張試験用としてJIS-Z2241、14A号試験片、シャルピー衝撃試験用としてJIS-Z2242、2mmVノッチ試験片を作成した。引張試験は20℃で、シャルピー衝撃試験は-100℃で実施した。表2に試験結果を示す。 From these test pieces, JIS-Z2241 and 14A test pieces were prepared for tensile test, and JIS-Z2242 and 2 mm V notch test pieces were prepared for Charpy impact test. The tensile test was carried out at 20 ° C. and the Charpy impact test was carried out at −100 ° C. Table 2 shows the test results.

表2に示すように、No.1~15の本発明例は、いずれもDASが5μm以下の微細組織となり、200kN・m/kg以上の比強度と60J以上の-100℃衝撃吸収エネルギーを有するものとなった。図3に本発明材のミクロ組織写真例を示す。 As shown in Table 2, No. In each of the examples of the present invention 1 to 15, the DAS was 5 μm or less, and the specific strength was 200 kN ・ m / kg or more and the impact absorption energy was -100 ° C. of 60 J or more. FIG. 3 shows an example of a microstructure photograph of the material of the present invention.

これに対し、No.16~27の比較例のうちNo.16~26は、積層造形により製造されたためDASの値は5μm以下であったが、組成が本発明の範囲から外れるため、比強度および衝撃吸収エネルギーのいずれかが低い値となった。また、No.27は、組成範囲は本発明の範囲内であるが、DASの値が極めて大きく、比強度および衝撃吸収エネルギーのいずれもが低い値となった。 On the other hand, No. Among the comparative examples 16 to 27, No. Since 16 to 26 were manufactured by laminated molding, the DAS value was 5 μm or less, but since the composition was out of the range of the present invention, either the specific strength or the impact absorption energy was low. In addition, No. In No. 27, the composition range was within the range of the present invention, but the DAS value was extremely large, and both the specific strength and the impact absorption energy were low values.

Figure 2022035110000002
Figure 2022035110000002

Figure 2022035110000003
Figure 2022035110000003

Claims (7)

質量%で、
C:0.12~0.3%、
Si:0.15~0.7%、
Mn:0.4~1.2%、
P:0.015%以下、
S:0.015%以下、
Ni:2~4%、
Cr:0.1~0.5%、
Mo:0.3~0.5%
を含有し、
残部がFeおよび不可避不純物からなり、デンドライト2次アーム間隔が5μm以下である凝固組織を有することを特徴とする高強度高靭性鉄基合金。
By mass%,
C: 0.12-0.3%,
Si: 0.15 to 0.7%,
Mn: 0.4-1.2%,
P: 0.015% or less,
S: 0.015% or less,
Ni: 2-4%,
Cr: 0.1-0.5%,
Mo: 0.3-0.5%
Contains,
A high-strength, high-toughness iron-based alloy characterized by having a solidified structure in which the balance is composed of Fe and unavoidable impurities and the dendrite secondary arm spacing is 5 μm or less.
質量%で、V:0.05~0.15%をさらに含有し、CおよびVの含有量が質量%で
C×0.3≦V≦C×0.6
を満足することを特徴とする請求項1に記載の高強度高靭性鉄基合金。
By mass%, V: 0.05 to 0.15% is further contained, and the content of C and V is C × 0.3 ≦ V ≦ C × 0.6 by mass%.
The high-strength, high-toughness iron-based alloy according to claim 1, which is characterized by satisfying the above.
質量%で、Ca:0.01~0.05%をさらに含有し、CaおよびSの含有量が質量%で
S×2≦Ca≦S×4.5
を満足することを特徴とする請求項1または請求項2に記載の高強度高靭性鉄基合金。
By mass%, Ca: 0.01 to 0.05% is further contained, and the content of Ca and S is S × 2 ≦ Ca ≦ S × 4.5 by mass%.
The high-strength, high-toughness iron-based alloy according to claim 1 or 2, wherein the above is satisfied.
C+Si/24+Mn/6+Ni/40+Mo/4+Cr/5+V/14
で表される炭素当量の値が、質量%で0.6%以下であることを特徴とする請求項1から請求項3のいずれか一項に記載の高強度高靭性鉄基合金。
C + Si / 24 + Mn / 6 + Ni / 40 + Mo / 4 + Cr / 5 + V / 14
The high-strength, high-toughness iron-based alloy according to any one of claims 1 to 3, wherein the value of carbon equivalent represented by 1 is 0.6% or less in mass%.
比強度≧200kN・m/kg、-100℃衝撃吸収エネルギー≧60J(2mmVノッチシャルピー衝撃試験片)を同時に満足することを特徴とする請求項1から請求項4のいずれかに記載の高強度高靭性鉄基合金。 The high strength according to any one of claims 1 to 4, wherein the specific strength ≧ 200 kN · m / kg and the shock absorption energy ≧ 60J (2 mmV notch Charpy impact test piece) are simultaneously satisfied. Tough iron-based alloy. 請求項1から請求項4のいずれか一項に記載の組成を有する合金素材を、レーザーまたは電子ビームによって、溶融・凝固させて積層造形することを特徴とする高強度高靭性鉄基合金の製造方法。 Manufacture of a high-strength, high-toughness iron-based alloy, which comprises melting and solidifying an alloy material having the composition according to any one of claims 1 to 4 by a laser or an electron beam to form a laminate. Method. 前記低熱膨張合金素材は、粉末であることを特徴とする請求項6に記載の高強度高靭性鉄基合金の製造方法。 The method for producing a high-strength, high-toughness iron-based alloy according to claim 6, wherein the low thermal expansion alloy material is a powder.
JP2020139203A 2020-08-20 2020-08-20 High-strength and high-toughness iron-based alloy, and method for manufacturing the same Pending JP2022035110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020139203A JP2022035110A (en) 2020-08-20 2020-08-20 High-strength and high-toughness iron-based alloy, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020139203A JP2022035110A (en) 2020-08-20 2020-08-20 High-strength and high-toughness iron-based alloy, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2022035110A true JP2022035110A (en) 2022-03-04

Family

ID=80442903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020139203A Pending JP2022035110A (en) 2020-08-20 2020-08-20 High-strength and high-toughness iron-based alloy, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2022035110A (en)

Similar Documents

Publication Publication Date Title
CN108474085B (en) Hot-working tool steel
JP6048626B1 (en) Thick, high toughness, high strength steel plate and method for producing the same
KR102037086B1 (en) Low alloy steel for geothermal power generation turbine rotor, and low alloy material for geothermal power generation turbine rotor and method for manufacturing the same
KR20190134704A (en) High Mn steel and its manufacturing method
KR20220006119A (en) Nickel-based alloy for powder and manufacturing method of powder
JP2017504722A (en) Steel material for super high strength welded structure excellent in toughness of weld heat affected zone and its manufacturing method
US20200009651A1 (en) Use of a Steel for an Additive Manufacturing Process, Method for Producing a Steel Component and Steel Component
KR101863476B1 (en) Method of manufacturing welded joint
JP2019119913A (en) Stainless steel powder for molding
JP2015232175A (en) Method of manufacturing ferrous alloy article using powder metallurgy
JP7016345B2 (en) Microalloy steel and its steel production method
JP2015189981A (en) Precipitation hardening stainless steel powder excellent in sinter crack prevention property and capable of obtaining high strength after sinter-aging treatment and sintered body thereof
JP5340839B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP2022035110A (en) High-strength and high-toughness iron-based alloy, and method for manufacturing the same
JPWO2019050010A1 (en) Steel sheet and manufacturing method thereof
JP2019104955A (en) Carbon steel slab and manufacturing method of the same
JP2022095215A (en) Low thermal expansion alloy
KR101339528B1 (en) Electron-beam welded joint, steel sheet for electron-beam welding, and manufacturing method therefor
US3655366A (en) Low alloy structural steel
WO2012070353A1 (en) Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
JP6296797B2 (en) High strength cast steel material and manufacturing method thereof
KR20150137629A (en) Part for generating unit and method of manufacturing the same
US20240026509A1 (en) High molybdenum duplex stainless steel
WO2021255856A1 (en) Box column
JP5996403B2 (en) Heat resistant steel and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240527

A917 Reason for reinstatement of right to file examination request

Free format text: JAPANESE INTERMEDIATE CODE: A917

Effective date: 20240527